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Bayesian Regularization via Graph Laplacian

Fei Liu ∗, Sounak Chakraborty †, Fan Li ‡, Yan Liu §, and Aurelie C. Lozano ¶

Abstract. Regularization plays a critical role in modern statistical research, espe-
cially in high-dimensional variable selection problems. Existing Bayesian methods
usually assume independence between variables a priori. In this article, we pro-
pose a novel Bayesian approach, which explicitly models the dependence structure
through a graph Laplacian matrix. We also generalize the graph Laplacian to
allow both positively and negatively correlated variables. A prior distribution for
the graph Laplacian is then proposed, which allows conjugacy and thereby greatly
simplifies the computation. We show that the proposed Bayesian model leads to
proper posterior distribution. Connection is made between our method and some
existing regularization methods, such as Elastic Net, Lasso, Octagonal Shrinkage
and Clustering Algorithm for Regression (OSCAR) and Ridge regression. An ef-
ficient Markov Chain Monte Carlo method based on parameter augmentation is
developed for posterior computation. Finally, we demonstrate the method through
several simulation studies and an application on a real data set involving key per-
formance indicators of electronics companies.

Keywords: Bayesian analysis, Elastic Net, Grouping, Lasso, OSCAR, Regulariza-
tion, Ridge regression, Variable selection

1 Introduction

Regularization plays a critical role in modern statistical research, especially in high di-
mensional variable selection problems. For example, the ridge regression (Hoerl and
Kennard 1970) utilizes the L2 norm of regression coefficients as the regularization term.
Though marked improvement in prediction has been observed over the ordinary least
squares, the ridge regression does not lead to sparse estimates. Unlike the ridge regres-
sion, the least absolute shrinkage and selection operator (Lasso), proposed in Tibshirani
(1996), is based on the regularization of the L1 norm of regression coefficients. Lasso
results in simultaneous shrinkage and variable selection, as many of the coefficients
will be estimated exactly as zero. For problems where the explanatory variables are
possibly highly correlated, a variety of penalty terms have been proposed to incor-
porate the grouping structures of variables. See, for example, the Elastic Net (EN)
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penalty in Zou and Hastie (2005) and the grouped Lasso penalty in Yuan and Lin
(2006). Recent developments include the octagonal shrinkage and clustering (OSCAR)
penalty in Bondell and Reich (2008), the correlation-based penalty in Tutz and Ulbricht
(2009). More recently the graph-constrained (Grace) penalty and the adaptive graph-
constrained (aGrace) penalty of Li and Li (2010) is successfully used to model biological
graphs and networks in genomic data sets.

In the Bayesian framework, regularization problems are formulated through shrinkage
priors. For example, the Bayesian Lasso has been discussed in Tipping (2001), Park
and Casella (2008), and Hans (2009). Recent advances in Bayesian Elastic Net can
be found in Kyung et al. (2010), Bornn et al. (2010), Li and Lin (2010), and Hans
(2011). For binary data, Chakraborty and Guo (2011) proposed a Bayesian hybrid
Huberized support vector machine with an elastic-net prior for variable selection for
microarray data. There have also been enormous developments of prior distributions
under the Bayesian variable selection framework (George and McCulloch 1993; Smith
and Kohn 1996; George and McCulloch 1997; Kuo and Mallick 1998). More recently,
Li and Zhang (2010) and Vannucci and Stingo (2011) developed Bayesian variable se-
lection for structured variables and showed their enormous potential in genomics and
biological pathway selections. All these methods assume either independence a priori
between variables or a completely known dependence structure. Explicitly modeling the
dependence structure between variables is challenging, especially in high dimensional
problems.

Real world applications, however, have suggested a substantial need for modeling the
dependence structure. Our case study example in Section 5.2 provides one such exam-
ple from the area of business analytics. The primary interest is to predict the future
revenue of a company using predictor variables of both financial performance metrics
(such as Revenue growth, earnings per shares (EPS), productivity (Revenue/Employee),
ROA (Return on Asset), Market Cap Growth, etc.) and lower-level operational metrics
(such as Revenue per R&D Spend, Business Weeks Investing 4 Future Index, etc.). It
can be seen that these predictor variables are correlated. Moreover, in many cases, the
dependence could be either positively correlated or negatively correlated. For exam-
ple, revenue growth and productivity are positively correlated while innovation index is
negatively correlated with revenue per R&D Spend. How we can incorporate the depen-
dence to make better predictions and to automatically infer the underlying dependency
relations poses great challenges, which is the main focus of this paper.

Modeling the dependence structure between variables is also desirable from the method-
ological point of view. In most regularization problems, the interest lies in identifying a
subset from a large number of predictor variables, that have some legitimate predictive
power on the response. Modeling the dependence structure enables borrowing infor-
mation across variables, thus leading to better predictive power (Storey and Tibshirani
2003; Kim and Xing 2009; Li and Li 2010). Additionally, it also overcomes the difficulty
of collinearity in the presence of highly correlated predictors by imposing identifiability
constraints through the dependence structure.

In this article, we propose a Bayesian regularization approach to model the dependence
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structure in normal linear models. Our method explicitly characterizes the depen-
dence structure between variables through a graph Laplacian matrix in the spectral
graph theory (Ng et al. 2002; Li and Li 2010). Graph Laplacian matrices are the main
tools for spectral clustering, whose primary interest is to detect similarity between data
points. Traditional graph Laplacian matrices, however, only allow for positive partial
correlations among nodes or variables. We generalize the graph Laplacian to allow for
negative partial correlations. A prior distribution is then proposed for the generalized
graph Laplacian. We show that the proposed prior leads to proper posterior distribu-
tions. It can be shown that the proposed Bayesian model is in favor of sparsity and
clustering a priori. We also establish the connections between the proposed method and
the existing regularization methods such as Lasso, EN, and OSCAR. For computation,
we develop an efficient Markov chain Monte Carlo (MCMC) algorithm, based on data
augmentation.

The rest of this article is organized as follows. Section 2 provides a brief review of the
related literature. Section 3 introduces the proposed Bayesian model and the theoretical
support. Section 4 describes the computational algorithms. Section 5 gives numerical
results, both in simulations and in a business analytics context. Section 6 concludes
with a discussion. Details of proofs and computations are relegated to the Appendices.

