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TIME-VARYING NONLINEAR REGRESSION MODELS:
NONPARAMETRIC ESTIMATION AND MODEL SELECTION

BY TING ZHANG1 AND WEI BIAO WU2

Boston University and University of Chicago

This paper considers a general class of nonparametric time series re-
gression models where the regression function can be time-dependent. We
establish an asymptotic theory for estimates of the time-varying regression
functions. For this general class of models, an important issue in practice is
to address the necessity of modeling the regression function as nonlinear and
time-varying. To tackle this, we propose an information criterion and prove
its selection consistency property. The results are applied to the U.S. Treasury
interest rate data.

1. Introduction. Consider the time-varying regression model

Model I: yi = mi(xi ) + ei, i = 1, . . . , n,(1.1)

where yi , xi and ei are the responses, the predictors and the errors, respec-
tively, and mi(·) = m(·, i/n) is a time-varying regression function. Here m :Rd ×
[0,1] → R is a smooth function, and i/n, i = 1, . . . , n, represents the time rescaled
to the unit interval. Model I is very general. If mi(·) is not time-varying, then (1.1)
becomes

Model II: yi = μ(xi ) + ei, i = 1, . . . , n.

Model II has been extensively studied in the literature; see Robinson (1983), Györfi
et al. (1989), Fan and Yao (2003) and Li and Racine (2007), among others. As an
important example, (1.1) can be viewed as the discretized version of the nonsta-
tionary diffusion process

dyt = m(yt , t/T ) dt + σ(yt , t/T ) dBt ,(1.2)

where {Bs}s∈R is a standard Brownian motion, m(·, ·) and σ(·, ·) are, respectively,
the drift and the volatility functions, which can both be time-varying, and T is the
time horizon under consideration. If the functions m(·, ·) and σ(·, ·) do not depend
on time, then (1.2) becomes the stationary diffusion process

dyt = μ(yt ) dt + γ (yt ) dBt ,(1.3)
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which relates to model II. There is a huge literature on modeling interest rates
data by (1.3). For example, Vasicek (1977) considered model (1.3) with linear
drift function μ(x) = β0 + β1x and constant volatility γ (x) ≡ γ , where β0, β1, γ

are unknown parameters. Courtadon (1982), Cox, Ingersoll and Ross (1985) and
Chan et al. (1992) considered nonconstant volatility functions. Aït-Sahalia (1996),
Stanton (1997) and Liu and Wu (2010) studied model (1.3) with nonlinear drift
functions. See Zhao (2008) for a review. However, due to policy and societal
changes, those models with static relationship between responses and predictors
may not be suitable. Here we shall study estimates of time-varying regression func-
tion mi(·) for model (1.1).

For model II, let KS(·) be a d-dimensional kernel function

T̃n(u) = 1

nhd
n

n∑
i=1

yiKS

(
u − xi

hn

)
, f̃n(u) = 1

nhd
n

n∑
i=1

KS

(
u − xi

hn

)
,(1.4)

where hn be a bandwidth sequence. We can then apply the traditional Nadaraya–
Watson estimate for the regression function μ(·),

μ̂n(u) = T̃n(u)

f̃n(u)
, u ∈ R

d .(1.5)

If the process (xi ) is stationary, then f̃n is the kernel density estimate of its
marginal density. For stationary processes, an asymptotic theory for these nonpara-
metric estimators has been developed by many researchers, including Robinson
(1983), Castellana and Leadbetter (1986), Silverman (1986), Györfi et al. (1989),
Yu (1993), Tjøstheim (1994), Wand and Jones (1995), Bosq (1996), Neumann
(1998), Neumann and Kreiss (1998), Fan and Yao (2003) and Li and Racine
(2007), among others. However, the case of nonstationary processes has been
rarely touched. Hall, Müller and Wu (2006) considered the situation that the under-
lying distribution evolves with time and proposed a nonparametric time-dynamic
density estimator. Assuming independence, they proved the consistency of their
kernel-type estimators and applied the results to fast mode tracking. Following the
spirit of Hall, Müller and Wu (2006), Vogt (2012) considered a kernel estimator of
the time-varying regression model (1.1), and established its asymptotic normality
and uniform bound under the classical strong mixing conditions. In Sections 3.1
and 3.2, we advance the nonparametric estimation theory for the time-varying re-
gression model (1.1) under the framework of Draghicescu, Guillas and Wu (2009),
which is convenient to use and often leads to optimal asymptotic results.

Apart from model II, model I contains another important special case: the time-
varying coefficient linear regression model

Model III: yi = x�
i βi + ei, i = 1, . . . , n,

where � is the transpose and βi = β(i/n) for some smooth function β : [0,1] →
R

d . The traditional linear regression model

Model IV: yi = x�
i θ + ei, i = 1, . . . , n,
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where θ ∈ R
d is the regression coefficient, is a special case of model III. Es-

timation of β(·) has been considered by Hoover et al. (1998), Fan and Zhang
(2000a, 2000b), Huang, Wu and Zhou (2004), Ramsay and Silverman (2005),
Cai (2007) and Zhou and Wu (2010), among others. The problem of distin-
guishing between models III and IV has been studied in the literature mainly
by means of hypothesis testings; see, for example, Chow (1960), Brown, Durbin
and Evans (1975), Nabeya and Tanaka (1988), Leybourne and McCabe (1989),
Nyblom (1989), Ploberger, Krämer and Kontrus (1989), Andrews (1993), Davis,
Huang and Yao (1995), Lin and Teräsvirta (1999) and He, Teräsvirta and González
(2009). On the other hand, model IV specifies a linear relationship upon model II,
and there is a huge literature on testing parametric forms of μ(·); see Azzalini
and Bowman (1993), González Manteiga and Cao (1993), Härdle and Mammen
(1993), Zheng (1996), Dette (1999), Fan, Zhang and Zhang (2001), Zhang and
Dette (2004) and Zhang and Wu (2011), among others. Nevertheless, model se-
lection between models II and III received much less attention. Note that both
of them are nested in the general model I, and they all cover the linear regres-
sion model IV. It is desirable to develop a model selection criterion. An infor-
mation criterion is proposed in Section 3.3, where its consistency property is ob-
tained.

The rest of the paper is organized as follows. Section 2 introduces the model
setting. Main results are stated in Section 3 and are proved in Section 6 with some
of the proofs postponed to the supplementary material [Zhang and Wu (2015)].
A simulation study is given in Section 4 along with an application to the U.S.
Treasury interest rate data.

2. Model setting. For estimation of model I, temporal dynamics should be
taken into consideration. Let KT (·) be a temporal kernel function (kernel func-
tion for time), bn be another sequence of bandwidths and wbn,i(t) = KT {(i/n −
t)/bn}{S2(t) − (t − i/n)S1(t)}/{S2(t)S0(t) − S2

1(t)} be the local linear weights,
where Sl(t) = ∑n

j=1(t − j/n)lKT {(j/n − t)/bn}, l ∈ {0,1,2}. Let KS,hn(·) =
h−d

n KS(·/hn),

f̂n(u, t) =
n∑

i=1

KS,hn(u − xi )wbn,i(t),

(2.1)

T̂n(u, t) =
n∑

i=1

yiKS,hn(u − xi )wbn,i(t),

we consider the time-varying kernel regression estimator

m̂n(u, t) = T̂n(u, t)

f̂n(u, t)
.(2.2)
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Hall, Müller and Wu (2006) proved the uniform consistency of f̂n in (2.1) by
assuming that x1, . . . ,xn are independent. To allow nonstationary and dependent
observations, we assume

xi = G(i/n;Hi ), where Hi = (. . . , ξ i−1, ξ i)(2.3)

and ξ k , k ∈ Z, are independent and identically distributed (i.i.d.) random vec-
tors, and G is a measurable function such that G(t;Hi ) is well defined for each
t ∈ [0,1]. Following Draghicescu, Guillas and Wu (2009), the framework (2.3)
suggests locally strict stationarity and is convenient for asymptotic study. For the
error process, we assume that

ei = σi(xi )ηi = σ(xi , i/n)ηi,(2.4)

where σ(·, ·) :Rd × [0,1] → R is a smooth function, and (ηi) is a sequence of
random variables satisfying E(ηi |xi ) = 0 and E(η2

i |xi ) = 1. At the outset (cf. Sec-
tions 3.1–3.3) we assume that ηk , k ∈ Z, are i.i.d. and independent of Hj , j ∈ Z.
The latter assumption can be relaxed (though technically much more tedious) to
allow models with correlated errors and nonlinear autoregressive processes; see
Section 3.4.

