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AN ADAPTIVE COMPOSITE QUANTILE APPROACH
TO DIMENSION REDUCTION

BY EFANG KONG AND YINGCUN XIA1

University of Kent at Canterbury and National University of Singapore

Sufficient dimension reduction [J. Amer. Statist. Assoc. 86 (1991)
316–342] has long been a prominent issue in multivariate nonparametric
regression analysis. To uncover the central dimension reduction space, we
propose in this paper an adaptive composite quantile approach. Compared to
existing methods, (1) it requires minimal assumptions and is capable of re-
vealing all dimension reduction directions; (2) it is robust against outliers and
(3) it is structure-adaptive, thus more efficient. Asymptotic results are proved
and numerical examples are provided, including a real data analysis.

1. Introduction. Dimension reduction is a rather amorphous concept in
statistics, changing its characteristics and taking different forms depending on the
context. In regression, the paradigm of sufficient dimension reduction [Li (1991),
Cook (1994, 1998)] which combines the idea of dimension reduction with the con-
cept of sufficiency, aims to generate low-dimensional summary plot without ap-
preciable loss of information. In most cases, reductions are typically constrained to
be linear and the goal then is to estimate the central dimension reduction subspace,
or simply the central subspace.

Cook (2007) gave a formal definition and overviews of the sufficient dimension
reduction in regression, which we adopt in this paper for the definition of the cen-
tral subspace. Suppose Y is a scalar dependent variable and X is the corresponding
p×1 vector of predictors. Let B be a p × q (q ≤ p) (constant) orthonormal matrix
and B�, its transpose. The space S(B) spanned by the columns of B, is said to be
the (sufficient) dimension reduction subspace (DRS), if the conditional distribution
F(·|B�X) of Y given B�X is identical to F(·|X), that is,

F(Y |X) = F
(
Y |B�X

)
almost surely.(1.1)

Consequently, a subspace is called a central subspace (CS), if it is not only itself a
DRS, but also a subset of any other DRS’. It thus represents the minimal subspace
that captured all the information relevant to regressing Y on X. Under quite general
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conditions, the CS exists and is given by

S0 = ⋂{
S(B) : model (1.1) holds for B

};
see Yin, Li and Cook (2008) for the latest results on sufficient conditions for the
existence of CS. Its dimension dim(S0) = q(≤ p) is referred to as the structural di-
mension, while its orthogonal basis β01, . . . , β0q is called the dimension reduction
directions or simply the CS directions. Let B0 = (β01, . . . , β0q), and thus equiva-
lent to (1.1), we have

F(Y |X) = F
(
Y |B�

0 X
)

almost surely.(1.2)

Research in dimension reduction methodologies, namely the search of CS (di-
rections), has garnered tremendous interest [Hristache et al. (2001), Yin and
Cook (2002), Xia et al. (2002), Li, Cook and Chiaromonte (2003), Li, Zha and
Chiaromonte (2005), Lue (2004), Zhu and Zeng (2006) and Ma and Zhu (2012)]
since the seminal work of Li (1991). Some earlier research in this area such as Li
(1991), was often based on either restrictive or hard-to-verify assumptions, which
limited their applications; while others being model (moment)-based, targeted not
at S(B0), but instead the reduction subspace S(B) associated with certain func-
tional of F(Y |X), for example, the conditional mean [Cook and Li (2002)] or
the conditional variance [Zhu and Zhu (2009)]. As we are going to demonstrate
through the following example, such subspace quite often is strictly a subset of CS.
Consider the following model where

Y = β�
1 X + β�

2 Xε and E(ε|X) = 0.(1.3)

As E(Y |X) = β�
1 X, the central mean subspace S(β1) is thus strictly contained in

S(β1, β2), the full CS.
Seeing the restrictions with the aforementioned moment-based methods, some

consider the possibility of recovering all CS directions by taking transformation
of the response variable Y . See, for example, Zhu and Zeng (2006), which practi-
cally requires assuming a parametric model for X; or Fukumizu, Bach and Jordan
(2009), where no theoretical results are available; and Yin and Li (2011). Others
[Xia (2007), Zhu, Zhu and Feng (2010), Wang and Xia (2008)] tried to extract
information on CS directly from the conditional density or distribution function.
A major drawback of the methodologies in the preceding four references is that
the embedded estimation procedure is not structure-adaptive, rendering the sub-
sequent estimators of CS (directions) less efficient. To see this, take model (1.3),
for example. As the conditional density (distribution) function is nonlinear, the
smoothing parameter used in constructing their kernel estimators must therefore
be small, that is, only a small proportion of data is being used for local estimation.
In contrary, the conditional quantile function is in this case at least piecewise lin-
ear, and consequently its estimation can be made more efficient through the use
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of a larger (data-driven) bandwidth. Another reason for us to consider a condi-
tional quantile based approach is the theoretical equivalence between conditional
distribution functions and conditional quantiles.

As in the case of conditional mean-based approach, we do not expect the CS
(directions) to be fully revealed via quantile regression at any individual level. The
solution we shall propose in this paper is a combination of dimension reduction
methods of Xia et al. (2002) and the composite quantile approach for regression
[Zou and Yuan (2008), Kai, Li and Zou (2010), He, Wang and Hong (2013)],
together with a adaptive-weighting strategy. The advantages of this new approach
include: (1) it requires minimal assumptions and can identify the CS directions
exhaustively; (2) it is robust against outliers, a property inherited from quantile
regression; and (3) the embedded estimation procedure is structure-adaptive, that
is, the use of a data-driven bandwidth means more efficient use of data.

The paper is organized as follows. In Section 2, we show how the CS char-
acterizes the composite outer product of gradients matrix. Based on this charac-
terization, Section 3 describes how an adaptive composite quantile approach is
integrated with the outer-product of gradients (qOPG) method, and for comparison
purposes, the composite quantile minimum average variance method (qMAVE). In
Section 4, we present regularity conditions and theoretical results on the asymp-
totic normality of the qOPG estimator. Sections 5 and 6 examine some practical
issues, such as bandwidth selection and determination of the structural dimension.
Section 7 contains some numerical results, including an example of real data anal-
ysis. Section 8 provides concluding remarks. All proofs are given in the Appendix.

2. A composite quantile approach. Under model (1.2), for any 0 < τ < 1,
the τ th conditional quantile of Y given X,

Qτ(X) = min
{
y :F(y|X) ≥ τ

}
admits the following alternative expression:

Qτ(X) = min
{
y :F

(
y|B�

0 X
) ≥ τ

} = Q̃τ

(
B�

0 X
)
.(2.1)

Its gradient vector

∇Qτ(x) =
[
∂Qτ (x)

∂x1
, . . . ,

∂Qτ (x)

∂xp

]�

defined for any x = (x1, . . . , xp)� ∈ Rp , is thus related to ∇Q̃τ (·), the gradient
vector of Q̃τ (·), via the following identity:

∇Qτ(x) = B0∇Q̃τ

(
B�

0 x
)
.(2.2)

Consequently, we have the following fact for the corresponding outer-product of
gradients (OPG) matrix specific to level τ :

�(τ) = E
{∇Qτ(X)

[∇Qτ(X)
]�}

(2.3)
= B0E

{∇Q̃τ

(
B�

0 X
)[∇Q̃τ

(
B�

0 X
)]�}

B�
0 .
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It is obvious that for any τ ∈ (0,1),

S
(
�(τ)

) ⊆ S(B0).

Indeed, plenty of examples exist where the above inequality holds strictly for at
least one τ ∈ (0,1). Consider, for example, model (1.3) with τ = 0.5 and the me-
dian of ε equal to zero. In other words, the CS may not be fully recovered by OPG
matrices specific to any finite number of quantile levels. The solution instead lies
with the composite OPG matrix defined as

� =
∫ 1

0
�(τ)dτ,(2.4)

as stated in the following lemma.

LEMMA 1. Suppose ∇Qτ(·) exists for almost all τ ∈ (0,1) and X. We have
S(�) = S(B0).

By definition, the composite OPG matrix � is simply an equally weighted aver-
age of the level-specific OPG matrices �(τ), 0 < τ < 1. As previously demon-
strated, �(τ) for a given τ might contain little or no information at all about
the CS. Consider another example where Y = x1ε, X = (x1, . . . ,xp)� and ε

has median zero. It is easy to see that �(0.5) = 0, a p × p zero matrix. We
call such �(τ) uninformative, to which less weight should be assigned for the
purpose of a more revealing composite OPG matrix. Since whether or not any
level-specific �(·) is uninformative is not given a priori, we suggest the following
procedure to obtain an adaptively weighted composite OPG matrix. Suppose we
have decided on the structural dimension q . For any given τ ∈ (0,1), denote by
λ1(τ ) ≥ · · · ≥ λp(τ) ≥ 0, the p eigenvalues of �(τ). The “adaptively weighted”
composite OPG matrix is consequently defined as

�w =
∫ 1

0
w(τ)�(τ) dτ,

where the weight function

w(τ) = λ1(τ ) + · · · + λq(τ )

λ1(τ ) + · · · + λp(τ)
,(2.5)

reflects the percentage of information contained in the first q eigenvectors of �(τ).
If �(τ) = 0, we define w(τ) = 0. Note that as S(�(τ)) ⊆ S(B0) for any τ , we
have w(τ) = 1 for any τ such that �(τ) > 0. In practice, weights w(·) are derived
from eigenvalues of estimates of �(τ).