2 Related literature

Consider the normal linear regression:

Y = Xβ + ε , ε ∼ N(0, σ2In) , (1)

where Y is the n × 1 vector of the dependent variables, X is the n × p design matrix
with the (i, j)th element xij (i = 1, . . . , n; j = 1, . . . , p), β = (β1, . . . , βp) is the vector
of the regression coefficients, and In is the n × n identity matrix.. An estimate for
β is sparse if most of the βj are set to zero. Sparsity is critical especially when one
wants to identify the signal variables from a massive number of predictors. Grouping
variables arises as one wants to detect clusters of the signal variables (nonzero β’s). This
is of particular interest when there are highly correlated predictors in the data, yet the
correlation structure is unknown. In an extreme case where there is only one group, all
the signal variables are expected to take exactly the same value, whereas when there are
no groups, the signal variables are expected to take different values. The grouping idea
is most relevant to the applications of detecting similarly behaving variables or features
in a data set. Nevertheless, as suggested in Zou and Hastie (2005), grouping variables
can lead to improvements of the prediction accuracy. The main objective of this article
is to develop a Bayesian regularized method, which simultaneously encourages sparsity
and grouping.
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2.1 Laplace matrix of graphs

The Laplace matrices of graphs or the graph Laplacians are the main tools for spectral
clustering algorithms, whose focuses are to find good clusters in the machine learning
and pattern recognition literature. von Luxburg (2007) provided an excellent review
on the graph Laplacians. Let x1, . . . , xn be a set of n data points. Define sij ≥ 0
as the measure of similarity between any pair of points xi and xj . A similarity graph
G = (V,E) can be used to represent the data, where each vertex vi represents the data
point xi, and two vertices vi and vj are connected by an edge weighted by sij if the
similarity measure sij is positive. For an undirected graph G = (V,E) with vertex set
V = (v1, . . . , vn), its weighted adjacency matrix is defined as W = (wij)i,j=1,...,n with
wij = wji ≥ 0, where wij = 0 implies that the vertices vi and vj are disconnected. The
degree of a vertex vi ∈ V is then defined as di =

∑n
j=1 wij . The Laplace matrix of the

graph G is defined as L = D −W , where D = diag(d1, . . . , dn).

The spectral clustering algorithms have been shown to be very effective in detecting
clusters (see, e.g., Ng et al. 2002; von Luxburg 2007, and references therein). For
the regression problem in (1), however, they are not immediately applicable due to the
following limitations. First, they directly cluster the observations x1, . . . , xn rather than
the unobserved quantities such as the regression coefficients. Second, they assume that
information about the weighted adjacency matrix is readily available, which is not the
case under the scenario of our consideration. Finally, the restriction that wij ≥ 0 implies
that they assume positive partial correlations among all pairs of the variables a priori,
which may be unrealistic for real world applications. The restriction that wij ≥ 0 is
due to that fact that wij is the number of edges from vertex i to vertex j. In Section 3,
we will extend the graph Laplacians to overcome these difficulties.

2.2 Regularized approaches

Classical regularization methods minimize the residual sum of squares subject to an
imposed penalty term. A variety of penalty terms have been proposed in the literature,
among which most relevant to this paper are Ridge, Lasso, EN, and OSCAR. The Ridge
regression circumvents the issue of predictor collinearity by a penalty term, which is
defined as the L2 norm of the regression coefficients. To achieve a sparse solution, the
Lasso utilizes the L1 norm as the penalty term. In light of the need to include or exclude
together strongly correlated predictors and to retain the sparsity at the same time, the
EN utilizes a combination of the L1 and L2 norms as the penalty term. Recently,
motivated by the need to determine the predictive clusters of the selected variables, the
OSCAR penalty combines the L1 and L∞ norms. The OSCAR penalty has an octagonal
shape, which results in the exact grouping property in that the coefficients of the same
group are exactly equal. We summarize these methods in Table 1.
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Table 1: Penalty terms in Ridge, Lasso, EN and OSCAR.
Method Tuning Penalty

Parameters
Ridge λ λ

∑p
j=1 β

2
j

Lasso λ λ
∑p
j=1 |βj |

EN λ1, λ2 λ1

∑p
j=1 |βj |+λ2

∑p
j=1 β

2
j

OSCAR λ, c λ
∑p
j=1 |βj |+cλ

∑
j<k max{ |βj | , |βk | }

2.3 Bayesian regularized approaches

Bayesian shrinkage priors corresponding to the Lasso, grouped Lasso, EN and Fused
Lasso have been proposed (Park and Casella 2008; Hans 2009; Kyung et al. 2010; Li
and Lin 2010). Under the shrinkage prior formulations, the penalties correspond to the
special choices of priors and are expressed as the “scale-mixture” of normal and gamma
distributions. We summarize the mixture representation of the Bayesian shrinkage priors
in Table 2. Here, Dτ = diag(τ2

1 , . . . , τ
2
p ) in the Bayesian Lasso; D∗τ = diag{( 1

τ2
j

+λ2)−1}
in the Bayesian EN; mk is the prespecified number of variables in the kth group in the
Bayesian Group Lasso, p =

∑K
k=1mk; and in the Bayesian Fused Lasso, the diagonal

elements for Σβ are 1
τ2
i

+ 1
ω2
i−1

+ 1
ω2
i
, i = 1, . . . , p, and the off diagonals are − 1

ω2
i
, i =

1, . . . , p.

Table 2: Scale Mixture Representations of the Bayesian Shrinkage Priors.
Methods π(β|σ2, τ1, . . . , τp) π(τ1, . . . , τp)

Lasso Np(0, σ
2Dτ )

∏p
j=1

λ2

2 exp
(
−λ2τ2

j /2
)

EN Np(0, σ
2D∗τ )

∏ λ2
1

2 exp
(
λ2

1τ
2
j /2
)

Group Lasso Nmk(0, σ2τ2
k Imk)

∏K
k=1 Gamma((mk + 1)/2, λ2/2)

(with K groups)

Fused Lasso Np(0, σ
2Σβ)

∏p
j=1

λ2
1

2 exp
(
−λ2

1τ
2
j /2
)

and
∏p−1
j=1

λ2
2

2 exp
(
−λ2

2ω
2
j /2
)

Among these priors, only the Group Lasso prior and the Fused Lasso prior take into
account the dependence structure among variables, which is assumed completely known.
This, however, may not be the case in many applications. Motivated by this gap, here,
we propose a Bayesian regularization method for correlated variables with an unknown
dependence structure.



