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Equivalence between the Posterior Distribution
of the Likelihood Ratio and a p-value in an

Invariant Frame.

Isabelle Smith ∗† and André Ferrari ‡

Abstract. The Posterior distribution of the Likelihood Ratio (PLR) is proposed
by Dempster in 1973 for significance testing in the simple vs. composite hypothe-
sis case. In this hypothesis test case, classical frequentist and Bayesian hypothesis
tests are irreconcilable, as emphasized by Lindley’s paradox, Berger & Selke in 1987
and many others. However, Dempster shows that the PLR (with inner threshold
1) is equal to the frequentist p-value in the simple Gaussian case. In 1997, Aitkin
extends this result by adding a nuisance parameter and showing its asymptotic
validity under more general distributions. Here we extend the reconciliation be-
tween the PLR and a frequentist p-value for a finite sample, through a framework
analogous to the Stein’s theorem frame in which a credible (Bayesian) domain is
equal to a confidence (frequentist) domain.

Keywords: hypothesis testing, PLR, p-value, likelihood ratio, frequentist and
Bayesian reconciliation, Lindley’s paradox, invariance

1 Introduction

1.1 Classical hypothesis test methodologies

Simple versus composite hypothesis testing is a general statistical issue in parametric
modeling. It consists for a given observed dataset x in choosing among the hypothesis

H0 : θ = θ0 H1 : θ ∈ Θ1 (1)

where the distribution of x is characterized by the underlying unknown parameter θ.
Under the alternative hypothesis H1, θ takes a value different from the point θ0, and
the uncertainty of θ is described by a prior probability density function π1(θ) which is
positive only for θ ∈ Θ1. We assume that the data model p(x|θ) has the same expression
under H0 and H1.

To choose among H0 and H1, a test statistic T (x) (such as the Generalized Likelihood
Ratio) is generally compared to a threshold ζ and one decides to choose H0 if T(x) is
greater than ζ. If H1 is chosen whereas the true underlying θ was equal to θ0, a type I
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error is made in the decision. Under the classical Neyman paradigm (see Neyman and
Pearson (1933); Neyman (1977)), the threshold ζ is chosen so that the probability of
the type I error lies under (or is equal to) some fixed level α, typically a 5% error rate.
Instead of inverting this function, a p-value can be defined in order to serve as the test
statistic to be directly compared to the 5% level (Lehmann and Romano (2005)):

pval(T(x0)) = Pr(T(x0) < T(x)|θ0) (2)

where x0 is the observed dataset and x the variable of integration. Note that with this
notation, H0 is rejected when pval(T(x0)) is greater than some threshold.

On the Bayesian side, the test statistic classically used (Robert (2007)) is the Bayes
Factor (BF) defined by

BF(x) =
p(x|θ0)∫

dθ p(x|θ)π1(θ)
·

Making a binary decision consists of choosing H0 if BF(x) is greater than some thresh-
old, and the choice of the threshold is made in general by a straight interpretation of the
BF. The Jeffreys’s scale for example states that if the observed BF is between 10 and
100 there is a strong evidence in favor of H0. The mere posterior probability Pr(Hi|x)
of an hypothesis may also be considered by itself.

A practical issue of the BF in the simple vs. composite hypothesis test is that
it is defined up to a multiplicative constant if the prior π1 is improper1 even though
the posterior distribution is proper. Partial BFs account for this issue by somehow
using part of the data to update the prior into a proper posterior, and then using this
posterior as the prior for the rest of the data. The most simply defined Partial BF is
the Fractional BF (FBF) proposed by O’Hagan (1995).

A related and more fundamental issue is Lindley’s paradox, initially studied by
Jeffreys (1961) and called a paradox by Lindley (1957), which shows among others that,
when testing a simple vs. a composite hypothesis, the null hypothesis H0 is too highly
favoured against H1 for a natural diffuse prior under Θ1. More precisely, for example
in the test of the mean of a Gaussian likelihood, the p-value |x| defines the uniformly
most powerful test, which is a very strong optimal property even according to at least
part of the Bayesian community. However, for a fixed prior and some dataset x that
adjusts so that the associated classical p-value remains fixed (so that the evidence for
H0 shall not change), Pr(H0|x)/Pr(H1|x) tends to 1 as the sample size increases. This
issue, intensively discussed and developed (see Tsao (2006) for a quite recent study), is
consensually considered as a real trouble by a quite large part of the community. Unlike
the BF, other tests like the FBF or the Bernardo (2011) test do not suffer from this
problem in Lindley’s frame. Other ideas have been developed which prevent Lindley’s
frame from occurring, avoiding troubles for the BF. Berger and Delampady (1987) for
example argue that testing a simple hypothesis is an unreasonable question. Some other
references will be given in the section 2.1.

1π1 is called improper if its integral over Θ1 is infinite, which occurs if π1 is constant over an
unbounded domain for example.
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Among many frequentist and Bayesian p-values (several are listed by Robins et al.
(2000)), the next most classical Bayesian-type hypothesis test statistic is the posterior
predictive p-value, highlighted by Meng (1994). Unlike the BF which only integrates
over the parameter space Θ, the posterior predictive p-value integrates over the data
space X , like frequentist p-values. But unlike the frequentist p-value which integrates
under the frequentist likelihood p(x|θ0), it integrates under the predictive likelihood
p(xpred|x0) =

∫
dθ p(xpred|θ)π(θ|x0) where x0 is the observed dataset. In a frequentist

p-value only a statistic (i.e. a function of x only) can define the domain of integration.
On the contrary, in the posterior predictive p-value, a discrepancy variable (function of
both x and θ) can be used to define the domain of integration. Note that the choice of
the discrepancy variable to use there remains an issue.

