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VARIABLE SELECTION FOR GENERAL INDEX MODELS VIA
SLICED INVERSE REGRESSION

BY BO JIANG1 AND JUN S. LIU1,2

Harvard University

Variable selection, also known as feature selection in machine learning,
plays an important role in modeling high dimensional data and is key to data-
driven scientific discoveries. We consider here the problem of detecting in-
fluential variables under the general index model, in which the response is
dependent of predictors through an unknown function of one or more linear
combinations of them. Instead of building a predictive model of the response
given combinations of predictors, we model the conditional distribution of
predictors given the response. This inverse modeling perspective motivates us
to propose a stepwise procedure based on likelihood-ratio tests, which is ef-
fective and computationally efficient in identifying important variables with-
out specifying a parametric relationship between predictors and the response.
For example, the proposed procedure is able to detect variables with pair-
wise, three-way or even higher-order interactions among p predictors with a
computational time of O(p) instead of O(pk) (with k being the highest or-
der of interactions). Its excellent empirical performance in comparison with
existing methods is demonstrated through simulation studies as well as real
data examples. Consistency of the variable selection procedure when both the
number of predictors and the sample size go to infinity is established.

1. Introduction. Recently, there has been a significant surge of interest in an-
alytically accurate, numerically robust, and algorithmically efficient variable selec-
tion methods, largely due to the tremendous advance in data collection techniques
such as those in biology, finance, internet, etc. The importance of discovering truly
influential factors from a large pool of possibilities is now widely recognized by
both general scientists and quantitative modelers. Under linear regression models,
various regularization methods have been proposed for simultaneously estimating
regression coefficients and selecting predictors. Many promising algorithms, such
as Lasso [Friedman et al. (2007), Tibshirani (1996), Zou (2006)], LARS [Efron
et al. (2004)] and smoothly clipped absolute deviation [SCAD; Fan and Li (2001)],
have been invented. When the number of the predictors is extremely large, Fan and
Lv (2008) have proposed a sure independence screening (SIS) framework that first

Received April 2013; revised April 2014.
1Supported in part by NSF Grants DMS-10-07762 and DMS-11-20368.
2Supported in part by Shenzhen Special Fund for Strategic Emerging Industry Grant

ZD201111080127A while Jun S. Liu was a Guest Professor at Tsinghua University in summers
of 2012 and 2013.

MSC2010 subject classifications. Primary 62J02; secondary 62H25, 62P10.
Key words and phrases. Interactions, inverse models, sliced inverse regression, sure indepen-

dence screening, variable selection.

1751

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/14-AOS1233
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1752 B. JIANG AND J. S. LIU

independently selects variables based on their correlations with the response and
then applies variable selection methods.

1.1. Sliced inverse regression with variable selection. When the relationship
between the response Y and predictors X = (X1,X2, . . . ,Xp)T is beyond linear,
performances of variable selection methods for linear models can be severely com-
promised. In his seminal paper on dimension reduction, Li (1991) proposed a semi-
parametric index model of the form

Y = f
(
βT

1 X,βT
2 X, . . . ,βT

q X, ε
)
,(1.1)

where f is an unknown link function and ε is a stochastic error independent of X,
and the sliced inverse regression (SIR) method to estimate the so-called sufficient
dimension reduction (SDR) directions β1, . . . ,βq .

Given independent observations {(xi , yi)}ni=1, SIR first divides the range of the
yi into H disjoint intervals, denoted as S1, . . . , SH , and computes for h = 1, . . . , n,
xh = n−1

h

∑
yi∈Sh

xi , where nh is the number of yi ’s in Sh. Then SIR estimates

Cov(E(X|Y)) by M̂ = n−1 ∑H
h=1 nh(xh − x̄)(xh − x̄)T and Cov(X) by the sam-

ple covariance matrix �̂. Finally, SIR uses the first K eigenvectors of �̂−1M̂ to
estimate the SDR directions, where K is an estimate of q based on the data.

For the ease of presentation, we assume that X has been standardized such
that E(X) = 0 and Cov(X) = Ip . Eigenvalues of Cov(E(X|Y)) also connects SIR
with multiple linear regression (MLR). In MLR, the correlation squared can be
expressed as

R2 = max
b∈Rp

[
Corr

(
Y,bT X

)]2
,

while in SIR, the largest eigenvalue of Cov(E(X|Y)), called the first profile-R2,
can be defined as

λ1
(
Cov

(
E(X|Y)

)) = max
b∈Rp

max
T

[
Corr

(
T (Y ),bT X

)]2
,

where the maximization is taken over all bounded transformations T (·) and vectors
b ∈ R

p [Chen and Li (1998)]. We can further define the kth profile-R2, λk (2 ≤
k ≤ q), as the kth largest eigenvalue of Cov(E(X|Y)) by restricting the vector b to
be orthogonal to eigenvectors of the first (k − 1) profile-R2.

Since the estimation of SDR directions does not automatically lead to variable
selection, various methods have been developed to perform dimension reduction
and variable selection simultaneously for index models. For example, Li, Cook
and Nachtsheim (2005) designed a backward subset selection method based on
χ2-tests derived in Cook (2004), and Li (2007) developed the sparse SIR (SSIR)
algorithm to obtain shrinkage estimates of the SDR directions under L1 norm.
Motived by the F-test in stepwise regression and the connection between SIR and
MLR, Zhong et al. (2012) proposed a forward stepwise variable selection proce-
dure called correlation pursuit (COP) for index models.

By construction, however, the original SIR method only extracts information
from the first conditional moment, E(X|Y). When the link function f in (1.1) is
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symmetric along a direction, it will fail to recover this direction. Similarly, afore-
mentioned variable selection methods based on SIR will miss important variables
with interaction or other second-order effects. For example, if Y = X2

1 + X2
2 + ε

or Y = X1X2 + ε, then the profile-R2 between Y and X1 or X2 will always be 0.