3. Estimation of the dimension reduction directions. Based on Lemma 1,
the key to recovering the CS directions lies with the estimation of the composite
OPG matrix �, which in turn depends on the availability of a proper estimate
of the gradient vector ∇Qτ(x) for any given τ ∈ (0,1) and x ∈ Rp . Let ∇̂Qτ(x)
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denote such an estimate. We can then construct estimate of the level-specific OPG
matrix (2.3), and consequently estimate of the composite OPG matrix (2.4), as
follows:

�̂(τ ) = 1

n

n∑
j=1

∇̂Qτ(Xj ), �̂ =
∫ 1

0
�̂(τ ) dτ.(3.1)

Various nonparametric estimators of ∇Qτ(·) could be used in (3.1), including ker-
nel smoothing, nearest neighbor and spline estimators; see, for example, Truong
(1989), Bhattacharya and Gangopadhyay (1990) and Koenker, Portnoy and Ng
(1992), Koenker, Ng and Portnoy (1994). In this paper, we opt for the local poly-
nomial estimators of Chaudhuri (1991) and Kong, Linton and Xia (2010). This is
because, to show that �̂ is root-n consistent and asymptotically “normal,” we need
the following two prerequisites: (i) ∇̂Qτ(x) has a bias of order op(n−1/2) uni-
formly in x and in τ ; (ii) a Bahadur-type expansion of ∇̂Qτ(x), again uniformly
in x as well as in τ . Condition (i) can be met by approximating Qτ(·) locally with
polynomials in p variables with high enough degrees. Condition (ii), to be proved
in the Appendix using results on empirical processes and U-processes, extends
what was obtained in Kong, Linton and Xia (2010), where the uniformity is with
respect to x only.

Suppose there exists some positive integer k such that, for all τ ∈ (0,1), Qτ(·)
has partial derivatives of order up to k on D, the compact support of X in Rp .
Consequently, for any given x = (x1, . . . , xp)� ∈ D and X near x, Qτ(X) can be
approximated by its kth order Taylor expansion, that is,

Qτ(X) ≈ Qτ(x) + ∑
1≤[u]≤k

DuQτ(x)

u! (X − x)u,(3.2)

where u = (u1, . . . , up) denotes a generic p-dimensional vector of nonnegative
integers, [u] = ∑p

i=1 ui , u! = ∏p
i=1 ui !, xu = ∏p

i=1 x
ui

i with the convention that
00 = 1, and Du denotes the differential operator ∂ [u]/∂x

u1
1 , . . . , x

up
p . For ease of

reference, write A = {u : [u] ≤ k} and s(A) = �(A), the cardinality of A.
Suppose (Xi , Yi), i = 1, . . . , n, are i.i.d. copies of (X, Y ), and hn is a smoothing

parameter such that hn → 0, as n → ∞. For any given x ∈ Rp and τ ∈ (0,1),
define two s(A) × 1 vectors as follows:

x(hn,A) = (
x(hn,u)

)
u∈A with x(hn,u) = h−[u]

n xu,

cn(x; τ) = (
cn,u(x; τ)

)
u∈A with cn,u(x; τ) = h[u]

n DuQτ(x)/u!.
The local polynomial estimate of cn(x; τ) is defined as a solution to the following
problem:

min
c

n∑
i=1

ρτ

{
Yi − c�Xix(hn,A)

}
Khn

(|Xix|),(3.3)
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where c = (cu)u∈A ∈ Rs(A), ρτ (s) = |s| + (2τ − 1)s, Xix = Xi − x, | · | stands
for the supremum norm, K(·) is a kernel function in Rp with finite support, and
Khn(·) = K(·/hn)/hn. Note that although in this paper we take K(·) to be the
uniform density function on [−1,1]p , the p-dimensional cube in Rp , the results
we obtain apply to other cases such as the Epanechnikov kernel as well.

Since ρτ (s) → ∞, as |s| → ∞, solution to (3.3) always exists as long as
Khn(|Xix|) > 0 for at least one Xi . Denote by ĉn(x; τ) = (ĉn,u(x; τ))u∈A, a solu-
tion to (3.3) and by ∇̂Qτ(x), the local polynomial estimate of the gradient vector
∇Qτ(x):

∇̂Qτ(x) = h−1
n

(
ĉn,u(x; τ)

)
u∈A,[u]=1.

Consequently, we can construct estimates of the level-specific OPG matrix �(τ)

and of the composite OPG matrix � as follows:

�̂(τ ) = 1

n

n∑
j=1

∇̂Qτ(Xj )
{∇̂Qτ(Xj )

}�;
(3.4)

�̂ =
∫ 1

0
�̂(τ ) dτ.

For the sake of technical convenience, we focus on rather than the �̂ in (3.4) but
instead the following truncated version:

�̂T =
∫ 1−δ∗

δ∗
�̂(τ ) dτ,(3.5)

for some small δ∗ ∈ (0,1). This is due to the fact that the uniformity in τ of the
strong Bahadur-type representation of ∇̂Qτ(x) requires the conditional density
of Y given X at Qτ(X) to be uniformly bounded away from zero, a condition
apparently cannot be met by all τ ∈ (0,1). See Lemma 2 and its proof given
in the Appendix for more details. Nevertheless, such truncation need not cause
much concern. The reasons are two-fold. On one hand, the integral in (3.4) is ap-
proximated as a summation over a sequence of discretized τ values. On the other
hand, the CS which is derived from {Qτ(·|x) : 0 < τ < 1,x ∈ D} or equivalently
from �, is expected to closely resemble, if not completely identical to, that from
{Qτ(·|x) : δ∗ ≤ τ ≤ 1 − δ∗,x ∈ D} or equivalently from

�T =
∫ 1−δ∗

δ∗
�(τ)dτ,

provided that δ∗ > 0 is small enough. We assume this is indeed the case, that is,
�T = �.

As suggested at the end of Section 2, we could further construct an estimate of
the adaptively-weighted truncated composite OPG matrix as

�̂wT =
∫ 1−δ∗

δ∗
�̂(τ )ŵ(τ ) dτ,(3.6)
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with weight ŵ(τ ) calculated according to formula (2.5) using the eigenvalues of
�̂(τ ). However, to make sure less weights are assigned to those uninformative
matrices �̂(τ ) which are close to but not exactly zero, we set ŵ(τ ) = 0 if the
largest eigenvalue of �̂(τ ) is below certain threshold.

In the ideal case where the structural dimension q is known a priori, esti-
mates of the CS directions are simply given by the first q eigenvectors of �̂T: β̂k ,
k = 1, . . . , q . Details on how to estimate q when it is unknown as well as band-
width selection are given in Sections 5 and 6, respectively. Similar to Xia et al.
(2002), the above estimator can be further refined as follows. Relabel the above
obtained estimate B̂ = (β̂1, . . . , β̂q) as B(1), and the smoothing parameter hn used

in obtaining it as h
(1)
n . Construct a refined estimate of ∇Qτ(x) as

∇̂Q(2)
τ (x) = (

ĉ(2)
n,u(x; τ)

)
u∈A,[u]=1/h(2)

n ,

where

ĉ(2)
n,u(x; τ) = arg min

c

n∑
i=1

ρτ

{
Yi − c�Xix

(
h(1)

n ,A
)}

K
h

(2)
n

(∣∣X�
ixB(1)

∣∣),(3.7)

and K(·) is a kernel density in Rq . Accordingly, the estimates �̂(τ ) and �̂T in (3.4)
and (3.5) could be refined, respectively, as

�̂(2)(τ ) = 1

n

n∑
j=1

∇̂Q(2)
τ (Xj )

{∇̂Q(2)
τ (Xj )

}�

and

�̂
(2)
T =

∫ 1−δ∗

δ∗
ŵ(2)(τ )�̂(2)(τ ) dτ,

where ŵ(2)(τ ) is constructed in the same way as ŵ(τ ), using eigenvalues of
�̂(2)(τ ). Again, pick the first q eigenvectors of �̂

(2)
T to construct a new matrix B(2)

which can then be substituted into (3.7) for B(1). Repeat the above two steps until
convergence is reached. Intuitively, this refined estimate of � is more efficient due
to the use of a lower-dimensional kernel when estimating ∇Qτ(x), thus mitigating
the so-called “curse of dimensionality” problem. We call the above procedure the
adaptive composite quantile outer product of gradients (qOPG).

We can also incorporate this “composite-quantile” idea into the minimum av-
erage variance estimation (MAVE) procedure of Xia et al. (2002) and propose
a composite quantile MAVE (qMAVE) as follows. With structural dimension q ,
consider the following minimization problem:

∫ 1−δ∗

δ∗

n∑
j=1

n∑
i=1

ρτ

{
Yi − aj − b�

j B�Xij

}
Khn

(|Xij |)dτ,(3.8)
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with respect to p×q matrix B, where Xij = Xi −Xj . Again, just as in (3.7), a pos-
sibly lower-dimensional kernel Khn(|B�Xij |) could be used to replace Khn(|Xij |)
in (3.8), in the hope of an improved efficiency of the resulted estimator, at least
with finite-sample size. Estimates of the q CS directions are thus given by the or-
thonormalized columns of B̂, the solution to (3.8). Realization of (3.8) is similar to
that of Xia (2007) and its theoretical properties can also be similarly investigated
by combining the results obtained in the Appendix and the proofs in Xia (2007).

To find out whether a qMAVE procedure would benefit from some “adaptive”
weighting scheme, one could consider, for example, a level-specific qMAVE pro-
cedure, where

B̂(τ ) = arg min
B∈Rp×q

min
aj ,bj

n∑
j=1

n∑
i=1

ρτ

{
Yi − aj − b�

j B�Xij

}
Khn

(|Xij |)dτ,

and consequently define

�̂∗
w =

∫ 1−δ∗

δ∗
B̂(τ )B̂(τ )�ŵ(τ ) dτ,

where ŵ(τ ) is the same as in (3.6) derived from the level-specific OPG matrix.
Our experience is such that this level-specific qMAVE is always outperformed by
both the qMAVE procedure of (3.8) and qOPG. A possible explanation is that
B̂(τ ) being an orthonormal matrix means that all directions [columns of B̂(τ )] are
equally weighted, whereas in qOPG the corresponding directions (eigenvectors)
are given different weights dictated by their respective eigenvalues.

4. Assumptions and theoretical results. For any s0 = l + γ , with nonneg-
ative integer l and 0 < γ ≤ 1, we say a function m(·) :Rp → R has the order of
smoothness s0 on D, denoted by m(·) ∈ Hs0(D) if, it is differentiable up to order l

and there exists a constant C > 0, such that∣∣Dum(x1) − Dum(x2)
∣∣ ≤ C|x1 − x2|γ for all x1,x2 ∈ D and [u] = l.

We assume the following conditions hold throughout the paper:

(A1) The support D of X is open, convex and the probability density function
of X is such that fX(·) ∈ Hs1(D), for some s1 > 0.

(A2) The conditional quantile function Qτ(·) ∈ Hs2(D) for some s2 > 0 uni-
formly in τ ∈ (0,1).