Although a bit less classical, the approach of Evans (1997) needs to be introduced
because the tool and some of its properties are interesting and closely related to the
ones derived in this paper. In the simple vs. composite test case presented up to
now, the tool proposed by Evans (1997) and the ones studied in this paper are even
mathematically equal. But the tool proposed by Evans (1997) is defined to test more
generally H0 : Ψ(θ) = ψ0 for a parameter of interest ψ = Ψ(θ). The test statistic
consists of measuring the Observed Relative Surprise (ORS) related to the hypothesis
by computing:

ORS(x) = Pr

(
πΨ(Ψ(θ)|x)

πΨ(Ψ(θ))
≥ πΨ(ψ0|x)

πΨ(ψ0)

∣∣∣∣x) · (3)

The relative belief ratio of ψ defined by RB(ψ) = πΨ(Ψ(θ)|x)πΨ(Ψ(θ))−1 is measuring
the change in belief in ψ being the true value of Ψ(θ) from a priori to a posteriori. So
if RB(ψ0) > 1 we have evidence in favor of H0. Relative belief ratios are discussed in
Baskurt and Evans (2013) where RB(ψ0) is presented as the evidence for or against
H0 and (3) is presented as a measure of the reliability of this evidence. This leads to a
possible resolution of Lindley’s paradox as the relative belief ratio can be large and ORS
small without contradiction. See Example 4 of Baskurt and Evans (2013) and note that
Evans (1997) shows that ORS converges to the classical p-value as the prior becomes
more diffuse in this example.

1.2 Posterior distribution of the Likelihood Ratio (PLR)

Let’s focus again on the simple vs. composite hypothesis test. Contrary to the posterior
predictive p-value, the Posterior distribution of the Likelihood Ratio (PLR) does not
integrate over some data which are unobserved, but only integrates over Θ. It still
conditions upon the only observed variable, namely x0, like for the BF, but on a domain
defined from a divergence variable, like the posterior predictive p-value. This statistic
proposed by Dempster (1973) is defined by

PLR(x, ζ) = Pr
(
LR(x, θ) ≤ ζ

∣∣x) (4)
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where LR(x, .) is the Likelihood Ratio

LR(x, θ) =
p(x|θ0)

p(x|θ)
θ ∈ Θ1 .

Since θ is random, the deterministic function LR(x, .) evaluated at the random
variable θ becomes naturally random with some posterior distribution characterized by
its cumulative distribution, the PLR. As emphasized by Birnbaum (1962), Dempster
(1973) and Royall (1997), the threshold ζ which compares the original likelihoods under
H0 and under H1 is directly interpretable and can be chosen the same way an error level
α is chosen in the Neyman-Pearson paradigm. “PLR(x, 1) = 0.1” for example reads
“The probability that the likelihood of θ1 is more than the likelihood of θ0 is 0.1.”.

The PLR can therefore be used for a binary decision, by fixing ζ and deciding to
reject H0 if PLR(x, ζ) is greater than, say, 0.9. One can check if the binary decision is
sensitive to the choice of both thresholds by making the test for several thresholds and
see if the decision is different. In the extreme case, note that due to the nice definition
of the PLR, one can simply display PLR(x, ζ) as a function of ζ to get a broad view.
The range of ζ under which PLR(x, ζ) grows, typically from 0.2 to 0.8, indicates if the
decision for H0 or H1 is clear, or not. As soon as the posterior can be sampled, these
computations and graphs are very easy to display as will be explained later.

The PLR has been first proposed by Dempster (1973, 1997), then studied especially
by Aitkin (1997) and Aitkin (2010) but also used and analyzed by Aitkin et al. (2005,
2009). As mentioned in the previous subsection, it turns out that the PLR is also
closely related to the ORS proposed by Evans (1997), which generalizes the PLR. The
PLR is also closely related to the e-value associated to the Full Bayesian Significance
Test (FBST) from Pereira and Stern (1999) and slightely revisited by Borges and Stern
(2007) which then somehow generalizes the PLR by adding a reference distribution on
θ, and by systematically dealing with the case where the null hypothesis domain Θ0 has
a dimension less than Θ1 but which is not necessarily restricted to the point Θ0 = {θ0}.
We do not list the results found by these different analyses, apart from some specifically
mentioned ones.

The PLR turns out to be a natural Bayesian measure of evidence of the studied
hypothesis since it involves only the posterior distribution of θ (no integral over X ) and
the likelihood, claimed by Birnbaum (1962), Royall (1997) and others to be the only
tool that can measure evidence. Unlike the BF, the PLR is well defined for an improper
prior as soon as the posterior is proper, and is not subject to Lindley’s paradox. It is also
invariant under any isomorphic transformation of the X space and any transformation
of the Θ space, as a consequence of being a mere function of the likelihood. These last
properties were emphasized for example for the e-value associated to the FBST.

The PLR also consists of a natural alternative to the BF in different regards. To start
with, the PLR first compares (compares p(x|θ0) and p(x|θ)) and then integrates, whereas
the BF first integrates and then compares (compares p(x|θ0) and

∫
dθ p(x|θ)π(θ)).

Second, Newton and Raftery (1994) and many others show that if the prior under
H1 is proper, the BF is simply the posterior mean of the LR, i.e. the mean of the
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distribution described by the PLR1. However a point estimate is in general not given
alone but accompanied by an uncertainty indicator. Smith and Ferrari (2010) show
that the posterior mean of the LR raised to some power is equal to the FBF introduced
previously; the mean of the PLR is given by the BF and its variance is easily related to
the FBF. However, Smith (2010) shows that the Generalized Likelihood Ratio bounds
the support (values of ζ(x) for which PLR(x, ζ) > 0) of the PLR and that at this lower
bound the PLR in general starts by an infinite derivative. In addition to this theoretical
result, numerical examples also indicate that the posterior density function of the LR
is in general highly asymmetric. Therefore, the BF (point estimate of the LR) or any
standard centered credible intervals do not appear to be relevant inferences about the
LR seen as a random variable. Instead, the same way the BF is to be thresholded,
the actual information about LR(x, θ) which seems to be relevant, and invariant under
the transformation LR(x, θ) 7→ (LR(x, θ))−1, is to indicate its cumulative posterior
distribution, which is precisely the PLR.

In practice, the PLR can be straightforwardly computed as soon as the posterior
distribution π(θ|x) is sampled. Just obtain from a Monte Carlo Markov Chain (MCMC)
algorithm an almost i.i.d. chain {θ[1], ..., θ[m]} from the posterior distribution π(θ|x) and
compute LR(x, θ[i]) for each sample. The resulting histogram sketches the posterior
density of the LR and the plot of the empirical cumulative distribution of the LR chain
sketches the PLR as a function of ζ.