454 Bayesian Regularization via Graph Laplacian

3 The proposed method

3.1 Formulation

To avoid the computational cost of inverting a covariance matrix, we directly model the
dependence structure through the precision matrix. Conditioning on σ2, we assign the
prior distribution for β as

β |σ2 ∼ Np(0,
σ2

r
Λ−1) ,

where Λ is the precision matrix, taking the form,

Λ =


1 + λ11 +

∑
j 6=1|λ1j | λ12 . . . λ1p

λ21 1 + λ22 +
∑
j 6=2|λ2j | . . . λ2p

...
...

. . .
...

λp1 . . . . . . 1 + λpp +
∑
j 6=p|λpj |

 , (2)

with λij = λji, λii > 0 and the hyperparameter r ≥ 0. As noted in Park and Casella
(2008), conditioning on σ2 is important to guarantee the unimodality of the full posterior
distribution. This is critical for the fast convergence of the Gibbs sampler. Letting λ
be the collection of all elements in Λ, we propose the following prior distribution for λ,

π(λ) ∝ Ca,b|Λ|−1/2

p∏
i=1

λ
−3/2
ii exp

(
− a2

2λii

)
1(λii > 0)

∏
j<i

|λij |−3/2exp

(
− b2

2|λij |

)
(3)

where Ca,b is the normalizing constant and a, b and r are hyperparameters. It is to be
noted that the off diagonal elements of Λ can take both positive and negative values.
The prior for σ2 is specified as π(σ2) ∝ 1/σ2.

We call the prior distribution defined in equations (2) and (3) the Graph Laplacian prior
(GL-prior) because Λ can be considered as an extended version of the graph Laplacian
matrix. In fact, the connections between the GL-prior and the graph Laplacian matrix
can be immediately seen by defining the degree of a vertex i as di = r+λii +

∑p
j=1|λij |

and the “weighted adjacency matrix” S = (λij)i,j=1,...,n in (2). There are, however, the
following differences in between. First, the graph Laplacian matrix is assumed known
in the spectral clustering algorithms, whereas the matrix here is completely unknown
and needs to be learned from the data. Second, the off-diagonal elements in Λ can
take both positive and negative values in the GL-prior formulation whereas the off-
diagonal elements are all negative in the original graph Laplacians. The advantage of
this generalization is that it allows for both positive and negative partial correlations
between two coefficients (the original graph Laplacian matrix only allows for positive
partial correlations). Finally, we remark in Proposition 1 (with the proof given in
Appendix 6) that being diagonally dominant, Λ is positive definite and invertible, and
thus is a valid form for the precision matrix.
Proposition 1. The precision matrix defined in (2) is symmetric and positive semidef-
inite.
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The specification in (2) and (3) are the key components in our method. (2) explicitly
models the dependence structure through the precision matrix, while the prior distri-
bution in (3) makes it possible to draw inference upon such dependence structure via
information provided by the data. Note that there is a factor of |Λ|−1/2 in the prior
distribution of λ in (3). This suggests that λijs are not independent. The advantage
of including this factor in the prior is that it cancels out with |Λ|1/2 in the likelihood,
leading to a closed form marginal prior distribution for β after integrating λ out. This,
described in the next Proposition, is our key result in establishing the connections be-
tween our method and the classical regularization methods.
Proposition 2. Let cij = sign(λij). Conditioning on c = {cij , j < i} and σ2,
π(β | c, σ2), the prior distribution of β, can be written as

π(β | c, r, a, b, σ2) (4)

∝ (2πσ2)−p/2 exp

− 1

2σ2

r∑
i

β2
i + raσ

∑
i

|βi|+rbσ
∑
j<i

|βi + cijβj |

 .

Note that in (4), r, raσ and rbσ correspond to the tuning parameters of the L2, L1, and
a piecewise L1 regularization, respectively. We further establish the connection with
the OSCAR penalty term as follows. Let cij = −sign(βiβj) and write max {|βi|, |βj |} =
(|βi|+|βj |)/2 + (||βi|−|βj ||)/2 = (|βi|+|βj |)/2 + (|βi + cijβi|)/2, which implies that the
OSCAR penalty term is a combination of

∑
i|βi| and

∑
j<i|βi + cijβj |. The marginal

prior in (4) clearly indicates that our method is in favor of both sparsity and grouping,
where a and b reflect the degree of sparseness and that of grouping, respectively. We
further illustrate this fact with the 3-d density plot of π(β |σ2) and 2-d contour plot of
− log(π(β)) in a 2-dimensional case in Figure 1. Here, we set a = b = r = σ2 = 1. The
contour plot is octagonal in shape, with the eight vertices being joined by an arc instead
of by a straight line. Similar to the Lasso, the four vertices that lie on the horizontal or
vertical axis are critical for selection of variables. The remaining four vertices, on the
other hand, play the important role of grouping the highly correlated variables. Similar
to the EN, the edges in the 2-d contour plots have some curvature, which is due to
the quadratic term in the prior (4). From the connections with the OSCAR penalty,
the last term in (4) effectively penalizes the pairwise L∞ norm of the coefficients. As
a result, our method is in favor of coefficient groups with modest or small effect sizes.
This makes our method suitable for problems with modest or small coefficients such as
genetic association studies.

3.2 Theoretical results

In this section, we establish some theoretical results for the proposed method. Due to
the length of details, we relegate the proofs to the appendix.

We first show that the prior distribution for λ is proper in the next Proposition.
Proposition 3. The prior distribution defined in (3) is proper.
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Figure 1: (a) the 3-d plot of the (unnormalized) density function π(β |σ2) and (b) the 2-
d contour plot of − log(π(β |σ2)). The parameters are set to r = 1, a = 1, b = 1, σ2 = 1.

Despite a proper distribution on λ, we specify an improper prior distribution on σ2.
Thus, we still need to show that the proposed model leads to a proper posterior distri-
bution. In the proposition to follow, we show that the posterior distribution is proper
under a mild condition.
Proposition 4. The joint posterior distribution for σ2,β,λ is proper if y

′
y 6= 0.

This proposition assures the validity of Bayesian inference. The condition y
′
y 6= 0 is

equivalent to y 6= 0. In fact, as can be seen from the proof, the posterior distribution is
dominated by the ridge regression. In addition, it suggests that the proposed method
can be applied to “small n, large p” problems.

