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On a Nonparametric Change Point Detection
Model in Markovian Regimes

Asael Fabian Mart́ınez∗ and Ramsés H. Mena†

Abstract. Change point detection models aim to determine the most probable
grouping for a given sample indexed on an ordered set. For this purpose, we pro-
pose a methodology based on exchangeable partition probability functions, specif-
ically on Pitman’s sampling formula. Emphasis will be given to the Markovian
case, in particular for discretely observed Ornstein-Uhlenbeck diffusion processes.
Some properties of the resulting model are explained and posterior results are
obtained via a novel Markov chain Monte Carlo algorithm.

Keywords: Bayesian nonparametric, Change point detection, Ornstein-Uhlenbeck
process, Two-parameter Poisson-Dirichlet process

1 Introduction

We present a model which deals with change point detection problems. Assume depen-
dent data y = (yt1 , . . . , ytn) are observed at times t1, . . . , tn, with 0 < ti < tj for all
i < j. Our purpose is to identify changes in their underlying structure by focusing on
the posterior distribution

P(ρn|y) ∝ P(ρn)P(y|ρn), (1)

where ρn is a random variable modeling all possible groupings for the data preserving
the time ordering. In particular, the study of P(y|ρn) can be simplified by splitting it
into regimes, that is, parts of the likelihood characterized by structurally different parts
of y, under the given modeling assumptions. This kind of model is appealing in many
fields and applications such as genetics (for instance in DNA segmentation, Braun et al.
2000, and phylogenetic recombination detection, Minin et al. 2007), signal processing
(in EEG analysis, Kaplan and Shishkin 2000, and signal segmentation, Punskaya et al.
2002), environmental time series (for detecting changes in wind speed and direction,
Dobigeon and Toumeret 2007, and in hydrometeorological data, Perreault et al. 2000),
econometrics (detecting changes in variance for stock prices, Chen and Gupta 1997, and
analyzing inflation dynamics, Jochmann 2010) among others.

The literature on the subject is vast and encompasses both frequentist and Bayesian
approaches. Some up to date reviews, mainly gathering classical nonparametric meth-
ods, can be found in Brodsky and Darkhovsky (1993) and Chen and Gupta (2011). On
the Bayesian counterpart, early contributions focused on change points induced by a
change of parameter within a parametric family modeling sequential observations, e.g.
Chernoff and Zacks (1964) and Kander and Zacks (1966). A full Bayesian estimation
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approach was proposed by Smith (1975). He framed it under the assumption of ex-
changeable intra-regime observations, inter-regime independence, and considered only
a single change point. Smith’s approach was later extended to a nonparametric regime
distribution by Muliere and Scarsini (1985), where two independent Dirichlet processes
are assumed as models for two different regimes separated by an independent change
point random variable. Such independence assumptions were subsequently relaxed by
Mira and Petrone (1996) who proposed a mixture of products of Dirichlet processes to
model the dependence among the above two regimes.

Whereas the idea behind a generalization to multiple change points follows a similar
line of reasoning, its mathematical and computational treatment is more demanding.
For instance, within the parametric framework, Green (1995) makes use of reversible
jump Markov chain Monte Carlo (MCMC) to draw posterior inferences on the number of
change points. Concretely, he focuses on change points among data modeled through a
non-homogeneous Poisson process with a step function as intensity and where the num-
ber of steps, namely the number of regimes, is determined via a birth and death mech-
anism. This approach requires the construction of transdimensional samplers which,
depending on the choice of the model, does not always lead to a simple way to disen-
tangle the prior and posterior mass assigned to a given change point structure.

Exhausting the full set of possibilities for change points requires considering distri-
butions on all ordered partitions of the data. In this direction, Barry and Hartigan
(1992, 1993) proposed a product partition model (PPM). Concretely, they assumed the
number of change points as random and assigned them a product distribution, where the
probability of each partition is given by Yao’s cohesion function (Yao 1984). See Loschi
et al. (2003) and Loschi and Cruz (2005) for further developments in this direction.

Also using PPMs, Quintana and Iglesias (2003) propose an algorithm to select a
single partition according to some specific decision problem of interest, such as out-
liers detection. They also underline the relationship between PPMs’ cohesion functions
and the underlying clustering structure generated by the Dirichlet process. In a sim-
ilar fashion, Park and Dunson (2010) generalized the Dirichlet process clustering by
making it predictor-dependent, see also Müller et al. (2011). It is evident, then, that
various change point models available in the literature are based on random partition
distributions.

Hence, an important component for the study of change point detection problems is
the distribution on partitions that is assumed and its properties. Under this viewpoint,
the Bayesian nonparametric literature offers a wide variety of models, i.e. exchangeable
partition probability functions (EPPFs), which after appropriate modifications can be
considered as an alternative to the PPMs-based approach. Notice, however, that the
support of such distributions is not immediately adequate for change point problems as
data-partitions which are not subsequently observed should not receive positive proba-
bility.

In order to overcome this latter issue, an alternative approach can be devised from
a distribution presented in Fuentes-Garćıa et al. (2010). With a different purpose in
mind, i.e. classification, they introduce a distribution that preserves an ordering con-
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straint by restricting the support of a Dirichlet process mixture model. Our proposal
elaborates on this idea to construct more suitable distributions for ρn. Indeed, it can be
seen to resemble some PPMs based approaches, where cohesion functions are given by a
suitable modification of EPPFs derived from Bayesian nonparametric mixture models.
In particular, we will focus our discussion on a distribution derived from Pitman’s sam-
pling formula, also known as the two-parameter Poisson-Dirichlet process (Perman et al.
1992). Within the Bayesian nonparametric literature, this choice of prior constitutes a
good balance as it contains the Dirichlet process (Ferguson 1973) and the normalized
stable process (Kingman 1975) as particular cases, the most informative and the least
informative within the class of Gibbs-type priors (Lijoi et al. 2007b). In particular, one
of the parameters controls the reinforcement of group sizes in such a class of priors.
This, within the context at issue, will be interpreted as a change point sensitiveness
parameter.

As mentioned before, one of the areas where change point models are of great in-
terest is financial econometrics. In particular, detecting structural periods of distri-
butional homogeneity is of interest in several scenarios of volatility and asset prices.
Robust change-point-detection strategies can be used to establish financial markers for
global financial crisis (Allen et al. 2013), to detect the de facto exchange rate regime in
operation of a particular central bank (Reinhart and Rogoff 2004; Bubula and Ötker-
Robe 2002), to measure business cycles (Harding and Pagan 2008), etc. In order to
illustrate our proposal, we analyze the exchange rate between US Dollars and Mexican
Pesos during the period of January 2007–December 2012. As it can be seen in Be-
navides and Capistrán (2009), understanding structural changes in the exchange rate
helps also to understand the mechanisms through which monetary policies affect the
Mexican economy.

Regarding the underlying model for the data, and in the light of the exchange-
rate analysis, there are various aspects to consider. The first and most important one
goes along the lines that change point models can be used to study (potentially) non-
stationary series by partitioning them in intervals, each one having certain distributional
homogeneity (Aggarwal et al. 1999; Mikosch and Stuaricua 2004; Lavielle and Teyssière
2007). Second, most financial assets, in particular exchange rates, evolve naturally in
continuous time, and, thus, a model encompassing this characteristic would be pre-
ferred. In addition, to avoid no-identifiability of certain change points intrinsic to the
model, we rule out features such as jump discontinuities. Lastly, we would like to be
able to compare our proposal with other approaches, e.g. those based on independent
distributions.

Although higher-order models could be considered, long-range dependent processes
and non-stationary processes tend to be confused when used within change point con-
texts (Bhattacharya et al. 1983), hence, we confine the model for y to Markovian de-
pendence. Therefore, an excellent candidate and a good compromise between the above
requirements, generality and computability, is the Ornstein-Uhlenbeck process (Uhlen-
beck and Ornstein 1930). This model is the only stationary, Markovian diffusion process
which is Gaussian. In particular, it includes the case of independent Gaussian observa-
tions.
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It is worth saying that, in different but related directions, Markovian and other
sorts of dependence structures have been considered. For instance, in Fearnhead and
Liu (2007), the actual change points are modeled through a Markov chain, whereas, in
Monteiro et al. (2011), dependence is induced at the inter-regime parameter levels.

Notice that, within a probabilistic approach, change point problems are bound to be
model-based. Clearly, undertaking a Bayesian approach, e.g. setting prior distributions
for the parameters characterizing different regimes, modifies the marginal probabilistic
structure assumed for the data. Hence, in order to highlight the strength of our proposal
based on the two-parameter Poisson-Dirichlet, we concentrate on the main problem of
detecting change points and their location. In order to do so, we consider the integrated
regime likelihood, while keeping the parameter controlling the dependence.