The PLR has been realistically and thoroughly applied by Smith (2010) to the
detection of extra-solar planets from images acquired with the dedicated instrument
SPHERE mounted on the Very Large Telescope. At this moment, only very finely
simulated images were available. The PLR has been applied to two simulated datasets,
one in which no extra-solar planet is present (dataset simulated under H0) and the other
in which an extra-solar planet is present (H1 dataset). Although the extra-solar planet
is very dark (106 times less bright than the star it surrounds), close to the star (angular
distance in the sky of 0.2 arcseconds i.e. 6.10−5 degrees), and although only 2×20 images
were used, thanks to the quality of the optical instruments and of the statistical model
the detection and not detection were evident, with PLR(x, 0.1) = 0.0 for the dataset
under H0 and PLR(x, 0.1) = 0.94 for the dataset under H1. As studied by Smith
(2010), the statistical model and consecutive method are very satisfying compared to
classical methods.

1.3 Problems addressed here

Despite its potential interest the PLR has not been extensively studied up to now. This
paper aims at contributing in this investigating work by some new results.

In the simple vs. composite hypothesis test case, it turns out that the PLR plays a
strong role in understanding the possible reconciliation between frequentist and Bayesian
hypothesis testing. The PLR with inner threshold ζ = 1 is simply equal to some

1Alternatively, note that if we had defined the BF and LR with the alternative hypothesis at the
numerator of these fractions, the BF would have been the prior mean of the LR.
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frequentist p-value for some “likelihood - prior - hypothesis” combinations. Dempster
(1973) and Aitkin (1997) first noticed and highlighted this equivalence when testing the
mean of a Gaussian likelihood with a uniform prior.

In Section 2, we extend the conditions of this equivalence result under a frame
analogous to the one used to reconcile confidence and credible domains. Subsection 2.1
synthesizes the long quest of reconciliation between frequentist and Bayesian hypothesis
tests, Subsection 2.2 proves and discusses the reconciliation reached between the PLR
and some frequentist p-value in such an invariant frame, Subsection 2.3 gives examples
and perspectives, and Subsection 2.4 discusses the connection between this reconciliation
result and the one obtained between (frequentist) confidence domains and (Bayesian)
credible regions.

A concluding discussion is proposed in Section 3. The appendices essentially present
the proofs of the mathematical results.

2 Equivalence between the PLR and a frequentist p-value

2.1 Previous tentative reconciliations of frequentist and Bayesian
tests

As introduced in Section 1.1, Lindley’s paradox presents a frame where Pr(H0|x) (often
thought as being the Bayesian measure of evidence) may be expected to be equal to
the frequentist p-value, but happens not to be. Also, the BF is not satisfying in the
frame “point null hypothesis H0 and diffuse prior π1”. This highlights the need for
other Bayesian-type hypothesis tests, but also raises more generally the question of
reconciliation between frequentist and Bayesian hypothesis tests.

The conditions upon which frequentist (Neyman (1977)) and Bayesian (Jeffreys
(1961)) answers agree are always of interest in order to understand the interpretation
of the procedures and the limits of the two paradigms, somehow defined by what they
are not.

A first approach to see when could frequentist and Bayesian hypothesis tests be
unified consists of analyzing, for different hypothesis likelihoods and priors, when are
the classical p-value and Pr(H0|x) equal. These two concepts are to be compared
because they both seem to handle only H0 and in very simple ways, one from the
frequentist the other from the Bayesian perspectives1. It turns out that unlike for a
composite null hypothesis (e.g. Casella and Berger (1987)), for a point null hypothesis
Lindley’s paradox Pr(H0|x) > pval(x) always seems to hold. Berger and Sellke (1987) in
particular show that among very broad classes of priors Pr(H0|x) > pval(x) always holds
for Pr(H0) = 0.5. Also see the extensive list of references included. Oh and DasGupta
(1999) follows this analysis by studying the effect of the choice of Pr(H0).

Another approach consists of modifying the standard frequentist procedure and/or

1Note however that H1 is implicitly taken into account through the marginal distribution of x in
Pr(H0|x).
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the standard Bayesian hypothesis test procedure, but still relying on the p-value and
Pr(H0|x), to see if they can then be made equivalent. Berger and Delampady (1987)
for example study “precise” (concentrated) but not exactly “point” hypothesis, Berger
et al. (1994) use frequentist p-values computed from a likelihood conditioned upon a set
in which lies the observed dataset, not on the dataset itself, and define a non-decision
domain in the BF test procedure. Sellke et al. (2001) advocate calibrating (rescaling)
the frequentist p-value to relate this new statistic to other test statistics.

As already mentioned in Section 1.1, one can also try to unify the p-value to Bayesian
type statistics fully different from the BF, to see when frequentist and Bayesian type
hypothesis tests can be made equivalent. In particular, when Dempster (1973) proposed
to use the PLR, he also mentioned that when testing the mean of a normal distribution,
the PLR is equal to the classical frequentist p-value when computed for a uniform prior
and with inner parameter ζ = 1. This fundamental result was again emphasized by
Aitkin (1997) and Dempster (1997).

Aitkin (1997) asymptotically extended this result to any regular distribution, making
use of the asymptotic convergence of a regular distribution towards a normal distribu-
tion. For any regular continuous distribution and a smooth prior, the PLR, with ζ = 1,
tends asymptotically to the classical p-value. Also, with a nuisance parameter η and
still calling θ the tested parameter, he defines LR by LR(x, θ, η) = p(x|θ0, η)/p(x|θ, η),
in which case under the same conditions as in the previous case the PLR is equal to a
p-value. For a normal distribution, when testing the mean and considering the variance
as a nuisance parameter, the result is also true for a finite sample.

2.2 New reconciliation result

The sets of conditions found by Dempster (1973) and Aitkin (1997) under which the
PLR (with ζ = 1) is equal to a p-value are directly related to the test of the mean of a
normal distribution under a uniform prior. The next subsection generalizes this exact
finite-sample result under the frame of statistical invariance. As will be discussed at
the end of the section, although the technical conditions derived here may be relaxed,
it may be difficult to find, at least within the current statistical frame, a fundamentally
more general frame of conditions for an equality between the PLR and a p-value to
hold.