(A3) There exist some positive values δ∗, b1, b2 and s3 > 0, such that the con-
ditional probability density fY |X(·|·) of Y given X belongs to Hs3(D) and is uni-
formly bounded away from zero in (Qτ (x)−b1,Qτ (x)+b2) for all τ ∈ [δ∗,1−δ∗]
and x ∈ D.

The order of smoothness s1, s2, s3 will be specified later. The above assump-
tions are standard in local polynomial smoothing for quantile regression; see, for
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example, Chaudhuri, Doksum and Samarov (1997) and Kong, Linton and Xia
(2010). Among them, (A2) implies that for any x ∈ D and Xi ∈ Sn(x) = {i : 1 ≤
i ≤ n, |Xix| ≤ hn}, the error from approximating Qτ(Xi ) by the k(= [s2])th order
Taylor expansion

Qn(Xi ,x; τ) = [
Xix(hn,A)

]�cn(x; τ)

is of order O(h
s2
n ), uniformly in {(x,Xi ) : x ∈ D,Xi ∈ Sn(x)} and τ ∈ (0,1). (A3)

strengthens Condition 3 of Chaudhuri, Doksum and Samarov (1997), where it is
required that for a prespecified τ , g(x|τ) = fY |X(Qτ (x)|x) > 0, for all x ∈ D.

The following lemma concerns the strong uniform Bahadur type representation
of ĉn(·; τ) derived from (3.3).

LEMMA 2. Suppose (A1)–(A3) hold with s1 > 0, s2 > 0, s3 > 1/2, and k =
[s2]. The bandwidth hn is chosen such that

hn ∝ n−κ with
1

2(s2 + p)
≤ κ <

1

p
.

Then we have with probability one

ĉn(x; τ) − cn(x; τ)

= −�−1
n (x; τ)

Nn(x)

∑
i∈Sn(x)

Xix(hn,A)
[
I
{
Yi ≤ Qn(Xi ,x; τ)

} − τ
]

(4.1)

+ O

{(
logn

nh
p
n

)3/4}

uniformly in τ ∈ [δ∗,1 − δ∗] and x = X1, . . . ,Xn, where Nn(x) = �Sn(x) and

�n(x; τ) = Ei

[
g(Xi |τ)Xix(hn,A)X�

ix(hn,A)|Xi ∈ Sn(x)
]
.

This strengthens the results obtained in Chaudhuri (1991) for nonparametric
quantile regression and Kong, Linton and Xia (2010) for general nonparametric
M-regression, both of which concerned the uniformity in x only. The uniformity
in both x and τ plays a central role in examining the asymptotic properties of �̂T,
defined via averaging over x = X1, . . . ,Xn, and then integration with respect to τ

over [δ∗,1 − δ∗].
We now move on to present the asymptotic properties of �̂T and those of its

eigenvalues and eigenvectors. Write ∇2Qτ(·) for the Hessian matrix of Qτ(·) and
∇g(·|τ), for the first-order derivative vector of g(·|τ). For any τ ∈ (0,1) and 1 ≤
k, l ≤ p, let ∇Q[k]

τ (X) stand for the kth element of ∇Qτ(X); ∇[l]g(X|τ) for the
lth element of ∇g(X|τ), ∇2[k,l]Qτ(X) for the (k, l) element of ∇2Qτ(·) and write

ρ(X|τ, k, l)

=
[2∇2[k,l]Qτ(X)

g(X|τ)
− ∇Q[k]

τ (X)∇[l]g(X|τ)

g2(X|τ)
− ∇[l]Qτ(X)∇[k]g(X|τ)

g2(X|τ)

]
.
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For any τ1, τ2 ∈ (0,1) and 1 ≤ k1, l1, k2, l2 ≤ p, define

h(τ1, τ2|k1, l1, k2, l2)

= Cov
(∇Q(k1)

τ1
(X)∇Q(l1)

τ1
(X),∇Q(k2)

τ2
(X)∇Q(l2)

τ2
(X)

)
+ {

min(τ1, τ2) − τ1τ2
}

Cov
(
ρ(X|τ, k1, l1), ρ(X|τ, k2, l2)

)
.

For any symmetric p × p matrix S = (sij ), form a p(p + 1)/2 × 1 vector using
the elements of S :

Vech(S) = (s11, . . . , sp1, s22, . . . , s2p, s22, . . . , spp)�.

Denote by v(·) the following 1-to-1 mapping from {1,2, . . . , p(p + 1)/2} onto
{(i, j) : 1 ≤ i ≤ j ≤ p}:

v(k) = (
v(k,1), v(k,2)

) = (i, j) such that
(2p − i)(i − 1)

2
+ j = k.

In other words, the kth element of Vech(S) is given by sv(k) = sv(k,1),v(k,2).
Finally, for any symmetric p × p matrix S , denote by λk(S) and βk(S),

k = 1, . . . , q , the first q (nonzero) eigenvalues and eigenvectors of S , respectively.
Write λ̃p−q(S) for the average of the smallest p − q eigenvalues of S .

THEOREM 1. Suppose (A1)–(A3) hold with s1 > 0, s3 > 1/2, s2 > 3/2p + 3,
and k = [s2]. Furthermore, the smoothing parameter hn is chosen such that

hn ∝ n−κ with
1

2(s2 − 1)
≤ κ <

1

3p + 4
.(4.2)

Then we have λ̃p−q(�̂T) = op(n−1/2) and
√

n(�̂T − �T)
d→N,(4.3)

where “
d→” stands for convergence in distribution and N stands for a symmetric

p × p random matrix, such that Vech(N) is multivariate normal with zero mean
and covariance matrix H, whose (k, l)th element is given by∫ 1

0

∫ 1

0
h
(
τ1, τ2|v(k,1), v(k,2), v(l,1), v(l,2)

)
dτ1 dτ2.

Furthermore, if λk(�T), k = 1, . . . , q , are all distinct, then for each k = 1, . . . , q ,
√

n
{
λk(�̂T) − λk(�T)

} d→ β�
k (�T)Nβk(�T),(4.4)

√
n
{
βk(�̂T) − βk(�T)

} d→
q∑

l=1,l �=k

βl(�T)β�
l (�T)Nβk(�T)

λk(�T) − λl(�T)
.(4.5)

In theory, (4.4) could be applied to make inference on the structural dimen-
sion q . The proof of Theorem 1 is mainly based upon results on U-processes
[Nolan and Pollard (1987)], namely a collection of U-statistics indexed by a family
of symmetric kernels.
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5. Bandwidth selection. As far as the point-wise estimation of ∇Qτ(·) is
concerned, it followed from Lemma 2 that the “optimal” bandwidth hn which
minimizes the pointwise mean square error (MSE) of ∇̂Qτ(x), is of the order
O(n−1/(p+2k+2)). In this sense, the choice (4.2) of the bandwidth hn under-
smooths the estimator. Such undersmoothing is necessary for the estimator
∇̂Qτ(x) to have a bias of order op(n−1/2) thus negligible. The stochastic term of
∇̂Qτ(x), once averaged over x = X1, . . . ,Xn, can achieve the rate of Op(n−1/2),
independent of the speed at which hn tends to zero. Similar observations have
been made in Chaudhuri, Doksum and Samarov (1997) and Kong, Linton and Xia
(2013). In cases where the link function Qτ(·) closely resembles a (local) poly-
nomials, the bias thus becomes less of an issue as it either significantly reduces
or completely vanishes; we can then afford to employ a larger bandwidth, and
thus produce more efficient estimates of ∇Qτ(·), while results in Theorem 1 still
hold. This also explains our assertion in Section 1 that qOPG is structure-adaptive.
In practice, an empirical “optimal” bandwidth can be obtained by plugging in
estimates for the unknown quantities in the formula of the pointwise theoretical
“optimal” bandwidth.

We can also select bandwidth based on the cross-validation (CV) criterion
for quantile regression as follows. For any given τ ∈ (0,1) and fixed hn, de-
note by Q

\j
τ (x|hn), j = 1, . . . , n, the leave-one-out estimate of Qτ(Xj ) using

{(Xi, Yi) : i �= j} with bandwidth hn. Let

CV(τ, hn) = n−1
n∑

j=1

ρτ

(
Yj − Q\j

τ (Xj |hn)
)
,

and denote by hCV
τ , the level-specific cross-validated (CV) bandwidth, namely the

hn that minimizes CV(τ, hn). However, based on our experience with simulated
data, we found such level-specific CV bandwidth selection is not only rather time-
consuming, but also terribly unstable, possibly due to the difficulty in assessing
the goodness-of-fit in quantile regression; see Koenker and Machado (1999). In-
stead, we recommend the following modified level-specific CV bandwidth. First,
consider an average of the level-specific CV bandwidth hCV

τ with τ ranging over
the set of {τs = s/(T + 1) : s = 1, . . . , T } for some positive integer T :

h̄CV =
T∑

s=1

hCV
τs

/T .

Then in view of the relationship proposed in Yu and Jones (1998), we define the
modified level-specific CV bandwidth as

h̄CV
τ = h̄CV{

τ(1 − τ)/φ
(
�−1(τ )

)}1/5
,(5.1)

where functions φ(·) and �(·) are, respectively, the probability and cumulative
distribution functions of the standard normal distribution. Compared to hCV

τ , h̄CV
τ

is more stable and delivers much better results, but its computation is equally com-
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putationally intensive. We also tried out variations of h̄CV
τ defined as in (5.1) but

with h̄CV replaced by bandwidths chosen via other procedures. Our best experi-
ence lies with h̄CV

τ with h̄CV set to be the CV bandwidth for conditional mean
regression of |Y − E(Y )| on X.

6. Estimation of the structural dimension. According to Theorem 1, the av-
erage of the smallest p−q eigenvalues of �̂T defined in (3.5) is of order op(n−1/2).
For k = 1, . . . , p, plot the average of the smallest k eigenvalues of �̂T against k and
likely values for q could be then identified by noting the location of a noticeable
increase. The asymptotic distribution of the eigenvalues of �̂T given in Theorem 1
could also be used for selecting q . However, as the distribution depends on another
unknown matrix H which is not easy to estimate, such approach might not be very
practical.