4 Posterior Computation

Let D = (X,y). The likelihood function from model (1) is

L(β,λ, σ2; D) = (2πσ2)−n/2 exp
{
−(y −Xβ)

′
(y −Xβ)/2σ2

}
.
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Combined with the priors π(σ2) ∝ 1/σ2, π(β |λ, σ2) and π(λ), we obtain the joint
posterior distribution as

π(σ2,β,λ |D) ∝

σ−(n+p+2)

∏
i

λ
−3/2
ii

∏
j<i

|λij |−3/2

 exp
{
−(y −Xβ)

′
(y −Xβ)/2σ2

}

× exp

− r

2σ2
β
′
Λβ − a2

2

∑
i

λ−1
ii −

b2

2

∑
j<i

|λij |−1

 . (5)

The full conditional posterior distributions for σ2 and β have closed forms. Specifically,
we have

(
β |σ2,λ,D

)
∼ Np(µβ, Σβ) with

µβ = (X
′
X + rΛ)−1X

′
ỹ , and Σβ = σ2(X

′
X + rΛ)−1 .

After integrating out β in (5), we have

π(σ2 |λ,D) ∝ (σ2)−n/2−1 exp{−y
′
(
In −X(X

′
X + rΛ)−1X

′
)
y/2σ2} ,

which implies that σ2 |λ,D ∼ Inv-Gamma
(
n/2,y

′
(
In −X(X

′
X + rΛ)−1X

′
)
y/2

)
,

an inverse gamma distribution with the shape parameter and rate parameter as specified.

Finally, the full conditional posterior distribution for λ can be obtained as

π(λ |β, σ2,D) ∝
∏
i

λ
−3/2
ii

∏
j<i

|λij |−3/2exp{− r

2σ2
β
′
Λβ − a2

2

∑
i

λ−1
ii −

b2

2

∑
i<j

|λij |−1} .

(6)
This distribution does not have closed form. In the section to follow, we will develop
an efficient MCMC method for posterior inference based on parameter augmentation.

4.1 Markov Chain Monte Carlo method

For posterior computation, we use MCMC methodology (Gelfand and Smith 1990). We
propose an efficient Gibbs sampler based on parameter augmentation.

Let θ1 = (σ2,β). Within each iteration of the Gibbs sampler, we update θ1 as a block.
The posterior distribution of θ1, conditioning on λ, can be written as the product of two
terms: π(θ1 |λ,D) = π(σ2 |λ,D)π(β |σ2,λ,D). All these distributions are in closed
forms and are very straightforward to be sampled from, as discussed earlier.

To draw from π(λ |θ1,D), we first augment the parameter space. Let ηij = |λij | and
cij = sign(λij). For notational simplicity, we set η = {ηij , i = 1, . . . , p; j = 1, . . . , p} and
c = {cij , j < i}. Conditioning on θ1, the joint posterior distribution for c,η is indepen-
dent of µ and can be written as π(c,η |θ1,D) = π(c |β, σ2,D)π(η | c,β, σ2,D). For the
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first term π(c |β, σ2,D), note that cij is a discrete random variable and it can take only
one of the two values, +1 or −1. Furthermore, from (3), cij are mutually independent
conditioning on β and σ2. Let pij be the probability that cij = 1 conditioning on β
and σ2 (cij = −1 with probability 1− pij), we have

pij = [1 + exp{−rb(|βi − βj |−|βi + βj |)/2σ}]−1
, j < i .

For π(η | c,β, σ2,D), plugging β
′
Λβ =

∑
i(1 + λii)β

2
i +

∑
i

∑
j<i|λij |(βi + cijβj)

2 into
(6) and eliminating the irrelevant terms, we have

π(η | c,β, σ2,D) ∝∏
i

η
−3/2
ii

∏
j<i

η
−3/2
ij exp{−

∑
i

(
rβ2
i ηii

2σ2
+

a2

2ηii

)
−
∑
i

∑
j<i

r(βi + cijβj)
2ηij

2σ2
− b2

2

∑
j<i

η−1
ij } .

This implies that, conditioning on c, β and σ2, ηij are mutually independent. In addi-

tion, for ηii, we have π(ηii | c,β, σ2,D) ∝ η−3/2
ii exp(−a2η−1

ii /2− rβ2
i ηii/2σ

2). Complet-
ing the square, we have

π(ηii | c,β, σ2,D) ∝ 1

η
3/2
ii

exp

[
−
rβ2
i

(
ηii − aσ|

√
rβi|−1

)2
2σ2ηii

]
.

Therefore (ηii |β, σ2,D) ∼ Inv-Gaussian(aσ|
√
rβi|−1, a2), where Inv-Gaussian(µ, λ) rep-

resents an Inverse Gaussian distribution, whose density function is defined as

f(x;µ, λ) =

[
λ

2πx

]1/2

exp

{
−λ(x− µ)2

2µ2x

}
, x > 0, µ > 0, λ > 0 .

Similarly, for ηij , we have

π(ηij | c,β, σ2,D) ∝ η−3/2
ij exp

{
−r|βi + cijβj |2

2σ2ηij

(
ηij − bσ|

√
r(βi + cijβj)|−1

)2}
.

Thus, (ηij | c,β, σ2,D) ∼ Inv-Gaussian(bσ|
√
r(βi + cijβj)|−1, b2).

The Gibbs sampler iterates through the following steps:

(i) Update σ2 by sampling from π(σ2 |λ,D), which is an inverse Gamma distribution.

(ii) Update β by sampling from π(β |σ2,λ,D), which is a multivariate normal distri-
bution.

(iii) Update c by sampling from π(c |β, σ2,D), where cij = 1 with probability pij and
cij = −1 with probability 1− pij .

(iv) Update η by sampling from π(η | c,β, σ2,D), the product of independent inverse
Gaussian distributions.

(v) Set λii = ηii and λij = cijηij , for j ≤ i and i = 1, . . . , p.
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At the end of the MCMC simulation, we obtain a sample of draws from the posterior
distribution in (5). After the burn-in period, we obtain N MCMC draws{

σ2(h),β(h),λ(h);h = 1, . . . , N
}
.

This leads to our final samples. The results to follow are based on the MCMC samples
from the posterior.

4.2 Selection of hyperparameters

For hyperparameters r, a, and b, we assign the following prior

π(r, a, b) ∝ C−1
a,br

hr−1 exp(−grr) exp(−gaa) exp(−gbb) .

To allow a relatively flat prior, we recommend small values for ga, hb, gb (we set these
values to 0.01 in our numerical experiments). Conditioning on c and β, we have

[r | a, b, c,β] ∼ Gamma

(
p

2
+ hr,

∑
i β

2

2σ2
+
a
∑
i|βi|

2σ
+
b
∑
i<j |βi + cijβj |

2σ

)
,

[a | r, b, c,β] ∼ Exp

(
ga +

r
∑
i|βi|

2σ

)
,

[b | r, a, c,β] ∼ Exp

(
gb +

r
∑
i<j |βi + cijβj |

2σ

)
.