As presented in current classical textbooks in Bayesian statistics (Berger (1985),
Robert (2007)), invariance in statistics arises from the invariant Haar measure defined
on some topological group. Throughout this subsection and the related appendices, we
will use the notions and results synthesized by Nachbin (1965) and Eaton (1989). The
tools necessary to understand the result are introduced in Appendix 1.

In this frame, the PLR (given by an integral over the parameter space Θ) can be
reexpressed as an integral over the sample space X , equal to a p-value for ζ = 1. In this
subsection x and θ denote random variables or variables of integration according to the
context.
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First, for clarity, we give the equivalence between the PLR and a frequentist inte-
gral under the assumption that the sample space X , the parameter space Θ and the
transformations group G are isomorphic.

Theorem 1. Call PΘ = {p(.|θ), θ ∈ Θ} a family of probability densities with respect
to the Lebesgue measure on X , and call G a group acting on X . Assume that PΘ is
invariant under the action of the group G on X and denote by ḡθ the induced action of
the element g ∈ G on the element θ ∈ Θ. Call Hr and H l respectively a right and left
Haar measure of G and assume that

1. G, X and Θ are isomorphic.

2. The prior measure Πr is the measure induced by Hr on Θ.

3. The measure induced by H l on X is absolutely continuous with respect to the
Lebesgue measure. Call πl the corresponding density.

4. The marginal density of x is finite, so that the posterior measure Πr
x on Θ, clas-

sically defined by the equation (15), defines the posterior probability Pr(.|x0).

Then, the PLR defined by the equation (4) can be reexpressed for any ζ > 0 as the
frequentist integral:

PLR(x0, ζ) = Pr

(
p(x0|θ0)

πl(x0)
≤ ζ

p(x|θ0)

πl(x)
| θ0

)
(5)

where x0 ∈ X is the observed data and θ0 ∈ Θ the parameter value under the null
hypothesis.

A more general theorem (Theorem 2) derived in a frame which avoids the Lebesgue
assumption and may involve more technical conditions is proved in Appendix 2. Theo-
rem 1 is a consequence of Theorem 2 and its proof is given in Appendix 3.

The assumption that G and X are isomorphic is easily relaxed by replacing the
sample space by the space of a sufficient statistic. Recall that if X is a random variable
whose probability distribution is parametrized by θ, S(X) is called a sufficient statistic
of θ if the probability distribution of X conditioned upon the random variable S(X)
does not depend on θ. Note that according to the Darmois (1935) theorem, among
families of probability distributions whose domains do not vary with the parameter being
estimated, only in exponential families is there a sufficient statistic whose dimension
remains bounded as the sample size increases.

The expression of Theorem 2 is simply extended by replacing X by a sufficient statis-
tic S(X) in the assumptions and by replacing in the frequentist integral the probability
density of X by the one of S(X):

Corollary 1. Call PΘ = {p(.|θ), θ ∈ Θ} a family of probability densities with respect
to any measure on X . Call S(X), for X ∈ X , a sufficient statistic of θ and PS,Θ =
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{pS(.|θ), θ ∈ Θ} the family of probability densities of S(X) with respect to the Lebesgue
measure on S(X ). Call G a group acting on S(X ). Assume that PS,Θ is invariant under
the action of the group G on S(X ) and denote by ḡθ the induced action of the element
g ∈ G on the element θ ∈ Θ. Call Hr and H l respectively any right and left Haar
measures of G. Assume that

1. G, S(X ) and Θ are isomorphic.

2. The prior measure Πr is the measure induced by Hr on Θ.

3. The measure induced by H l on S(X ) is absolutely continuous with respect to the
Lebesgue measure. Call πl the corresponding density.

4. The marginal density of x is finite, so that the posterior measure Πr
x on Θ, clas-

sically defined by the equation (15), defines the posterior probability Pr(.|x0).

Then, the PLR defined by the equation (4) can be reexpressed, with x0 ∈ X , θ0 ∈ Θ and
ζ > 0, as the frequentist integral:

PLR(x0, ζ) = Pr

(
pS(S(x0)|θ0)

πl(S(x0))
≤ ζ

pS(S(x)|θ0)

πl(S(x))
| θ0

)
(6)

where x0 ∈ X is the observed data and θ0 ∈ Θ the parameter value under the null
hypothesis.

The proof follows the proof of Theorem 1 in Appendix 3.

By evaluating ζ = 1 in the result, the PLR with ζ = 1 is easily and finally shown
to be equal to a frequentist p-value, where the test statistic is a weighted marginal
likelihood of the sufficient statistic S(x).

Corollary 2. Under the assumptions of Corollary 1, the PLR with inner threshold
ζ = 1 is equal to a p-value:

PLR(x0, 1) = pval
(
T (x0)

)
(7)

with the test statistic

T (x) =
pS(S(x)|θ0)

πl(S(x))
· (8)

Corollary 2 can be reexpressed as the fact that under the invariance assumptions,
rejecting H0 when PLR(x0, 1) > p is equivalent to rejecting H0 when pval

(
T (x0)

)
> p

where the p-value is based on the idea of rejecting H0 when T (x0) defined in equation
(8) (observed weigthed likelihood under H0) is not large enough.
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2.3 Examples and perspective

Dempster (1973) has shown that the PLR is equal to the classical p-value associated to
the test statistic T (x) = |x̄− θ0| when testing the mean of a normal family for X with
a uniform prior on Θ. Corollary 2 extends this result since the normal family is one
of the distributions invariant under translation when testing the location parameter,
the uniform prior (i.e. Lebesgue measure) is the measure induced from the right Haar
measure associated to translation, and the test statistic T (.) is a monotone function of
pS(S(.)|θ0)πl(S(.))−1 since the translation (sum) is commutative, so that ∆(g) = 1 for
all g ∈ G and so πl is constant.