The layout of the paper is as follows. In Sections 2 and 3, we introduce and explain
our proposal. First, we focus on the distribution of ρn and its properties, and later, we
derive the integrated regime likelihood obtained from the Ornstein-Uhlenbeck process.
Due to the large support induced by the distribution of ρn, the use of MCMC techniques
becomes essential, therefore an algorithm is also depicted in Section 4 with details
deferred to the appendix. A sensitivity analysis is presented in Section 5, in particular
to disentangle the role of the reinforcement parameter underlying to the two-parameter
Poisson-Dirichlet process as a change-point-detection vulnerability parameter. Section 6
shows the performance of our approach to detect change points in the exchange rate
between US Dollars and Mexican Pesos. Finally, Section 7 contains some concluding
remarks.

2 Probability distribution of ρn

Let X = {x1, . . . , xn} be an arbitrary collection of n items. In classification problems,
every possible grouping is formed by subsets {A1, . . . , Ak} such that

1. Ai ⊂ X and Ai 6= ∅, for i = 1, . . . , k,

2. A1 ∪ · · · ∪Ak = X ,

3. Ai ∩Aj = ∅, for each i 6= j.

All possible groupings, called hereafter partitions, form a combinatorial class known as
set partitions (of X ); its cardinality is given by the Bell number Bn, with n the size of
X . Let us denote this class by PX .

Example 1. Let X = {x1, x2, x3}. Then there are B3 = 5 partitions in PX and they
are:

{{x1, x2, x3}}, {{x1}, {x2, x3}}, {{x1, x2}, {x3}}, {{x1, x3}, {x2}}, {{x1}, {x2}, {x3}}.

Thus, for example, {{x1, x2, x3}} means that all elements belong to the same single
group and {{x1}, {x2}, {x3}} that each element belongs to its own group.
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Let [n] := {1, 2, . . . , n}. If we assume that X is the observed data, notice that PX
and P[n] are isomorphic combinatorial classes, then classifying X or [n] is an equivalent
problem. We use the latter to agree with the common notation.

Perhaps the easiest and more convenient way to define distributions on the set of
partitions is via the concept of EPPFs.

Definition 1. A random partition Πn is a random variable with support P[n]. In
addition, Πn is exchangeable if for any partition {A1, . . . , Ak} of [n]

P(Πn = {A1, . . . , Ak}) = p(n1, . . . , nk), (2)

for some symmetric function p of integer compositions nj := |Aj |, j = 1, . . . , k. Here
|A| denotes the cardinality of A. The function p is called an exchangeable partition
probability function (EPPF).

Remark 1. An integer composition of n ∈ N is a sequence (n1, . . . , nk) ⊂ Nk such that
n1 + · · ·+ nk = n for some k > 0.

These classes of functions arise naturally within the Bayesian platform for exchange-
able observations, which, for the sake of completeness, we briefly state. Let PX denote
the set of all probability measures on X. Due to de Finetti’s theorem (de Finetti 1931),
assuming the property of exchangeability for a set of X-valued observations (Xi)i≥1 is
equivalent to assuming the existence of probability distribution Q on PX such that for
any i ≥ 1,

Xi|p̃
iid∼ p̃

p̃ ∼ Q.

Whenever Q is infinite-dimensional, one speaks of a Bayesian nonparametric inferential
problem and Q is interpreted as a nonparametric prior for the random probability
measure (RPM) p̃. Of particular relevance are those nonparametric priors selecting
discrete distributions almost surely (a.s.), in other words, those associated to RPMs
with the representation

p̃ =

∞∑
j=1

wj δξj ,

where wj > 0, j = 1, 2, . . . , and
∑
j≥1 wj = 1 a.s., and (ξj)j≥1 is a sequence of iid X-

valued random variables, independent of (wj)j≥1. Under such a discrete nature for p̃, the
observables (Xi)

n
i=1 are bound to have ties with positive probability and, thus, to form

Kn = k groups with distinct representative values, e.g. X∗1 , . . . , X
∗
k , with frequencies

N1, . . . , Nk, where clearly k ≤ n. Therefore, selecting a model for Q induces an EPPF
defined through

p(n1, . . . , nk):= P(Kn = k,N1 = n1, . . . , Nk = nk) =

∫
Xk

EQ

(
k∏
j=1

p̃nj (dxj)

)
, (3)
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which reads as the probability of partitioning a sample of size n into k groups with
frequencies n1, . . . , nk, provided

∑k
i=1 ni = n. Moving away from the Dirichlet Process

model, a relatively general approach to define classes of Q can be found in Regazzini
et al. (2003). Furthermore, an up-to-date review and several of such classes with their
resulting EPPFs are discussed in Lijoi and Prünster (2010).

Hence, EPPFs have been used in several contexts, e.g. species sampling models,
mixture models, density estimation, classification problems and, in general, form the
basis of Bayesian nonparametric inference. However, for change point detection, an
EPPF is not directly useful due to the induced order that the times (tj)j≥1 impose.

Suppose we observe x1, x2, x3 sequentially and consider Example 1. Since we are
interested in the location of change points, partitions like {{x1, x3}, {x2}}, namely par-
titions lacking of ordering in their time indices, are meaningless and should receive
probability zero. While it is true that for certain data sets such kind of groupings
should receive positive probability, we believe their study would be better framed under
more general classification strategies. Therefore, a different support other than PX is
required. One choice is to restrict PX , considering only those partitions which preserve
the order in the (time) indices of X .

Such a subclass can be built as follows. For a given integer composition (n1, . . . , nk)
of n, consider the partition {A1, . . . , Ak} ∈ PX such that Aj = {xsj−1+l : l = 1, . . . , nj},
j = 1, . . . , k, where sj = n1 + · · · + nj with s0 = 0. We call this partition a set
composition. Moreover, we term the resulting combinatorial class formed by all these
set compositions the class of set compositions (of X ), and it will be denoted by CX .
Clearly, |CX | = 2n−1.

Example 2. Let X = {x1, x2, x3} be as in the previous example. Then, there are
23−1 = 4 compositions in CX and they are

{{x1, x2, x3}}, {{x1}, {x2, x3}}, {{x1, x2}, {x3}}, {{x1}, {x2}, {x3}}.

This combinatorial class is more adequate for change point detection problems be-
cause every single observation yti , i = 1, . . . , n, could start a new group. Within the
change point context, this means that every first observation’s time index within each
group will be a change point, except t1. That is, we could have at most n − 1 change
points arranged in 2n−1 different ways.

Since CX ⊆ PX for any set X , a distribution of the random variable of interest for
grouping, ρn, could be obtained by restricting a particular class of EPPF. One way to
do this, that keeps the essence of EPPFs, but supported on C[n] instead of P[n], can be
done through the following definition devised from Pitman (2006).

Definition 2. A C[n]-valued random variable ρn is said to have an exchangeable random
order distribution if it is given by

p′(n1, . . . , nk) =

(
n

n1, . . . , nk

)
1

k!
p(n1, . . . , nk), (4)

for p the EPPF of some Πn.
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The idea is that the mass for all partitions with (n1, . . . , nk) degenerates on those
partitions with the same (n1, . . . , nk) but where the order of the data is preserved.

An attractive statistic within the study and applications of EPPFs is the marginal
distribution of Kn derived from (3), i.e.

P(Kn = k) =
∑

{A1,...,Ak}∈PX

P(Πn = {A1, . . . , Ak}),

which indicates the number of partitions in a collection X of size n with exactly k groups.
Clearly, such quantity tackles important problems like assessing the number of groups
in a fully probabilistic way, e.g. in mixture modeling (Lijoi et al. 2007b) or in discovery
probability problems (Lijoi et al. 2007a). In our context, the random variable Cn :=
Kn − 1 will be used to model the number of change points.

An appealing feature of the distribution in Definition 2 is that the distribution of
Kn is preserved, and so are its asymptotic results (see Lijoi et al. 2007b).

Lemma 1. Let ρn be distributed as (4). Hence

PCX (Kn = k) = PPX (Kn = k).

Proof. The proof follows easily after noticing that

PCX (Kn = k) =
∑

{A1,...,Ak}∈CX

P(ρn = {A1, . . . , Ak})

=
∑

{A1,...,Ak}∈CX

p′(|A1|, . . . , |Ak|)

=
∑

{B1,...,Bk}∈PX

p(|B1|, . . . , |Bk|),

leading to the stated result.

This construction of C[n]-valued random variables is an attractive alternative to the
PPM approach based on cohesion functions.