For a random vector Z, we write Z ∈ Lq , q > 0 if ‖Z‖ = {E(|Z|q)}1/q < ∞
where | · | is the Euclidean vector norm, and we denote ‖ · ‖ = ‖ · ‖2. Let
F1(u, t |Hk) = pr{G(t;Hk+1) ≤ u|Hk} be the one-step ahead predictive or con-
ditional distribution function and f1(u, t |Hk) = ∂dF1(u, t |Hk)/∂u be the cor-
responding conditional density. Let (ξ ′

i ) be an i.i.d. copy of (ξ j ) and H′
k =

(. . . , ξ−1, ξ
′
0, ξ1, . . . , ξ k) be the coupled shift process. We define the predictive

dependence measure

ψk,q = sup
t∈[0,1]

sup
u∈Rd

∥∥f1(u, t |Hk) − f1
(
u, t |H′

k

)∥∥
q .(2.5)

Quantity (2.5) measures the contribution of ξ0, the innovation at step 0, on the
conditional or predictive distribution at step k. We shall make the following as-
sumptions:

(A1) smoothness (third order continuous differentiability): f,m,σ ∈ C3(Rd ×
[0,1]);

(A2) short-range dependence: �0,2 < ∞, where �m,q = ∑∞
k=m ψk,q ;

(A3) there exists a constant c0 < ∞ such that almost surely,

sup
t∈[0,1]

sup
u∈Rd

{
f1(u, t |H0) + ∣∣∂df1(u, t |H0)/∂u

∣∣} ≤ c0.

Condition (A3) implies that the marginal density f (u, t) = E{f1(u, t |H0)} ≤ c0.
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3. Main results.

3.1. Nonparametric kernel estimation. Throughout the paper, we assume that
the kernel functions KS(·) and KT (·) are both symmetric and twice contin-
uously differentiable on their support [−1,1]d and [−1,1], respectively, and∫
[−1,1]d KS(s) ds = ∫ 1

−1 KT (v) dv = 1. Denote by “⇒” convergence in distribu-
tion. Theorem 3.1 provides the asymptotic normality of the time-varying kernel
estimators (2.1) and (2.2), while Theorem 3.2 concerns the time-constant estima-
tors (1.4) and (1.5).

THEOREM 3.1. Assume (A1)–(A3) and ηi ∈ Lp , p > 2 are i.i.d. Let (u, t) ∈
R

d × (0,1) be a fixed point. If bn → 0, hn → 0 and nbnh
d
n → ∞, then(

nbnh
d
n

)1/2[
f̂n(u, t) − E

{
f̂n(u, t)

}] ⇒ N
{
0, f (u, t)λKS

λKT

}
,(3.1)

where λKT
= ∫ 1

−1 KT (v)2 dv and λKS
= ∫

[−1,1]d KS(s)2 ds. If in addition f (u, t) >

0, then

(
nbnh

d
n

)1/2
[
m̂n(u, t) − E{T̂n(u, t)}

E{f̂n(u, t)}
]

⇒ N

{
0,

σ (u, t)2λKS
λKT

f (u, t)

}
.(3.2)

Let Hf (u, t) = {∂2f (u, t)/∂ui ∂uj }1≤i,j≤d be the Hessian matrix of the density
function f with respect to u. Denote f (0,2)(u, t) = ∂2f (u, t)/∂t2, and we use the
same notation for the product function (mf )(u, t) = m(u, t)f (u, t). Then for any
point (u, t) ∈ R

d × (0,1) with f (u, t) > 0, we have

E
{
f̂n(u, t)

} = f (u, t) + h2
n

2
tr

{
Hf (u, t)κS

} + b2
n

2
f (0,2)(u, t)κT + O

(
b3
n + h3

n

)
,

where tr(·) is the trace operator

κS =
∫
[−1,1]d

KS(s)ss� ds, κT =
∫ 1

−1
KT (v)v2 dv

and

E{T̂n(u, t)}
E{f̂n(u, t)} = m(u, t) + h2

n

2f (u, t)
tr

[{
Hmf (u, t) − m(u, t)Hf (u, t)

}
κS

]

+ b2
n

2f (u, t)

{
(mf )(0,2)(u, t) − m(u, t)f (0,2)(u, t)

}
κT

+ O
(
b3
n + h3

n

)
.

Hence (2.1) and (2.2) are consistent estimates of the local density function f

and the regression function m, respectively. The asymptotic mean squared error
(AMSE) optimal bandwidths satisfy bn � n−1/(d+5) and hn � n−1/(d+5). Here for
positive sequences (sn) and (rn), we write sn � rn if sn/rn + rn/sn is bounded for
all large n.
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THEOREM 3.2. Assume (A1)–(A3) and ηi ∈ Lp , p > 2. If hn → 0 and nhd
n →

∞, then (
nhd

n

)1/2[
f̃n(u) − E

{
f̃n(u)

}] ⇒ N
{
0, f̄ (u)λKS

}
, u ∈R

d,(3.3)

where f̄ (u) = ∫ 1
0 f (u, t) dt . If in addition f̄ (u) > 0, then

(
nhd

n

)1/2
[
μ̂n(u) − E{T̃n(u)}

E{f̃n(u)}
]

⇒ N
{
0, Ṽ (u)λKS

}
,(3.4)

where, letting m̄(u) = ∫ 1
0 m(u, t)f (u, t) dt/f̄ (u), the variance function

Ṽ (u) = f̄ (u)−2
∫ 1

0

[{
m(u, t) − m̄(u)

}2 + σ(u, t)2]
f (u, t) dt.

For any point u ∈R
d with f̄ (u) > 0, we have

E
{
f̃n(u)

} = f̄ (u) + h2
n

2
tr

{∫ 1

0
Hf (u, t)κS dt

}
+ O

(
h3

n

)
and

E{T̃n(u)}
E{f̃n(u)} = m̄(u) + h2

n

2f̄ (u)
tr

[∫ 1

0

{
Hmf (u, t) − m(u, t)Hf (u, t)

}
κS dt

]

+ O
(
h3

n

)
.

Therefore, (1.4) and (1.5) provide consistent estimators of f̄ and m̄, (weighted)
temporal averages of the local density function f and the regression function m,
respectively. For stationary processes, Theorem 3.2 relates to traditional results on
nonparametric kernel estimators; see, for example, Robinson (1983), Bosq (1996)
and Wu (2005). The AMSE optimal bandwidth for the time-constant kernel esti-
mators (1.4) and (1.5) satisfies hn � n−1/(d+4).

3.2. Uniform bounds. For stationary or independent observations, uniform
bounds for kernel estimators have been obtained by Peligrad (1992), Andrews
(1995), Bosq (1996), Masry (1996), Fan and Yao (2003) and Hansen (2008),
among others. Hall, Müller and Wu (2006) obtained a uniform bound for time-
varying kernel density estimators for independent observations, while Vogt (2012)
considered kernel regression estimators under strong mixing conditions. We shall
here establish uniform bounds for the time-varying kernel estimators (2.1) and
(2.2) under the locally strict stationarity framework (2.3). We need the following
assumptions:

(A4) there exists a q > 2 such that �0,q < ∞ and �m,q = O(m−α) for some
α > 1/2 − 1/q;

(A5) let X ⊆ R
d be a compact set, and assume inft∈[0,1] infu∈X f (u, t) > 0.
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THEOREM 3.3. Assume (A1), (A3)–(A5), bn → 0, hn → 0 and nbnh
d
n →

∞. (i) If there exists r > r ′ > 0 such that supt∈[0,1] ‖G(t;H0)‖r < ∞ and

n2/r ′+2+d−qb
d−q
n h

d(d+q)
n → 0, then

sup
t∈[0,1]

sup
u∈Rd

∣∣f̂n(u, t) − E
{
f̂n(u, t)

}∣∣ = Op

{
(logn)1/2

(nbnhd
n)1/2

}
.

(ii) If ηi ∈ Lp for some p > 2, and n2+d−qb
d−q
n h

d(d+q)
n → 0, then

sup
t∈[0,1]

sup
u∈X

∣∣∣∣m̂n(u, t) − E{T̂n(u, t)}
E{f̂n(u, t)}

∣∣∣∣ = Op

{
(logn)1/2

(nbnhd
n)1/2 + n1/p logn

nbnhd
n

}
.