The result proved here concerns all distributions invariant under some group trans-
formation, under the assumptions that there exists a sufficient statistic and that the
sets G, S(X ) and Θ are isomorphic. Assume for example that the likelihood pS has the
typical form pS(S(x)|θ) = θ−1f

(
S(x)θ−1

)
. The likelihood is invariant under the scale

transformation g(S(x)) = α× S(x) and the actions on S(X ) and Θ are identical. Note
that Uf(U) with U = S(X)θ−1 is a pivotal quantity, meaning that its distribution does
not depend on θ. The induced prior measure is classically given by Πr(dθ) ∝ θ−1dθ.
Since the multiplication transformation is commutative, the modulus ∆ is uniformly
equal to 1, so that the test statistic that appears in the p-value (Corollary 2) is sim-
ply T (x) = S(x)θ−1

0 f
(
S(x)θ−1

0

)
where θ0 is the value of the parameter under H0. For

a more general insight into the relationship between Haar invariance and the Fisher
pivotal theory, see Eaton and Sudderth (1999).

Theorem 2 assumes that G, X and Θ are isomorphic. This assumption is relaxed
in Corollaries 1 and 2 where the sample X is replaced by a sufficient statistic S(X):
G, S(X ) and Θ are assumed to be isomorphic. This trick is one of the two classical
dimensionality reduction techniques concerning Haar measures applied to statistical
problems and somehow restricts the likelihood to belong to the exponential family from
the Darmois theorem. The second trick consists schematically in replacing S(X ) by
the orbit of G associated to the observed dataset Ox0

= {gx0 | g ∈ G} ⊂ X . However,
the whole set of assumptions that would be involved is more technical, see for example
the general assumptions made by Zidek (1969) or Eaton and Sudderth (2002), and not
investigated here.

2.4 Connection to other Bayesian and frequentist reconcilations

The result, which concerns hypothesis testing, may be related to the different approaches
used to reconcile frequentist and Bayesian point estimation somehow and confidence
intervals especially.

Group invariance applied to invariant inference is the classical frame of such unifica-
tions. The Fisherian pivotal theory (Fisher (1973, 1st ed.: 1956)) is an important con-
tribution mainly to the “frequentist” side and the right Haar measure to the “Bayesian”
side. The reconciliation of the two approaches started with Fraser (1961) and has been
deeply studied since then, by Zidek (1969) for example. The most general stage of unifi-
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cation is reached by Eaton and Sudderth (1999). They present the central hypothesis of
the Fisherian pivotal theory and show under quite standard assumptions in invariance
that this hypothesis leads to a procedure which is identical to the Bayesian invariant
procedure when using the prior induced by the right Haar measure. Note that they also
show (and in a more general manner by Eaton and Sudderth (2002)) that for a Bayesian
invariant inference to be admissible (in the sense that there exists no invariant inference
whose mean quadratic error is lower for all θ) it has to be obtained from the right Haar
prior.

More concretely, the question related to reconciled probability domains is: “Under
what assumptions does the following equality hold?”

Pr
(
θ ∈ R(x)

∣∣x) = Pr
(
θ ∈ R(x)

∣∣θ) (9)

i.e.

∫
{θ∈R(x)}
dθ π(θ|x) =

∫
{x | θ∈R(x)}
dx p(x|θ)

For the equality to hold, each probability needs to be a constant. After the initial work
of Fraser (1961), Stein (1965) sketched the first conditions of what would be called
later Stein’s theorem for invariant domains. The part which is common to the different
“Stein’s theorems” is the following:

If a domain R(x) ⊂ Θ satisfies ḡR(x) = R
(
g(x)

)
with ḡR(x) = {ḡθ | θ ∈

R(x)}, then under [some invariance assumptions],

Pr
(
θ ∈ R(x)

∣∣x) = c ∀x ∈ X (Bayesian probability)

and Pr
(
θ ∈ R(x)

∣∣θ) = c ∀θ ∈ Θ (frequentist probability).

One of the simplest sets of assumptions found since Stein (1965) is the one of Chang
and Villegas (1986). It is relatively close to the one used for our results, presented in
Section 2.2.

Our result, mainly holding in Theorem 1, is not a consequence of Stein’s theorem
because the domain R(x) ⊂ Θ is not invariant in our case. R(x) would be invariant only
if θ0 was invariant under the transformations group G, i.e. if ḡθ0 = θ0 for all ḡ (this is
equivalent to assuming that H0 is invariant under G). But in Theorem 2, expressed and
proved in Appendix 2 and used in Appendix 3 to prove Theorem 1, φθ is assumed to
be one-to-one for all θ ∈ Θ, which implies that ḡθ0 = θ0 is equivalent to ḡ = e (identity
function). So the domain R(x) ⊂ Θ is not invariant in our case and Stein’s theorem
does not imply the reconciliation result presented in Section 2.2.

Theorem 1 does not answer the previous question, but rather relaxes the form of
the domain and accepts a procedure that varies according to the observed dataset x0

and the value of the parameter θ0 under H0. It answers the question: “Under what
assumptions and for what domains R and C does the following equality hold?”∫

R(x0,θ0)⊂Θ

dθ π(θ|x0) =

∫
C(x0,θ0)⊂X

dx p(x|θ0) (10)
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The domains found take the form

R(x0, θ0) = {θ | p(x0|θ0) ≤ p(x0|θ)}
C(x0, θ0) = {x | p(x0|θ0)f(x0) ≤ p(x|θ0)f(x)}

where f(x) is some weighting function, actually given by the inverse of the left prior
induced by the underlying group.

3 Concluding general discussion about the PLR

The PLR introduced by Dempster (1973) in the simple vs. composite hypothesis test
deserves much attention. It compares the original likelihoods p(x|θ0) and p(x|θ1) by
computing the posterior probability that this usual LR test chooses H0 or H1. The
PLR is simple, nicely interpretable and coupled with some deep properties. Compared
to the classical Bayesian hypothesis tests, first note that unlike the BF, the PLR can be
defined even for improper priors, and unlike Pr(H0|x) it does not require the delicate
choice of some Pr(H0). This is crucial in practice as well as in fundamental issues like
Lindley’s paradox.