Combining the CV method of Xia et al. (2002) with the composite quantile re-
gression provides an alternative way to select q . For illustration purposes, we here
give details for the local constant quantile kernel smoothing. With working dimen-
sion q , suppose the q-columns of B̂q are the corresponding estimates of the CS
directions. For each observation (Xj ,Yj ), j = 1, . . . , n, calculate the delete-one-
estimator of Q̃τ (B̂qXj ) of (2.1) as

Q̂\j
τ

(
B̂�

q Xj

) = arg min
c

∑
i �=j

ρτ (Yi − c)Khn

(|B̂qXij |).
We then define the CV value specific to working dimension q as

CV(q) =
∫ 1−δ∗

δ∗

n∑
j=1

ρτ

(
Yi − Q̂\j

τ

(
B̂�

q Xj

))
dτ,

and choose the dimension which minimizes CV(q). Our simulation study suggests
that this methodology works reasonably well, though it is also rather computation-
ally intensive.

7. Numerical study. In this section, we first carry out comparison studies of
the two newly proposed procedures, qOPG and qMAVE, with two existing meth-
ods using simulated data. The two new procedures are then applied to the analysis
of a real data set for the purpose of discovering the dimension reduction space.

In the calculation below, the local linear quantile regression, that is, k = 1, and
the Epanechnikov kernel function are used. The integrations in (3.6) and (3.8) are
evaluated by the weighted summation of �̂(τ ) over τ = 0.1,0.2, . . . ,0.9.

EXAMPLE 1 (Simulated data). We reconsider the following three models that
are commonly tested out in the field of dimension reduction:

Model (A): Y = x1(x1 + x2 + 1) + 0.5ε,

Model (B): Y = x1/
(
0.5 + (x2 + 1.5)2) + 0.5ε,

Model (C): Y = x1 + exp(x2)ε,
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where X = (x1, . . . ,x10)
� ∼ N(0, (σij )1≤i,j≤10) with σij = 0.5|i−j |, and ε is the

error term designed to have various distributions; see Table 1 below. The first two
models were thoughtfully designed by Li (1991) for the study of Slice Inverse

TABLE 1
Average estimation errors and their standard derivation (in parenthesis) and frequency of correct

structural dimension identification

qOPG qMAVE

Model ε n SIR dOPG dMAVE h0 hCV h0 hCV freq.

(A) N(0,1) 200 0.82 0.55 0.53 0.42 0.44 0.48 0.48 56%
(0.14) (0.20) (0.18) (0.15) (0.15) (0.16) (0.15)

400 0.68 0.37 0.35 0.27 0.26 0.31 0.30 90%
(0.16) (0.14) (0.10) (0.08) (0.08) (0.08) (0.08)

t (3)/
√

3 200 0.79 0.50 0.46 0.42 0.38 0.38 0.40 72%
(0.15) (0.22) (0.16) (0.15) (0.14) (0.14) (0.14)

400 0.63 0.31 0.29 0.22 0.21 0.23 0.24 97%
(0.16) (0.13) (0.08) (0.07) (0.07) (0.06) (0.06)

χ2(1) 200 0.78 0.61 0.50 0.48 0.49 0.46 0.49 50%
(0.13) (0.22) (0.17) (0.20) (0.19) (0.17) (0.17)

400 0.61 0.39 0.32 0.30 0.28 0.28 0.29 79%
(0.14) (0.16) (0.10) (0.12) (0.09) (0.09) (0.10)

(B) N(0,1) 200 0.69 0.58 0.59 0.44 0.50 0.54 0.52 56%
(0.17) (0.17) (0.18) (0.18) (0.19) (0.19) (0.19)

400 0.51 0.35 0.38 0.24 0.27 0.32 0.32 87%
(0.15) (0.10) (0.13) (0.10) (0.10) (0.11) (0.12)

t (3)/
√

3 200 0.57 0.48 0.47 0.38 0.37 0.40 0.40 84%
(0.16) (0.16) (0.15) (0.16) (0.12) (0.15) (0.13)

400 0.41 0.34 0.29 0.19 0.18 0.21 0.22 97%
(0.12) (0.10) (0.09) (0.09) (0.06) (0.06) (0.07)

χ2(1) 200 0.64 0.57 0.53 0.55 0.46 0.51 0.48 64%
(0.17) (0.18) (0.20) (0.24) (0.20) (0.22) (0.19)

400 0.42 0.35 0.31 0.24 0.22 0.24 0.25 94%
(0.11) (0.13) (0.09) (0.11) (0.08) (0.07) (0.07)

(C) N(0,1) 200 0.53 0.55 0.51 0.77 0.42 0.48 0.36 29%
(0.13) (0.14) (0.17) (0.15) (0.14) (0.17) (0.10)

400 0.37 0.36 0.33 0.77 0.29 0.30 0.24 31%
(0.08) (0.11) (0.09) (0.16) (0.10) (0.08) (0.05)

t (3)/
√

3 200 0.61 0.62 0.59 0.81 0.47 0.55 0.38 32%
(0.15) (0.14) (0.18) (0.15) (0.19) (0.19) (0.14)

400 0.44 0.41 0.38 0.77 0.39 0.35 0.25 39%
(0.12) (0.14) (0.15) (0.15) (0.20) (0.14) (0.07)

χ2(1) 200 0.63 0.60 0.49 0.50 0.46 0.44 0.42 37%
(0.14) (0.15) (0.16) (0.17) (0.16) (0.16) (0.13)

400 0.43 0.42 0.32 0.35 0.30 0.31 0.27 46%
(0.11) (0.14) (0.09) (0.10) (0.16) (0.09) (0.08)
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Regression (SIR). Model 3 was used in Xia (2007) in the context of conditional
mean and conditional variance based dimension reduction.

Based on the conclusion of Ma and Zhu (2012) from their intensive com-
parison study using simulated data, we have chosen to compare our conditional
quantile-based approaches, qOPG and qMAVE, with dOPG and dMAVE of Xia
(2007), among the many existing dimension reduction procedures. Another rea-
son for us to include dOPG and dMAVE in the study is the fact that these con-
ditional probability-based approaches, are theoretical equivalences to qOPG and
qMAVE. We hope through such comparison can manifest the structure-adaptive
nature of our new methods. We also include in the comparison study the SIR of Li
(1991), for which 8 slices are used when the sample size n = 200, and 10 when
the sample size n = 400. For dOPG and dMAVE, following the rule-of-thumb
as in Xia (2007), we use bandwidths of order n−1/5 and n−1/(p+4), respectively,
for the two kernels in the estimation. For qOPG and dMAVE, the bandwidth
is chosen as described in Section 5. For any estimator B̂ of B0, we define the
estimation error as the largest among the absolute values of the elements of
B̂(B̂�B̂)−1B̂ − B0(B�

0 B0)
−1B0. Table 1 reports the mean and standard error (in

brackets) of the estimation error from 100 replicates for various combinations of
model, error distribution and sample size. The last column of Table 1 is the per-
centage of times that the structural dimension has been correctly identified by the
CV method described in Section 6.

A general observation is such that qOPG and qMAVE—either with data-
driven bandwidth or with a bandwidth chosen according to the rule-of-thumb—
outperform, respectively, dOPG and dMAVE as well as SIR for both models
(A) and (B). The only exception lies with model (C), where qOPG using the rule-
of-thumb bandwidth is beaten by dOPG, but the situation reverses with a data-
driven bandwidth. This provides a line of empirical evidence for the assertion we
made in Section 1 that if the conditional quantile function is well approximated lo-
cally by polynomials, then the data-driven bandwidth deduced from qOPG means
more efficient estimators. Another noticeable pattern is that, contradictory to what
happens with conditional density-based methods where dMAVE consistently out-
performs dOPG, the expected superiority of qMAVE over qOPG is nowhere obvi-
ous. In fact, for models (A) and (B), qOPG outperforms qMAVE most of the time,
especially so when data-driven bandwidths are used. Even for model (C) qMAVE
seems to enjoy an obvious lead over qOPG, this again becomes less obvious when
a data-driven bandwidth is used. A plausible explanation for this might be that an
adaptive-weighting scheme has been incorporated into qOPG, while such proce-
dure is hard to be combined with qMAVE.

EXAMPLE 2 (Real data). In financial economics, the capital asset pricing
model (CAPM) indicates that the return of a portfolio strongly depends on the mar-
ket performance. However, little is known about the factors that affect the volatil-
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TABLE 2
Estimated CS directions for Example 2

xi β1 β2 xi β1 β2 xi β1 β2 xi β1 β2

x1 −0.014 0.001 x6 0.006 −0.089 x11 0.994 −0.032 x16 0.029 0.490
x2 −0.042 0.045 x7 0.005 0.093 x12 0.048 −0.027 x17 −0.017 0.506
x3 −0.029 −0.239 x8 0.020 0.271 x13 0.048 −0.076 x18 0.008 0.302
x4 −0.008 −0.100 x9 0.008 0.277 x14 0.035 0.347 x19 −0.035 −0.126
x5 0.008 0.067 x10 −0.014 0.111 x15 −0.005 0.010 x20 0.001 −0.120

ity of a portfolio. In the following, we consider the daily return Y of a portfolio
listed at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

with covariate X = (x1,x2, . . . ,x15), where x1, . . . ,x5 are the returns of the port-
folio in the past five days, and x6, . . . ,x10 are the absolute values of the returns
which are proxy of the past volatilities; x11, . . . ,x15 are the market returns on the
same day as Y and those in the past four days, and x16, . . . ,x20 are the absolute
values of the market returns.

Applying qOPG, the first several eigenvalues of �̂T are, respectively, 1.0620,
0.0164, 0.0017, 0.0007 and 0.0004. With the structural dimension set as 2, we
obtain the estimated CS directions β1 and β2; see Table 2. The scatter plots of
Y against β�

1 X and β�
2 X are given in Figure 1. The fitted curve in the bottom

two panels are created with bandwidths h = h0/(f̂k(x))0.2 with h0 being selected
by the CV method, and f̂k(·), k = 1,2, being the kernel estimate of the density
function of β�

k X. The fitted regression function of the portfolio’s return on β�
1 X

in the bottom-left panel of Figure 1 suggests the first CS direction β1 is mostly
about the conditional mean, while the second CS direction β2 is clearly about
the conditional variance, evident from the bottom-right panel. The first direction
β1 is dominated by x11, the market return of the day, with a coefficient 0.9940;
this is in line with the CAPM in that the expected return of any portfolio largely
depends on the present-day market performance. It is also interesting to note that
the volatility of the portfolio also depends the market’s volatility, as suggested by
the large coefficients of x16,x17 and x18 on the second CS direction β2. Also, its
own past volatilities (x8,x9) also contribute to its present-day volatility, although
to a less extent.