If the bandwidths bn � n−1/(d+5) and hn � n−1/(d+5) have the optimal AMSE
rate, and ηi ∈ Lp for some p > (d +5)/2, then the bound in Theorem 3.3(ii) can be
simplified to Op{(nbnh

d
n)−1/2(logn)1/2}. Theorem 3.4 provides a uniform bound

for (1.4) and (1.5).

THEOREM 3.4. Assume (A1), (A3)–(A5), hn → 0 and nhd
n → ∞. (i) If there

exists r > r ′ > 0 such that supt∈[0,1] ‖G(t;H0)‖r < ∞ and n2/r ′+2+d−qh
d(d+q)
n →

0, then

sup
u∈Rd

∣∣f̃n(u) − E
{
f̃n(u)

}∣∣ = Op

{
(logn)1/2

(nhd
n)1/2

}
.

(ii) If ηi ∈ Lp for some p > 2, and n2+d−qh
d(d+q)
n → 0, then

sup
u∈X

∣∣∣∣μ̂n(u) − E{T̃n(u)}
E{f̃n(u)}

∣∣∣∣ = Op

{
(logn)1/2

(nhd
n)1/2 + n1/p logn

nhd
n

}
.

If the bandwidth hn � n−1/(d+4) is AMSE-optimal, and ηi ∈ Lp for some p >

(d + 4)/2, then the bound in Theorem 3.4(ii) can be simplified to Op{(nhd
n)−1/2 ×

(logn)1/2}.

3.3. Model selection. Model I is quite general in the sense that it does not
impose any specific parametric form on the regression function and allows it to
change over time. However, in practice it is useful to check whether model I can
be reduced to its simpler special cases, namely models II–IV. Model selection be-
tween models II and IV, or between models III and IV, has been studied in the
literature mainly by means of hypothesis testing; see references in Section 1. Nev-
ertheless, less attention has been paid to distinguishing between models II and III.
We shall here propose an information criterion that can consistently select the un-
derlying true model among candidate models I–IV. Let T ⊂ (0,1) be a compact
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set and In = {i = 1, . . . , n|i/n ∈ T }. We consider the restricted residual sum of
squares for model I, which takes the form

RSSn(X ,T , I) = ∑
i∈In

{
yi − m̂n(xi , i/n)

}21{xi∈X },

where 1{·} is the indicator function. Similarly, we can define RSSn(X ,T , II),
RSSn(X ,T , III) and RSSn(X ,T , IV) for models II–IV, respectively. For the
simple linear regression model IV, the parameter θ can be estimated by the least
squares estimate

θ̂n =
(

1

n

n∑
i=1

xix�
i

)−1(
1

n

n∑
i=1

xiyi

)
.(3.5)

For the time-varying coefficient model III, let KT,bn(·) = b−1
n KT (·/bn), and we

can use the kernel estimator of Priestley and Chao (1972),

β̂n(t) =
{

1

n

n∑
i=1

xix�
i KT,bn(i/n − t)

}−1{
1

n

n∑
i=1

xiyiKT,bn(i/n − t)

}
.(3.6)

For a candidate model � ∈ {I, II, III, IV}, we define the generalized information
criterion

GICX ,T (�) = log
{

RSSn(X ,T , �)/n
} + τnDF(�),(3.7)

where τn is a tuning parameter indicating the amount of penalization and DF(�)

represents the model complexity for model � ∈ {I, II, III, IV} determined as fol-
lows. For the simple linear regression model IV, following the convention we set
the model complexity or degree of freedom to be the number of potential predic-
tors, namely DF(IV) = d . For the time-varying coefficient model III, the effective
number of parameters used in kernel smoothing is b−1

n for each one of the d pre-
dictors [see, e.g., Hurvich, Simonoff and Tsai (1998)], and thus we set DF(III) =
b−1
n d . Let IQRk , k = 1, . . . , d , be the componentwise interquartile ranges of

(xi ), and motivated by the same spirit as in Hurvich, Simonoff and Tsai (1998),
we set DF(II) = (hd

n)−1 ∏d
k=1(2IQRk) and DF(I) = (bnh

d
n)−1 ∏d

k=1(2IQRk), where
2IQR = 1 for random variables having a uniform distribution on [0,1]. The final
model is selected by minimizing the information criterion (3.7). We shall make the
following assumption:

(A6) eigenvalues of M(G, t) = E{G(t;H0)G(t;H0)
�} are bounded away

from zero and infinity on [0,1].
In order to establish the selection consistency of (3.7), in addition to the results

developed in Sections 3.1 and 3.2 regarding models I and II, we need the following
conditions on estimators (3.5) and (3.6) for models IV and III, respectively:
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(P1) There exists a nonrandom sequence θn such that θ̂n − θn = Op(n−1/2). If
model IV is correctly specified, then θn can be replaced by the true value θ0.

(P2) There exists a sequence of nonrandom functions βn : [0,1] → R
d such

that

sup
t∈T

∣∣β̂n(t) − βn(t)
∣∣ = Op(φn),

where φn = (nbn)
−1/2(logn)1/2 +b2

n. If model III is correctly specified, then βn(·)
can be replaced by the true coefficient function β0(·) and

sup
t∈T

∣∣∣∣M(G, t)

{
β̂n(t)−β0(t)−

κT b2
nβ

′′
0(t)

2

}
− 1

n

n∑
i=1

xieiKT,bn(i/n− t)

∣∣∣∣ = Op

(
φ2

n

)
,

where xiei ∈ L2, i = 1, . . . , n.

REMARK 3.1. Conditions (P1) and (P2) can be verified for locally station-
ary processes with short-range dependence. For example, for the linear regres-
sion model IV, by Lemma 5.1 of Zhang and Wu (2012), we have

∑n
i=1{xix�

i −
E(xix�

i )} = Op(n1/2) and
∑n

i=1{xiyi − E(xiyi)} = Op(n1/2). Hence we can use

θn =
{

1

n

n∑
i=1

E
(
xix�

i

)}−1{
1

n

n∑
i=1

E(xiyi)

}
,

which equals to θ0 if yi = x�
i θ0 + ei , i = 1, . . . , n. This verifies condition (P1).

For the time-varying coefficient model III, by Lemma 5.3 of Zhang and Wu
(2012), we have supt∈T |n−1 ∑n

i=1{xix�
i − E(xix�

i )}KT,bn(i/n − t)| = Op(φn)

and supt∈T |n−1 ∑n
i=1{xiyi − E(xiyi)}KT,bn(i/n − t)| = Op(φn). Hence we can

use

βn(t) =
{

1

n

n∑
i=1

E
(
xix�

i

)
KT,bn(i/n − t)

}−1{
1

n

n∑
i=1

E(xiyi)KT,bn(i/n − t)

}
,

and condition (P2) follows by the proof of Theorem 3 in Zhou and Wu (2010).

Recall that the AMSE optimal bandwidths satisfy bn(I) � n−1/(d+5) and
hn(I) � n−1/(d+5) for model I, hn(II) � n−1/(d+4) for model II and bn(III) � n−1/5

for model III. Theorem 3.5 provides the selection consistency of the information
criterion (3.7), where the true model is denoted by �0.

THEOREM 3.5. Assume (A1), (A3)–(A6) with q > (3d + 5)/(d + 2), (P1),
(P2), ηi ∈ Lp for some p > (d + 5)/2, i = 1, . . . , n, and bandwidths with optimal
AMSE rates are used for models I–III. If

τnn
(d+1)/(d+5) → 0, τnn

(d+3)/(d+4) → ∞,

then for any �1 ∈ {I, II, III, IV} and �1 �= �0, we have

pr
{

GICX ,T (�0) < GICX ,T (�1)
} → 1.
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3.4. Extensions. Recall that in Theorems 3.1–3.5 error process (2.4) has i.i.d.
ηi , which are also independent of (xj ). In Section 3.4.1 we allow serially corre-
lated ηi . Section 3.4.2 concerns time-varying autoregressive processes in which
(ηi) and (xj ) are naturally dependent.

3.4.1. Models with serially correlated errors. To allow errors with serial cor-
relation, similarly to (2.3) we assume that

ηi = L(i/n;Ji),(3.8)

where Ji = (. . . , ζi−1, ζi) with ζk , k ∈ Z, being i.i.d. random variables and in-
dependent of ξ j , j ∈ Z. Therefore, (ηi) is a dependent nonstationary process
that is independent of (xj ), and the error process ei = σ(xi , i/n)ηi can exhibit
both serial correlation and heteroscedasticity; see Robinson (1983), Orbe, Fer-
reira and Rodriguez-Poo (2005, 2006) and references therein for similar error
structures. Let ζ ′

i , ζj , i, j ∈ Z, be i.i.d. and J ′
k = (. . . , ζ−1, ζ

′
0, ζ1, . . . , ζk). Assume

cL,q = supt∈[0,1] ‖L(t;J0)‖q < ∞, and define the functional dependence measure

νk,q = sup
t∈[0,1]

∥∥L(t;Jk) − L
(
t;J ′

k

)∥∥
q.