1.2. Introducing SIRI for general index models. Consider the following sim-
ple example with p independent and normally distributed predictor variables
X = (X1,X2, . . . ,Xp)T :

Y = X1X2 + ε,(1.2)

where X ∼ MVNp(0, Ip) and ε ∼ N(0,0.1). Even if one knows that the true model
is a linear model with two-way interactions, one has to consider over p2/2 possible
terms. Most existing variable selection methods (including screening strategies)
can be too expensive to implement when one has a moderate number of predictor
variables, say p = 1000. Moreover, without any knowledge of the functional form,
it is nearly impossible to do variable and interaction detections in a forward regres-
sion setting. In this article, we show that the inverse modeling perspective of SIR
complements well the forward regression approach and can be used to our advan-
tage in detecting complex relationships. As shown in Figure 1, however, the mean
of X1 (or X2) conditional on slicing is constant (i.e., 0). Thus, existing variable
selection methods based on classic SIR cannot detect X1 or X2 here, even though
conditional variances of X1 (and X2) are significantly different across slices. The
following algorithm, SIR for variable selection via Inverse modeling (henceforth,

FIG. 1. Left panel: contour plot for the joint distribution of Y and X1 in example (1.2). Right panel:
conditional means (round dots marks) of X1 given slices of Y . Slices are indicated by different colors.
The corresponding conditional variances of X1 are (top to bottom): 2.29, 0.92, 0.41, 0.98 and 2.33,
respectively.
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SIRI), which is the main focus of this article, can find the true model with only
O(p) steps.

The SIRI algorithm. Observations are {(xi , yi)}ni=1, where xi is a p-dimensional
continuous predictor vector and yi is a univariate response.

• We divide the range of {yi}ni=1 into H nonoverlapping intervals (or “slices”)
S1, . . . , SH , with nh, the number of observations in Sh, roughly the same for
h = 1, . . . ,H .

• Let C denote the set of predictors that have been selected as relevant. Then, for
a new candidate variable Xj not in C, we compute

D̂∗
j |C = log σ̂ 2

j |C −
H∑

h=1

nh

n
log

[
σ̂

(h)
j |C

]2
,

where [σ̂ (h)
j |C ]2 is the estimated error variance by regressing Xj on XC in the hth

slice, and σ̂ 2
j |C is the estimated error variance by regressing Xj on XC using

all the observations. Variable Xj is added to C if D̂∗
j |C is sufficiently large, and

ignored otherwise.
• Each variable within C is reexamined using the D̂∗ statistic for possible removal.
• The above two steps are repeated until no more variables can be added to or

removed from C.

Note that one always starts SIRI with C = ∅, in which case D̂∗
j |C is reduced

to a contrast of the within-slice versus between-slice variances: D̂∗
j = log σ̂ 2

j −∑H
h=1(nh/n) log[σ̂ (h)

j ]2. This test statistic can be used as a sure independence
screening criterion when p is extremely large to reduce the set of candidate pre-
dictors. The full recursive SIRI procedure based D̂∗

j |C can then be applied to the
reduced set of variables.

To illustrate, we generated 200 observations from example (1.2) and divided the
range of y into 5 slices with 40 observations in each slice, that is, p = 1000, H = 5,
n = 200 and nh = 40. We found that (nD̂∗

1) = 62.48 and (nD̂∗
2) = 56.03 are

highly significant compared with their null distributions, which will be shown to
be asymptotically χ2(8) [empirically we observed that maxj∈{3,4,...,1000}(nD̂∗

j ) =
28.46]. So both X1 and X2 can be easily detected from the screening stage. We
also tested whether X2 can be correctly selected conditioning on X1 by calculating
(nD̂∗

2|{1}) = 148.83. This is also highly significant compared to its null distribution,

which is asymptotically χ2(12) [or to contrast with maxj∈{3,4,...,1000}(nD̂∗
j |{1}) =

31.85]. We were thus able to detect both X1 and X2 with a computational com-
plexity of O(p).

Note that our main goal here is to select relevant predictors without explicitly
stating analytic forms through which they influence y. We leave the construction
of a specific parametric form to downstream analysis, which can be applied to a
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small number of selected predictors. For example, to pinpoint the specific inter-
action term X1X2 in example (1.2), one can apply linear-model based methods
to an expanded set of predictors that includes multiplicative interactions between
selected variables {X1,X2}.

1.3. Related work. There has been considerable effort in fitting models with
interactions and other nonlinear effects in recent statistical literatures. For example,
Ravikumar et al. (2009) introduced SpAM (sparse additive nonparametric regres-
sion model) that generalizes sparse linear models to the additive, nonparametric
setting. Bien, Taylor and Tibshirani (2013) developed hierNet, an extension of
Lasso to consider interactions in a model if one or both variables are marginally
important (referred to as hierarchical interactions by the authors). Li, Zhong and
Zhu (2012) proposed a sure independence screening procedure based on distance
correlation (DC-SIS) that is shown to be capable of detecting important variables
when interactions are presented.

The inverse modeling perspective that motivates this paper has been taken by
several researchers and has led to new developments in dimension reduction and
variable selection methods. Cook (2007) proposed inverse regression models for
dimension reduction, which have deep connections with the SIR method. Simon
and Tibshirani (2012) proposed a permutation-based method for testing interac-
tions by exploring the connection between the forward logistic model and the
inverse normal mixture model when the response Y is binary. Another classical
method derived from the inverse modeling perspective is the naïve Bayes classifier
for classifications with high dimensional features. Although Naïve Bayes classifier
is limited by its strong independence assumption, it can be generalized by model-
ing the joint distribution of features. Murphy, Dean and Raftery (2010) proposed a
variable selection method using Bayesian information criterion (BIC) for model-
based discriminant analysis. Zhang and Liu (2007) proposed a Bayesian method
called BEAM to detect epistatic interactions in genome-wide case–control studies,
where Y is binary and the X are discrete.

The rest of the article is organized as follows. At the beginning of Section 2,
we introduce an inverse model of predictors given slices of response and explore
its link with SIR. A likelihood-ratio test statistic for selecting relevant predictors
under this model is derived in Section 2.1, which is shown to be asymptotically
equivalent to the COP statistic in Zhong et al. (2012). We augment the inverse
model to detect predictors with second-order effects in Section 2.2. A sure inde-
pendence screening criterion based on the augmented model is proposed in Sec-
tion 2.3. A few theoretical results regarding selection consistency of the proposed
methods are described in Section 3. By cross-stitching independence screening and
likelihood-ratio tests, an iterative stepwise procedure that we referred to as SIRI
is developed in Section 4. Various implementation issues including the choices of
slicing schemes and thresholds are also discussed. Simulations and real data ex-
amples are reported in Sections 5 and 6. Additional remarks in Section 7 conclude
the paper. Proofs of the theorems are provided in the Appendix.
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2. Variable selection via a sliced inverse model. Let Y ∈ R be a univariate
response variable and X = (X1,X2, . . . ,Xp)T ∈ R

p be a vector of p continuous
predictor variables. Let {(xi , yi)}ni=1 denote n independent observations on (X, Y ).
For discrete responses, the yi ’s can be naturally grouped into a finite number of
classes. For continuous responses, we divide the range of {yi}ni=1 into H disjoint
intervals S1, . . . , SH , also known as “slices.” Let S(Y ) indicate the slice member-
ship of response Y , that is, S(Y ) = h if Y ∈ Sh. For a fixed slicing scheme, we
denote nh = |Sh| ≡ nsh where

∑H
h=1 sh = 1.