Here, we will focus on the EPPF induced by the two-parameter Poisson-Dirichlet
process, that is the EPPF characterized by the probability distribution

P(Πn = (n1, . . . , nk)) =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1↑

k∏
j=1

(1− σ)nj−1↑,

where (x)n↑ = x(x+ 1) · · · (x+n− 1) denotes the Pochhammer symbol, with (x)0↑ = 1,
and σ ∈ [0, 1) with θ > −σ or σ < 0 with θ = m|σ| for some positive integer m. In
particular, we will work with the case σ ∈ [0, 1) which, within the context at issue,
corresponds to the case of always having new change points as the sample n increases
(see De Blasi et al. 2013 for more asymptotic results of this class of distributions).
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Therefore, for this process, the restriction to compositions defined as in (4) simplifies
to

P(ρn = (n1, . . . , nk)) =
n!

k!

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1↑

k∏
j=1

(1− σ)nj−1↑

nj !
. (5)

In both cases, the marginal distribution for Kn is given by

P(Kn = k) =

∏k−1
i=1 (θ + iσ)

σk(θ + 1)n−1

1

k!

k∑
j=0

(−1)j
(
k

j

)
(−jσ)n↑, k = 1, . . . , n,

with mean value given by

E[Kn] =
(θ + σ)n↑

σ(θ + 1)n−1↑
− θ

σ
. (6)

This model, also known as the Pitman-Yor process, has been widely used in species
sampling problems, density estimation, classification and machine learning. As men-
tioned in the introduction, this EPPF includes the Dirichlet and the normalized stable
processes as particular cases when σ = 0 and θ = 0, respectively. In particular, it
stands out within the class of Gibbs-type priors as it places a good tradeoff between
being informative or not about the prior information on Kn (Lijoi et al. 2007b).

The above comments about the flexibility of the two-parameter Poisson-Dirichlet
process can be seen through the marginal distribution of Kn, as σ varies. This parameter
plays an important role in the underlying clustering behavior. Lijoi et al. (2007b)
study this effect for the same parameter in the Generalized Gamma process; since both
processes belong to the Gibbs-type priors, a similar behavior is observed in this case.
Figure 1 shows some examples of the density function of Kn with E(Kn) fixed. This
feature will also play an important role when detecting change points.

Clearly, there are other ways to construct distributions supported on C[n]. Indeed,
Fuentes-Garćıa et al. (2010) propose to assign probability zero to those partitions not
preserving the order. Although similar to our approach, the way the remaining mass is
distributed is different. Specifically, within the context of sequentially observed data,
they considered

p∗(n1, . . . , nk) ∝ p(n1, . . . , nk) I(t1 < t2 < · · · < tn),

which maintains the symmetry of the EPPF, just as in (4), but changes the marginal
distribution of Kn.

Another approach can be deduced by simply focusing on the Markov chain, (Kn)∞n=1,
induced by the generalized Pólya urn characterizing the two-parameter Poisson-Dirichlet
process, that is, a Markov chain driven by one-step transition probabilities

P(Kn+1 = ξ|Kn = k) =
θ + kσ

θ + n
I(ξ = k + 1) +

n− kσ
θ + n

I(ξ = k),
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Figure 1: Probability density function of K100 for different values of (σ, θ) such that
E(K100) = 50; σ was fixed to: 0.1, 0.3, 0.5, 0.7 and 0.9.
Points are connected by straight lines for visual simplification.

and K1 = 1. This approach keeps the marginal characteristics of Kn induced by the
two-parameter Poisson-Dirichlet distribution, but breaks the symmetry of the resulting
distribution on C[n], say p?. In particular, this would mean that change points occurring
early would receive higher probabilities. Notice that this approach could be considered
as tantamount to the one obtained via infinite hidden Markov models (iHMMs), with
the state Markov process restricted to have upper triangular transition matrices.

Despite the above drawback, such an approach to study the marginal statistic Kn

could be of interest in other problems. In particular, it clearly leads as an alternative,
perhaps easier, approach to solve some species sampling problems (Lijoi et al. 2007a).

In order to make these observations clearer, consider the results in Table 1 where the
above probabilities are shown for the case of n = 4 and (σ, θ) = (0.35, 2.7). Note how
both, symmetry in the compositions and distributional properties for K4 are preserved
by distribution (4), unlike in the other two approaches.

3 Integrated regime likelihood

According to Barry and Hartigan (1992), PPMs are such that, conditioned to the par-
tition ρn, the observations in different groups are independent. There also exists a
sequence of parameters (xj)

n
j=1 which, given the partition ρn, are independent and fol-

low certain distribution. It is worth mentioning that some recent approaches, based on
PPMs, introduce dependence in the model at the level of parameters (see, for example
Monteiro et al. 2011). In both cases, however, the observations within the same group
are assumed also independent given the group’s parameter x∗l .
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k composition p′ p∗ p? p

1 {{x1, x2, x3, x4}} 0.029 0.041 0.029
0.029 0.041 0.029 0.029

2 {{x1}, {x2, x3, x4}} 0.066 0.047 0.092
{{x1, x2}, {x3, x4}} 0.039 0.019 0.046
{{x1, x2, x3}, {x4}} 0.066 0.047 0.033

0.171 0.112 0.171 0.171

3 {{x1}, {x2}, {x3, x4}} 0.136 0.097 0.204
{{x1}, {x2, x3}, {x4}} 0.136 0.097 0.136
{{x1, x2}, {x3}, {x4}} 0.136 0.097 0.068

0.408 0.290 0.408 0.408

4 {{x1}, {x2}, {x3}, {x4}} 0.392 0.557 0.392
0.392 0.557 0.392 0.392

Table 1: Distribution of ρ4 and K4 under the different approaches of constructing
distributions on C[n]: the exchangeable random order p′, the approach described by
Fuentes-Garćıa et al. (2010) p∗, and the Markov chain induced by the two-parameter
Poisson-Dirichlet process p?. The corresponding distributions of K4 are shown in cursive
numbers, as well as for the two-parameter Poisson-Dirichlet EPPF p.

Due to the examples we have in mind, we impose dependency at the level of ob-
servations by assuming a continuous time Markovian process modulating each regime.
Afterwards, we integrate out the process’s driven parameters but we preserve the de-
pendence induced through the correlation parameter. By doing this, we can focus on
change points’ inferences.

In particular, we assume data y = (yt1 , . . . , ytn) are modeled by a strictly stationary
Markovian process with invariant distribution π(·;x) and transition density p(y0, yt;x),
denoting generically the driven parameter by x. Then, the integrated regime likelihood
is given by

P(y|ρn = {A1, . . . , Ak}) =

k∏
j=1

L(y|Aj), (7)

where L(y|Aj) is the marginal likelihood given only the observations in group Aj , inte-
grating out the parameter x, i.e.

L(y|Aj) =

∫
X
π(yj,1;x)

nj−1∏
l=1

p(yj,l, yj,l+1;x)P (dx),

where yj,i is the ith observation in group Aj , nj = |Aj | and P is the prior distribution
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of x. So, the integrated regime likelihood (7) is given by

P(y|ρn = {A1, . . . , Ak}) =

k∏
j=1

∫
X
π(yj,1;x)

nj−1∏
l=1

p(yj,l, yj,l+1;x)P (dx). (8)

Assuming the nature of the phenomena producing y evolves in continuous time, and
following the discussion in Section 1, we complete the above specification by consider-
ing an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein 1930). In particular, this
process can be also seen as the solution to

dYt = −α(Yt − µ)dt+

√
2α

λ
dWt,

for µ ∈ R, α, λ > 0 and (Wt)t≥0 denotes the standard Brownian motion. This process,
apart from being stationary, reversible and Markovian is also Gaussian, allowing us,
then, to study directly the independent case through its autocorrelation. Although
other models could be also considered here, the model-based nature of change point
problems suggests that these do not necessarily need to be very complicated. That is,
sudden changes, jumps or other kinds of distributional variations could simply be part
of a different regime under the above model.

Following Karatzas and Shreve (1988), it can be easily seen that the invariant and
transition densities for this process, setting φ := e−α, are given by

π(y;µ, λ) = N(y;µ, 1/λ)

p(y0, yt;µ, λ, φ) = N(yt; y0φ
t + µ(1− φt), (1− φ2t)/λ),

where N(y;µ, σ2) denotes the normal density with mean µ and variance σ2. From this,
we have that E[Yt] = µ and Var[Yt] = 1/λ for all t. In addition, its covariance and
correlation functions are Cov(Ys, Yt) = φt−s/λ and Cor(Ys, Yt) = φt−s for all 0 ≤ s ≤ t,
respectively, with 0 < φ < 1. Therefore, parameter φ controls the correlation, and
the case where observations are independent and normally distributed is obtained when
φ→ 0. To refer to the law of such a Gaussian process we will use OU(µ, λ, φ).