8. Conclusions. In this paper, we have proposed and investigated two com-
posite quantile approaches to dimension reduction, namely qOPG and qMAVE.
Compared with moment-based methods, these methods require less restrictive as-
sumptions and can identify all dimension reduction directions. It does not involve

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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FIG. 1. Results for Example 2. The top two panels are the scatter plots of Y against the two esti-
mated CS directions β1 and β2. The bottom-left panel is the fitted regression function of Y against
the first CS direction and its 95% confidence interval. In the bottom-right panel, the curves are the
regression quantiles of Y against the second directions at τ = 0.01,0.1,0.3,0.5,0.7,0.9,0.99, re-
spectively.

“slicing” of the response variable Y , as is the case with SIR or conditional density-
based methods [Xia (2007)]. It carries out regression analysis directly on Y instead
of transformations of Y . As a result of these characteristics, qOPG and qMAVE
are structure-adaptive, and thus more efficient. However, because the amount of
computation embedded in quantile regression is significantly heavier than in least
square minimization, the implementation of qOPG and qMAVE is rather time con-
suming compared to most of the existing methods. Because of this, we recommend
the use of dOPG or dMAVE to obtain an initial estimator of the central subspace
and of the structural dimension, and the use of qOPG or qMAVE for more efficient
refined estimator.
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APPENDIX: PROOFS

PROOF OF LEMMA 1. The assertion that S(�) ⊆ S(B0) follows directly
from (2.3). We show that the opposite holds too. Based on (2.3), we can see by
definition

� = B0

[∫ 1

0
E

{∇Q̃τ

(
B�

0 X
)[∇Q̃τ

(
B�

0 X
)]�}

dτ

]
B�

0 .

It thus suffices if we can prove the matrix

M =
∫ 1

0
E

{∇Q̃τ

(
B�

0 X
)[∇Q̃τ

(
B�

0 X
)]�}

dτ

is of full rank. For if otherwise, there must exist some vector b1 ∈ Rq , with Eu-
clidean norm one such that b�

1 Mb1 = 0. Seeing the definition of M , this implies
that

b�
1 ∇Q̃τ

(
B�

0 X
) = 0 a.s.(A.1)

for all τ ∈ (0,1) except on a set of Lebesgue measure zero.
Let B = (b1, . . . ,bq) ∈ Rq×q denote an orthonormal basis for Rq , that is,

B�B = Iq . For any given τ ∈ (0,1), write

Gτ(u) = Q̃τ (u), G̃τ (u) = Q̃τ (Bu), B̃0 = B0B.(A.2)

Thus,

Gτ(Bu) = G̃τ (u); Gτ

(
B�

0 X
) = Gτ

(
B̃�

0 X
)
.

Consider the gradient vector of G̃τ (u) and then evaluate it for u = B̃�
0 X:

∂G̃τ (u)

∂u
= ∂Gτ (Bu)

∂u
= B� ∂Gτ (Bu)

∂(Bu)
= B�∇Gτ(Bu)

u=B̃�
0 X= B�∇Gτ

(
B�

0 X
)
,

the first element of which, according to (A.1), equals zero. This suggests the value
of G̃τ (B̃�

0 X), as a function of B̃�
0 X = (b�

1 B�
0 X, . . . ,b�

q B�
0 X)�, does not change

with b�
1 B�

0 X. This together with the fact that

G̃τ

(
B̃�

0 X
) = Gτ

(
B�

0 X
) = Q̃τ

(
B�

0 X
) = Qτ(X)

implies that Qτ(X) is in fact a function of q − 1 variables: b�
2 B�

0 X, . . . ,b�
q B�

0 X.
And this according to (A.1) holds for any τ ∈ (0,1). As {Qτ(X) : τ ∈ (0,1)} col-
lectively defines F(·|X), we can conclude that F(·|X) is in fact a function of
(b�

2 B�
0 X, . . . ,b�

q B�
0 X)� = [B0(b2, . . . ,bq)]�X, expressed as

F(Y |X) = F
(
Y |B̃�X

)
, a.s. where B̃ = B0(b2, . . . ,bq).

This means S(B̃) is SDR and as S(B0) is the CS, we should have S(B0) ⊆ S(B̃).
This contradicts the fact that dim(S(B0)) = q > q − 1 = dim(S(B̃)). �
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The proof of Lemma 2 is left until the end. To prove Theorem 1, we also need
to introduce more notation. For any t = (t1, . . . , tp)� ∈ [−1,1]p , let t(A) stand for
the s(A) × 1 vector (tu)u∈A. Define

� =
∫
[−1,1]p

t(A)
{
t(A)

}�
dt.

Standard result in kernel smoothing [e.g., Masry (1996)] is such that with proba-
bility one,

Nn(x)

nh
p
n

− fX(x) = O
(
h2

n + (
nhp

n/ logn
)−1/2)

(A.3)

uniformly in x ∈ D, and

�n(x; τ) − g(x|τ)� = O
((

nhp
n/ logn

)−1/2 + hn

)
(A.4)

uniformly in τ ∈ (0,1) and x ∈ D.
Also, we will cite the following result, the proof of which will be given at the

end of this section: with probability one,
∑
i

Xix
(
hn,A

)
I
(|Xix| ≤ hn

)[
I
{
Yi ≤ Qn(Xi ,x; τ)

} − I
{
Yi ≤ Qτ(Xi)

}]
(A.5)

= o
(
n−1/2)

uniformly in x ∈ D, τ ∈ (0,1).

PROOF OF THEOREM 1. Write as �̃n(Xj ; τ), the p × s(A) matrix consisting
the second up to the (p + 1)th row of �−1

n (Xj ; τ). First note that under conditions
in Theorem 1,

h−1
n

(
nhp

n/ logn
)−3/4 = o

(
n−1/2)

, hs2−1
n = o

(
n−1/2)

and

logn/
(
nhp

n

) = o
(
n−1/2hn

)
.

This together with (3.4) and Lemma 2 leads to

�̂(τ ) = 1

n

n∑
j=1

∇Qτ(Xj )
{∇Qτ(Xj )

}� + h−1
n

[
Mn(τ) + M�

n (τ )
] + o

(
n−1/2)

,

where

Mn(τ) = 1

n

∑
i,j

∇Qτ(Xj )

Nn(Xj )
I
(|Xij | ≤ hn

)[
I
{
Yi ≤ Qn(Xi ,Xj ; τ)

} − τ
]

× X�
ij (hn,A)�̃�

n (Xj ; τ)
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with Xij = Xi − Xj . Using results in (A.3), (A.4) and (A.5), we have

�̂(τ ) = 1

n

n∑
j=1

∇Qτ(Xj )
{∇Qτ(Xj )

}�

(A.6)
+ h−(p+1)

n

[
M̃n(τ )�̃� + �̃M̃�

n (τ )
] + o

(
n−1/2)

,

where �̃ is the p × s(A) matrix consisting of the second up to the (p + 1)th rows
of �−1 and

M̃n(τ ) = 1

n2

∑
i,j

∇Qτ(Xj )X�
ij (hn,A)

g(Xj |τ)fX(Xj )

[
I
{
Yi ≤ Qτ(Xi)

} − τ
]
I
(|Xij | ≤ hn

)
.

The key to the study of the properties of �̂(τ ) is {M̃n(τ ) : τ ∈ (0,1)}, which is a
typical example of U-processes [Nolan and Pollard (1987)].

To derive the Hoeffding’s decomposition of M̃n(τ ), write Zi = (Yi,Xi) and
define

ξn(Zi ,Zj ; τ) =
{∇Qτ(Xj )X�

ij (hn,A)

g(Xj |τ)fX(Xj )

[
I
{
Yi ≤ Qτ(Xi )

} − τ
]

+ ∇Qτ(Xi )X�
ji(hn,A)

g(Xi |τ)fX(Xi )

[
I
{
Yj ≤ Qτ(Xj )

} − τ
]}

I
(|Xij | ≤ hn

)
,

ζn(Zi; τ) = Ej

[
ξn(Zi ,Zj ; τ)

]
(A.7)

= hp
n

[
I
{
Yi ≤ Qτ(Xi )

} − τ
]

×
{∇Qτ(Xi)

g(Xi |τ)
γ �

+ hn

[∇2Qτ(Xi)

g(Xi |τ)
− ∇Qτ(Xi )∇�g(Xi |τ)

g2(Xi |τ)

]
�1 + O

(
h2

n

)}
,

where

γ =
∫
[−1,1]p

t(A)dt, �1 =
∫

tt�(A)dt.

Note that E[ξn(Zi ,Zj ; τ)] = E[ζn(Zi; τ)] = 0. Therefore, we have

M̃n(τ ) = 1

n2

∑
i<j

ξn(Zi ,Zj ; τ) = Un(τ) + 1

n

∑
i

ζn(Zi; τ),

where Un(τ) is its Hoeffding’s decomposition

Un(τ) = 1

n2

∑
i<j

ξn(Zi ,Zj ; τ) − 1

n

∑
i

ζn(Zi; τ).(A.8)
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To decide the tail properties of sup{|Un(τ)| : τ ∈ [δ∗,1−δ∗]}, first note that accord-
ing to Lemma 2.13 of Pakes and Pollard (1989) [reproduced as (C1) at the end of
this section] and Corollary A.3, {ξn(Zi ,Zj ; τ) : τ ∈ [δ∗,1 − δ∗]} is Euclidean for a
constant envelope, or in Arcones (1995) term, a uniformly bounded V–C subgraph
class. Applying Proposition 4 in Arcones (1995) to Un(τ), we conclude that there
exists some finite c2 > 0, such that for any ε > 0,

P
{
n1/2 sup

τ∈[δ∗,1−δ∗]
∣∣Un(τ)

∣∣ ≥ hp+1
n ε

}
≤ 2 exp

{−c2εn
1/2h−1

n

}
.