To view SIR from a likelihood perspective, we start with a seemingly different
model. We assume that the distribution of predictors given the sliced response is
multivariate normal:

X|Y ∈ Sh ∼ MVN(μh,�), 1 ≤ h ≤ H,(2.1)

where μh ∈ μ+V
q belongs to a q-dimensional affine space, Vq is a q-dimensional

subspace (q < p) and μ ∈ R
p . Alternatively, we can write μh = μ + �γh, where

γh ∈R
q and � is a p by q matrix whose columns form a basis of the subspace Vq .

Although this representation is only unique up to an orthogonal transformation on
the bases �, the subspace Vq is unique and identifiable. The following proposition
proved by Szretter and Yohai (2009) links the inverse model (2.1) with SIR.

PROPOSITION 1. The maximum likelihood estimate (MLE) of the subspace Vq

in model (2.1) coincides with the subspace spanned by SDR directions estimated
from the SIR algorithm.

2.1. Likelihood-ratio tests for detecting variables with mean effects. For the
purpose of variable selection, we partition predictors into two subsets: a set of
relevant predictors indexed by A and a set of redundant predictors indexed by Ac,
and assume the following model:

XA|Y ∈ Sh ∼ MVN
(
μh ∈ μ +V

q,�
)
,

(2.2)
XAc |XA, Y ∈ Sh ∼ MVN

(
α + βT XA,�0

)
.

That is, we assume that the conditional distribution of relevant predictors follows
the inverse model (2.1) of SIR and has a common covariance matrix in different
slices. Given the current set of selected predictors indexed by C with dimension d

and another predictor indexed by j /∈ C, we propose the following hypotheses:

H0 :A= C v.s. H1 :A= C ∪ {j}.
Let Lj |C denote the likelihood-ratio test statistic for testing H1 against H0. In Jiang
and Liu (2014), we showed that the scaled log-likelihood-ratio test statistic is given
by

D̂j |C = 2

n
log(Lj |C) =

q∑
k=1

log
(

1 + λ̂d+1
k − λ̂d

k

1 − λ̂d+1
k

)
,(2.3)
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where λ̂d
k and λ̂d+1

k are estimates of the kth profile-R2 based on xC and xC∪{j},
respectively. Since

λ̂d+1
k −λ̂d

k

1−λ̂d+1
k

P→0 as n → ∞ under H0 and that log(1 + t) = t +
O(t2), we have

2 log(Lj |C) = (nD̂j |C) = n

q∑
k=1

λ̂d+1
k − λ̂d

k

1 − λ̂d+1
k

+ op(1)
d→χ2(q).

This expression coincides with the COP statistics proposed by Zhong et al. (2012),
which are defined as

COPd+1
k = n

λ̂d+1
k − λ̂d

k

1 − λ̂d+1
k

, k = 1,2, . . . , q and COPd+1
1 : q =

q∑
k=1

COPd+1
k .

For all the predictors indexed by j ∈ Cc, we can also obtain the asymptotic joint
distribution of 2 log(Lj |C) = (nD̂j |C) under the null hypothesis with fixed number
of predictors p and as n → ∞,

2 log(Lj |C) = (nD̂j |C)j∈Cc
d→

( q∑
k=1

z2
kj

)
j∈Cc

,(2.4)

where zk = (zkj )j∈Cc ∼ MVN(0, [Corr(Xi,Xj |XC)]i,j∈Cc ) and zk’s are indepen-
dent. Furthermore, we can show that, as n → ∞,

D̂j |C
a.s.→ Dj |C

= log
(

1 + Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

)
,

where Mj = E(Xj |XC, S(Y )), Vj = Var(Xj |XC, S(Y )) and S(Y ) = h when Y ∈
Sh (1 ≤ h ≤ H). By the Cauchy–Schwarz inequality and the normality assump-
tion,

Dj |C = 0 iff E(Xj |XC, Y ∈ Sh) = E(Xj |XC), 1 ≤ h ≤ H.

That is, the test statistic D̂j |C almost surely converges to zero if the conditional
mean of Xj is independent of slice membership S(Y ). See Jiang and Liu (2014)
for detailed proofs about properties of D̂j |C .

Given thresholds νa > νd and the current set of selected predictors indexed by C,
we can select relevant variables by iterating the following steps until no new addi-
tion or deletion occurs:

• Addition step: find ja such that D̂ja |C = maxj∈Cc D̂j |C ; let C = C + {ja} if
D̂ja |C > νa .

• Deletion step: find jd such that D̂jd |C−{jd } = minj∈C D̂j |C−{j}; let C = C − {jd}
if D̂jd |C−{jd } < νd .

In Section 3.1, we will study the selection consistency of the foregoing proce-
dure under model (2.2), allowing for the number of predictors p to grow with the
sample size n.
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2.2. Detecting variables with second-order effects. Let us revisit exam-
ple (1.2). As illustrated in Figure 1, we have E(Xj |Y ∈ Sh) = 0 for j = 1,2 and
1 ≤ h ≤ H . Starting with C = ∅, the stepwise procedure in Section 2.1 fails to
capture either X1 or X2 since D1|C=∅ = D2|C=∅ = 0. In order to detect predic-
tors with different (conditional) variances across slices, such as X1 and X2 in this
example, we augment model (2.2) to a more general form,

XA|Y ∈ Sh ∼ MVN(μh,�h),
(2.5)

XAc |XA, Y ∈ Sh ∼ MVN
(
α + βT XA,�0

)
,

which differs from model (2.2) in its allowing for slice-dependent means and co-
variance matrices for relevant predictors. To guarantee identifiability, variables in-
dexed by A in model (2.5) have to be minimally relevant, that is, A does not
contain any predictor that is conditionally independent of Y given the remaining
predictors in A. Jiang and Liu (2014) gave a rigorous proof of the uniqueness of
minimally relevant predictor set A.

By following the same hypothesis testing framework as in Section 2.1, we
can derive the scaled log-likelihood-ratio test statistic under the augmented
model (2.5):

D̂∗
j |C = log σ̂ 2

j |C −
H∑

h=1

nh

n
log

[
σ̂

(h)
j |C

]2
,(2.6)

where C is the set of currently selected predictors and j ∈ Cc, [σ̂ (h)
j |C ]2 is the esti-

mated variance by regressing Xj on XC in slice Sh, and σ̂ 2
j |C is the estimated vari-

ance by regressing Xj on XC using all the observations. Although model (2.5) in-
volves more parameters than model (2.2), by relaxing the homoscedastic constraint
on the distribution of relevant predictors across slices, the form of the likelihood-
ratio test statistic in (2.6) appears simpler than that in (2.3). The augmented test
statistic (nD̂∗

j |C) was used to select relevant predictors in the illustrative example
of Section 1.2.