We computed the integrated regime likelihood under the assumption that observa-
tions are recorded at equally spaced times, thus using the simpler notation ti = i, for
i = 1, . . . , n. Parameters µ and λ are integrated out using a Normal-Gamma prior dis-
tribution N(µ; 0, (cλ)−1)Ga(λ; a, b). Then, given φ, the integrated regime likelihood (8)
is given by

P(y|ρn) =

k∏
j=1

(2b(1− φ2))
a
Γ(nj/2 + a)

πnj/2Γ(a)

(
c(1 + φ)(1− φ2)

c+ nj − φ(nj − c− 2)

)1/2

×

y′jSjyj −
(1− φ)

(∑nj
i=1 yj,i − φ

∑nj−1
i=2 yj,i

)2

c+ nj − φ(nj − c− 2)
+ 2b(1− φ2)


−(nj/2+a)

, (9)
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where yj = (yj,i : i = 1 . . . , nj) and Sj ∈ Rnj×nj is given by

Sj =


1 −φ 0 . . . 0
−φ 1 + φ2 −φ . . . 0
0 −φ 1 + φ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

Notice that parameter φ models the correlation of the complete series y. Although, this
parameter could also be integrated out, at least numerically, we prefer to keep it as an
overall feature across regimes, since otherwise we could have regimes with independent
components and others with Markovian components.

4 MCMC simulation algorithm

Even when the number of set compositions is much smaller than the number of parti-
tions, simulating from the posterior distribution of ρn

P(ρn|y) ∝

(
n!

k!

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1↑

k∏
j=1

(1− σ)nj−1↑

nj !

)
P(y|ρn),

where P(y|ρn) is given by (9) becomes unfeasible for bigger datasets. The need of an
MCMC algorithm is then evident. Although, we are using a different approach than
the one used in Fuentes-Garćıa et al. (2010), their first algorithm can be adapted to our
framework. Concretely, a split-merge algorithm which updates the number of groups
k and the group sizes (n1, . . . , nk) using Metropolis-Hastings steps will be used. Note
that unlike other split-merge MCMC algorithms on the space of partitions, the “split”
and “merge” steps make complete sense here as the ordering restriction leaves us no
other sensible moves.

Hence, two possible choices are available: a split, which creates a new group, or a
merge, which combines two consecutive existing groups into a single one. After that,
a random pair of adjacent groups is updated proposing new values in order to speed
the sampler up. All these steps are performed introducing latent variables, avoiding,
then, the need to change dimensions among iterations. The sampler is depicted in the
algorithm shown in Figure 2, and further details are given in the appendix.

Additionally, it is possible to assign prior distributions to parameters σ, θ and φ
so that we are also able to make inferences about them. We include this option in
the algorithm as follows. For variables (σ, θ), the likelihood function is taken from (5),
the prior for ρn. A Beta prior, with parameters (a, b), is assigned to σ and a shifted
Gamma prior, with parameters (c, d,−σ), to θ. We say that a random variable Z is
shifted Gamma distributed with parameters (α, β, µ), for α, β > 0 and −∞ < µ < ∞,
if and only if Z − µ is Gamma distributed with parameters (α, β).

We have decided to work with the case σ ∈ (0, 1) in order to highlight the implied
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read y1, . . . , yn and hyper-parameters
initiate k and (n1, . . . , nk)
repeat

with probability q I(1 < k < n) + I(k = 1) . split
choose j uniformly from {j : 1 ≤ j ≤ k, nj > 1}
choose l uniformly from {1 . . . , nj − 1}
with probability α in (15)

(n1, . . . , nk+1)← (n1, . . . , nj−1, l, nj − l, nj+1, . . . , nk)
k ← k + 1

end with
otherwise . merge

choose j uniformly from {1, . . . , k − 1}
with probability α in (16)

(n1, . . . , nk−1)← (n1, . . . , nj−1, nj + nj+1, nj+2, . . . , nk)
k ← k − 1

end with
end with
if k > 1 then . shuffle

choose i uniformly from {1, . . . , k − 1}
choose j uniformly from {1, . . . , ni + ni+1 − 1}
with probability α in (17)
ni+1 ← ni + ni+1 − j
ni ← j

end with
end if
[simulate values for additional parameters]

until converge and have the required number of samples
write the sampled values of k and (n1, . . . , nk) [and additional parameters]

Figure 2: Split-merge MCMC algorithm used for change point detection.

reinforcement mechanism. Thus, the posterior distribution of σ is given by

p(σ| . . . ) ∝ σa−1(1− σ)b−1(θ + σ)c−1e−dσ
k−1∏
i=1

(θ + iσ)

k∏
j=1

(1− σ)nj−1↑

with σ ∈ (max{−θ, 0}, 1). Simulation for this posterior distribution can be easily done
via the adaptive Metropolis rejection sampling (ARMS) method (Gilks et al. 1995). For
the posterior distribution of θ, we use the following result; the proof is given in the
appendix.

Proposition 1. The augmented full conditional distribution of θ, with likelihood func-
tion (5) and prior distribution shifted Gamma with parameters (c, d,−σ), is given by

p(θ|y, z, . . . ) ∝
k+1∑
j=0

wjGa(θ; c + j, d + y − log(z),−σ),
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where the weights (wj)
k+1
j=0 are given by

wj ∝
(
(n− σ)(n+ 1− σ)ck−1,j + (2n+ 1− 2σ)σck−1,j−1 + σ2ck−1,j−2

)
Γ(c + j)(

σ(d + y − log(z))
)j ,

where k and n are as in (5), z ∼ Be(θ+ 2, n), y ∼ Exp(θ+ 1) and ck,j, j = 1 . . . , k, are
the absolute value of the Stirling number of the first kind with ck,r = 0 for r ≤ 0 and
for r > k and c0,0 = 1.

To the best of our knowledge, previous implementations to simulate from the poste-
rior distribution of θ were limited to Metropolis-Hastings steps (see, for example, Jara
et al. 2010 and Nieto-Barajas and Contreras-Cristan 2014). Hence, the above propo-
sition could also be useful in other Bayesian nonparametric implementations based on
the two-parameter Poisson-Dirichlet process.

Together with the prior distribution of (σ, θ), we further assume an a priori indepen-
dent (0, 1)-Uniform distribution of the dependency parameter φ. Therefore, its posterior
distribution is proportional to Equation (9) and, as for parameter σ, the ARMS method
can be used to simulate from it.

Regarding the inferences, we focus on the posterior distributions of Kn and ρn. Due
to the support of ρn, estimates like mean, variance or quantiles are not straightforward
to obtain. Therefore, we worked with two point estimates: the posterior mode and the
least-squares clustering (Dahl 2006). The second estimate corresponds to the group-
ing g∗ that minimizes the sum of squared deviations of the association matrix δ(g) from
π̂, i.e.

g∗ = arg min
g∈S

∑
i,j

(δi,j(g)− π̂i,j)2,

where S denotes the set of all the sampled compositions, δ(g) is such that its (i, j)
element, δi,j(g), is the indicator of whether observations yti and ytj , i, j = 1, . . . , n,
belong to the same group in g and π̂ is the element-wise mean of all these association
matrices. However, since both estimates coincided for almost all the simulations per-
formed in the next sections, we will only report the mode which, in addition, has a
neater interpretation.

Another method used by Loschi and Cruz (2005) to obtain a posterior estimate of
ρn is based on the posterior probability that each time ti, i = 2, . . . , n, is a change
point. Given a sequence of frequencies (n1, . . . , nk), their corresponding change points
are given by 〈j1, . . . , jk−1〉, where ji = n1 + · · ·+ni+1. Define the event Ti as the event
where the ith instant ti is a change point, i = 2, . . . , n, then

τi := P(Ti|y) =
∑

〈j1,...,jk−1〉∈S

P(ρn = 〈j1, . . . , jl = ti, . . . , jk−1〉|y), (10)

with S as before. Using this, Loschi and Cruz’s estimate ρ?n is given by all the times
(tji)

r
i=1 whose probabilities τji , i = 1, . . . , r, are greater than a certain threshold; hence

ρ?n = 〈tj1 , . . . , tjr 〉. While this approach might be appealing in monitoring contexts, it
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is not clear how to define a threshold for change point determination. Having said this,
within the context at issue, it is useful to illustrate the role of parameter σ, so we will
use probabilities (τi)

n
i=2 in the next sections.

5 σ as a change point sensitivity parameter

In this section, we illustrate the role of the σ-parameter when detecting change points
as well as the performance of the split-merge algorithm described in Figure 2. First, a
small dataset is used in order to study the role of the σ-parameter. Afterwards, three
bigger simulated datasets are used to depict the performance of the algorithm under
various scenarios, e.g. assuming dependent (φ > 0) or independent (φ = 0) observations
and under different mean and variance schemes.