The following theorem states that the results presented in Sections 3.1–3.3 will
continue to hold (except for a difference of logn on the uniform bounds) if the
process (ηi) in (3.8) satisfies the geometric moment contraction (GMC) condition
[Shao and Wu (2007)]. The proof is available in the supplementary material [Zhang
and Wu (2015)].

THEOREM 3.6. Assume that the process (ηi) in (3.8) satisfies νk,4 = O(ρk)

for some 0 < ρ < 1. Then the results of Theorems 3.1–3.5 will continue to hold
except that the uniform bounds in Theorems 3.3(ii) and 3.4(ii) will be multiplied
by a factor of logn.

3.4.2. Time-varying nonlinear autoregressive models. In this section we shall
consider the autoregressive version of (1.1),

yi = m(xi , i/n) + σ(xi , i/n)ηi,
(3.9)

xi = (yi−1, . . . , yi−d)�, i = 1, . . . , n,

where ηi are i.i.d. random variables with E(ηi) = 0 and E(η2
i ) = 1. We can

view (3.9) as a time-varying or locally stationary autoregressive process, and the
corresponding shift processes Fk = (. . . , ηk−1, ηk) and Hk = Fk−1. We shall here
present analogous versions of Theorems 3.1–3.5. Note that in this case xi cannot
be written in the form of (2.3). However, Proposition 3.1 implies that it can be well
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approximated by a process in the form of (2.3). For each t ∈ [0,1], we define the
process {yi(t)}i∈Z by

yi(t) = m
{
xi (t), t

} + σ
{
xi (t), t

}
ηi,

(3.10)
xi (t) = {

yi−1(t), . . . , yi−d(t)
}�

.

LEMMA 3.1. Assume that there exist constants a1, . . . , ad ≥ 0 with∑d
j=1 aj < 1, such that, for all x = (x1, . . . , xd)� and x′ = (x′

1, . . . , x
′
d)�,

sup
0≤t≤1

∥∥[
m(x, t) + σ(x, t)ηi

] − [
m

(
x′, t

) + σ
(
x′, t

)
ηi

]∥∥
p

(3.11)

≤
d∑

j=1

aj

∣∣xj − x′
j

∣∣.
Then (i) the recursion (3.10) has a stationary solution of the form yi(t) = g(t;Fi)

which satisfies the geometric moment contraction (GMC) property: for some ρ ∈
(0,1),

sup
0≤t≤1

δi(t) = O
(
ρi), δi(t) = ∥∥g(t;Fi ) − g

(
t;F ′

i

)∥∥
p.

(ii) If in (3.9) the initial values (y0, y−1, . . . , y1−d) = x1(0), then yi can be written
in the form gi(Fi ), where gi(·) is a measurable function, and it also satisfies the
GMC property

sup
i≤n

∥∥yi − gi

(
. . . , ηi−k−2, ηi−k−1, η

′
i−k, ηi−k+1, . . . , ηi

)∥∥
p = O

(
ρk).(3.12)

Lemma 3.1(i) concerns the stationarity of the process {yi(t)}i∈Z, which follows
from Theorem 5.1 of Shao and Wu (2007). For (ii), denote by θ

†
k the left-hand

side of (3.12). Then by (3.11), θ
†
k satisfies θ

†
k ≤ ∑d

j=1 aj θ
†
k−j , implying (3.12) via

recursion.
For presentational simplicity suppose we observe y1−d, y2−d, . . . , yn from

model (3.9) with the initial values (y0, y−1, . . . , y1−d) = x1(0). Estimates (2.1)
and (2.2) can be computed in the same way. Proposition 3.1 implies that, for i

such that i/n ≈ u, the process (xi )i can be approximated by the stationary process
{xi (u)}i , thus suggesting local strictly stationarity. The proof is available in the
supplementary material [Zhang and Wu (2015)].

PROPOSITION 3.1. Let Gη(x, t) = m(x, t) + σ(x, t)η and Ġη(x, t) =
∂Gη(x, t)/∂t . Assume (3.11) and

sup
0≤t≤1

sup
0≤u≤1

∥∥Ġηi

{
xi (u), t

}∥∥
p < ∞.

Then ‖xi − xi (u)‖p = O(n−1 + |u − i/n|).
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Let f (u, t) be the density of xi (t) = {yi−1(t), . . . , yi−d(t)} and fη be the den-
sity of ηi . Theorem 3.7 serves as an analogous version of Theorems 3.1–3.4, and
the proof is available in the supplementary material [Zhang and Wu (2015)].

THEOREM 3.7. Assume (A1), (A5) and supw{fη(w)+|f ′
η(w)|} < ∞. Let the

conditions in Lemma 3.1 and Proposition 3.1 be satisfied. Then under respective
conditions in Theorems 3.1–3.5, the corresponding conclusions also hold, respec-
tively.

4. Numerical implementation.

4.1. Bandwidth and tuning parameter selection. Selecting bandwidths that
optimize the performance of (3.7) can be quite nontrivial, and in our case, it is fur-
ther complicated by the presence of dependence and nonstationarity. Assuming in-
dependence, the problem of bandwidth selection has been considered for model II
by Härdle and Marron (1985), Härdle, Hall and Marron (1988), Park and Marron
(1990), Ruppert, Sheather and Wand (1995), Wand and Jones (1995), Xia (1998)
and Gao and Gijbels (2008), among others. Hoover et al. (1998), Fan and Zhang
(2000a) and Ramsay and Silverman (2005) considered the problem for model III
for longitudinal data, where multiple independent realizations are available. For the
time-varying kernel density estimator (2.1) with independent observations, Hall,
Müller and Wu (2006) coupled the selection of spatial and temporal bandwidths
and adopted the least squares cross validation [Silverman (1986)]. Nevertheless,
bandwidths selectors derived under independence can break down for dependent
data [Wang (1998) and Opsomer, Wang and Yang (2001)]. We propose using the
AMSE optimal bandwidths bn(I) = cb(I)n−1/(d+5) and hn(I) = ch(I)n−1/(d+5)

for model I, hn(II) = ch(II)n−1/(d+4) for model II and bn(III) = cb(III)n−1/5 for
model III, where 0 < cb(I), ch(I), ch(II), cb(III) < ∞ are constants. Due to the
presence of both dependence and nonstationarity, estimation of these constants is
difficult. Throughout this section, as a rule of thumb, we use cb(I) = cb(III) = 1/2
and ch(I) = ch(II) = ∏d

k=1 IQRk . Our numerical examples suggest that these sim-
ple choices have a reasonably good performance.

We shall here discuss the choice of the tuning parameter τn that controls
the amount of penalization on models complexities. The problem has been ex-
tensively studied for the linear model IV by Akaike (1973), Mallows (1973),
Schwarz (1978), Shao (1997) and Yang (2005) among others. For the general-
ized information criterion (3.7), given conditions in Theorem 3.5, one can choose
τn = cn−(d+3)/(d+4) logn, where c > 0 is a constant, which satisfies all the re-
quired conditions and thus guarantees the selection consistency. Note that the
choice of c does not affect the asymptotic result, namely the proposed method will
select the true model for any given c > 0 as long as the sample size is large enough;
see Theorem 3.5. Therefore, one can simply use c = 1 to devise a consistent model
selection procedure. As an alternative, following Fan and Li (2001) and Tibshirani



TIME-VARYING NONLINEAR REGRESSION MODELS 753

and Tibshirani (2009), we shall here consider a data-driven selector based on the
K-fold cross-validation (CV). In particular, we first split the data into K parts,
denoted by D1, . . . ,DK , then for each k = 1, . . . ,K , we remove the kth part from
the data and use the information criterion (3.7) to select the model, based on which
predictions can be made for the removed part and are denoted by ŷ−k

i (c), i ∈ Dk .
The selected value ĉ is obtained by minimizing the cross-validation criterion

CV(c) =
K∑

k=1

∑
i∈Dk

{
yi − ŷ−k

i (c)
}2

.

It can be seen from the simulation results in Section 4.2 that this CV-based tuning
parameter selector performs reasonably well.