At each iteration, we update these hyperparameters by drawing samples from their full
conditional distributions.

5 Numerical Results

5.1 Simulations

In this section, we compare the performance of our method with that of Lasso, EN,
OSCAR, Bayesian Lasso (BLasso) and Bayesian Elastic Net (BEN). In specific, we are
interested in the predictive performance when the predictor variables are not indepen-
dent, with an underlying correlation structure. We simulate data from the regression
model y = Xβ + ε with ε ∼ N(0, σ2). We consider five different scenarios, which are
very similar to those in Zou and Hastie (2005) and Bondell and Reich (2008). For each
scenario, we generate training data and testing data. We first apply each method to
the training data to obtain the estimates of the coefficients. We then obtain the esti-
mates for the testing data using the coefficients estimates and calculate the test mean
squared error (MSE), calculated as

∑n
i=1(yi − xiβ̂)2/n. For the Bayesian methods, we

use the posterior means as the estimates of the regression coefficients. To select the
tuning parameters for Lasso, EN, and OSCAR, we perform five-fold cross validations.
The combination of tuning parameters that produce the lowest cross validation scores
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is then used in the final Lasso, EN and OSCAR models. We repeat this procedure 100
times and report the 10th, 50th, and 90th percentile of the test MSEs.

The five simulation scenarios are:

(i) Under Scenario 1, each training data set has sample size n.train = 20 and each
testing data set has sample size n.test = 200. The variance for the error term
is σ = 3. The correlation between the ith column and the jth column of the
design matrix is corr(xi,xj) = 0.7|i−j|. The true regression coefficients are β =
(3, 2, 1.5, 0, 0, 0, 0, 0).

(ii) Scenario 2 is the same as above, except β = (3, 0, 0, 1.5, 0, 0, 0, 2).

(iii) Scenario 3 is the same as above, except β = (0.85, . . . , 0.85︸ ︷︷ ︸
8

).

(iv) Under Scenario 4, each training data set has sample size n.train = 100, and each
testing data set has sample size n.test = 400. σ = 15, corr(xi,xj) = 0.5, and

β = (0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

) .

(v) Under Scenario 5, each training data set has sample size n.train = 100, and each
testing data set has sample size n.test = 400. σ = 15, and β = (3, . . . , 3︸ ︷︷ ︸

15

, 0, . . . , 0︸ ︷︷ ︸
25

).

Letting εxi ∼ N(0, 0.16), the predictors are generated from
xi = Z1 + εxi , Z1 ∼ N(0, 1), i = 1, . . . , 5
xi = Z2 + εxi , Z1 ∼ N(0, 1), i = 6, . . . , 10
xi = Z3 + εxi , Z1 ∼ N(0, 1), i = 11, . . . , 15
xi ∼ N(0, 1), i = 16, . . . , 40.

In Table 3, we show the 10th, 50th, and 90th percentile of the test MSEs for our method,
and that of Lasso, EN, OSCAR, BLasso and BEN. As we can see from the table, our
method is highly competitive under all five scenarios. It has the best performance under
Scenarios 2-5, and the second to the best performance under Scenario 1. In addition, we
can also see that EN and BEN generally perform better than Lasso, OSCAR and BLasso.
When the correlations between predictors are moderate such as under scenarios 1-4, our
method performs similarly to EN and BEN. When the predictors is highly correlated
(Scenario 5), a significant improvement over EN and BEN has been observed. The
last column in Table 3 shows the 10th, 50th, and 90th percentiles of the running time
(in seconds) for our method. The method is very efficient in terms of computation.
Under Scenarios 1-3, the dimension is relatively low and the median computational
time is about 6 to 7 seconds for 2000 MCMC iterations. Even when the dimension
increases to p = 40 as under scenarios 4-5, the median computation time is only about
30-40 seconds to generate 2000 MCMC iterations. Overall, our method improves the
predictive performance over the existing methods and it is computationally efficient.
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In Table 4, we report the operating characteristics measuring our variable selection
performance. The strategy for variable selection is to use the scaled neighborhood
criterion (SNC) (Li and Lin 2010). A variable is included if the posterior probability

P

{
|βj | >

√
var(βj |D)

∣∣∣∣∣D
}

exceeds a certain threshold, ψ. Following Li and Lin (2010),

we set ψ = 0.5. The operating characteristics reported in Table 4 are true positive rate
(TPR), true negative rate (TNR), positive predictive value (PPV), and the negative
predictive value (NPV). In the ideal case, only the truly relevant variables should be
selected by a method, all the four measures should be 1 (or 100 %). From Table 4,
we can see that our method outperforms all other competing methods under all five
simulation scenarios.

Study Pct Method Lasso EN OSCAR BLasso BEN Time
1 10 10.05 10.01 9.43 10.88 10.55 10.10 5.85

50 11.62 13.00 11.27 15.11 12.55 11.76 6.73
90 14.76 18.20 15.46 24.12 16.39 15.21 19.37

2 10 9.17 9.62 9.61 11.00 9.73 9.49 6.03
50 11.92 13.19 12.76 14.55 12.47 12.00 6.77
90 14.73 19.35 17.12 20.73 15.51 14.54 17.96

3 10 9.22 10.60 9.46 10.45 9.68 9.17 5.93
50 10.40 13.19 10.97 13.97 11.24 10.72 6.28
90 13.42 20.09 15.37 21.87 15.16 13.54 18.19

4 10 231.72 255.73 236.13 309.00 265.53 243.07 31.12
50 262.16 288.80 267.20 372.09 300.51 269.72 37.86
90 295.91 340.63 299.95 449.06 339.24 301.05 52.23

5 10 239.77 253.38 248.76 251.93 275.75 241.76 57.23
50 333.52 509.67 460.04 374.54 362.66 353.19 80.06
90 748.83 1629.92 1512.43 1100.50 1337.27 767.93 90.74

Table 3: Test MSEs of the simulation studies. The results are based on 100 replicated
data sets. The tuning parameters in Lasso and EN are chosen according to 5-fold cross
validation. Pct stands for percentile. Time represent the time to compute in seconds

5.2 Real Data Analysis

In this section, we present some results of applying our method on a real world data set
involving key performance indicators (KPI’s) of electronics companies. The problem
of monitoring and analyzing performance indicators of corporations is important in
business investment decision making, and has received considerable attention (Kaplan
and Norton 1992, 1996). This particular data set was obtained from Standard and
Poor’s Compustat database, available at http://www.compustat.com.