For the first dataset, 15 observations are used. Working with a small dataset allows
us to obtain exact results without the need of numeric algorithms and, therefore, we
can draw conclusions without the error introduced by MCMC samplers. Then, data are
simulated as follows:

yi
iid∼ N(0, 0.5) i = 1, . . . , 6

yi
iid∼ N(2, 0.5) i = 7, . . . , 15

(see Figure 3). Since dependence is hard to reproduce and detect in small datasets, we
use independent observations. Furthermore, we use the prior specification (a, b, c, φ) =
(1, 1, 0.1, 0) for the integrated regime likelihood and various other specifications for the
prior parameters of ρn. In particular, the σ-parameter was set to 0.0, 0.1, 0.3, 0.6 and
0.9 and then the corresponding values for θ were found such that the prior expected
value for Cn matches 1, 5 and 11, namely true, far and too far from the real number of
change points. The results are shown in Table 2.

The most illustrative results in this example are those when the prior guess at the
number of change points is far from the number that generated the data. As σ increases,
the probability assigned to the posterior mode of ρn increases, and, at the same time, the
posterior mode of Cn shifts towards smaller values. Also observe that the posterior mode
of ρn contains fewer groups as σ increases. In a similar way, the posterior probabilities
(τi)

15
i=2 (Equation 10), shown in Figure 3 for the case E[Cn] = 11, reveal a reinforcement

assigning lower probabilities to all the times except the correct one as σ increases. This
is related to the reinforcement mechanism explained in Lijoi et al. (2007b).

Hence, this verifies the observations in Figure 1, namely the value for σ controls the
prior and posterior knowledge of ρn and Cn. Meaning that if E[Cn] is far from the true
value, a higher value for σ is preferred. In the above example this reinforcement forces
the posterior mode of Cn to shift towards small values, as σ increases, since the prior
was chosen such that E[Cn] = 11. However, the direction would be the opposite if the
true one would be Cn = 25 instead of Cn = 2.

Now, we show the performance of the MCMC algorithm using three bigger simulated
datasets. Concretely, the first dataset has changes in mean, the second has changes in



838 Nonparametric Change Point Model

Figure 3: (top) Small simulated dataset with change point at 〈7〉, indicated with a
dashed line. (bottom) Posterior probabilities that each time is a change point assuming
E[Cn] = 11 a priori and taking different values of σ: 0.0, 0.1, 0.3,

0.6 and 0.9. Points are connected by straight lines for visual simplification.

variance and the last one has changes in mean, variance and correlation. Each of them
consist of 150 observations and they are described as follows.

1. The first dataset has two changes in mean. This is sequentially simulated from
independent Ornstein-Uhlenbeck processes as follows:

yi ∼ OU(0, 2, 0.4) i = 1, . . . , 50

yi ∼ OU(5, 2, 0.4) i = 51, . . . , 85

yi ∼ OU(2, 2, 0.4) i = 86, . . . , 150.

So its change points are 〈51, 86〉 (Figure 4a).

2. The second dataset has two changes in variance. Like the previous dataset, it is
simulated as follows:

yi ∼ OU(0, 1.5, 0.7) i = 1, . . . , 50

yi ∼ OU(0, 0.2, 0.7) i = 51, . . . , 120

yi ∼ OU(0, 0.8, 0.7) i = 121, . . . , 150.

Its change points are 〈51, 121〉 (Figure 4b).
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E[Cn] σ θ ρ̃n prob. C̃n prob.

1 0.0 0.356 〈7〉 0.6985 1 0.7986
0.1 0.194 〈7〉 0.6788 1 0.7776
0.3 −0.114 〈7〉 0.6301 1 0.7254
0.6 −0.531 〈7〉 0.5026 1 0.5868
0.9 −0.890 〈〉 0.8229 0 0.8229

5 0.0 3.201 〈7〉 0.1457 2 0.3293
0.1 2.626 〈7〉 0.1749 2 0.3413
0.3 1.527 〈7〉 0.2507 2 0.3508
0.6 0.097 〈7〉 0.3923 1 0.4581
0.9 −0.822 〈〉 0.3564 1 0.3630

11 0.0 25.683 〈2, 3, 4, 5, 6, 7〉 0.0017 8 0.2168
0.1 22.670 〈2, 3, 4, 5, 6, 7〉 0.0025 8 0.2103
0.3 16.672 〈2, 3, 4, 5, 6, 7〉 0.0052 7 0.1951
0.6 7.832 〈2, 3, 4, 5, 6, 7〉 0.0176 6 0.1799
0.9 0.087 〈7〉 0.2512 1 0.3179

Table 2: Posterior results for the small dataset. The first three columns show the prior
parameters for ρn. Columns 4 and 5 show the posterior mode, ρ̃n, together with its
probability. The last two columns show the mode for the number of change points, C̃n,
and its corresponding probability.

3. The third dataset has two change points and it is formed by the following inde-
pendent samples:

yi ∼ OU(0, 0.5, 0.1) i = 1, . . . , 50

yi ∼ OU(−1, 2, 0.7) i = 51, . . . , 100

yi ∼ OU(0, 1, 0.2) i = 101, . . . , 150.

Then, its change points are 〈51, 101〉 (Figure 4c). This is a more complex dataset
since it has changes in mean, variance and also in correlation. Even when our
model uses a single parameter, φ, to control the correlation in the data, we want
to test how well it works. In particular, the number of change points is expected
to be different from the above, as, in principle, more of these might be needed to
represent the above data under similar intra-regime dependency scenarios.

Various simulations were done using different specifications, each of them consisted
of 20, 000 iterations after 10, 000 of burn-in with the integrated regime likelihood’s prior
parameters set as a = b = 1 and c = 0.1. The independent and dependent cases
were considered for φ, letting φ = 0 and φ ∼ U(0, 1), respectively. Regarding the
prior parameters for ρn, like in the small dataset, parameter σ was set to 0.1, 0.3, 0.6
and 0.9 and their corresponding values for θ were found such that the prior expected
value for Cn matches 2, 49 and 99. Additionally, we considered specifications where
θ|σ ∼ Ga(1, 1,−σ) with σ ∼ Be(1, 1) or fixed taking the aforementioned values.
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(a) Changes in mean at times 〈51, 86〉.

(b) Changes in variance at times 〈51, 121〉.

(c) Changes in mean, variance and correlation at times 〈51, 101〉.

Figure 4: Simulated datasets; change points are indicated with dashed lines.
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For the sake of comparison, we also show the results based on the model developed
by Loschi and Cruz (2005), namely a PPM-based approach with Yao’s cohesion function
and independent inter- and intra-regime Gaussian likelihood. Within this approach, the
posterior distribution of ρn is given by Equation (1), where P(ρn) ∝ pk−1(1 − p)n−k
and P(y|ρn) is given by (9) with φ = 0. Sampling from the corresponding posterior
distribution is done using an extension of the Gibbs sampling scheme proposed by
Barry and Hartigan (1993), see also Loschi et al. (2003). In our view, this is one of the
most competitive models for change point problems available in the literature, apart
from having certain features similar to our approach.

The simulations for this model were also done using different scenarios, taking
20, 000 iterations after a burn-in of 10, 000. Regime parameters and cohesion func-
tion’s hyper-parameters, (α, β), were taken as described in their paper. Furthermore,
hyper-parameters (α, β) were fixed such that the expected number of change points
matches the same values as in our model.

The results are shown in the appendix, Tables 4–7. From these results, changes
in mean are correctly detected for almost all configurations (Table 4). Both the loca-
tions and the number of the change points were correctly identified. The most notable
difference related to the performance of φ is that the independent case assigns lower
probabilities than those corresponding to the dependent case. Regarding the parameter
σ, we notice that under a complete misspecification of the prior, i.e. E[Cn] = 49 and
σ = 0.1, neither the locations nor the number of change points were correctly identified.
However, as σ increases the results become more favorable. Indeed, by inspecting more
extreme cases, e.g. E[Cn] = 99, only for σ = 0.9, the correct number of change points is
recovered.

The second example, reported in Table 5, shows the improvement under a more
robust model, i.e. allowing for dependency by setting φ ∼ U(0, 1). In such a scenario,
most change points were correctly detected. Indeed, the small variations might be due
to the randomness inherent to the simulation. In the independent case, however, even
when the prior guess at the number of change points was close enough to the correct
one, the model was unable to correctly identify them. This clearly favors the use of
a model able to capture serial dependence. On the other hand, parameter σ shows a
similar performance as in the previous dataset. However, in this case the cost of placing
a misspecified prior, e.g. E[Cn] = 49, tends to be higher.