4.2. Simulation results. We shall in this section carry out a simulation study
to examine the finite-sample performance of the generalized information crite-
rion (3.7). Let d = 1 and ξi , i ∈ Z and ηj , j ∈ Z be i.i.d. standard normal,
a(t) = (t − 1/2)2, t ∈ [0,1] and G(t;Hk) = ξk +∑∞

l=1 a(t)lξk−l , k ∈ Z, t ∈ [0,1].
For the regressor and error processes with xi = G(i/n;Hi) and ei = σ(xi, i/n)ηi ,
i = 1, . . . , n, we consider model (1.1) with the following four specifications:

(a) m(x, t) = 2.5 sin(2πt) cos(πx) and σ(x, t) = ϕ|tx|/2;
(b) m(x, t) = exp(x) and σ(x, t) = ϕt exp(x/3);
(c) m(x, t) = 5t + 4 cos(2πt)x and σ(x, t) = ϕ exp(tx/2);
(d) m(x, t) = 2 + 3x and σ(x, t) = ϕ|x/3 + t |,

where ϕ > 0 is a constant indicating the noise level. Cases (a)–(d) correspond to
models I–IV, respectively, and their signal-to-noise ratios (SNRs) are roughly of
the same order given the same ϕ. The Epanechnikov kernel K(v) = 3(1 − v2)/4,
v ∈ [−1,1], is used hereafter for both the spatial and temporal kernel functions. Let
X = [−2,2] and T = [0.2,0.8]. The tuning parameter is selected by using the
tenfold CV-based method described in Section 4.1. The results are summarized in
Table 1 for different noise levels ϕ ∈ {1,2,3} and sample sizes n = 2k × 250, 0 ≤
k ≤ 3. For each configuration, the results are based on 1000 simulated realizations
of models (a)–(d).

It can be seen from Table 1 that the proposed model selection procedure per-
forms reasonably well as it has very high empirical probabilities of identifying
the true model, even when the sample size is moderate to small. For example, if
the sample size n = 250, which is usually considered to be small for conducting
time-varying nonparametric inference, and the data are generated by model (a)
with ϕ = 1, then 967 out of 1000 realizations are correctly identified as the time-
varying nonparametric regression model I, while 33 out of 1000 realizations are
under-fitted as the simple linear regression model IV. Hence, for each combination
of n and ϕ, in the ideal case, we expect the block to have unit diagonal components
and zero off-diagonal components. For each configuration, medians of the SNR are



754
T.Z

H
A

N
G

A
N

D
W

.B
.W

U

TABLE 1
Proportions of selecting models I–IV for different combinations of noise levels ϕ, sample sizes n and model specifications (a)–(d) with 1000 replications

for each configuration. Medians of the SNR are also reported, where for each realization yi = mi(xi) + ei , i = 1, . . . , n, the SNR is defined as
{∑n

i=1 mi(xi)
2/

∑n
i=1 e2

i }1/2

ϕ = 1 ϕ = 2 ϕ = 3

Selected model Selected model Selected model

n Case SNR I II III IV SNR I II III IV SNR I II III IV

250 (a) 4.36 0.967 0.000 0.000 0.033 2.16 0.920 0.000 0.000 0.080 1.45 0.840 0.000 0.000 0.160
(b) 4.09 0.116 0.882 0.000 0.002 2.04 0.119 0.857 0.000 0.024 1.36 0.132 0.784 0.002 0.082
(c) 3.73 0.016 0.000 0.984 0.000 1.86 0.032 0.000 0.968 0.000 1.24 0.032 0.000 0.968 0.000
(d) 5.44 0.017 0.043 0.005 0.935 2.72 0.014 0.040 0.001 0.945 1.82 0.024 0.040 0.003 0.933

500 (a) 4.29 0.985 0.000 0.000 0.015 2.15 0.945 0.000 0.000 0.055 1.44 0.896 0.000 0.000 0.104
(b) 4.17 0.044 0.949 0.000 0.008 2.08 0.058 0.906 0.000 0.036 1.40 0.037 0.926 0.000 0.037
(c) 3.71 0.001 0.000 0.999 0.000 1.86 0.008 0.000 0.992 0.000 1.24 0.012 0.000 0.988 0.000
(d) 5.42 0.007 0.037 0.000 0.956 2.71 0.012 0.042 0.001 0.945 1.81 0.005 0.026 0.006 0.963

1000 (a) 4.29 0.994 0.000 0.000 0.006 2.15 0.970 0.000 0.000 0.030 1.44 0.921 0.000 0.000 0.079
(b) 4.17 0.004 0.992 0.000 0.004 2.08 0.005 0.975 0.000 0.020 1.40 0.015 0.957 0.000 0.028
(c) 3.71 0.000 0.000 1.000 0.000 1.86 0.001 0.000 0.999 0.000 1.24 0.004 0.000 0.996 0.000
(d) 5.42 0.001 0.028 0.002 0.969 2.71 0.002 0.024 0.003 0.971 1.81 0.001 0.025 0.002 0.972

2000 (a) 4.29 0.999 0.000 0.000 0.001 2.15 0.979 0.000 0.000 0.021 1.44 0.948 0.000 0.000 0.052
(b) 4.17 0.000 0.997 0.000 0.003 2.08 0.000 0.982 0.000 0.018 1.40 0.000 0.965 0.000 0.035
(c) 3.71 0.000 0.000 1.000 0.000 1.86 0.000 0.000 1.000 0.000 1.24 0.001 0.000 0.999 0.000
(d) 5.42 0.000 0.014 0.001 0.985 2.71 0.000 0.014 0.001 0.985 1.81 0.000 0.014 0.000 0.986
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FIG. 1. Time series plots for the U.S. daily treasury yield curve rates with six-month (solid black)
and two-year (dashed grey) maturities.

also reported, where for each realization yi = mi(xi) + ei , i = 1, . . . , n, the SNR
is defined as {∑n

i=1 mi(xi)
2/

∑n
i=1 e2

i }1/2. It can be seen that the proposed model
selection procedure with the CV-based tuning parameter selector has a reasonably
robust performance with respect to the noise level, and the performance improves
quickly if we increase the sample size. Note that a sample size of 1000 is con-
sidered to be reasonable if one would like to conduct time-varying nonparametric
inference.

4.3. Application on modeling interest rates. Modeling interest rates is an im-
portant problem in finance. In Black and Scholes (1973) and Merton (1974) inter-
est rates were assumed to be constants. A popular model is the time-homogeneous
diffusion process (1.3) with linear drift function; see, for example, Vasicek (1977),
Courtadon (1982), Cox, Ingersoll and Ross (1985) and Chan et al. (1992). Its dis-
cretized version is given by model IV. Aït-Sahalia (1996), Stanton (1997) and Liu
and Wu (2010) considered model (1.3) with nonlinear drift function, which relates
to model II. We consider the daily U.S. treasury yield curve rates with six-month
and two-year maturities during 01/02/1990–12/31/2010. The data can be obtained
from the U.S. Department of the Treasury website at http://www.treasury.gov/.
Both series contain n = 5256 daily rates, and their time series plots are shown in
Figure 1.

We shall here model the data by the time-varying diffusion process (1.2), and
apply the proposed model selection procedure to determine the forms of the drift
functions. Let xi = rti be the observation at day i. Since a year has 250 transac-
tion days, � = ti − ti−1 = 1/250. Following Liu and Wu (2010), we consider the

http://www.treasury.gov/


756 T. ZHANG AND W. B. WU

TABLE 2
Results of the model selection procedure based on the generalized information criterion (3.7) for

treasury yield rates with six-month and two-year maturity periods

Six-month maturity Two-year maturity

Model log(RSS/n) DF GIC log(RSS/n) DF GIC

I −6.853 69.54 −6.790 −6.126 69.54 −6.063
II −6.824 11.10 −6.814 −6.114 11.10 −6.104
III −6.851 22.19 −6.831 −6.126 22.19 −6.106
IV −6.822 2.00 −6.820 −6.113 2.00 −6.111

following discretized version of (1.2):

yi = rti+1 − rti = μ(xi, i/n)� + σ(xi, i/n)�1/2ηi
(4.1)

where ηi = Bti+1 −Bti

�1/2 .

Note that ηi are i.i.d. N{0,1} random variables. We shall here write μ(xi, i/n)�

and σ(xi, i/n)�1/2 in (4.1) as m(xi, i/n) and σ(xi, i/n) in the sequel. Then spec-
ifications of Vasicek (1977) and Liu and Wu (2010) become models IV and II,
respectively.