Under the assumption that A ⊂ C with |C| = d , we can derive the exact and
asymptotic distribution of (nD̂∗

j |C):

nD̂∗
j |C ∼ n log

(
1 + Q0∑H

h=1 Qh

)
−

H∑
h=1

nh

n
log

(
Qh/nh∑H
h=1 Qh/n

)
d→ χ2(

(H − 1)(d + 2)
)
,

where Q0 ∼ χ2((H −1)(d +1)) and Qh ∼ χ2(nh − (d +1)) (1 ≤ h ≤ H ) are mu-
tually independent according to Cochran’s theorem. For all the predictors indexed
by j ∈ Cc, we can also obtain the asymptotic joint distribution of (nD̂∗

j |C) under
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the assumption that A ⊂ C (with p fixed and n → ∞):

(
nD̂∗

j |C
)
j∈Cc

d→
(

(H−1)(d+1)∑
i=1

z2
ij +

H−1∑
i=1

z̃2
ij

)
j∈Cc

,(2.7)

where zi ’s and z̃i ’s are mutually independent with

zi = (zij )j∈Cc ∼ MVN
(
0,

[
Corr(Xj ,Xk|XC)

]
j,k∈Cc

)
and

z̃i = (̃zij )j∈Cc ∼ MVN
(
0,

[
Corr2(Xj ,Xk|XC)

]
j,k∈Cc

)
.

When the number of predictors p is fixed and the sample size n → ∞,

D̂∗
j |C

a.s.→ D∗
j |C

= log
(

1 + Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

)
+ logE(Vj ) −E log(Vj ),

where Mj = E(Xj |XC, S(Y )), Vj = Var(Xj |XC, S(Y )) and S(Y ) = h when Y ∈
Sh (1 ≤ h ≤ H ). According to the Cauchy–Schwarz inequality and Jensen’s in-
equality,

D∗
j |C = 0 iff E(Xj |XC, Y ∈ Sh) = E(Xj |XC) and

Var(Xj |XC, Y ∈ Sh) = Var(Xj |XC),

for 1 ≤ h ≤ H . That is, the augmented test statistic D̂∗
j |C almost surely converges to

zero if both the conditional mean and the conditional variance of Xj is independent
of slice membership S(Y ). Detailed proofs of these properties are collected in
Jiang and Liu (2014).

A forward-addition backward-deletion algorithm similar to the stepwise proce-
dure proposed in Section 2.1 can be used with the augmented likelihood-ratio test
statistic D̂∗

j |C . In Section 3.2, we will provide theoretical results on the selection

consistency of stepwise procedure based on D̂∗
j |C .

2.3. Sure independence screening strategy: SIS∗. When dimensionality p is
very large, the performance of the stepwise procedure can be compromised. We
recommend adding an independence screening step to first reduce the dimension-
ality from ultra-high to moderately high. A natural choice of the test statistic for
the independence screening procedure is D̂∗

j |C with C = ∅, that is,

D̂∗
j = log σ̂ 2

j −
H∑

h=1

nh

n
log

[
σ̂

(h)
j

]2
,
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where [σ̂ (h)
j ]2 is the estimated variance of Xj in slice Sh, and σ̂ 2

j is the estimated
variance of Xj using all the observations. In Section 3.3, we will show that if we
rank predictors according to {D̂∗

j ,1 ≤ j ≤ p}, then the sure independence screen-
ing procedure, which we call SIS∗, that takes the first o(n) predictors has a high
probability (almost surely) of including relevant predictors that have either differ-
ent means or different variances across slices.

3. Theoretical results. We here establish the selection consistency for proce-
dures introduced in Sections 2.1 and 2.2, as well as the SIS∗ screening strategy in
Section 2.3.

3.1. Selection consistency under homoscedastic model. To proceed, we need
the following concept to study the detectability of relevant predictors under
model (2.2).

DEFINITION 1 (First-order detectable). We say a collection of predictors in-
dexed by C0 is first-order detectable if there exist κ ≥ 0 and ξ0 > 0 such that for
any set of predictors indexed by C and Cc ∩ C0 = ∅,

max
j∈Cc∩C0

[
Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

]
≥ ξ0n

−κ ,

where Mj = E(Xj |XC, S(Y )) and Vj = Var(Xj |XC, S(Y )).

In the above definition, we allow the distribution of the random samples (X, Y )

to be dependent on the sample size n. For any first-order detectable predictor, its
conditional means given other predictors and different slices are not all identical
and differences among these conditional means are not too small relative to the
sample size. The following example illustrates the implication of Definition 1.

EXAMPLE 1. Suppose Y is divided into two slices and there are two predictors
(X1,X2). Conditional distributions of the X given the slices are(

X1

X2

) ∣∣∣∣Y ∈ S1 ∼ MVN
((

1
1

)
,

(
1 1
1 2

))
and(

X1

X2

) ∣∣∣∣Y ∈ S2 ∼ MVN
((−1

−1

)
,

(
σ 2 σ 2

σ 2 2σ 2

))
.

It is easy to show that X1 is first-order detectable but X2 is not because
E(X2|X1, Y ∈ Sh) = X1, which is identical for h = 1,2. If σ 2 = 1, X2 and Y

are conditionally independent given X1, and X2 is indeed redundant for predicting
Y if we have already included X1. If σ 2 = 1, however, Var(X2|X1, Y ∈ Sh) de-
pends on h, and thus, X2 is relevant for predicting Y even if we have included X1.
However, procedures that can only detect first-order detectable predictors will miss
X2 in this case.
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Suppose the following conditions hold for predictors X with dimension p.

CONDITION 1. There exist 0 < τmin < τmax < ∞ such that

τmin ≤ λmin
(
Cov(X|Y ∈ Sh)

)
< λmax

(
Cov(X|Y ∈ Sh)

) ≤ τmax,

and that

λmax
(
Cov(X)

) ≤ τmax,

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues, respec-
tively, of a positive definite matrix.

CONDITION 2. p = O(nρ) as n → ∞ with ρ > 0 and 2ρ + 2κ < 1, where κ

is the same constant as in Definition 1.