For the third dataset, which has change points in mean, variance and correlation,
the results are favored under the dependent case, having similar sensitivity conclusions
for the parameter σ. See Table 6.

The results of Loschi and Cruz’s method are shown in Table 7. Their model performs
well for the dataset with changes in mean; hyper-parameters do not affect the results.
For the dataset with changes in variances, an extra change point at t = 4 is detected
in all scenarios; additionally, there are some scenarios including more change points.
However, for the third dataset, their method could not detect any change point. This
behavior might be due to the fact that their prior distribution P(ρn) is a function of n
and k only, that is, giving the same weight to all compositions (n1, . . . , nk) for a given k.
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So, we could say that our approach has an advantage over theirs. Our distribution of ρn
provides more flexibility to detect change points. In particular, the parameter σ plays a
key role since it enhances the detection under more uncertain scenarios. Moreover, we
can also say that our distribution may be also used as an alternative cohesion function
within PPMs restricted to Cn.

Throughout this analysis, we used the modal partition as indicative of change points,
however, as mentioned above, the least-squares clustering could also be employed. In-
deed, we evaluated these two statistics, but, due to the ordering constraint present
when working with set compositions, the resulting change points coincided in almost all
scenarios.

6 Application to real data

In this section, we test our proposal with daily records of Mexican Peso/US Dollar
exchange rate from January 2007 to December 2012 (Figure 5), available at the web-
site www.federalreserve.gov. Like in the previous section, we compare our proposal
with the PPM of Loschi and Cruz (2005), which has been widely used in change point
detection in financial data; see, for example Zantedeschi et al. (2011).

Estimations are based on 20, 000 iterations after a burn-in of 10, 000. Integrated
regime likelihood’s parameters were set as before, i.e. a = b = 1 and c = 0.1, and, for
φ, the dependent (φ ∼ U(0, 1)) and independent (φ = 0) cases were considered. From
the analysis made in the previous section, we fixed parameter σ = 0.9 to allow a strong
reinforcement and let θ ∼ Ga(1, 1,−0.9). Regarding Loschi and Cruz’s proposal, we test
it under a similar scenario. Regime likelihood’s parameters were set as the ones used in
Loschi and Cruz (2005) and the cohesion function’s hyper-parameters (α, β) were fixed
to (1, 1). For simplicity during the comparison, our dependent and independent cases
are called model A and model B, respectively, whereas Loschi and Cruz’s method is
called model C. These simulations took 238, 66 and 361 seconds, respectively, using a
PC with an Intel® Core� i5-3570 CPU at 3.4GHz with 8Gb of RAM. In all cases, we
performed the Gelman and Rubin (1992) visual convergence test and the Raftery and
Lewis (1992) diagnostic convergence test; both indicated satisfactory results.

For model A, the most probable change points, occurring with probability 0.0245,
are detected at: September 10, 2008, May 4, 2009, July 16, 2010, August 4, 2011 and
August 3, 2012. For model B, the modal change points, occurring with probability 0.116,
are at: April 1, 2008, October 7, 2008, January 14, 2009, April 2, 2009, November 24,
2009, January 3, 2011 and September 8, 2011. Finally, for model C, with probability
0.08465, the mode is detected at: September 9, 2008, March 11, 2009, March 18, 2011
and August 25, 2011. Figure 5 indicates all these change points for each model and
Figure 6 shows posterior probabilities (τi)

1566
i=2 (Equation 10). Figure 7 exhibits the

posterior distributions of θ, for Models A and B, and φ, for Model A. Additionally,
Table 3 displays the posterior distribution of the number of change points.

These results share change points around relevant events in Mexico and USA: 1) the
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2008 financial crisis with a sharp spike in September, 2) the flu pandemic suffered by
Mexico in the period of March–May 2009, where the pharmaceutical industry tried to
reactivate the global economy, and 3) the US debt-ceiling crisis in 2011. The rest of
the change points detected by Model A are also close to other relevant events: 4) the
so-called currency war in 2010 as a consequence of the 2008 financial crisis, and 5) the
Mexican presidential election.

Both Loschi and Cruz’s proposal and ours can be subject to interpretability. In
particular, in our view, Model A, i.e. with a high value for σ and with positive corre-
lation, provides a more sensible detection. Clearly, both approaches are model-based,
one working with independent observations and the other with a stationary Markovian
model.

7 Discussion

We have proposed a change point detection model which constitutes an alternative to
other approaches available in the literature, in particular to the PPM-based approach.
As mentioned in Section 2, these kinds of problems are essentially classification problems
but with a restriction imposed by the sequential nature of the data. Indeed, the PPM
approach shares some similarities with the posterior inference obtained under a Bayesian
non parametric approach, but with the distinctive difference of having a restricted sup-
port on C[n] instead of P[n]. One of the advantages of such a connection, and thus of
our proposal, is that it allows to build up other classes of C[n]-valued distributions. In
particular, take the EPPF of your preference and apply Definition 2, hence providing
a wide set of alternatives to the cohesion function PPM-based approach. Notice that
PPMs are, in general, not applicable to change point problems as these are usually also
supported in P[n].

Concerning the distribution of ρn, clearly, as we already said, there are many other
ways to define it. In particular, the aforementioned alternative construction devised
through the Markov chain (Kn)∞n=1, which also resembles the approach via iHMMs,
does not necessarily lead to an analytic form of the implied distribution on partitions
and therefore the need of more elaborate MCMC schemes becomes evident.

Therefore, our approach could be considered as a coherent one and that goes along
with the EPPF approach. In particular, it inherits some appealing marginal features
such as the distribution of the number of groups, used here to model the number of
change points.

Furthermore, the role of parameter σ in the two-parameter Poisson-Dirichlet process
also resulted in an appealing feature of the EPPF used through this paper. Its ability
to control the clustering, not achieved by other models, such as the Dirichlet process,
led us to a change points sensitivity parameter.

An important point to emphasize is the model-based nature of change point detection
models. In this work, we deal with stationary Markovian observations, however other
modeling schemes could be also considered, while keeping the same idea.
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Figure 5: Price of one US Dollar in Pesos. Change points are indicated with vertical
lines for the different models: A) our approach with φ ∼ U(0, 1), B) our
approach with φ = 0, and C) Loschi and Cruz’s approach.

Figure 6: Posterior probabilities that each time is a change point for the different models:
(top) our approach with φ ∼ U(0, 1), (middle) our approach with φ = 0, and (bottom)
Loschi and Cruz’s approach.
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Number of change points

Model 4 5 6 7 8 9

A: ours with φ ∼ U(0, 1) — 0.23265 0.23015 0.49245 0.04365 0.00110
B: ours with φ = 0 — — — 0.83290 0.15695 0.01015
C: Loschi and Cruz’s 0.00025 0.99975 — — — —

Table 3: Posterior probabilities for the number of change points, Cn, for each model.

(a) Parameter θ, model A (b) Parameter θ, model B

(c) Parameter φ, model A

Figure 7: Posterior distributions for our approach with φ ∼ U(0, 1) (model A) and
φ = 0 (model B).
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Various other extensions could be also evaluated. For example, one could restrict
the partition distribution resulting from dependent nonparametric approaches, which
would then include cases with inter-regime dependence. Also, by assuming a continuous
time-dependent nonparametric Markovian regime, a generalization in the same direction
of the approach by Muliere and Scarsini (1985) and Mira and Petrone (1996), could be
achieved.

The above mentioned features of our approach seem to work well together for their
main purpose: the detection of change points. This was shown in the exchange rate
application where change points were indeed related to important events in the countries
which affected them. Finally, an appealing aspect still to be explored, within the class
of models here studied, is the prediction of change points which is part of our on-going
research.

Finally, another appealing aspect devised from the ideas here presented is the pro-
posed MCMC algorithm. Indeed, this can be easily extended to other C[n]-valued dis-
tributions, such as those mentioned in Section 2 and those implied from PPMs-based
approaches.
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Appendix

Simulation algorithm

Let p(k, γk) = p(n1, . . . , nk|y) where γk is a grouping for the data y of size k with each
group having size nj . Then, at each iteration, the MCMC algorithm will update values
for k and γk.

The support for k is {1, . . . , n}. When updating this variable, the chain will change
the grouping from one with k(i) groups to another with k(i+1), involving perhaps a
change in dimension. To avoid this issue, a series of latent variables, γj , j = 1, . . . , n
and j 6= k, is introduced (Godsill 2001). The resulting density is written as

p(k, γ) = p(k, γk)

k−1∏
j=1

p(γj |γj+1)
n∏

j=k+1

p(γj |γj−1). (11)

Updating k is done via Metropolis-Hastings with target distribution p(k|γ). Let 0 <
q < 1 and let

p(k|r) = q I(k = r + 1) + (1− q) I(k = r − 1) (12a)

be the proposal distribution of k, whenever 1 < r < n, and

p(2|1) = p(n− 1|n) = 1, (12b)

otherwise. Thus, the acceptance probability to update k is given by

α = min

{
p(k|k′)
p(k′|k)

p(k′|γ)

p(k|γ)
, 1

}
,

with k′ simulated from the proposal (12).