The data set consists of values of various performance indicators for electronics compa-
nies that are in the industry group of “semiconductors and semiconductor equipments.”
Specifically, quarterly data over the duration of three years were pulled, for companies
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Simulation Study Methods TPR TNR PPV NPV
% % %

Our Method 100.0 100.0 100.0 100.0
1 Lasso 100.0 80.0 75.0 100.0

EN 100.0 60.0 60.0 100.0
OSCAR 100.0 93.8 96.3 99.9
BLasso 100.0 85.0 88.8 98.3
BEN 100.0 87.3 92.6 96.4
Our Method 100.0 98.0 100.0 99.8

2 Lasso 100.0 84.0 78.0 96.9
EN 87.5 65.0 69.0 98.0
OSCAR 99.8 95.6 97.0 97.8
BLasso 98.9 83.8 85.8 98.0
BEN 94.3 84.2 94.4 99.1
Our Method 100.0 NA 100.0 NA

3 Lasso 100.0 NA 100.0 NA
EN 91.5 NA 100.0 NA
OSCAR 97.4 NA 100.0 NA
BLasso 98.3 NA 100.0 NA
BEN 95.0 NA 100.0 NA
Our Method 100.0 92.5 93.0 100

4 Lasso 97.0 75.0 79.1 96.3
EN 100.0 45.0 64.5 100.0
OSCAR 100.0 35.0 61.0 100.0
BLasso 98.6 82.0 84.5 98.3
BEN 99.1 71.0 77.3 98.6
Our Method 98.6 91.0 94.8 97.5

5 Lasso 95.1 68.0 83.2 89.3
EN 97.8 45.0 74.7 92.4
OSCAR 93.9 92.4 95.3 90.0
BLasso 96.3 82.4 90.1 93.0
BEN 96.9 84.6 91.2 94.2

Table 4: Simulation results based on 100 replications. Overall median of operating
characteristics

having at least 25 million dollars in annual revenue. The performance indicators in the
data set include financial performance metrics such as Revenue growth, EBIT (Earnings
before Interest and Tax) margin, productivity (Revenue/Employee), ROA (Return on
Asset), Market Cap Growth, Earnings per Share (EPS), PE (Price Earning) Ratio, and
Beta. The data also include lower level (operational) metrics such as Revenue per R&D
Spend, Business Week’s Investing 4 Future Index, Capital Expenditure/Revenue, Cur-
rent Ratio, Working Capital/Revenue, COGS/Revenue (Cost of Goods Sold), SG&A
(Selling, General & Administrative Expense) Revenue, Operating Cash Flow/Revenue,
Inventory Cost/Revenue, Inventory Turnover, Cash conversion cycle in days, and Net
Working Capital Ratio.

For many of these metrics, we consider both “absolute” values and the “CAGR” values
or the “Compound Annual Growth Rate”, which measures the annual rate of growth
of the KPI in question. We note that some normalization and outlier filtering were
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performed in generating these data: for example, the values in each column were nor-
malized by subtracting the sample mean and dividing it by the standard deviation,
and outliers that fall outside of 3 standard deviations of the mean in each column were
treated as “missing” values and replaced with the median of that column.

There are many interesting questions we can ask from the data. One that particu-
larly interests us is what performance indicators will affect the future values of revenue
growth, and how they interact with each other. In order to answer this question, we run
our method with lagged variables of 2 time stamps of all variables as predictor variables,
leading to a total number of 60 predictors in the model. The response variable in the
model is the revenue growth. We use the posterior mean to estimate the coefficients.
The estimate is not sparse in the absolute sense, but our solution is close to a sparse
one. In fact, as suggested in Figure 2, the largest 22 coefficients contribute more than
90% of the L2 norms of the coefficient estimates. We thus threshold the rest of the co-
efficients to zero and reported the selected variables in Appendix B. It is interesting to
note that the revenue growth not only depends highly on financial performance metrics,
such as EBIT margin, PE ratio, Earnings per Share (EPS) and Beta, but is also related
to lower-level operational metrics, such as Innovation Index, Inventory Turnover, and
Cash conversion cycle in days.

Based on the MCMC draws of Λ, we can estimate the dependence structure. Let Λ̂ be

the posterior mean of Λ, we may estimate the covariance matrix of β by (X
′
X + Λ̂)−1

and use it to quantify the dependence. In Figure 4, we compare the estimated correlation
matrix and sample correlation matrix of X. Since our primary goal is to infer the
dependence structure, we take the absolute values of each entry. As indicated from the
heatmap, the dependence structure given by our method is significantly more concise
than the sample correlation matrix. In a practical application such as this one, the
number of variables of interest tends to be sizable. For practical use, therefore, it is
critical that the presented information is concise for reasonable interpretability. We
should point out that the estimate of Λ is not sparse. The sparsity is more likely due to
the shrinkage effect on β. In Figure 3 we report the posterior estimate (off-diagonals)
of the correlation matrix.

Figure 5 shows the resulting graph by removing the edges with values less than or equal
to 0.1, where the thickness of the edges corresponds to the strengths of the correlation.
From the graph, we can see that there usually exist strong correlations between lagged
variables of the same feature (i.e. lag-1 and lag-2), such as PE ratio, EBIT margin,
and Inventory turnover. Interestingly, Figure 5 suggests that the lag-2 variable of EBIT
(earnings before interest and taxes) Margin has strong correlations with the lag-1 vari-
able of CAGR Inventory Turnover. It might be useful to group them into one group for
future modeling. The validity of such observations would need to be verified by further
investigation, but it is at least suggestive of the potential value that our method could
provide in applications to corporate level business decision making.

Finally, for comparison purposes, we apply the g-prior approach for Bayesian variable
selection of Liang et al. (2008). With 60 predictors in this data, it is impossible to
enumerate all the 260 models in the model space as in Liang et al. (2008). Instead, we
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Figure 2: The percentage of the contribution to the L2 norm of β as a function of the
number of selected variables. The largest 22 coefficients contribute more than 90%.

use the Gibbs sampler algorithm available for moderately large dimensional problems
suggested in Garcia-Donato and Martinez-Beneito (2013). This can be done by using
the R function GibbsBvs() in the R package BayesVarSel (http://cran.r-project.
org/web/packages/BayesVarSel/BayesVarSel.pdf) on this data set. Among the 22
non-zero coefficients that are selected by our method, 15 of them are also selected by the
g-prior approach. We also notice that our approach results in a sparser model than the
g-prior approach (the g-prior approach selects 35 non-zero coefficients). This is likely
due to the extra L1 norm penalty and the pairwise L1 norm penalty introduced by the
dependence structure of the coefficients. We list the variables that are selected by the
g-prior approach in the Appendix.

http://cran.r-project.org/web/packages/BayesVarSel/BayesVarSel.pdf
http://cran.r-project.org/web/packages/BayesVarSel/BayesVarSel.pdf
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Figure 3: The histogram of the off-diagonal entries in the estimated correlation matrix
of β.