By an application of the Borel–Cantelli lemma, we have

sup
τ∈[δ∗,1−δ∗]

∣∣Un(τ)
∣∣ = o

(
n−1/2hp+1

n

)
a.s.

This together with (A.6), (A.7), (A.8) and the facts that �̃γ = 0, �̃�1 = Ip implies
that with probability one,

�̂(τ ) = 1

n

n∑
i=1

∇Qτ(Xi)
{∇Qτ(Xi )

}�

+ 1

n

n∑
i=1

[I {Yi ≤ Qτ(Xi)} − τ ]
g2(Xi |τ)

× [
2g(Xi |τ)∇2Qτ(Xi ) − ∇Qτ(Xi)∇�g(Xi |τ)

− ∇g(Xi |τ)∇�Qτ(Xi)
] + o

(
n−1/2)

,

where the term o(n−1/2) is uniform in τ ∈ [δ∗,1 − δ∗]. Consequently, we have

�̂T =
∫ 1−δ∗

δ∗
�̂(τ ) dτ

(A.9)

= �T + 1

n

n∑
i=1

�(1)(Xi ) + 1

n

n∑
i=1

�(2)(Xi , Yi) + o
(
n−1/2)

, a.s.,

where �(1)(·) and �(2)(·) are two symmetric random matrices with properties such
that

E
[
�(1)(X)

] = 0, E
[
�(2)(X, Y )

] = 0,

�(1)(X)� = 0, �(2)(X, Y )� = 0,

with � = I − B0(B�
0 B0)

−1B�
0 , the projection matrix such that �B0 = B�

0 � = 0.
An application of Lemma A.1 in Li (1991) to the right-hand side of (A.9) with �T,
n−1/2, �̂T and n−1/2 ∑

i{�(1)(Xi )+�(2)(Xi , Yi)} acting as T , w2, T (w) and T (2)

therein, respectively, we have with probability one,

λ̃p−q(�̂T) = n−1/2

p − q

∑
i

trace
([

�(1)(Xi) + �(2)(Xi , Yi)
]
�

) + o
(
n−1/2)

= o
(
n−1/2)

.



ON ADAPTIVE QUANTILE DIMENSION REDUCTION 1677

We now move on to derive the asymptotic properties of the first q eigenval-
ues and eigenvectors of �̂. First note that the three classes of functions, namely
{∇Qτ(Xi){∇Qτ(Xi)}�, τ ∈ [δ∗,1 − δ∗]}, {g[(Xi |τ)]−2[I {Yi ≤ Qτ(Xi)} − τ ],
τ ∈ [δ∗,1−δ∗]}, and {g(Xi |τ)∇2Qτ(Xi )−∇Qτ(Xi)∇�g(Xi |τ)−∇g(Xi |τ)∇�×
Qτ(Xi), τ ∈ [δ∗,1 − δ∗]} are, according to Corollary A.3, all Euclidean for
a constant envelope. Therefore, the collection of random matrices {�̂(τ ) : τ ∈
[δ∗,1 − δ∗]} are Glivenko–Cantelli as well as Donsker [van der Vaart and Wellner
(1996)].

By Glivenko–Cantelli, we mean that

sup
τ∈[δ∗,1−δ∗]

∣∣Vech
(
�̂(τ )

) − Vech
(
�(τ)

)∣∣ → 0 a.s.,

from which we can conclude that

Vech(�̂T) − Vech(�T) → 0 a.s.

which in turn implies that [Lemma 3.1, Bai, Miao and Rao (1991)],

βk(�̂T) − βk(�T) → 0 (k = 1, . . . , q) a.s.

By Donsker, we mean that
√

n
{
Vech

(
�̂(τ )

) − Vech
(
�(τ)

)} d→G in �∞([
δ∗,1 − δ∗])

,

where �∞([δ∗,1 − δ∗]) stands for the space of all uniformly bounded multivari-
ate real functions from [δ∗,1 − δ∗] to Rp(p+1)/2 equipped with the supremum
norm, and the limit G is a zero-mean p(p + 1)/2-dimensional Gaussian process
on [δ∗,1 − δ∗], such that for any given τ1, τ2 ∈ [δ∗,1 − δ∗], the covariance matrix
E[G(τ1)G(τ2)] has its (k, l)th element given by the covariance between

∇Q[v(k,1)]
τ1

(X)∇Q[v(k,2)]
τ1

(X)

+ [I {Yi ≤ Qτ1(Xi )} − τ1]
g2(Xi |τ1)

[
2g(Xi |τ1)∇2[v(k,1),v(k,2)]Qτ1(Xi )

− ∇Q[v(k,1)]
τ1

(Xi )∇[v(k,2)]g(Xi |τ1)

− ∇[v(k,1)]g(Xi |τ1)∇[v(k,2)]Qτ1(Xi )
]

and

∇Q[[v(l,1)]]
τ2

(X)∇Q[v(l,2)]
τ2

(X)

+ [I {Yi ≤ Qτ2(Xi )} − τ2]
g2(Xi |τ2)

[
2g(Xi |τ2)∇2[v(l,1),v(k,2)]Qτ2(Xi)

− ∇Q[v(l,1)]
τ2

(Xi )∇[v(l,2)]g(Xi |τ2)

− ∇[v(l,1)]g(Xi |τ2)∇[v(l,2)]Qτ2(Xi)
];
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equation (4.3) thus follows by appealing to the continuous-mapping theorem.
The proof of (4.4) and (4.5), that is, the asymptotic normality of the eigenvalues

and eigenvectors of �̂, can be done in exactly the same manner as in Theorem 2.2
of Zhu and Fang (1996), which by an application of the perturbation theory [Sun
(1988), Kato (1995)], relates the asymptotic normality of a random matrix to that
of its eigenvalues and eigenvectors. �

To prepare for the proof of Lemma 2, we need to introduce more notation and
some related results. For any given x ∈ D, let DXn(x) be the Nn(x) × s(A) matrix
with rows given by the transposition of Xix(hn,A), i ∈ Sn(x), and V Yn(x) be the
Nn(x) × 1 vector whose components are Yi , i ∈ Sn(x).

For any subset h ⊂ Sn(x), denote by DXn(x,h) and V Yn(x,h), the sub-matrix
(vector) of DXn(x) and V Yn(x), respectively, with indices of rows given by h.
Further define

Hn(x) = {
h : h ⊂ Sn(x), �(h) = s(A),DXn(x,h) is of full rank

}
.

Suppose DXn(x) of rank = s(A), Hn(x) is thus nonempty. The following two
facts concern the uniqueness of ĉn(x; τ) and its “matrix form” of, for any given
x ∈ D and τ ∈ (0,1). They are essentially restatements of Theorems 3.1 and 3.2 in
Koenker and Bassett (1978); see also Facts 6.3 and 6.4 in Chaudhuri (1991).

(B1) There exist positive constants c1 and c2, such that

P(An) = 1 where An = {
c1nhd

n ≤ Nn(x) ≤ c2nhd
n for all x ∈ D

}
.

This follows easily from (A.4).
(B2) There exists a h ∈ Hn(x), such that (3.3) has at least one solution of the

form

ĉn(x; τ) = [
DXn(x,h)

]−1
V Yn(x,h).

(B3) For h ∈ Hn(x), let ĉn(x; τ) = [DXn(x,h)]−1V Yn(x,h) and define

Ln(h;x, τ ) = [
DXn(x,h)

]−1 ∑
i∈h̄

[
I
{
Yi < X�

ix(hn,A)ĉn(x; τ)
} − τ

]
Xi,x(hn,A),

where h̄ is the relative complement of h with respect to Sn(x). Then ĉn(x; τ) is
a unique solution to (3.3) if and only if Ln(h;x, τ ) ∈ (τ − 1, τ )s(A). Further, if
ĉn(x; τ) is a solution (not necessarily unique) to (3.3), we must have Ln(h;x, τ ) ∈
[τ − 1, τ ]s(A).

To facilitate the use of the conditioning arguments at various places in the proofs,
for any Xj , j = 1, . . . , n, we exclude Xj from the previously defined Sn(Xj );
instead we define Sn(Xj ) = {i : 1 ≤ i ≤ n, i �= j, |Xij | ≤ hn} and Nn(Xj ) =
�(Sn(Xj )).

The proof of Lemma 2 will be built upon the following slightly weaker result.
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LEMMA A.1. Let δn = (nh
p
n/ logn)−1/2. Suppose conditions in Lemma 2

hold. Then

sup
1≤j≤n,τ∈[δ∗,1−δ∗]

∣∣ĉn(Xj ; τ) − cn(Xj ; τ)
∣∣ = O(δn) a.s.

PROOF. For any given positive constant K1 and a generic x ∈ D, let Un be the
event defined as

Un =
{

sup
τ∈[δ∗,1−δ∗]

∣∣ĉn(x; τ) − cn(x; τ)
∣∣ ≥ K1δn

}
.(A.10)

In view of the fact that P(An) = 1, the assertion in Lemma A.1 will follow from
an application of the Borel–Cantelli lemma, if we can show that there exists some
K1 > 0, such that ∑

n

nP (Un ∩ An) < ∞.(A.11)

We now try to get an upper bound for P(Un ∩ An). To this end, for given τ ∈
[δ∗,1 − δ∗],x ∈ D and c ∈ Rs(A), define

Zni(c|x, τ ) = [
I
{
Yi < c�Xix(hn,A)

} − τ
]
Xi,x(hn,A).

Based on (B2) and (B3), there exists some positive constant K2, which depends
only on s(A) such that Un ∩ An is contained in the event

{
there exists some τ ∈ [

δ∗,1 − δ∗]
and h ∈ Hn(x), such that for

ĉn(x; τ) = [
DXn(x,h)

]−1
V Yn(x,h), we have(A.12) ∣∣∣∣∣

∑
i∈h̄

Zni

(
ĉn(x; τ)|x, τ

)∣∣∣∣∣ ≤ K2 and
∣∣ĉn(x; τ) − cn(x; τ)

∣∣ ≥ K1δn

}
∩ An.