Condition 1 excludes singular cases when some predictors are constants or
highly correlated. Assuming that Condition 1 holds, Jiang and Liu (2014) gave an
equivalent characterization of first-order detectable predictors under model (2.2).
Condition 2 allows the number of predictors p to grow with the sample size n but
the growth rate cannot exceed n1/2−κ . In situations when p is larger than n1/2−κ ,
we can first use the screening strategy SIS∗ introduced in Section 2.3 to reduce the
dimensionality. In Section 3.3, we will show theoretically that SIS∗ can be used to
deal with scenarios when p is much larger than n. The following theorem, which is
proved in Appendix A.1, guarantees that the stepwise procedure described in Sec-
tion 2.1 is selection consistent for first-order detectable predictors if two thresholds
νa and νd are chosen appropriately.

THEOREM 1. Under model (2.2), Conditions 1 and 2, if the set of relevant
predictors indexed by A is first-order detectable with constant κ , then there exists
constant c > 0 such that

Pr
(

min
C : Cc∩A=∅

max
j∈Cc

D̂j |C ≥ cn−κ
)

≥ 1 − O

(
p(p + 1)q exp

(
−N1

n1−2κ

p2q2

))
→ 1

and

Pr
(

max
C : Cc∩A=∅

max
j∈Cc

D̂j |C <
c

2
n−κ

)

≥ 1 − O

(
p(p + 1)q exp

(
−N2

n1−2κ

p2q2

))
→ 1,

as n → ∞, where N1 and N2 are positive constants.
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The first convergence result implies that as long as the set of currently selected
predictors C does not contain all relevant predictors in A, that is, Cc ∩A = ∅, with
probability going to 1 (n → ∞) we can find a predictor j ∈ Cc such that the test
statistic D̂j |C ≥ cn−κ . Thus, if we choose the threshold νa = cn−κ in the stepwise
procedure, the addition step will not stop selecting variables until all relevant pre-
dictors have been included. On the other hand, once all relevant predictors have
been included in C, that is, Cc ∩ A = ∅, the second result guarantees that, with
probability going to 1, D̂j |C < (c/2)n−κ < νa for any predictor j ∈ Cc. Thus, the
addition step will stop selecting other predictors into C. Consequently, if we choose
νd = (c/2)n−κ in the deletion step, then all redundant variables will be removed
from the set of selected variables until C = A as n → ∞.

3.2. Selection consistency under augmented model. Under model (2.5), we
can further extend the definition of detectability to include predictors with interac-
tions and other second-order effects.

DEFINITION 2 (Second-order detectable). We call a collection of predictors
indexed by C2 second-order detectable given predictors indexed by C1 if C2 ∩ C1 =
∅, and for any set C satisfying C1 ⊂ C and C2 ⊂ C, there exist constants ξ1, ξ2 > 0
and κ ≥ 0 such that either

max
j∈Cc∩C2

[
Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

]
≥ ξ1n

−κ ,(3.1)

or

max
j∈Cc∩C2

[
log(EVj ) −E log(Vj )

] ≥ ξ2n
−κ ,

where Mj = E(Xj |XC, S(Y )), Vj = Var(Xj |XC, S(Y )).

In other words, if the current selection C contains C1, then there always exist
detectable predictors conditioning on currently selected variables until we include
all the predictors indexed by C2. A relevant predictor Xj indexed by j /∈ C2 is
not second-order detectable given C1 either because it is highly correlated with
some other predictors, or its effect can only be detected when conditioning on
predictors that have not been included in C1. Based on Definition 2, we define
stepwise detectable as follows.

DEFINITION 3 (Stepwise detectable). A collection of predictors indexed by
T0 is said to be 0-stage detectable if XT0 is second-order detectable conditioning
on an empty set, and a collection of predictors indexed by Tm is said to be m-stage
detectable (m ≥ 1) if XTm is second-order detectable given predictors indexed by⋃m−1

i=1 Ti . Finally, a predictor indexed by j is said to be stepwise detectable if
j ∈ ⋃∞

i=1 Ti .
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According to Definition 1, given the same constant κ , there exists ξ1 such that
the set of first-order detectable predictors defined in Definition 1 is contained in
the set of stepwise detectable predictors. The following simple example illustrates
the usefulness of foregoing definitions.

EXAMPLE 2. Suppose Y is divided into two slices and there are only two
predictors (X1,X2). Conditional distributions given the slices are(

X1

X2

) ∣∣∣∣Y ∈ S1 ∼ MVN
((

0
0

)
,

(
σ 2

1 1
1 1

))
and(

X1

X2

) ∣∣∣∣Y ∈ S2 ∼ MVN
((

0
0

)
,

(
σ 2

2 −1
−1 1

))
,

where σ 2
1 , σ 2

2 > 1. When σ 2
1 = σ 2

2 and the sample size n is large enough, X1 is
0-stage second-order detectable (without conditioning on any other predictor), and
X2 is 1-stage second-order detectable conditioning on X1 because the conditional
distribution, X2|X1, Y ∈ Sh ∼ N((−1)h+1X1/σ

2
h ,1 − 1/σ 2

h ), is different for h = 1
and 2. Thus, both X1 and X2 are stepwise detectable. When σ 2

1 = σ 2
2 , although X1

and X2 are relevant predictors since the two conditional distributions are different,
none of them are stepwise detectable. In this case, no stepwise procedure that
selects one variable at a time is able to “detect” either X1 or X2.

In Appendix A.2, we prove the following theorem, which guarantees that by
appropriately choosing thresholds, the stepwise procedure will keep adding pre-
dictors until all the stepwise detectable predictors have been included, and keep
removing predictors until all the redundant variables have been excluded.

THEOREM 2. Under model (2.5), Conditions 1 and 2, if all the relevant pre-
dictors indexed by A are stepwise detectable with constant κ , then there exists
constant c∗ > 0 such that as n → ∞,

Pr
(

min
C : Cc∩A=∅

max
j∈Cc

D̂∗
j |C ≥ c∗n−κ

)
≥ 1 − O

(
p(p + 1)(H + 1) exp

(
−M1

n1−2κ

p2H 2

))
→ 1

and

Pr
(

max
C : Cc∩A=∅

max
j∈Cc

D̂∗
j |C <

c∗

2
n−κ

)

≥ 1 − O

(
p(p + 1)(H + 1) exp

(
−M2

n1−2κ

p2H 2

))
→ 1,

where M1 and M2 are positive constants.

Therefore, by appropriately choosing the thresholds, the stepwise procedure
based on D̂∗

j |C is consistent in identifying stepwise detectable predictors.
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3.3. Sure independence screening property of SIS∗.