The PLR also turns out to be a very natural alternative to the BF in many aspects.
The PLR first compares (the original likelihoods) and then integrates, whereas the
BF first integrates and then compares (the marginal likelihoods). In the simple vs.
composite hypothesis test, considering LR(x, θ) as a random variable for a fixed x, the
PLR is its posterior cumulative distribution (i.e. the probability of a one sided credible
interval) whereas the BF is its posterior mean point estimate. This credible interval vs.
point estimate duality between the PLR and the BF also translates in decision theory:
Hwang et al. (1992) stressed that Pr(H0|x) does not measure evidence, since this is
done only through the likelihood, but measures the accuracy of a test by estimating the
indicator function IΘ0(θ). Also note that being the measure of a credible interval, the
PLR is also a natural hypothesis test tool which connects postdata (i.e. conditioned
upon x) hypothesis testing and credible interval inference. This formal equivalence was
known to hold for predata inference (a rejection set is equivalent to a confidence interval)
and “known” not to hold for postdata inference for usual Bayesian tools (see Lehmann
and Romano (2005) and Goutis and Casella (1997)). Tools like the PLR set up this
connection.

The connection between the PLR (related to credible interval) and the BF (related
to point estimate) has been underlined. Another important connection lies between fre-
quentist and Bayesian type hypothesis tests, namely frequentist p-values and Pr(H0|x)
or PLR. This reconciliation quest has been the subject of many debates, including Lind-
ley’s paradox in its most simple form (test of the mean of a Gaussian with a uniform
prior), which has only been simply reached by the PLR by Dempster (1973). In Section
2.2 we have generalized this reconciliation result to a quite general invariant frame, close
to the one used in Stein’s theorem, i.e. in a frame under which confidence and credible
intervals are equivalent. Note that invariance is also a perspective adopted to develop
and evaluate inferences, and in particular to develop new p-values as done recently by
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Evans and Jang (2010) for example. For the PLR, standard simple invariance properties
directly follow from the simple use of the likelihoods.

To conclude on the contribution of this paper, the equivalence between the PLR and
a p-value has been proved in a general invariant frame, which nicely connects to the
equivalence between confidence and credible domains. This result may contribute to a
better understanding of deep and fundamental issues related to both hypothesis testing
and parameter estimation, in both frequentist and Bayesian paradigms.
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Appendix 1: Introduction to invariance in statistics

For a locally compact Hausdorff group G, K(G) denotes the class of all continuous real-
valued functions on G that have compact support. The left invariant Haar measure on
G is defined as a Radon measure H l such that for all f ∈ K(G) and all g0 ∈ G,∫

G
f(g)H l(dg) =

∫
G
f(g0g)H l(dg) .

The right invariant Haar measure Hr on G is defined as H l but replacing g0g by gg0. For
a given group, both Haar measures exist and are unique up to multiplicative constants.

The (right) modulus ∆ of G is the real positive valued function such that if H l is a
left invariant Haar measure, then for all f ∈ K(G) and all g0 ∈ G,∫

f(gg−1
0 )H l(dg) = ∆(g0)

∫
f(g)H l(dg) . (11)

From the uniqueness of the Haar measure, ∆ does not depend on the choice of H l and is
a continuous function such that for all g1, g2 ∈ G, ∆(g1g2) = ∆(g1)∆(g2), which implies
that ∆(g−1) = ∆(g)−1. Note that for a group G the set of all right Haar measures is
equal to the set of the left Haar measures if and only if ∆ is identically equal to 1. This
occurs for example when G is compact or commutative.

Concerning the Haar measures on the group G, the initial definitions and properties
imply that if H l is a left invariant Haar measure on G and ∆ the modulus of G then for
all f ∈ K(G) ∫

f(g−1)H l(dg) =

∫
f(g)∆(g)−1H l(dg) . (12)

The modulus also enables one to relate right and left invariant Haar measures. From
the last property, the measure defined by

Hr(dg) = ∆(g)−1H l(dg) (13)
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is a right invariant Haar measure on G. The same way, if Hr is a right invariant Haar
measure on G, then the measure defined by H l(dg) = ∆(g)Hr(dg) is a left invariant
Haar measure.

The Haar measure is applied to statistics through the concept of invariance of a data
model under a group of transformations. A parametric family PΘ =

{
p(.|θ), θ ∈ Θ

}
of densities with respect to any measure µ on X is said to be invariant under the
transformations group G if for each g ∈ G there exists a unique θ∗ ∈ Θ such that if the
distribution of X has the density p(.|θ) ∈ PΘ then Y = gX has the density p(.|θ∗) ∈ PΘ.
This property defines the action of G on Θ: θ∗ may simply be denoted θ∗ = ḡθ where
{ḡ, g ∈ G} defines a group.

A measure µ on X is said to be relatively invariant with multiplier χ under the group
G if for all f ∈ K(X ) and g ∈ G∫

f(x)µ(dx) = χ(g)

∫
f(gx)µ(dx) . (14)

If we assume that both the family of densities and the measure µ are respectively
invariant and relatively invariant, schematically we get p(x|θ) = χ(g)p(gx|gθ) for all
x ∈ X , θ ∈ Θ and g ∈ G. For more about the connection between such a multiplier and
the Jacobian of the transformation that leads to gx from x, see for example Berger (1985)
or Eaton (2007). Note that Theorem 2 could be formulated differently, by defining the
invariance of a probability model, but this phrasing is less common than the invariance
of a family of probability densities and this would have entailed a longer presentation.

To shorten the preliminaries and without assuming any knowledge about group
theory, we will not refer to group properties like transitivity or orbits and will concretely
simply assume that Θ and G are isomorphic. More precisely, we will assume that the
transformation φθ : G 7→ Θ with φθ(g) = gθ is one-to-one whatever θ ∈ Θ. The
right Haar prior on Θ is to be induced from the right Haar measure Hr on G and the
action of G on Θ. From the frame chosen, the right Haar prior Πr

a is simply defined
by Πr

a = Hr(φ−1
a ), with a ∈ Θ. As shown in Villegas (1981), it turns out that the

measure Πr
a actually does not depend on a. The induced prior is therefore unique for a

fixed Hr and noted Πr. Πr = Hr(φ−1
a ) means that for any measurable subset A ⊂ Θ,

Πr(A) = Hr
(
φ−1
a A

)
with φ−1

a A =
{
φ−1
a θ|θ ∈ A

}
. Note that a subset A = dθ denotes

an infinitesimal subset centered around θ, where θ is implicit. Πr can be normalized
into a probability measure if and only if the group G is compact, and in this case we
can go back to the usual notation Πr(A) = Pr(θ ∈ A) where the measure Πr is implicit
in Pr(.).