6 Discussion

We have introduced a new Bayesian method for regularized regression, which provides
inference on the inter-relationship between variables by explicitly modeling through a
graph Laplacian matrix. Our formulation has a strong motivation from the dependence
structure as defined by the undirected graphs in spectral clustering. The prior distribu-
tion proposed for the graph Laplacian matrix allows us to learn the dependence structure
from the data. This can be critical in real applications where the dependence structure
is unknown. In the event when prior knowledge is available, some coefficients should
be set equal. One may use the average of the corresponding columns as a predictor
variable in the model.

We have established the connection between our method and the classical regularized
regression methods, which suggests that our method is in favor of sparseness and variable
clustering. For posterior computation, an efficient Gibbs sampler has been developed
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Figure 4: Left: the sample correlation matrix of the design matrix; Right: the estimated
correlation matrix of β.

based on parameter augmentation. The proposed Gibbs sampler is found to be very
convenient and highly efficient. We have applied the proposed method with success to
simulation studies and a real data analysis.

The proposed method provides a general framework to incorporate dependence structure
among predictors in Bayesian regularized regression. For example, extension to the
generalized linear models (GLM) in McCullagh and Nelder (1989) is straightforward
within the Bayesian hierarchical modeling framework. The major challenge in such an
extension is the posterior computation, due to the complexity of the likelihood function.
The quadratic approximation in Gelman et al. (2004) may be used to speed up the
computation.

For fast posterior computation, we develop an MCMC algorithm based on parameter
augmentation. The parameter augmentation leads to closed forms for the conditional
posterior distributions, which greatly simplifies the computation. From our experience,
the algorithm works well for moderately large dimension problems (e.g., about 100

predictors). While sampling β, the algorithm involves inverting the p×p matrix (X
′
X+

rΛ) in each iteration. For very high dimensional problems with more than thousands
of predictors, this computation becomes infeasible. For such problems, we propose a
scalable Expectation Maximization (EM) based algorithm for statistical inference based
on the Maximum a posteriori (MAP) estimates. The algorithm leverages an efficient
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Figure 5: The graph corresponding to the estimated correlation matrix of β for the
selected variables. The thickness of the edges reflects the strength of the correlation.

augmented Lagrangian approach for the maximization step, and is very efficient for high
dimensional problems such as microarray data. Due to the length of technical details,
we address this approach in a separate paper.

An alternative approach that may be used to tackle the high dimensional problem is to
first reduce the dimensionality via the “spike and slab” prior (Mitchell and Beauchamp
1988; George and McCulloch 1993; Chipman 1996; George and McCulloch 1997; Clyde
et al. 1998; Kuo and Mallick 1998; Ishwaran and Rao 2005), and then model the de-
pendence for the selected coefficients as discussed in this paper. Since the dependence
structure relies on which coefficients are selected, the technical challenge is to develop a
coherent modeling framework for all possible models. This will be a focus of our future
work.
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Appendix A: Proofs

� Proof of Proposition 1.

Proof Letting x = (x1, . . . , xp)
′ ∈ Rp, x 6= 0, we have,

x
′
Λx =

∑
i

(1 + λii)x
2
i +

∑
i

∑
j 6=i

|λij |x2
i +

∑
i

∑
j 6=i

λijxixj

=
∑
i

(1 + λii)x
2
i +

∑
i

∑
j<i

|λij |(x2
i + x2

j ) +
∑
i

∑
j<i

2λijxixj

=
∑
i

(1 + λii)x
2
i +

∑
i

∑
j<i

|λij |(x2
i + x2

j + 2cijxixj)

=
∑
i

(1 + λii)x
2
i +

∑
i

∑
j<i

|λij |(xi + cijxj)
2 > 0 ,

where cij = sign(λij). By definition, Λ is positive semidefinite.

� Proof of Proposition 2.

Proof Conditioning on Λ, σ2, r, a and b, the prior distribution for β can be
written as

π(β |λ, σ2) ∝ (σ2)p/2

|Λ|1/2
exp

− r

2σ2

 p∑
i=1

(1 + λii)β
2
i +

∑
j<i

|λij |(βi + cijβj)
2

 .
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where cij = sign(λij). Integrating out λ with respect to the prior distributions in
(3), we have,

π(β | c, σ2, r, a, b) =

∫
π(β |λ, σ2, r, a, b)π(λ | a, b)dλ

∝ exp

(
− r

2σ2

p∑
i=1

β2
i

)
p∏
i=1

∫ ∞
0

exp

(
−rλii

2σ2
β2
i

)
λ
− 3

2
ii exp

(
− a2

2λii

)
dλii

×
p∏
i=1

∏
j<i

∫ ∞
−∞

exp

{
−r|λij |

2σ2
(βi + cijβj)

2

}
|λij |−3/2exp

(
− b2

2|λij |

)
dλij .

Applying the following fact to the above equation,

1

a
exp(−a|z|) =

∫ ∞
0

(2π)−1/2t−3/2 exp

(
−z

2t

2

)
exp

(
−a

2

2t

)
dt

we have,

π(β | c, σ2) ∝ (σ2)−p/2 exp

− r

2σ2

∑
i

β2
i + aσ

∑
i

|βi|+bσ
∑
j<i

|βi + cijβj |

 ,

completing the proof.