For the treasury yield curve rates with six-month maturity, let T = [0.2,0.8],
and X = [0.18,7.89] which includes 95.5% of the daily rates xi . The selected
bandwidths and tuning parameter are bn(I) = 0.12, hn(I) = 0.82, hn(II) = 0.62,
bn(III) = 0.09 and τ̂n = 0.00090. The results are summarized in Table 2. Hence,
the time-varying coefficient model III is selected, and we conclude that the trea-
sury yield curve rates with six-month maturity should be modeled by (1.2) with
μ(rt , t) = β0(t) + β1(t)rt for some smoothly varying functions β0(·) and β1(·),
which serves as a time-varying version of Chan et al. (1992).

We then consider the treasury yield curve rates with two-year maturity. Let T =
[0.2,0.8] and X = [0.67,8.16] which includes 95.1% of the daily rates xi . The
selected bandwidths and tuning parameter are bn(I) = 0.12, hn(I) = 0.75, hn(II) =
0.56, bn(III) = 0.09 and τ̂n = 0.00090. Based on Table 2, the linear regression
model IV is selected. In comparison with the results with six-month maturity, our
analysis suggests that treasury yield rates with longer maturity are more stable over
time.

5. Conclusion. The paper considers a time-varying nonparametric regression
model, namely model I, which is able to capture time-varying and nonlinear re-
lationships between the response variable and the explanatory variables. It in-
cludes the popular nonparametric regression model II and time-varying coefficient
model III as special cases, and all of them are generalizations of the simple lin-
ear regression model IV. In comparison with existing results, the current paper
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makes two major contributions. First, we develop an asymptotic theory on non-
parametric estimation of the time-varying regression model (1.1) under the new
framework of Draghicescu, Guillas and Wu (2009). Compared with the classical
strong mixing conditions as used by Vogt (2012), the current framework is con-
venient to work with and often leads to optimal asymptotic results. In the proof,
we use both the martingale decomposition and the m-dependence approximation
techniques to obtain sharp results. Second, although the time-varying regression
model I is quite general by allowing a time-varying nonlinear relationship between
the response variable and the explanatory variables, it can be useful in practice to
check whether it can be reduced to its simpler special cases, namely models II–IV
which have been extensively used in the literature. However, existing results on
model selection usually focused on distinguishing between models II and IV and
between models III and IV, and much less attention has been paid to distinguish-
ing between models II and III. Note that models II and III are both generalizations
of the simple linear regression model IV but in completely different aspects, and
therefore it is desirable if we can have a statistically valid method to decide which
generalization (or the more general model I) should be used for a given data set.
The current paper fills this gap by proposing an information criterion (3.7) in Sec-
tion 3.3, which can be used to select the true model among candidate models I–IV
and its selection consistency is provided by Theorem 3.5. Therefore, the current
paper sheds new light on distinguishing between nonlinear and nonstationary gen-
eralizations of simple linear regression models, and the results are applied to find
appropriate models for short-term and long-term interest rates.

6. Technical proofs. We shall in this section provide technical proofs for The-
orems 3.1–3.5. Because of the time-varying feature and nonstationarity, the proofs
are much more involved than existing ones for stationary processes. We shall here
use techniques of martingale approximation and m-dependent approximation. Let
εi = (ξ�

i , ηi)
� and F i = (. . . ,εi−1,εi ) be the corresponding shift process. We

define the projection operator

Pk· = E(·|Fk) − E(·|Fk−1), k ∈ Z.

Throughout this section, C > 0 denotes a constant whose value may vary from
place to place. Let αi,n(u, t), i = 1, . . . , n, be a triangular array of deterministic
nonnegative weight functions, (u, t) ∈ R

d × [0,1]. Lemma 6.1 provides a bound
for the quantity

Qα(u, t) =
n∑

i=1

{
f1(u, i/n|F i−1) − f (u, i/n)

}
αi,n(u, t),

and is useful for proving Theorems 3.1–3.4.

LEMMA 6.1. Let An(u, t) = max1≤i≤n |αi,n(u, t)| and define Ān(u, t) =
n−1 ∑n

i=1 |αi,n(u, t)|. Then ‖Qα(u, t)‖ ≤ {nAn(u, t)Ān(u, t)}1/2�0,2.
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PROOF. Since PkQα(u, t), k ∈ Z form a sequence of martingale differences,
we have

∥∥Qα(u, t)
∥∥2 =

n∑
k=−∞

∥∥∥∥∥
n∑

i=1

Pk

{
f1(u, i/n|F i−1)

}
αi,n(u, t)

∥∥∥∥∥
2

≤
n∑

k=−∞

{
n∑

i=1

ψi−k−1,2
∣∣αi,n(u, t)

∣∣}2

,

and the result follows by observing that
∑n

i=1 ψi−k−1,2|αi,n(u, t)| ≤ An(u, t)�0,2
and

∑n
i=1

∑
k∈Z ψi−k−1,2|αi,n(u, t)| ≤ nĀn(u, t)�0,2. �

LEMMA 6.2. Assume (A1)–(A3) and ηi ∈ Lp , p > 2, i = 1, . . . , n. (i) If bn →
0, hn → 0 and nbnh

d
n → ∞, then for any (u, t) ∈ R

d × (0,1),(
nbnh

d
n

)1/2[
T̂n(u, t) − E

{
T̂n(u, t)

}] ⇒ N
[
0,

{
m(u, t)2 + σ(u, t)2}

f (u, t)λK

]
,

where λK = λKS
λKT

. (ii) If hn → 0 and nhd
n → ∞, then for any u ∈ R

d ,

(
nhd

n

)1/2[
T̃n(u) − E

{
T̃n(u)

}] ⇒ N

[
0, λKS

∫ 1

0

{
m(u, t)2 + σ(u, t)2}

f (u, t) dt

]
.

PROOF. Write

T̂n(u, t) − E
{
T̂n(u, t)

} = Mn(u, t) + Nn(u, t),

where

Mn(u, t) =
n∑

i=1

[
yiKS,hn(u − xi ) − E

{
yiKS,hn(u − xi )|F i−1

}]
wbn,i(t)

has summands of martingale differences, and

Nn(u, t) =
n∑

i=1

[
E

{
yiKS,hn(u − xi )|F i−1

} − E
{
yiKS,hn(u − xi )

}]
wbn,i(t)

is the remaining term. Let αi,n(u, t) = m(u, i/n)wbn,i(t), and by Lemma 6.1,

∥∥Nn(u, t)
∥∥ ≤

∫
[−1,1]d

KS(s)
∥∥Qα(u − hns, t)

∥∥ds = O
{
(nbn)

−1/2}
.

We apply the martingale central limit theorem on Mn(u, t) to show (i). Since
n∑

i=1

∥∥[
yiKS,hn(u − xi ) − E

{
yiKS,hn(u − xi )|F i−1

}]
wbn,i(t)

∥∥p
p

≤
n∑

i=1

2p
∥∥yiKS,hn(u − xi )

∥∥p
pwbn,i(t)

p = O
{(

nbnh
d
n

)1−p}
,
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the Lindeberg condition is satisfied by observing that p > 2. Let

Ln(s, t) =
n∑

i=1

{
m(s, i/n)2 + σ(s, i/n)2}{

f1(s, i/n|F i−1) − f (s, i/n)
}
wbn,i(t)

2.

Then by (A1) and Lemma 6.1,

hd
n

n∑
i=1

[
E

{
y2
i KS,hn(u − xi )

2|F i−1
} − E

{
y2
i KS,hn(u − xi )

2}]
wbn,i(t)

2

=
∫
[−1,1]d

KS(s)2Ln(u − hns, t) ds = Op

{
(nbn)

−3/2}
.

Also, write E{yiKS,hn(u−xi )|F i−1} = ∫
[−1,1]d m(u−hns)KS(s)f1(u−hns, i/n|

F i−1) ds. Then we have

(
nbnh

d
n

) n∑
i=1

∥∥E{
yiKS,hn(u − xi )|F i−1

}∥∥2
wbn,i(t)

2 = O
(
hd

n

)
,

and (i) follows by (nbnh
d
n)

∑n
i=1 E{y2

i KS,hn(u − xi )
2}wbn,i(t)

2 = {m(u, t)2 +
σ(u, t)2}f (u, t)λKS

λKT
+ o(1). Case (ii) can be similarly proved. �

PROOFS OF THEOREMS 3.1 AND 3.2. Letting m ≡ 1 and σ ≡ 0 in Lemma 6.2,
(3.1) and (3.3) follow directly. For (3.2), write

T̂n(u, t) − f̂n(u, t)
E{T̂n(u, t)}
E{f̂n(u, t)} = In + IIn,

where

In = [
f̂n(u, t) − E

{
f̂n(u, t)

}][
m(u, t) − E{T̂n(u, t)}

E{f̂n(u, t)}
]

= op

{(
nbnh

d
n

)−1/2}
and

IIn = {
T̂n(u, t) − m(u, t)f̂n(u, t)

} − E
{
T̂n(u, t) − m(u, t)f̂n(u, t)

}
.