Choose large enough K1 such that we can apply Proposition A.2 to conclude that
there exist some ε1 > 0, and K3 > 0, such that, for all τ ∈ [δ∗,1 − δ∗],

E
[
Zni

(
ĉn(x; τ)|x, τ

)] ≥ min{ε1,K3K1δn},
and consequently as a result of An and the fact that �(h̄) = Nn(x) − s(A), we have

{∣∣∣∣
∑
i∈h̄

Zni

(
ĉn(x; τ)|x, τ

)∣∣∣∣ ≤ K2

}

(A.13)

⊆
{∣∣∣∣

∑
i∈h̄

{
Zni

(
ĉn(x; τ)|x, τ

) − E
[
Zni

(
ĉn(x; τ)|x, τ

)]}∣∣∣∣ ≥ c∗
1K1nhp

nδn

}

for some c∗
1 > 0.
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Next, note that given the set Sn(x), h ⊂ Sn(x), and (Xi , Yi) for i ∈ h,
and thus ĉn(x; τ) = [DXn(x,h)]−1V Yn(x,h) is also fixed, the random vectors
{Zni(ĉn(x; τ)|x, τ ), i ∈ h̄} are conditionally i.i.d. This together with (A.12), (A.13)
and the fact that �(Hn(x)) is of order (nh

p
n)s(A), implies there exists some c∗

2 > 0,
such that

P(Un ∩ An)

≤ c∗
2
(
nhp

n

)s(A)(A.14)

× P

{
sup

τ∈[δ∗,1−δ∗],
c∈Rs(A)

∣∣∣∣
∑
i∈h̄

{
Zni(c|x, τ ) − E

[
Zni(c|x, τ )

]}∣∣∣∣ ≥ c∗
1K1nhp

nδn

}
.

To find a bound for the probability on the right-hand side above, first note
that according to Lemma 22(ii) in Nolan and Pollard (1987), {Zni(c|x, τ ) : τ ∈
[δ∗,1 − δ∗], c ∈ Rs(A)} is contained in a Euclidean class for a constant envelope,
since Yi − c�Xix(hn,A) = [X�

ix(hn,A),Yi] ∗ (c�,−1)� and the indicator function
I (· < 0) is of bounded variation. As E|Zni(c|x, τ )Zτ

ni(c|x, τ )|2 = O(1) uniformly
in τ ∈ [δ∗,1 − δ∗], c ∈ Rs(A), through similar arguments used in the proof of The-
orem 2.37 in Pollard [(1984), page 34], we have that

P

{
sup

τ∈[δ∗,1−δ∗],
c∈Rs(A)

∣∣∣∣
∑
i∈h̄

{
Zni(c|x, τ ) − E

[
Zni(c|x, τ )

]}∣∣∣∣ ≥ c∗
1K1nhp

nδn

}
= o

(
n−a)

,

for any a > 0. This together with (A.14) leads to (A.11). �

For any x ∈ D, let ωhn(t|x) be the conditional probability density function of
(Xi − x)/hn given i ∈ Sn(x). Note that it converges to the uniform density on
[−1,1]p uniformly in t ∈ [−1,1]p and x ∈ D.

PROOF OF LEMMA 2. For any given τ ∈ [δ∗,1 − δ∗], x ∈ D, and X ∈ Sn(x),
write

Q̂n(X,x; τ) = [
(X − x)(hn,A)

]�ĉn(x; τ).

The proof consists of the following steps.

Step 1: For any given τ ∈ [0,1], c ∈ Rs(A) and x ∈ Rp , define

H̃n(c;x) = E
[
I
{
Yi < c�Xix(hn,A)

}
Xix(hn,A)|i ∈ Sn(x)

]

=
∫
[−1,1]p

F
(
c�t(A)|x + hnt

)
t(A)ωhn(t|x) dt,

R(1)
n (c̃, c|x, τ ) = H̃n(x, c̃) − H̃n(x, c) − �n(x; τ)(c̃ − c).
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Therefore, under assumptions (A2) and (A3),

R(1)
n

(
ĉn(x; τ), cn(x; τ)|x, τ

)
= H̃n

(
x, ĉn(x; τ)

) − H̃n

(
x, cn(x; τ)

) − �n(x; τ)
[
ĉn(x; τ) − cn(x; τ)

]
(A.15)

=
∫
[−1,1]p

[
F

(
Q̂n(x + hnt,x; τ)|x + hnt

)

− F
(
Qn(x + hnt,x; τ)|x + hnt

)
− g(x + hnt|τ)t(A)t�(A)

{
ĉn(x; τ) − cn(x; τ)

}]
whn(t|x) dt

= O
(
δ1+s3
n

) = O
{[

n(1−κp)/ logn
]−3/4}

(if s3 ≥ 1/2),(A.16)

uniformly in τ ∈ [δ∗,1 − δ∗], where (A.16) follows from Lemma A.1 and the
facts that Q̂n(x + hnt,x; τ) − Qn(x + hnt,x; τ) = {t(A)}�[ĉn(x; τ) − cn(x; τ)]
and Qn(x + hnt,x; τ) − Qτ(x + hnt) = O(h

s2
n ) = o(δn).

Step 2: For any given τ ∈ (0,1), x ∈ Rp and h ∈ Hn(x), define

χn(x; τ) = ∑
i∈Sn(x)

[
Xix(hn,A)I

{
Yi ≤ Q̂n(Xi ,x; τ)

} − H̃n

(
ĉn(x; τ);x

)]

− ∑
i∈Sn(x)

[
Xix(hn,A)I

{
Yi ≤ Qn(Xi ,x; τ)

} − H̃n

(
cn(x; τ),x

)]
,

ĉh
n(x; τ) = [

DXn(x,h)
]−1

V Yn(x,h),

Q̂h
n(Xi ,x; τ) = {

ĉh
n(x; τ)

}�Xix(hn,A),

and for any c1, c2 ∈ Rs(A), define

χh
n (c1, c2;x) = ∑

i∈h̄

[
Xix(hn,A)I

{
Yi ≤ c�

1 Xix(hn,A)
} − H̃n(c1;x)

]

− ∑
i∈h̄

[
Xix(hn,A)I

{
Yi ≤ c�

2 Xix(hn,A)
} − H̃n(c2;x)

]
.

For any given K3 > 0, consider the corresponding event

Wn(x) =
{

sup
τ∈[δ∗,1−δ∗]

∣∣χn(x; τ)
∣∣ ≥ K3[logn]3/4n(1−κp)/4

}
.

Then in view of definition of the events An, Un(x) of (A.10) and (B2), the event
Wn(x) ∩ An ∩ Un(x) [Un(x) is the complement of Un(x)] is contained in the event

{
for some τ ∈ [

δ∗,1 − δ∗]
and h ∈ Hn(x),∣∣χh

n

(
ĉh
n(x; τ), cn(x; τ);x

)∣∣ ≥ K4[logn]3/4n(1−κp)/4 and∣∣ĉh
n(x) − cn(x; τ)

∣∣ ≤ K1δn

} ∩ An
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for large enough n, where K4 = K3/2 and for which we have implicitly used
the facts that �(h) = p and [logn]3/4n(1−κp)/4 → ∞ as n → ∞. Again, since
�(Hn(x)) is of order n(1−κp)n(A) uniformly in x ∈ D, there exists some constant
c3 > 0, such that P(Wn(x) ∩ An ∩ Un(x)) is bounded by c3n

(1−κp)n(A) multiplied
by the probability of the following event:{

sup
c1,c2∈Rs(A);
|c1−c2|≤K1δn

∣∣χh
n (c1, c2;x)

∣∣ ≥ K4[logn]3/4n(1−κp)/4
}

∩ An.(A.17)

To find a bound for the probability of even (A.17), first note that according to
Lemma 22(ii) in Nolan and Pollard (1987) and Lemma 2.14(i) in Pakes and Pollard
(1989), the class of all functions on Rs(A)+1 of the form(

Yi,Xix(hn,A)
) → Xix(hn,A)

[
I
{
Yi ≤ c�

1 Xix(hn,A)
} − I

{
Yi ≤ c�

2 Xix(hn,A)
}]

c1, c2 ranging over Rs(A) is again a Euclidean class for a constant envelope. Sec-
ondly, conditioning on Sn(x), h ∈ Hn(x), and observations {(Xi , Yi) : i ∈ h}, the
terms in the sum defining χh

n (c1, c2;x) are i.i.d. with mean zero, and variance–
covariance matrix with Euclidean norm of order O(|c1 − c2|). Following the steps
in the proof of Theorem 2.37 in Pollard [(1984), page 34], we can conclude that
there exist constant c4 > 0, c5 > 0, such that the probability of (A.17) is bounded
by

K
c4
4 (logn)c4/2 exp

(−c5K
2
4 logn

) = o
(
n−α)

for any α > 0,

if K4, or equivalently K3, is chosen to be sufficiently large. Equivalently, we have
there exists some K3, such that

P
{

sup
τ∈[δ∗,1−δ∗]

∣∣χn(x; τ)
∣∣ ≥ K3[logn]3/4n(1−κp)/4

}
= o

(
n−2)

.

An application of the Borel–Cantelli lemma leads to

sup
τ∈[δ∗,1−δ∗],j=1,...,n

∣∣χn(Xj ; τ)
∣∣ = O

{
(logn)3/4n(1−κp)/4}

a.s.(A.18)

Step 3: Combining (A.15), (A.16) and (A.18), we have with probability one,
1

Nn(x)

∑
i∈Sn(x)

Xix(hn,A)
[
I
{
Yi ≤ Qn(Xi ,x; τ)

} − τ
]

= − 1

Nn(x)
χh

n (x) − H̃n

(
ĉn(x; τ);x

) + H̃n

(
cn(x; τ);x

)

+ 1

Nn(x)

∑
i∈Sn(x)

Xix(hn,A)
[
I
{
Yi ≤ Q̂n(Xi ,x; τ)

} − τ
]

(A.19)

= −�n(x; τ)
[
ĉn(x; τ) − cn(x; τ)

] + O
{[

n(1−κp)/ logn
]−3/4}

+ 1

Nn(x)

∑
i∈Sn(x)

Xij (δn,A)
[
I
{
Yi ≤ Q̂n(Xi ,x; τ)

} − τ
]
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uniformly in τ ∈ [δ∗,1 − δ∗] and x = Xj , j = 1, . . . , n. Note that according
to (B3), the last term in (A.19) is of order O(nκp−1) = o{[n(1−κp)/ logn]−3/4}.