DEFINITION 4 (Individually detectable). We call a predictor Xj individually
detectable if there exist constants ξ1, ξ2 > 0 and κ ≥ 0 such that either

Var(E(Xj |S(Y )))

E(Var(Xj |S(Y )))
≥ ξ1n

−κ ,(3.2)

or

logE
(
Var

(
Xj |S(Y )

)) −E log
[
Var

(
Xj |S(Y )

)] ≥ ξ2n
−κ .

Simply put, individually detectable predictors have either different means or dif-
ferent variances across slices. Therefore, in the example (1.2), both X1 and X2 are
individually detectable because Var(X1|Y ∈ Sh) and Var(X2|Y ∈ Sh) (1 ≤ h ≤ H )
are different across slices. Note that not all stepwise detectable predictors accord-
ing to Definition 3 are individually detectable. In Example 2 with σ1 = σ2, X2 has
the same distribution given Y ∈ S1 or Y ∈ S2, but the conditional distributions of
X2 given X1 are different in two slices. That is, X2 is stepwise detectable. How-
ever, an independence screening method can only pick up variable X1, but not X2.

Theorem 3, which is proved in Jiang and Liu (2014), shows that SIS∗ almost
surely includes all the individually detectable predictors under the following con-
dition with ultra-high dimensionality of predictors.

CONDITION 3. log(p) = O(nγ ) as n → ∞ with 0 < γ + 2κ < 1, where κ is
the same constant as in (3.2). Furthermore, the number of the relevant predictors
|A| ≤ nη with η + 2κ < 1/2.

THEOREM 3. Under Conditions 1 and 3, if all the relevant predictors indexed
by A are individually detectable, then there exist c > 0 and C > 0 such that

Pr
(
min
j∈A D̂∗

j ≥ cn−κ
)

≥ 1 − O

(
p(H + 1) exp

(
−L1

n1−2κ

H 2

))
→ 1

and

Pr
(∣∣{j : D̂∗

j ≥ cn−κ ,1 ≤ j ≤ p
}∣∣ ≤ Cnκ+η)

≥ 1 − O

(
p(H + 1) exp

(
−L2

n1−2κ

H 2

))
→ 1,

where L1 and L2 are positive constants.
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According to Theorem 3, we can first use SIS∗, which is based on {D̂∗
j ,1 ≤

j ≤ p}, to reduce the dimensionality from p to a scale between nκ+η and n1/2−κ

(since η + κ < 1/2 − κ under Condition 3), and then apply the stepwise proce-
dure proposed in the previous sections, which is consistent with dimensionality
below n1/2−κ . As discussed above, predictors that are stepwise detectable accord-
ing to Definition 3 are not necessarily individually detectable. Fan and Lv (2008)
advocated an iterative procedure that alternates between a large-scale screening
and a moderate-scale variable selection to enhance the performance, which will be
discussed in the next section.

4. Implementation issues: Cross-stitching and cross-validation. The sim-
ple model (2.2) and the augmented model (2.5) compensate each other in terms
of the bias-variance trade-off. Given finite observations, model (2.2) is simpler
and more powerful when the response is driven by some linear combinations of
covariates, while model (2.5) is useful in detecting variables with more complex
relationships such as heteroscedastic effects or interactions. Similarly, the SIS∗
procedure introduced in Section 2.3 is very useful when we have a very large num-
ber of predictors, but it cannot pick up stepwise detectable predictors that have the
same marginal distributions across slices. To find a balance between simplicity and
detectability, we propose the following cross-stitching strategy:

• Step 0: initialize the current selection C = ∅; rank predictors according to
{D̂∗

j ,1 ≤ j ≤ p} and select a subset of predictors, denoted as S , using SIS∗;
• Step 1: select predictors from set S \ C by using the stepwise procedure with

addition and deletion steps based on D̂j |C in (2.3) and add the selected predictors
into C;

• Step 2: select predictors from set S \ C by using the stepwise procedure with
addition and deletion steps based on D̂∗

j |C in (2.6) and add the selected predictors
into C;

• Step 3: conditioning on the current selection C, rank the remaining predictors
based on {D̂∗

j |C, j /∈ C}, update set S using SIS∗, and iterate steps 1–3 until no
more predictors are selected.

We name the proposed procedure sliced inverse regression for variable selection
via inverse modeling, or SIRI for short. A flowchart of the SIRI procedure is illus-
trated in Figure 2.

Theoretically, step 2 is able to detect both linear and more complex relationships
and D̂∗

j |C picks up a larger set than D̂j |C does. However, in practice, we have to use
a relatively large threshold in step 2 to control the number of false positives and
thus may falsely discard linear predictors when their effects are weak. Empirically,
we have found that adding step 1 will enhance the performance of SIRI in linear or
near-linear models, while having almost no effects on its performances in complex
models with interaction or other second-order terms.
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FIG. 2. Flowchart of SIRI.

In the addition step of the stepwise procedure, instead of selecting the variable
from Cc with the maximum value of D̂j |C (or D̂∗

j |C), we may also sequentially

add variables with D̂j |C > νa (or D̂∗
j |C > ν∗

a ). Specifically, given thresholds νa >

νd and the current set of selected predictors indexed by C, we can modify each
iteration of the original stepwise procedure as following:

• Modified addition step: for each variable j ∈ {1, . . . , p}, let C = C+{j} if j /∈ C
and D̂j |C > νa .

• Deletion step: find jd such that D̂jd |C−{jd } = minj∈C D̂j |C−{j}; let C = C − {jd}
if D̂jd |C−{jd } < νd .

The stepwise procedure with the modified addition step may use fewer iterations
to find all relevant predictors and will not stop until all relevant predictors have
been included if we choose νa = cn−κ in Theorem 1. However, in practice, the
performance of the modified procedure depends on the ordering of the variables
and is less stable than the original procedure. Since we are less concerned about
the computational cost of SIRI, we implement the original addition step in the
following study.

In our previous discussions, we have assumed that a fixed slicing scheme is
given. In practice, we need to choose a slicing scheme. If we assume that there is
a true slicing scheme from which data are generated, Jiang and Liu (2014) showed
that the power of the stepwise procedure tends to increase with a larger number
of slices, but there is no gain by further increasing the number of slices once the
slicing is already more refined than the true slicing scheme. In practice, the true
slicing scheme is usually unknown (except maybe in cases when the response is
discrete). When a slicing scheme uses a larger number of slices, the number of
observations in each slice decreases, which makes the estimation of parameters
in the model less accurate and less stable. We observed from intensive simulation
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studies that, with a reasonable number of observations in each slice (say 40 or
more), a larger number of slices is preferred.