Finally, from the data model density p(.|θ) and the prior Πr, the posterior measure
Πr
x on Θ is classically defined by

Πr
x(B) =

∫
B
p(x|θ)Πr(dθ)

m(x)
for all B ⊂ Θ (15)

with m(x) =

∫
p(x|θ)Πr(dθ)
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where the marginal m(x) density of x is always assumed to be finite, so that Πr
x defines

a probability measure even if Πr does not. Then the posterior probability of an event
is denoted by Pr(.|x), meaning Pr(θ ∈ B|x) = Πr

x(B).

Appendix 2: General theorem and its proof

Theorem 2. Call PΘ = {p(.|θ), θ ∈ Θ} a family of probability densities with respect to
a measure µr on X , specified later, and call G a group acting on X . Assume that PΘ

is invariant under the action of the group G on X and denote by ḡθ the induced action
of the element g ∈ G on the element θ ∈ Θ. Call Hr any right Haar measure of G and
define the transformations φθ (for θ ∈ Θ) and φx (for x ∈ X ) by

φθ : Ḡ 7→ Θ
ḡ 7→ ḡθ

φx : G 7→ X
g 7→ gx

(16)

Assume that

1. φθ is one-to-one for all θ ∈ Θ and φx is one-to-one for all x ∈ X .

2. The prior measure Πr on Θ is the measure induced by Hr via φθ and the measure
µr on X is the measure induced by Hr via φx: Πr = Hr(φ−1

θ ) and µr = Hr(φ−1
x ).

3. The marginal density of x is finite, so that the posterior measure Πr
x on Θ, clas-

sically defined by the equation (15), defines the posterior probability Pr(.|x0).

Then, the PLR defined by the equation (4) can be reexpressed, for any ζ > 0 and any
c ∈ X , as the frequentist integral:

PLR(x0, ζ) = Pr
(
p(x0|θ0)∆

(
φ−1
x0
c
)
≤ ζ p(x|θ0)∆

(
φ−1
x c
)
| θ0

)
(17)

where ∆ is the modulus of the group G, as defined in equation (11), and in practice
x0 ∈ X is the observed data and θ0 ∈ Θ the parameter value under the null hypothesis.

Proof: Note that as seen in the previous appendix, the measures µ and Πr defined
in Theorem 2 do not depend on the choice of θ ∈ Θ and x ∈ X in the functions φθ
and φx. In order to clarify the proof, we note a instead of x and b instead of θ in the
following. We shall make use of the following lemma:

Lemma 1. The measures µ on X and Πr on Θ induced above by the right Haar measure
Hr on G are relatively invariant with modulus ∆−1.
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Proof:∫
f(g0x)µ(dx) =

∫
f(g0x)Hrφ−1

a (dx) (Def. of µ in the Cond. of Th. 2)

=

∫
f
(
g0φag

)
Hr(dg) (transformation g = φ−1

a x)

=

∫
f
(
g0ga

)
∆(g)−1H l(dg) (Def. of φa and prop. eq. (13))

= ∆(g0)

∫
f
(
g0ga

)
∆(g0g)−1H l(dg) (Multiplicity prop. of ∆)

= ∆(g0)

∫
f(ga)∆(g)−1H l(dg) (H l left invariant)

= ∆(g0)

∫
f(x)µ(dx) (previous computation made in reverse order)

This also implies that a Haar prior induced as in Theorem 2, i.e. from a right
invariant Haar measure on G, is relatively invariant.

PLR(x0, ζ) = Pr
(
p(x0|θ0) ≤ ζp(x0|θ)

∣∣∣ x0

)
=

1

m(x0)

∫{
θ | p(x0|θ0)≤ζp(x0|θ)

} p(x0|θ)Πr(dθ) (18)

=
1

m(x0)

∫{
θ | p(x0|θ0)≤ζp(x0|θ)

} p(x0|θ)Hr
(
φ−1
b (dθ)

)
(Def. Πr in Th. 2)

=
1

m(x0)

∫{
g | p(x0|θ0)≤ζp(x0|φbg)

} p(x0|φbg)Hr(dg) (g = φ−1
b θ)

=
1

m(x0)

∫{
g | p(x0|θ0)≤ζp(x0|gb)

} p(x0|gb)Hr(dg) (Def. φθ eq. (16))

=
1

m(x0)

∫{
g | p(x0|θ0)≤ζp(x0|gb)

} p(x0|gb)∆(g)−1H l(dg) (Prop. eq. (13))

=
1

m(x0)

∫{
g | p(x0|θ0)≤ζp(x0|g−1b)

} p(x0

∣∣g−1b
)
H l(dg) (Prop. eq. (12))

But according to lemma 1, µ is relatively invariant with modulus ∆−1. Since the
density family is invariant,

p(x|θ) = ∆(g)−1p(gx|gθ) for all x ∈ X , θ ∈ Θ, g ∈ G

i.e.

p(x|g−1θ′) = ∆(g)−1p(gx|θ′) for all x ∈ X , θ′ ∈ Θ, g ∈ G
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Then,

PLR(x0, ζ) =
1

m(x0)

∫{
g: | p(x0|θ0)≤ζp(gx0|b)∆(g)−1

}∆(g)−1p(gx0|b)H l(dg)

=
1

m(x0)

∫{
g | p(x0|θ0)≤ζp(gx0|b)∆(g)−1

} p(gx0|b)Hr(dg) (Prop. eq. (13))

=
1

m(x0)

∫{
g | p(x0|θ0)≤ζp(gx0|b)∆(g)−1

} p(gx0|b)µ
(
φa(dg)

)
(Def. µ) .

It can be noticed that the equation (18) depends neither on a ∈ X nor on b ∈ Θ.
Choose now for simplicity a = x0. Then, making the transformation x = φx0

g = gx0,

PLR(x0, ζ) =
1

m(x0)

∫{
x | p(x0|θ0)≤ζp(x|b)∆

(
φ−1
x0
x
)−1} p(x|b)µ(dx) .