For a given k, there are only two possible values for updating it: k + 1 and k − 1,
namely split and merge moves, respectively. These moves are related to the conditional
distributions in (11), since p(γk+1|γk) represents a split move and p(γk−1|γk) a merge
move. So it is necessary to be able to simulate from them.

When a split is performed, one group with size greater than one is selected and,
then, split into two. These two choices are made uniformly, so

p(γk+1|γk) =
1

ng,k(ns − 1)
, (13)

where ng,k is the number of groups of size greater than one and ns the size of the
selected group. On the other hand, when a merge is performed, two adjacent groups
are selected to be merged. Again, they are chosen uniformly, so

p(γk−1|γk) =
1

k − 1
. (14)
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Therefore, updating k is done as follows. When a split move is proposed, i.e. k′ = k+1,
Equations (11–14) simplify α to

α = min

{
1− q
q

p(k + 1, γk+1)

p(k, γk)

ng,k(ns − 1)

k
, 1

}
, (15a)

whenever 1 < k < n, and

α = min

{
(1− q) (n− 1)

p(2, γ2)

p(1, γ1)
, 1

}
, (15b)

if k = 1. Otherwise, a merge move is proposed, i.e. k′ = k − 1. Then two adjacent
groups are selected, say ns and ns+1, so Equations (11–14) simplify α to

α = min

{
q

1− q
p(k − 1, γk−1)

p(k, γk)

k − 1

ng,k−1(ns + ns+1 − 1)
, 1

}
, (16a)

whenever 1 < k < n, and

α = min

{
q (n− 1)

p(n− 1, γn−1)

p(n, γn)
, 1

}
, (16b)

when k = n.

A second step, called shuffle, is included in the MCMC algorithm in order to improve
it. This step takes two adjacent groups, say ns and ns+1, and updates their sizes
uniformly by splitting the combined group into two, of sizes n∗s and n∗s+1, with n∗s, n

∗
s+1 ≥

1. In this case, the acceptance probability is given by

α = min

{
p(k, γ∗k)

p(k, γk)

(n∗s + n∗s+1 − 1)

(ns + ns+1 − 1)
, 1

}
= min

{
p(k, γ∗k)

p(k, γk)
, 1

}
. (17)

Proof of Proposition 1

The posterior distribution of θ is given by

p(θ| . . . ) ∝ (θ + σ)c−1e−dθ

(θ + 1)n−1↑

k−1∏
i=1

(θ + iσ)I(θ > −σ). (18)

To derive the augmented full conditional distribution, notice that

k−1∏
i=1

(θ + iσ) = σk−1
k−1∑
j=0

ck−1,j

(θ + σ

σ

)j
,

where ck−1,j is the absolute value of the Stirling numbers of the first kind, and that

1

(θ + 1)n−1↑
=

Γ(θ + 1)

Γ(θ + n)
=

(θ + n)(θ + n+ 1)

(θ + 1)Γ(n)
β(θ + 2, n),
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where β is the Beta function. Therefore, the posterior distribution (18) can be rewritten
as

k−1∑
j=0

ck−1,j

σj
(θ + n)(θ + n+ 1)

(θ + 1)
β(θ + 2, n)(θ + σ)c+j−1e−dθI(θ > −σ).

Using data augmentation, let y ∼ Exp(θ+1) and, following the approach of West (1992)
to update the Dirichlet process’s parameter, let z ∼ Be(θ + 2, n). Thus,

p(θ|y, z, . . . ) ∝
k−1∑
j=0

ck−1,j

σj
(θ + n)(θ + n+ 1)(θ + σ)c+j−1e−(d+y−log(z))θI(θ > −σ).

Expanding the product (θ + n)(θ + n + 1) as function of (θ + σ) and rearranging the
terms of the sum with respect to (θ + σ)c+j−1, j = 0, 1, . . . , k + 1, we have

p(θ|y, z, . . . ) ∝
k+1∑
j=0

w′j(θ + σ)c+j−1e−(d+y−log(z))θI(θ > −σ),

where

w′j =
(n− σ)(n+ 1− σ)ck−1,j + (2n+ 1− 2σ)σck−1,j−1 + σ2ck−1,j−2

σj
,

with ck,r = 0 for r ≤ 0 and for r > k. Finally, completing the density in each term
leads us to the stated result.

Simulation results for the synthetic datasets

The results of the simulations performed for each dataset described in Section 5 are
shown in Tables 4, 5 and 6.



854 Nonparametric Change Point Model

φ E[Cn] σ θ ρ̃n prob. C̃n prob.

0.0 2 0.1 0.1897 〈51, 86〉 0.7880 2 0.7966
0.3 −0.1634 〈51, 86〉 0.7379 2 0.7454
0.6 −0.5709 〈51, 86〉 0.6757 2 0.6757
0.9 −0.8979 〈51, 86〉 0.6130 2 0.6142

49 0.1 21.4127 〈2, 50, 51, 86, 87, 149, 150〉 0.0008 15 0.1195
0.3 13.0593 〈51, 86, 87〉 0.0035 9 0.1267
0.6 3.0021 〈51, 86〉 0.1969 3 0.2842
0.9 −0.7974 〈51, 86〉 0.6069 2 0.6069

99 0.1 113.4390 〈. . . 〉40 0.0003 43 0.0700
0.3 80.8346 〈. . . 〉37 0.0004 35 0.0891
0.6 34.2148 〈. . . 〉10 0.0008 18 0.0866
0.9 0.4399 〈51, 86〉 0.4056 2 0.4127

0.1 r.v. 〈51, 86〉 0.7234 2 0.7235
0.3 r.v. 〈51, 86〉 0.6558 2 0.6603
0.6 r.v. 〈51, 86〉 0.5905 2 0.5927
0.9 r.v. 〈51, 86〉 0.5354 2 0.5359

r.v. r.v. 〈51, 86〉 0.7030 2 0.7030

r.v. 2 0.1 0.1897 〈51, 86〉 0.8134 2 0.8134
0.3 −0.1634 〈51, 86〉 0.7908 2 0.7908
0.6 −0.5709 〈51, 86〉 0.7579 2 0.7579
0.9 −0.8979 〈51, 86〉 0.7631 2 0.7634

49 0.1 21.4127 〈. . . 〉11 0.0004 13 0.1416
0.3 13.0593 〈51, 86〉 0.0071 8 0.1436
0.6 3.0021 〈51, 86〉 0.3486 2 0.3486
0.9 −0.7974 〈51, 86〉 0.7531 2 0.7534

99 0.1 113.4390 〈. . . 〉32 0.0004 36 0.0946
0.3 80.8346 〈. . . 〉24 0.0005 28 0.0893
0.6 34.2148 〈. . . 〉18 0.0008 14 0.1205
0.9 0.4399 〈51, 86〉 0.6336 2 0.6339

0.1 r.v. 〈51, 86〉 0.7414 2 0.7414
0.3 r.v. 〈51, 86〉 0.7046 2 0.7046
0.6 r.v. 〈51, 86〉 0.7139 2 0.7139
0.9 r.v. 〈51, 86〉 0.7632 2 0.7632

r.v. r.v. 〈51, 86〉 0.7162 2 0.7162

Table 4: Posterior results for the simulated dataset with changes in mean (Figure 4a).
The first four columns show the prior specifications; the label r.v. means that a prior
distribution was assigned. The last four columns show the modal change points, ρ̃n, and
the modal number of change points, C̃n, together with their corresponding probabilities.
The modal change points indicated as 〈. . . 〉k denote that there are k of them.
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φ E[Cn] σ θ ρ̃n prob. C̃n prob.