We also need to choose the number of effective directions q in model (2.2)
and thresholds for deciding to add or to delete variables. Sections 2 and 3 charac-
terize asymptotic distributions and behaviors of stepwise procedures, and provide
some theoretical guidelines for choosing the thresholds. However, these theoreti-
cal results are not directly usable because: (1) the asymptotic distributions that we
derived in (2.4) and (2.7) are for a single addition or deletion step; (2) the consis-
tency results are valid in asymptotic sense and the rate of increase in dimension
relative to sample size is usually unknown. In practice, we propose to use a K-
fold cross-validation (CV) procedure for selecting thresholds and the number of
effective directions q .

We consider two performance measures for K-fold cross-validations: classi-
fication error (CE) and mean absolute error (AE). Suppose there are n training
samples and m testing samples. The j th observation (j = 1,2, . . . ,m) in the test-
ing set has response yj and slice membership S(yj ) (the slicing scheme is fixed

based on training samples). Let p
(h)
j = Pr(S(yj ) = h|X = xj , θ̂) be the estimated

probability that the observation j is from slice Sh, where θ̂ denotes the maximum
likelihood estimate of model parameters. The classification error is defined as

CE = 1

m

m∑
j=1

I

[
S(yj ) = argmax

h

(
p

(h)
j

)]
.

We denote the average response of training samples in slice Sh as

ȳ(h) =
∑n

i=1 I[S(yi) = h]yi∑n
i=1 I[S(yi) = h] , h = 1,2, . . . ,H.

The absolute error is defined as

AE = 1

m

m∑
j=1

∣∣∣∣∣yj −
H∑

h=1

p
(h)
j ȳ(h)

∣∣∣∣∣.
CE is a more relevant performance measure when the response is categorical or
there is a nonsmooth functional relationship (e.g., rational functions) between the
response and predictors, and AE is a better measure when there is a monotonic
and smooth functional relationship between the response and predictors. There
are other measures that have compromising features between these two measures,
such as median absolute deviation, which will not be explored here. We will use
CE and AE as performance measures throughout simulation studies and name the
corresponding methods SIRI-AE and SIRI-CE, respectively.
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5. Simulation studies. In order to facilitate fair comparisons with other exist-
ing methods that are motivated from the forward modeling perspective, examples
presented here are all generated under forward models, which violates the basic
model assumption of SIRI. The setting of the simulation also demonstrates the ro-
bustness of SIRI when some of its model assumptions are violated, especially the
normality assumption on relevant predictor variables within each slice.

5.1. Independence screening performance. We first compare the variable
screening performance of SIRI with iterative sure independence screening (ISIS)
based on correlation learning proposed by Fan and Lv (2008) and sure indepen-
dence screening based on distance correlation (DC-SIS) proposed by Li, Zhong
and Zhu (2012). We evaluate the performance of each method according to the
proportion that relevant predictors are placed among the top [n/ log(n)] predictors
ranked by it, with larger values indicating better performance in variable screening.

In the simulation, the predictor variables X = (X1,X2, . . . ,Xp)T were gen-
erated from a p-variate normal distribution with meanu 0 and covariances
Cov(Xi,Xj ) = ρ|i−j | for 1 ≤ i, j ≤ p. We generate the response variable from
the following three scenarios:

Scenario 0.1: Y = X2 − ρX1 + 0.2X100 + σε,

Scenario 0.2: Y = X1X2 + σe2|X100|ε,

Scenario 0.3: Y = X100

X1 + X2
+ σε,

where sample size n = 200, σ = 0.2, and ε ∼ N(0,1) independent of X. For each
scenario, we simulated 100 data sets according to six different settings with di-
mension p = 2000 or 5000 and correlation ρ = 0.0, 0.5 or 0.9. Scenario 0.1 is a
linear model with three additive effects. The way X1 is introduced is to make it
marginally uncorrelated with the response Y (note that when ρ = 0.0, X1 is not
a relevant predictor). We added another variable X100 that has negligible correla-
tion with X1 and X2 and a very small correlation with the response Y . Scenario
0.2 contains an interaction term X1X2 and a heteroscedatic noise term determined
by X100. Scenario 0.3 is an example of a rational model with interactions.

Proportions that relevant predictors are placed among the top [n/ log(n)] by
different screening methods are shown in Table 1. Under Scenario 0.1 with linear
models, we can see that ISIS and DC-SIS had better power than SIRI in detect-
ing variables that are weakly correlated with the response (X100 in this example).
When predictors are correlated (Settings 2–3 and 4–5), iterative procedures, ISIS
and SIRI, were more effective in detecting variables that are marginally uncorre-
lated with the response (X1 in this example) compared with DC-SIS. Under Sce-
nario 0.2, ISIS based on linear models failed to detect the variables in the interac-
tion term and often misses the predictor in the heteroscedastic noise term. When
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TABLE 1
The proportions that relevant predictors are placed among the top [n/ log(n)] by different screening

methods under Scenarios 0.1–0.3 in Section 5.1

Scenario 0.1 Scenario 0.2 Scenario 0.3

Method X1 X2 X100 X1 X2 X100 X1 X2 X100

Setting 1: p = 2000, ρ = 0.0
ISIS – 1.00 1.00 0.02 0.01 0.46 0.00 0.00 0.09
DC-SIS – 1.00 0.55 0.07 0.09 1.00 0.00 0.00 0.60
SIRI – 1.00 0.30 0.32 0.25 0.97 1.00 0.99 1.00

Setting 2: p = 2000, ρ = 0.5
ISIS 1.00 1.00 1.00 0.04 0.02 0.54 0.00 0.00 0.15
DC-SIS 0.02 1.00 0.71 0.55 0.53 1.00 0.03 0.00 0.59
SIRI 1.00 1.00 0.45 0.92 0.87 0.92 1.00 1.00 1.00

Setting 3: p = 2000, ρ = 0.9
ISIS 0.93 0.98 0.91 0.03 0.02 0.55 0.00 0.00 0.04
DC-SIS 0.01 0.99 1.00 0.96 0.95 1.00 0.34 0.38 0.63
SIRI 0.93 0.82 0.79 0.99 0.56 0.95 0.98 0.98 1.00

Setting 4: p = 5000, ρ = 0.0
ISIS – 1.00 1.00 0.02 0.00 0.43 0.00 0.00 0.06
DC-SIS – 1.00 0.39 0.03 0.05 1.00 0.00 0.00 0.44
SIRI – 1.00 0.14 0.15 0.16 0.99 0.99 1.00 1.00