By a similar computation we get the expression of the marginal density of X evalu-
ated at x0:

m(x0) =

∫
p(x0|θ)Πr(dθ) =

∫
p(x|b)µ(dx) = 1 .

The marginal density of X is constant, the same way the frequentist risk of an invariant
estimator does not depend on θ. So

PLR(x0, ζ) =

∫{
x | p(x0|θ0)≤ζp(x|b)∆

(
φ−1
x0
x
)−1} p(x|b)µ(dx) .

In order to get a form closer to a p-value, we choose from now b = θ0 and note that
for any c ∈ X ,

∆
(
φ−1
x0
x
)

=
∆
(
φ−1
c x

)
∆
(
φ−1
c x0

) (19)

because if we note

g = φ−1
x0
x

g1 = φ−1
c x

g2 = φ−1
c x0

then on one side gx0 = x and on the other g1(g−1
2 x0) = g1c = x so that

gx0 = (g1g
−1
2 )x0

so φx0
g = φx0

(g1g
−1
2 )

so g = g1g
−1
2 (φa is one-to-one)

so ∆(g) =
∆(g1)

∆(g2)
(Prop. of ∆) .
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Finally, for any c ∈ X

PLR(x0, ζ) =

∫{
x | p(x0|θ0)

∆(φ
−1
c x0)

≤ζ p(x|θ0)

∆(φ
−1
c x)

} p(x|θ0)µ(dx) . (20)

It is also interesting to note that

φ−1
a b = (φ−1

b a)−1 (21)

since g = φ−1
a b⇒ ga = b⇒ a = g−1b⇒ g−1 = φ−1

b a

so that the same way we have

PLR(x0, ζ) =

∫{
x | p(x0|θ0)∆

(
φ−1
x0
c
)
≤ζp(x|θ0)∆

(
φ−1
x c
)} p(x|θ0)µ(dx)

= Pr
(
p(x0|θ0)∆

(
φ−1
x0
c
)
≤ ζp(x|θ0)∆

(
φ−1
x c
)∣∣∣θ0

)
.

This ends the proof. �

Appendix 3: Proof of Theorem 1 and Corollaries 1, 2

Theorem 1 is a corollary of Theorem 2 presented and proved in the previous appendix:
Theorem 2 can be reexpressed more simply by assuming that the likelihood family
and the induced Haar measures are absolutely continuous with respect to the Lebesgue
measure.

Proof of Theorem 1: The proof only consists of reexpressing the domains of integration
because the integrands expression are not functions of the use of the decomposition of
the measures over some other measures (µ or Lesbesgue). The proof even actually only
consists of reexpressing the domain of integration of the p-value because the domain of
integration of the PLR does not depend on the density over X used since the domain
of integration is a subset of Θ, not X .

If we denote by pµ(.|θ) the density with respect to the induced Haar measure µr and
by p(.|θ) the density with respect to the Lebesgue measure, we have by definition

P (dx|θ) = pµ(x|θ)µr(dx) = pµ(x|θ)πr(x)dx and P (dx|θ) = p(x|θ)dx

and so pµ(x|θ) =
p(x|θ)
πr(x)

.

On the other side the modulus ∆ can also be reexpressed as a function of the induced
prior densities πl(x) and πr(x). From equations (21) and (13),

∆
(
φ−1
x c
)

= ∆
(
φ−1
c x

)−1
=
H l
(
dφ−1

c x
)

Hr
(
dφ−1

c x
) =

µr(dx)

µl(dx)
=
πr(x)

πl(x)
·
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Combining these two results we get

pµ(x|θ)∆
(
φ−1
x c
)

=
p(x|θ)
πl(x)

·

�

Proof of Corollary 1:

PLR(x0, ζ) = Pr
(

(pX|θ0(x0) ≤ ζ pX|θ(x0)
∣∣∣ x0

)
= Pr

(
pX|S(X)(x0|S(x0)) pS(X)|θ0(S(x0))

≤ ζ pX|S(X)(x0|S(x0)) pS(X)|θ(S(x0))
∣∣∣ x0

)
because since S(x) is a function of x, pX|θ(x) = pX,S(X)|θ

(
x, S(x)

)
and since in addition

S(X) is a sufficient statistic of X,

pX|θ(x) = pX|S(X),θ

(
x|S(x)

)
pS(X)|θ

(
S(x)

)
= pX|S(X)

(
x|S(x)

)
pS(X)|θ

(
S(x)

)
. (22)

Simplifying the densities which do not depend on θ,

PLR(x0, ζ) = Pr
(
pS(X)|θ0

(
S(x0)

)
≤ ζ pS(X)|θ0

(
S(x0)

) ∣∣∣ S(x0)
)

= Pr
(
pS(X)|θ0

(
S(x0)

)
(πl(S(x0)))−1

≤ ζ pS(X)|θ0
(
S(x)

)
(πl(S(x)))−1

∣∣∣θ0

)
(Th. 1) .

�

Proof of Corollary 2: First reexpress the PLR under the conditions of Theorem 1 by
using a cumulative distribution. Note T (x) the statistic:

T (x) = pS(X)|θ0
(
S(x)

)
(πl(S(x)))−1 .

Seen as a random variable, the dataset x induces the random variable T (X) the same
way the statistic S(x) induced S(X). Note FT (X)|θ0 the cumulative distribution of T (X)
under the null hypothesis:

FT (X)|θ0(ζ) = Pr
(
T (x) ≤ ζ

∣∣θ0

)
.

Starting from the theorem 1, the PLR can be reexpressed as

PLR(x0, ζ) = 1− FT (X)|θ0
(
ζ−1T (x0)

)
.

In particular, for a threshold ζ = 1, one can directly notice that the PLR is equal
to the p-value defined for the GLR by equation (2), but now instead associated to the
test statistic T (x).
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Also note that the frequentist test corresponding to the PLR is then given, for any
threshold λ > 0, by

Reject H0 if pS
(
S(x)|θ0

)
(πl(S(x)))−1 ≤ λ .

�
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