0.0 2 0.1 0.1897 〈50, 66, 75, 113, 121〉 0.0094 6 0.2164
0.3 −0.1634 〈53, 66, 76, 113, 121〉 0.0022 9 0.0927
0.6 −0.5709 〈54, 55, 111, 112, 113, 121〉 0.0014 19 0.0602
0.9 −0.8979 〈. . . 〉10 0.0018 23 0.0376

49 0.1 21.4127 〈. . . 〉21 0.0005 33 0.1058
0.3 13.0593 〈. . . 〉29 0.0006 31 0.1034
0.6 3.0021 〈. . . 〉26 0.0007 26 0.0887
0.9 −0.7974 〈53, 54, 112, 113, 121〉 0.0034 10 0.0418

99 0.1 113.4390 〈. . . 〉67 0.0004 65 0.0818
0.3 80.8346 〈. . . 〉58 0.0004 59 0.0827
0.6 34.2148 〈. . . 〉55 0.0005 51 0.0767
0.9 0.4399 〈. . . 〉15 0.0019 37 0.0583

0.1 r.v. 〈49, 66, 75, 97, 99, 108, 121〉 0.0013 11 0.1011
0.3 r.v. 〈. . . 〉13 0.0008 15 0.1054
0.6 r.v. 〈. . . 〉24 0.0008 24 0.0814
0.9 r.v. 〈. . . 〉36 0.0014 33 0.0486

r.v. r.v. 〈. . . 〉11 0.0010 17 0.0746

r.v. 2 0.1 0.1897 〈53, 121〉 0.0559 2 0.4422
0.3 −0.1634 〈53, 121〉 0.0452 2 0.4258
0.6 −0.5709 〈53, 121〉 0.0434 2 0.4341
0.9 −0.8979 〈53, 121〉 0.0486 2 0.5111

49 0.1 21.4127 〈. . . 〉23 0.0006 27 0.1013
0.3 13.0593 〈. . . 〉21 0.0006 21 0.0891
0.6 3.0021 〈53, 123〉 0.0086 5 0.1640
0.9 −0.7974 〈53, 121〉 0.0413 2 0.4763

99 0.1 113.4390 〈. . . 〉67 0.0005 66 0.0784
0.3 80.8346 〈. . . 〉71 0.0005 60 0.0721
0.6 34.2148 〈. . . 〉39 0.0008 49 0.0578
0.9 0.4399 〈53, 121〉 0.0290 2 0.3403

0.1 r.v. 〈53, 121〉 0.0437 2 0.3218
0.3 r.v. 〈53, 121〉 0.0340 2 0.2949
0.6 r.v. 〈53, 121〉 0.0263 2 0.3730
0.9 r.v. 〈53, 121〉 0.0379 2 0.4616

r.v. r.v. 〈53, 121〉 0.0405 2 0.3407

Table 5: Posterior results for the simulated dataset with changes in variance (Figure 4b).
The first four columns show the prior specifications; the label r.v. means that a prior
distribution was assigned. The last four columns show the modal change points, ρ̃n, and
the modal number of change points, C̃n, together with their corresponding probabilities.
The modal change points indicated as 〈. . . 〉k denote that there are k of them.



856 Nonparametric Change Point Model

φ E[Cn] σ θ ρ̃n prob. C̃n prob.

0.0 2 0.1 0.1897 〈2, 51, 103〉 0.0168 5 0.3322
0.3 −0.1634 〈2, 51, 82, 91, 101〉 0.0107 5 0.1684
0.6 −0.5709 〈2, 51, 103〉 0.0291 3 0.1588
0.9 −0.8979 〈〉 0.9071 0 0.9071

49 0.1 21.4127 〈. . . 〉32 0.0004 29 0.0929
0.3 13.0593 〈. . . 〉19 0.0006 24 0.0817
0.6 3.0021 〈2, 3, 50, 51, 103, 150〉 0.0021 14 0.1111
0.9 −0.7974 〈2〉 0.5550 1 0.5682

99 0.1 113.4390 〈. . . 〉71 0.0004 64 0.0756
0.3 80.8346 〈. . . 〉60 0.0004 62 0.0731
0.6 34.2148 〈. . . 〉42 0.0005 44 0.0798
0.9 0.4399 〈2〉 0.0943 7 0.1109

0.1 r.v. 〈2, 51, 103〉 0.0075 6 0.1779
0.3 r.v. 〈2, 51, 82, 91, 101〉 0.0088 6 0.1837
0.6 r.v. 〈2〉 0.0107 8 0.1267
0.9 r.v. 〈2〉 0.1454 1 0.1477

r.v. r.v. 〈2, 51, 103〉 0.0129 6 0.1807

r.v. 2 0.1 0.1897 〈51, 108〉 0.0846 2 0.4178
0.3 −0.1634 〈51, 108〉 0.0450 2 0.3212
0.6 −0.5709 〈〉 0.3802 0 0.3802
0.9 −0.8979 〈〉 0.9946 0 0.9946

49 0.1 21.4127 〈. . . 〉20 0.0008 24 0.0909
0.3 13.0593 〈. . . 〉10 0.0006 18 0.0998
0.6 3.0021 〈51, 108, 118, 120〉 0.0056 7 0.1532
0.9 −0.7974 〈〉 0.5752 0 0.5752

99 0.1 113.4390 〈. . . 〉67 0.0004 64 0.0811
0.3 80.8346 〈. . . 〉55 0.0004 62 0.0649
0.6 34.2148 〈. . . 〉23 0.0004 36 0.0612
0.9 0.4399 〈2〉 0.2874 1 0.3665

0.1 r.v. 〈51, 108〉 0.0464 2 0.2493
0.3 r.v. 〈51, 108〉 0.0357 2 0.2212
0.6 r.v. 〈51, 108〉 0.0345 3 0.2274
0.9 r.v. 〈〉 0.5786 0 0.5786

r.v. r.v. 〈51, 103〉 0.0254 2 0.2599

Table 6: Posterior results for the simulated dataset with changes in mean, variance
and correlation (Figure 4c). The first four columns show the prior specifications; the
label r.v. means that a prior distribution was assigned. The last four columns show the
modal change points, ρ̃n, and the modal number of change points, C̃n, together with
their corresponding probabilities. The modal change points indicated as 〈. . . 〉k denote
that there are k of them.
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E[Cn] α β ρ̃n prob. C̃n prob.

2 1.00 73.50 〈51, 86〉 0.9900 2 0.9901
0.01 1.00 〈51, 86〉 0.9924 2 0.9925

49 1.00 2.04 〈51, 86〉 0.9848 2 0.9849
0.49 1.00 〈51, 86〉 0.9891 2 0.9892

99 1.00 0.51 〈51, 86〉 0.9847 2 0.9848
1.98 1.00 〈51, 86〉 0.9773 2 0.9774

75 1 1 〈51, 86〉 0.9847 2 0.9848
3 1 50 〈51, 86〉 0.9900 2 0.9891

14 5 50 〈51, 86〉 0.9660 2 0.9662
146 50 1 〈51, 86〉 0.6242 2 0.6244
136 50 5 〈51, 86〉 0.6347 2 0.6349

(a) Results for the dataset with changes in mean (Figure 4a).

E[Cn] α β ρ̃n prob. C̃n prob.

2 1.00 73.50 〈4, 53, 121〉 0.0456 3 0.3674
0.01 1.00 〈4, 53, 121〉 0.0463 4 0.3379

49 1.00 2.04 〈4, 53, 121〉 0.0280 4 0.3494
0.49 1.00 〈4, 53, 121〉 0.0365 4 0.3519

99 1.00 0.51 〈4, 53, 121〉 0.0275 4 0.3471
1.98 1.00 〈4, 53, 121, 123, 146〉 0.0335 4 0.3332

75 1 1 〈4, 53, 121, 123, 146〉 0.0275 4 0.3474
3 1 50 〈4, 53, 121〉 0.0362 4 0.3595

14 5 50 〈4, 50, 121, 123, 146〉 0.0257 5 0.3485
146 50 1 〈4, 53, 121, 123, 146, 149, 150〉 0.0143 7 0.2914
136 50 5 〈4, 53, 121, 123, 146, 149, 150〉 0.0152 7 0.2970

(b) Results for the dataset with changes in variance (Figure 4b).

E[Cn] α β ρ̃n prob. C̃n prob.

2 1.00 73.50 〈〉 1.0000 0 1.0000
0.01 1.00 〈〉 1.0000 0 1.0000

49 1.00 2.04 〈〉 1.0000 0 1.0000
0.49 1.00 〈〉 1.0000 0 1.0000

99 1.00 0.51 〈〉 1.0000 0 1.0000
1.98 1.00 〈〉 0.9993 0 0.9993

75 1 1 〈〉 1.0000 0 1.0000
3 1 50 〈〉 1.0000 0 1.0000

14 5 50 〈〉 0.9971 0 0.9971
146 50 1 〈〉 0.6214 0 0.6214
136 50 5 〈〉 0.6050 0 0.6050

(c) Results for the dataset with changes in mean, variance and correlation (Figure 4c).

Table 7: Posterior results for the simulated datasets using Loschi and Cruz’s method.
For each table, the first three columns show the prior specifications and the last four
columns show the modal change points, ρ̃n, and the modal number of change points,
C̃n, together with their corresponding probabilities.
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