Note that

T̂n(u, t) − m(u, t)f̂n(u, t) =
n∑

i=1

{
yi − m(u, t)

}
KS,hn(u − xi )wbn,i(t),

by Lemma 6.2(i),(
nbnh

d
n

)1/2IIn ⇒ N
{
0, σ (u, t)2f (u, t)λKS

λKT

}
.

Since f̂n(u, t) → f (u, t) in probability, (3.2) follows by Slutsky’s theorem.
Case (3.4) can be similarly proved. �
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PROOFS OF THEOREMS 3.3 AND 3.4. We shall first prove Theorem 3.3(i).
For this, since supt∈[0,1] ‖G(t;H0)‖r < ∞, we have max1≤i≤n |xi | = op(n1/r ′

)

for any r ′ < r . Hence, supt∈[0,1] sup|u|>n1/r′ f̂n(u, t) = 0 almost surely, and

supt∈[0,1] sup|u|>n1/r′ E{f̂n(u, t)} = O(n−1h−d
n ) = o{(nbnh

d
n)−1/2}. Therefore, it

suffices to deal with the case in which |u| ≤ n1/r ′
. We shall here assume that

d = 1. Cases with higher dimensions can be similarly proved without extra essen-
tial difficulties, but they aew technically tedious. Let

f̂ ◦
n (u, t) =

n∑
i=1

E
{
KS,hn(u − xi )wbn,i(t)|F i−1

}
(6.1)

=
n∑

i=1

wbn,i(t)

∫
KS(s)f1(u − hns, i/n|F i−1) ds.

Observe that KS,hn(u−xi )wbn,i(t)−E{KS,hn(u−xi)wbn,i(t)|F i−1}, i = 1, . . . , n,
form a sequence of bounded martingale differences. By the inequality of Freedman
(1975) and the proof of Theorem 2 in Wu, Huang and Huang (2010), we obtain
that, for some large constant λ > 0,

pr
{

sup
t∈[0,1]

sup
|u|≤n1/r′

∣∣f̂n(u, t) − f̂ ◦
n (u, t)

∣∣ ≥ λ(nbnhn)
−1/2(logn)1/2

}
= o

(
n−2)

.

Let ϑi(u) = f1(u, i/n|F i−1)−f (u, i/n) and �l,j (u) = ∑l+j
i=l ϑi(u). By (6.1) and

the proof of Lemma 5.3 in Zhang and Wu (2012), it suffices to show that for all l,

pr
{

max
0≤j≤nbn

sup
|u|≤n1/r′

∣∣�l,j (u)
∣∣ ≥ (

h−1
n nbn logn

)1/2
}

= o(bn).(6.2)

Let � = (nbnhn)
−1/2(logn)1/4 and �u�� = ��u/��. By Theorem 2(ii) in Liu,

Xiao and Wu (2013), under condition (A4),

pr
{

max
0≤j≤nbn

sup
|u|≤n1/r′

∣∣�l,j

(�u��

)∣∣ ≥ (
h−1

n nbn logn
)1/2

}
(6.3)

= O

{
nbn�

−1n1/r ′

(h−1
n nbn logn)q/2

}
.

By (A3), max0≤j≤nbn sup|u|≤n1/r′ |�l,j (u) − �l,j (�u��)| = O(nbn�), (6.2) fol-

lows. For Theorem 3.3(ii), by Lemma 6.3, supt∈[0,1] supu∈X |T̂n(u, t) −
E{T̂n(u, t)}| = Op{(nbnh

d
n)−1/2(logn)1/2 + (nbnh

d
n)−1(n1/p logn)}. Since

f̂n(u, t)

[
m̂n(u, t) − E{T̂n(u, t)}

E{f̂n(u, t)}
]

= T̂n(u, t) − E
{
T̂n(u, t)

} + E
{
T̂n(u, t)

}[
1 − f̂n(u, t)

E{f̂n(u, t)}
]
,
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the result follows. Theorem 3.4 can be similarly proved. �

Recall that X ∈ R
d is a compact set. Lemma 6.3 provides uniform bounds for

Û (u, t) =
n∑

i=1

m(xi , i/n)KS,hn(u − xi )wbn,i(t);

V̂ (u, t) =
n∑

i=1

σ(xi , i/n)ηiKS,hn(u − xi )wbn,i(t);

Ũ (u) = n−1
n∑

i=1

m(xi , i/n)KS,hn(u − xi );

Ṽ (u) = n−1
n∑

i=1

σ(xi , i/n)ηiKS,hn(u − xi ),

and is useful in proving Theorems 3.3 and 3.4.

LEMMA 6.3. Assume (A1), (A3), (A4), ηi ∈ Lp for some p > 2, i =
1, . . . , n, bn → 0 and hn → 0. Let χn = n1/p logn. (i) If nbnh

d
n → ∞ and

n2+d−qb
d−q
n h

d(d+q)
n → 0, then

sup
t∈[0,1]

sup
u∈X

∣∣Û (u, t)
∣∣ = Op

{(
nbnh

d
n

)−1/2
(logn)1/2}

,(6.4)

sup
t∈[0,1]

sup
u∈X

∣∣V̂ (u, t)
∣∣ = Op

{(
nbnh

d
n

)−1/2
(logn)1/2 + (

nbnh
d
n

)−1
χn

}
.(6.5)

(ii) If nhd
n → ∞ and n2+d−qh

d(d+q)
n → 0, then

sup
u∈X

∣∣Ũ (u)
∣∣ = Op

{(
nhd

n

)−1/2
(logn)1/2}

,(6.6)

sup
u∈X

∣∣Ṽ (u)
∣∣ = Op

{(
nhd

n

)−1/2
(logn)1/2 + (

nhd
n

)−1
χn

}
.(6.7)

PROOF. The proof of (6.4) is similar to that of Theorem 3.3(i), and we
shall only outline the key differences. First, the supreme in (6.4) is taken over
u ∈ X , a compact set, instead of R

d . Hence the truncation argument is no
longer needed, and the term �−1n1/r ′

in (6.3) can be replaced by �−1. Second,
E{m(xi , i/n)KS,hn(u − xi )|F i−1} = ∫

[−1,1]d KS(s)f †
1 (u − hns, i/n|F i−1) ds,

where f
†
1 (u, t |F i−1) = m(u, t)f1(u, t |F i−1). By (A1), f

†
1 satisfies condition

(A3), and its predictive dependence measure is of order (2.5). Hence the proof
of Theorem 3.3(i) applies. Case (6.6) can be similarly handled. For (6.5) and
(6.7), we shall only provide the proof of (6.7) since (6.5) can be similarly de-
rived. Let η�

i = ηi1{|ηi |≤n1/p} and Ṽ �(u) be the counterpart of Ṽ (u) with ηi therein
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replaced by η�
i , i = 1, . . . , n. Also, let η

†
i = η�

i − E(η�
i ), and we can similarly

define Ṽ †(u). Since ηi ∈ Lp are i.i.d., we have max1≤i≤n |ηi | = op(n1/p) and
pr{Ṽ (u) = Ṽ �(u) for all u ∈ X } → 1. In addition,

Ṽ �(u) − Ṽ †(u) = n−1E
(
η�

i

) n∑
i=1

σ(xi , i/n)KS,hn(u − xi ).

Since E(ηi) = 0, we have E(η�
i ) = −E(ηi1{|ηi |>n1/p}) = O(n1/p−1), and by

(6.6), it suffices to show that (6.7) holds with Ṽ †(u). Let X̄ = {u ∈ R
d : |u −

v| ≤ 1 for some v ∈ X }, cK = supv∈[−1,1]d |KS(v)|, c1 = var(η�
i ) and c2 =

supt∈[0,1] supu∈X̄ σ(u, t)2 < ∞ under (A1). Recall c0 from (A3), then |σ(xi ,

i/n)η
†
i KS,hn(u − xi )| ≤ 2c

1/2
2 cKn1/ph−d

n and

E
{
σ(xi , i/n)2(

η
†
i

)2
KS,hn(u − xi )

2|F i−1
} ≤ h−d

n c0c1c2λKS
.