� Proof of Proposition 3

Proof We first show that |Λ|≥ 1. Let A = Λ − In. It is easy to see that A is
symmetric and positive semidefinite. Let D = diag(a1, . . . , ap) where 0 ≤ a1 ≤
a2 ≤ · · · ≤ ap are the p eigenvalues of A. There exists an orthonormal matrix T

such that A = TDT
′
. Therefore, we have

Λ = A+ In = TDT
′
+ TT

′
= T (D + In)T

′
,

and, consequently, |Λ|=
∏
i(ai+ 1) ≥ 1 . Next, we show that π(λ) is proper. Note

that∫
|Λ|−1/2

p∏
i=1

2λ
−3/2
ii exp

(
− a2

2λii

)
1(λii > 0)

∏
j<i

|λij |−3/2exp

(
− b2

2|λij |

)
dλ

≤
∫ p∏

i=1

a2

2λ
3/2
ii

exp

(
− a2

2λii

)
1(λii > 0)

∏
j<i

|λij |−3/2exp

(
− b2

2|λij |

)
dλ

=

(
p∏
i=1

∫ ∞
0

λ
−3/2
ii exp

(
− a2

2λii

)
dλii

) p∏
i=1

∏
j<i

∫ ∞
−∞
|λij |−3/2exp

(
− b2

2|λij |

)
dλij

 .

Note that in the above, the integrands are kernels of the inverse gamma densities.
Therefore, the integral is finite, completing the proof.
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� Proof of Proposition 4.

Proof We only need to show that the marginal likelihood is finite. Let π(c) be the
prior probability for each configuration, π(c) ∝ 1. Given the tuning parameters
r, a, b, the marginal likelihood of y, m(y), can be written as

m(y) =
∑
c

π(c)

∫
p(y |β, σ2)π(β | c, σ2)π(σ2)dβdσ2

∝
∑
c

π(c)

∫
(σ2)−n/2−1 exp

(
− 1

2σ2
(y −Xβ)

′
(y −Xβ)

)
× (

σ2

r
)−p/2

× exp

− 1

2σ2
(rβ

′
β + raσ

∑
i

|βi|+rbσ
∑
j<i

|βj + cijβi|)

 dβdσ2

≤
∑
c

π(c)

∫
(σ2)−

(n+p)
2 −1rp/2 exp

(
− (y −Xβ)

′
(y −Xβ) + rβ

′
β

2σ2

)
dβdσ2

=

∫
(σ2)−

(n+p)
2 −1rp/2 exp

(
− (y −Xβ)

′
(y −Xβ) + rβ

′
β

2σ2

)
dβdσ2

∝
∫

(σ2)−n/2−1rp/2

|X ′X + rIn|1/2
exp

(
− 1

2σ2
y
′
{
In −X(X

′
X + rIn)−1X

′
}
y

)
dσ2 .

Next, we show that |X
′
X+rIn|−1/2

r−p/2
≤ 1 and y

′
{
In −X(X

′
X + rIn)−1X

′
}
y >

0. Let X = UDV be the singular value decomposition (SVD) of X, i.e., U is an
n× n orthonormal matrix , D = diag(d1, . . . , dp) is a p× p diagonal matrix, such
that dj ≥ 0, for j = 1, . . . , p, and V is a p× p orthonormal matrix. Therefore, we

have UU
′

= In and V V
′

= Ip. As a result,

rp/2|X
′
X + rIn|−1/2 ≤ rp/2|V

′
D
′
DV + rIn|−1/2

≤ rp/2|D2 + rIn|−1/2

≤ rp/2r−p/2

= 1 .

Additionally, we have

y
′
{
In −X(X

′
X + rIn)−1X

′
}
y

= ny
′
{
In −UDV

′
(V D2V

′
+ rIn)−1V DU

′
}
y

= y
′
U
{
In −D(D2 + rIn)−1D

}
Uy.

Note that D(D2 + rIn)−1D is a diagonal matrix, with the ith diagonal element
equal to d2

i /(d
2
i + r) < 1. Therefore, the above is greater than 0 as long as y 6= 0.
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Plugging these inequalities into above, we have

m(y) ≤c
∫

(σ2)−n/2−1 exp

(
− 1

2σ2
y
′
{
In −X(X

′
X)−X

′
}
y

)
dσ2

∝
{
y
′
{
In −X(X

′
X + rIn)−1X

′
}
y
}−n/2

<∞ ,

completing the proof.

Appendix B: Selected variables in KPI data analysis

Using our approach, the selected variables in KPI analysis are shown in Table 5.

BetaLag1 (∗) CapEx2RevenueLag1 (∗)
CapEx2RevenueLag2 CashFlow2RevenueLag1
CashFlow2RevenueLag2 (∗) COGS2RevenueLag2 (∗)
COGS2RevenueCAGRLag2 (∗) ConversionCycleLag2 (∗)
ConversionCycleCAGRLag2 (∗) CurrentRatioLag1 (∗)
EBITmarginLag1 (∗) EBITmarginLag2 (∗)
EPSLag1 (∗) InnovationIndexLag2
InventoryTurnoverLag2 (∗) InventoryTurnoverLag1
InventoryTurnoverCAGRLag1 InventoryTurnoverCAGRLag2 (∗)
PEratioLag1 (∗) PEratioLag2 (∗)
Revenue2RDLag2 WorkingCap2RevenueLag2

Table 5: Variables selected by our method. Variables followed by ∗ are also selected by
the g-prior approach.

The variables shown in Table 6 are selected by GibbsBvs() in the R package BayesVarSel
of Garcia-Donato and Martinez-Beneito (2013), which implements a Gibbs sampler
algorithm for the g-prior approach in Liang et al. (2008).
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BetaLag1 (∗) BetaLag2
CapEx2RevenueLag1 (∗) CapEx2RevenueCAGRLag1
CashFlow2RevenueLag2 (∗) CashFlow2RevenueCAGRLag2
COGS2RevenueLag2 (∗) COGS2RevenueCAGRLag2 (∗)
ConversionCycleLag1 ConversionCycleLag2 (∗)
ConversionCycleCAGRLag1 ConversionCycleCAGRLag2 (∗)
CurrentRatioLag1 (∗) EBITmarginLag1 (∗)
EBITmarginLag2 (∗) EPSLag1 (∗)
EPSLag2 FlexibilityLag1
FlexibilityLag2 InnovationIndexLag1
InnovationIndexCAGRLag1 Inventory2RevenueLag2
Inventory2RevenueCAGRLag2 InventoryTurnoverLag2 (∗)
InventoryTurnoverCAGRLag2 (∗) MarketCapGrowthLag1
MarketCapGrowthLag2 NetworkingCapRatioLag1
NetworkingCapRatioLag2 PEratioLag1 (∗)
PEratioLag2 (∗) RevenueGrowthLag1
RevenueGrowthLag2 RevPerEmployeeLag2
WorkingCap2RevenueLag1

Table 6: Variables selected by the g-prior approach. Variables followed by ∗ are also
selected by our method.
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