�

PROPOSITION A.2. There exist some K2 > 0,K3 > 0,K4 > 0 such that for
all τ ∈ [δ∗,1 − δ∗],∣∣∣∣
∫
[−1,1]p

{
F

(
c�t (A)|x + hnt

) − τ
}
t (A)ωhn(t|x) dt

∣∣∣∣ ≥ min
{
K2,K3

∣∣c − cn(x; τ)
∣∣},

whenever |c − cn(x; τ)| ≥ K4h
s2
n .

PROOF. First note that as ωhn(t|x) converges to the uniform density on
[−1,1]p uniformly in t ∈ [−1,1]p , x ∈ D, we have∫

[−1,1]p
{
F

(
c�t (A)|x + hnt

) − τ
}
t (A)ωhn(t|x) dt = Hn(c|x, τ )

(
1 + o(1)

)

where Hn(c|x, τ ) =
∫
[−1,1]p

{
F

(
c�t (A)|x + hnt

) − τ
}
t (A)dt.

The proof is split into the following steps.

Step 1: We show that there exist M1 > 0 and ε1 > 0, such that for all τ ∈
[δ∗,1 − δ∗], and x ∈ D, |Hn(c|x, τ )| ≥ ε1, whenever |c − cn(x; τ)| ≥ M1.

If this is false, there must exist three sequences {τn∗} in [δ∗,1 − δ∗], {xn∗}
in D and {cn∗} in Rs(A), such that as n∗ → ∞, |cn∗ − cn(xn∗; τn∗)| → ∞, but
|Hn(cn∗ |xn∗, τn∗)| → 0. Without loss of generality, suppose there exist some
τ ∗ ∈ [δ∗,1 − δ∗] and x∗ ∈ D, such that as n∗ → ∞, τn∗ → τ ∗, and xn∗ → x∗. Fur-
ther construct the sequence {�n∗} with �n∗ = cn∗ − cn(xn∗; τn∗), and for which
we have, as n∗ → ∞, |�n∗ | → ∞, and �n∗/|�n∗ | → �∗, for some �∗ ∈ Rs(A).

Note that for any given t ∈ [−1,1]p , c�
n∗t(A) = cn(xn∗; τn∗)�t(A) + ��

n∗t(A),
the first term being finite, must tend to either +∞ or −∞ depending on whether
t�(A)�∗ is positive or negative. Consequently, due to F(·|·) being continuous in
both its arguments, we have

lim
n∗→∞F

(
c�
n∗t(A)|xn∗ + hnt

) = lim
n∗ F

(
c�
n∗t(A)|x∗ + hnt

)

= F
(+∞ × sign

{
t�(A)�∗}|x∗ + hnt

)
,

which must tend to either 1 or 0 depending on whether t�(A)�∗ is positive or neg-
ative, respectively. As it is trivial to argue that the region [−1,1]p ∩{t : t�(A)�∗ =
0} must have Lebesgue measure zero, a simple application of the dominated con-
vergence theorem to Hn(cn∗ |xn∗, τn∗) yields

τ ∗
∫
[−1,1]p∩{t : t�(A)�∗<0}

t(A)dt = (
1 − τ ∗) ∫

[−1,1]p∩{t : t�(A)�∗>0}
t(A)dt.
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Multiplying either side by �∗, we get

τ ∗
∫
[−1,1]p∩{t : t�(A)�∗<0}

t�(A)�∗dt

= (
1 − τ ∗) ∫

[−1,1]p∩{t : t�(A)�∗>0}
t�(A)�∗dt.

As 0 < τ ∗ < 1, the above implies that both regions [−1,1]p ∩ {t : t�(A)�∗ < 0}
and [−1,1]p ∩ {t : t�(A)�∗ > 0} must both have Lebesgue measure zero, which
cannot be true.

Step 2: For any t ∈ [−1,1]p , write Rn(t; τ,x) = t�(A)cn(x; τ) − Qτ(x + hnt).
Note that Rn(t,x) = O(h

s2
n ) uniformly in t ∈ [−1,1]p, τ ∈ [δ∗,1 − δ∗] and x ∈

D ⊂ Rp . For any t ∈ [−1,1]p and c ∈ Rs(A), define a real valued function as

gn(c, t|x, τ ) = F(c�t(A)|x + hnt) − F(cn(x; τ)�t(A)|x + hnt)
(c − cn(x; τ))�t(A)

.

In the case where (c − cn(x; τ))�t(A) = 0, gn(c, t|x, τ ) can be defined arbitrarily
because the set {t ∈ [−1,1]p : c�t(A) = 0} has Lebesque measure zero for any
nonzero c. Write

Hn(c|x, τ )

=
∫
[−1,1]p

{
F

(
c�t(A)|x + hnt

) − F
(
cn(x; τ)�t(A)|x + hnt

)}
t(A)dt

+
∫
[−1,1]p

{
F

(
cn(x; τ)�t(A)|x + hnt

)
(A.20)

− F
(
Qτ(x + hnt)|x + hnt

)}
t(A)dt

=
[∫

[−1,1]p
gn(c, t|x, τ )t(A)

{
t(A)

}�
dt

](
c − cn(x; τ)

)

+
∫
[−1,1]p

fY |X
(
Qτ(x + hnt) + ξ1Rn(t; τ,x)|x + hnt

)
Rn(t; τ,x)t(A)dt,

where ξ1 lies between 0 and 1, depending on t, τ and x.
Step 3: By the Cauchy inequality, we have regarding the second term on the

right-hand side of (A.20),
∣∣∣∣
∫
[−1,1]p

{
fY |X

(
Qτ(x + hnt) + ξ1Rn(t; τ,x)|x + hnt

)}
Rn(t,x)t(A)dt

∣∣∣∣
2

(A.21)

≤
∣∣∣sup
y,x

fY |X(y|x)
∣∣∣2[

s(A)
]
2p

∫
[−1,1]p

∣∣Rn(t; τ,x)
∣∣2 dt = O

(
h2s2

n

)

uniformly in τ ∈ [δ∗,1 − δ∗] and x ∈ D.
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Step 4: Now in view of assumption (A3), there exists λ1 > 0, such that
gn(c, t|τ,x) ≥ λ1 for all c, t and x ∈ D and τ ∈ [δ∗,1 − δ∗], such that |c −
cn(x; τ)| ≤ M1 and (c − cn(x; τ))�t(A) �= 0. Let λ2 be the smallest e-value of
the s(A) × s(A) matrix �. Then for the first term on the right-hand side of (A.20),
we have ∣∣∣∣

[∫
[−1,1]p

gn(c, t|x, τ )t(A)
{
t(A)

}�
dt

](
c − cn(x; τ)

)∣∣∣∣
(A.22)

≥ λ1λ2
∣∣c − cn(x; τ)

∣∣,
for all c ∈ Rs(A) such that |c − cn(x; τ)| ≤ M1. The assertion in the proposition
thus follows from (A.20), (A.21), (A.22) and the conclusion reached in step 1. �

We collect here some useful results for the verification of Euclidean property of
a class of functions.

(C1) Let F = {f (·, t) : t ∈ T } be a class of functions indexed by a bounded
subset T of Rd . If there exists an α > 0 and a nonnegative function φ(·) such that

∣∣f (·, t) − f
(·, t ′)∣∣ ≤ φ(·)∥∥t − t ′

∥∥α for any t, t ′ ∈ T ,

then F is Euclidean for the envelope |f (·, t0)| + Mφ(·), where t0 is an arbitrary
point of T and M = (2

√
d supT ‖t − t0‖)α . [Lemma 2.13 of Pakes and Pollard

(1989).]
(C2) If a class of functions F is Euclidean for an envelope F and g is Euclidean

for an envelope G, then {f +g :f ∈ F, g ∈ g} is Euclidean for the envelope F +G

and {fg :f ∈ F, g ∈ g} is Euclidean for the envelope FG. [Lemma 2.14 of Pakes
and Pollard (1989).]

(C3) Let λ(·) be a real-valued function of bounded variation on R. The class
of all functions on Rp of the form {λ(b�x + c) : b ∈ Rp, c ∈ R} is Euclidean for a
constant envelope. [Lemma 22(ii) of Nolan and Pollard (1987).]

(C4) Let λ(·) be a real-valued function of bounded variation on R+. The class
of all functions on Rp of the form {λ(‖Bx+b‖) : B ∈ Rm×p,b ∈ Rm} is Euclidean
for a constant envelope. [Lemma 22(i) of Nolan and Pollard (1987).]

COROLLARY A.3. The following classes of functions are all Euclidean for an
constant envelope: {I {Yi ≤ Qτ(Xi )} = I {F(Yi |Xi ) ≤ τ }, τ ∈ (0,1)}, {Xix(hn,A) :
x ∈ D}, {I (|Xix| ≤ hn) : x ∈ D} and {I {Yi ≤ Qn(Xi ,x; τ)} : x ∈ D, τ ∈ (0,1)}.

PROOF. This follows easily from (C2), (C3) and (C4). �

PROOF OF (A.5). By Corollary A.3, any algebraic operations involving
these classes of functions are also Euclidean; for example, {Xij (hn,A)[I {Yi ≤
Qn(Xi ,Xj ; τ)} − I {Yi ≤ Qτ(Xi)}]I (|Xij | ≤ hn) : Xj ∈ D, τ ∈ (0,1)}. This
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together with Theorem 37 in Pollard [(1984), page 34] and the fact that
Qn(Xi ,Xj ; τ) − Qτ(Xi) = O(h

s2
n ) lead to (A.5), that is, with probability one,

1

nh
p
n

∑
i

Xij (hn,A)
[
I
{
Yi ≤ Qn(Xi ,Xj ; τ)

} − I
{
Yi ≤ Qτ(Xi)

}]
I
(|Xij | ≤ hn

)

= o
(
n−1/2)

uniformly in Xj ∈D, τ ∈ (0,1). �
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