Let �n = (nhd
n)−1/2(logn)1/2 + (nhd

n)−1(n1/p logn). Applying the inequality of
Freedman (1975) to Ṽ †(u), we obtain that, for some large constant λ > 0,

pr
{∣∣Ṽ †(u)

∣∣ ≥ λ�n

}
≤ 2 exp

(
− λ2� 2

n

4c
1/2
2 cKλn1/p−1h−d

n �n + 2c0c1c2λKS
n−1h−d

n

)
= O

(
n−λ1/2)

,

and (6.7) follows by the discretization argument as in (6.3). �

Let ωn = (nbnh
d
n)−1 logn+b4

n +h4
n, Lemmas 6.4–6.7 provide asymptotic prop-

erties of the restricted residual sum of squares for models I–IV, respectively, and
are useful in proving Theorem 3.5. We shall here only provide the proof of Lem-
mas 6.4 and 6.5, which relate to nonparametric kernel estimation of nonlinear re-
gression functions that have been studied in Sections 3.1 and 3.2. Lemmas 6.6 and
6.7 relate to linear models with time-varying and time-constant coefficients, and
the proof is available in the supplementary material [Zhang and Wu (2015)].

LEMMA 6.4. Assume (A1), (A3)–(A5), ηi ∈ Lp for some p > 2, i = 1, . . . , n,
bn → 0, hn → 0 and nbnh

d
n/(logn)2 → ∞. If n2+d−qb

d−q
n h

d(d+q)
n → 0 and

n1/p−1/2b
−1/2
n h

−d/2
n → 0, then

n−1RSSn(X ,T , I) = n−1
∑
i∈In

1{xi∈X }e2
i + Op

{
ωn + bn + hn

(nhd
n)1/2

}
.

PROOF. Note that one can have the decomposition

n−1RSSn(X ,T , I) = n−1
∑
i∈In

1{xi∈X }e2
i + In − 2IIn,
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where In = n−1 ∑
i∈In

{m̂n(xi , i/n) − m(xi , i/n)}21{xi∈X } = Op(ωn) by Theo-
rem 3.3, and

IIn = n−1
∑
i∈In

{
m̂n(xi , i/n) − m(xi , i/n)

}
1{xi∈X }ei.

We shall now deal with the term IIn. By Lemma 6.3(i) and Theorem 3.3,
supt∈T supu∈X |{f̂n(u, t) − f (u, t)}{m̂n(u, t) − m(u, t)}| = Op(ωn) and thus

sup
t∈T

sup
u∈X

∣∣∣∣m̂n(u, t) − m(u, t) − T̂n(u, t) − m(u, t)f̂n(u, t)

f (u, t)

∣∣∣∣ = Op(ωn).

Let �i,j,n = {m(xj , j/n) − m(xi , i/n)}, and we can then write

IIn = IIn,L + IIn,Q + Op(ωn),

where

IIn,L = n−1
∑
i∈In

∑n
j=1 �i,j,nKS,hn(xi − xj )wbn,j (i/n)

f (xi , i/n)
1{xi∈X }ei

and

IIn,Q = n−1
∑
i∈In

n∑
j=1

KS,hn(xi − xj )wbn,j (i/n)1{xi∈X }
f (xi , i/n)

eiej .

Using the orthogonality of martingale differences and Lemma 2 of Wu, Huang and
Huang (2010), we have IIn,L = Op{(nhd

n)−1/2(bn + hn)}. Also, by splitting the
sum in IIn,Q for cases with i = j and i �= j , one can have IIn,Q = Op{(nbn)

−1 +
n−1/2(nbnh

d
n)−1/2}. Lemma 6.4 follows by (bnh

d
n)−1/2 = o{(bnh

d
n)−1}. �

LEMMA 6.5. Assume (A1), (A3)–(A5), ηi ∈ Lp for some p > 2, i = 1, . . . , n,
hn → 0 and nhd

n → ∞. If n2+d−qh
d(d+q)
n → 0 and n1/p−1/2h

−d/2
n → 0, then (i)

n−1RSSn(X ,T , II) =
∫
X

∫
T

{
m(u, t) − m̄(u)

}2
f (u, t) dt du

+ n−1
∑
i∈In

e2
i 1{xi∈X } + Op

{(
logn

nhd
n

)1/2

+ h2
n

}
.

(ii) If in addition model II is correctly specified, then

n−1RSSn(X ,T , II) = n−1
∑
i∈In

e2
i 1{xi∈X } + Op

{
logn

nhd
n

+ h4
n + hn

(nhd
n)1/2

}
.

PROOF. By Theorem 3.4,

RSSn(X ,T , II) = ∑
i∈In

[{
yi − m̄(xi )

} − {
μ̂n(xi ) − m̄(xi )

}]21{xi∈X }

= In + Op

[
n
{(

nhd
n

)−1/2
(logn)1/2 + h2

n

}]
,
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where by Lemma 2 in Wu, Huang and Huang (2010),

In = ∑
i∈In

[{
yi − m(xi , i/n)

} + {
m(xi , i/n) − m̄(xi )

}]21{xi∈X }

= ∑
i∈In

{
m(xi , i/n) − m̄(xi )

}21{xi∈X } + ∑
i∈In

e2
i 1{xi∈X } + Op

(
n1/2)

.

Since X ∈ R
d is a compact set, by the proof of Lemma 6.2, we have∑

i∈In

{
m(xi , i/n) − m̄(xi )

}21{xi∈X }

= ∑
i∈In

E
[{

m(xi , i/n) − m̄(xi )
}21{xi∈X }

] + Op

(
n1/2)

= n

∫
X

∫
T

{
m(u, t) − m̄(u)

}2
f (u, t) dt du + O

(
1 + n1/2)

,

and (i) follows. Case (ii) follows by a similar argument as in Lemma 6.4. �

LEMMA 6.6. Assume (A1)–(A3), (A6), (P2) and ηi ∈ Lp for some p > 2,
i = 1, . . . , n. If bn → 0 and nbn → ∞, then (i)

n−1RSSn(X ,T , III) =
∫
X

∫
T

{
m(u, t) − u�βn(t)

}2
f (u, t) dt du

+ n−1
∑
i∈In

e2
i 1{xi∈X } + Op(φn).

(ii) If in addition model III is correctly specified, then

n−1RSSn(X ,T , III) = n−1
∑
i∈In

e2
i 1{xi∈X } + Op

(
φ2

n + b2
n

n1/2

)
.

LEMMA 6.7. Assume (A1)–(A3), (A6), (P1) and ηi ∈ Lp for some p > 2,
i = 1, . . . , n. Then (i)

n−1RSSn(X ,T , IV) =
∫
X

∫
T

{
m(u, t) − u�θn

}2
f (u, t) dt du

+ n−1
∑
i∈In

e2
i 1{xi∈X } + Op

(
n−1/2)

.

(ii) If in addition model IV is correctly specified, then

n−1RSSn(X ,T , IV) = n−1
∑
i∈In

e2
i 1{xi∈X } + Op

(
n−1)

.
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PROOF OF THEOREM 3.5. For model I, the AMSE optimal bandwidths satisfy
bn(I) � n−1/(d+5) and hn(I) � n−1/(d+5). By Lemma 6.4, we have

log
{

RSSn(X ,T , I)/n
} = log

(
n−1

∑
i∈In

e2
i 1{xi∈X }

)
+ Op

{
n−7/(2d+10)}.

Under the stated conditions on the tuning parameter, we have n−7/(2d+10) =
o{τn(bnh

d
n)−1}, and thus the estimation error is dominated by τnDF(I) which goes

to zero as n → ∞. By Lemmas 6.5–6.7, similar results can be derived for models
II–IV. Note that

τn max
{

DF(I), DF(II), DF(III), DF(IV)
} = o(1),

which will be dominated by any model misspecification. The result follows by
DF(IV) < min{DF(II), DF(III)} ≤ max{DF(II), DF(III)} < DF(I). �
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SUPPLEMENTARY MATERIAL

Additional technical proofs (DOI: 10.1214/14-AOS1299SUPP; .pdf). This
supplement contains technical proofs of Lemmas 6.6 and 6.7, Proposition 3.1 and
Theorems 3.6 and 3.7.
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