Setting 5: p = 5000, ρ = 0.5
ISIS 1.00 1.00 1.00 0.03 0.02 0.60 0.00 0.00 0.07
DC-SIS 0.05 1.00 0.71 0.41 0.44 1.00 0.00 0.02 0.61
SIRI 1.00 1.00 0.39 0.88 0.86 0.94 0.98 1.00 0.99

Setting 6: p = 5000, ρ = 0.9
ISIS 0.86 0.99 0.87 0.02 0.03 0.34 0.00 0.00 0.03
DC-SIS 0.01 0.99 0.99 0.92 0.93 1.00 0.22 0.13 0.49
SIRI 0.82 0.79 0.74 0.95 0.53 0.90 0.85 0.99 1.00

there are moderate correlations between two predictors X1 and X2 in the interac-
tion term (Settings 2 and 4), DC-SIS picked up X1 and X2 about half of the time.
However, when the two predictors are uncorrelated (Settings 1 and 3), DC-SIS
failed to detect them. SIRI outperformed DC-SIS in detecting variables with inter-
actions for both settings with ρ = 0.0 and ρ = 0.5. Note that when there is a strong
correlation between two predictors, say X1 and X2 (Settings 3 and 5), each model
can be approximated well by a reduced model under the constraint X2 = cX1. In
this case, the noniterative procedure DC-SIS is able to pick up both variables, but
SIRI sometimes missed one of the variables since it treats the other variable as
redundant, which perhaps is the correct decision. We also notice that the noniter-
ative version of SIRI is able to detect both X1 and X2 more often than DC-SIS
(results not shown here). Under Scenario 0.3, when there is a rational relationship
between the response and the relevant predictors, SIRI significantly outperformed
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the other two methods in detecting the relevant predictors. Performances of differ-
ent methods are only slightly affected as we increase the dimension from p = 2000
to p = 5000.

5.2. Variable selection performance. We further study the variable selection
accuracy of SIRI and other existing methods in identifying relevant predictors
and excluding irrelevant predictors. In the following examples, for both SIRI and
COP, we implemented a fixed slicing scheme with 5 slices of equal size (i.e.,
H = 5) and used a 10-fold CV procedure to determine the stepwise variable
selection thresholds and the number of effective directions q in model (2.2) of
Section 2.1. Specifically, the number of effective directions q was chosen from
{0,1,2,3,4}, where q = 0 means that we skipped the variable selection step
under simple model (2.2) in the iterative procedure described by Figure 2. The
thresholds in addition and deletion steps were selected from the grid {(νi,a =
χ2(αi, q), νi,d = χ2(αi − 0.05, q))} for simple model (2.2) and from the grid
{(ν∗

i,a = n
n−H(d+2)

χ2(αi, (H − 1)(d + 2)), ν∗
i,d = n

n−H(d+2)
χ2(αi − 0.05, (H −

1)(d + 2)))} for augmented model (2.5), where χ2(α,d.f.) is the 100αth quan-
tile of χ2(d.f.) and d = |C| is the number of previously selected predictors. For a
given p, the dimension of predictors, we chose {αi} = {1 − p−1,1 − 0.5p−1,1 −
0.1p−1,1 − 0.05p−1,1 − 0.01p−1}.

The other variable selection methods to be compared with SIRI and COP in-
clude Lasso, ISIS-SCAD (SCAD with iterative sure independence screening),
SpAM and hierNet, which is a Lasso-like procedure to detect multiplicative inter-
actions between predictors under hierarchical constraints. The R packages glmnet,
SIS, COP, SAM and hierNet are used to run Lasso, ISIS-SCAD, COP, SpAM and
hierNet, respectively. For Lasso and hierNet, we select the largest regularization
parameter with estimated CV error less than or equal to the minimum estimated
CV error plus one standard deviation of the estimate. The tuning parameters SCAD
and SpAM are also selected by CV.

For variable selections under index models with linear or first-order effects,
we generated the predictor variables X = (X1,X2, . . . ,Xp)T from a multivariate
normal distribution with mean 0 and covariances Cov(Xi,Xj ) = ρ|i−j | for 1 ≤
i, j ≤ p, and simulated the response variable according to the following models:

Scenario 1.1: Y = βT X + σε, n = 200, σ = 1.0, ρ = 0.5,

β = (3,1.5,2,2,2,2,2,2,0, . . . ,0),

Scenario 1.2: Y =
∑3

j=1 Xj

0.5 + (1.5 + ∑4
j=2 Xj)2

+ σε,

n = 200, σ = 0.2, ρ = 0.0,

Scenario 1.3: Y = σε

1.5 + ∑8
j=1 Xj

, n = 1000, σ = 0.2, ρ = 0.0,
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TABLE 2
False positive (FP) and false negative (FN) values of different variable selection methods under

Scenarios 1.1–1.3

Scenario 1.1 Scenario 1.2 Scenario 1.3

Method FP (0,992) FN (0,8) FP (0,996) FN (0,4) FP (0,992) FN (0,8)

Lasso 0.59 (0.10) 0.00 (0.00) 0.08 (0.03) 1.07 (0.03) 0.00 (0.00) 8.00 (0.00)
ISIS-SCAD 0.35 (0.07) 0.00 (0.00) 0.60 (0.08) 1.02 (0.01) 5.08 (0.65) 7.97 (0.02)
hierNet 1.49 (0.19) 0.00 (0.00) 8.72 (0.36) 0.93 (0.03) 7.68 (0.48) 7.94 (0.02)
SpAM 1.29 (0.19) 0.00 (0.00) 2.44 (0.20) 0.84 (0.04) 2.49 (0.16) 7.99 (0.01)
COP 0.69 (0.12) 0.06 (0.03) 1.84 (0.16) 0.98 (0.01) 1.26 (0.13) 3.32 (0.19)
SIRI-AE 0.01 (0.01) 0.09 (0.04) 0.13 (0.04) 0.07 (0.03) 0.43 (0.08) 4.82 (0.27)
SIRI-CE 0.26 (0.05) 0.08 (0.03) 0.55 (0.08) 0.09 (0.03) 2.02 (0.17) 0.51 (0.16)

where n is the number of observations, p is the number of predictors and is set as
1000 here, and the noise ε is independent of X and follows N(0,1). Scenario 1.1
is a linear model which involves 8 true predictors and 992 irrelevant predictors.
Scenario 1.2, a multi-index model with 4 true predictors, was studied in Li (1991)
and Zhong et al. (2012), and there is a nonlinear relationship between the response
Y and two linear combinations of predictors X1 + X2 + X3 and X2 + X3 + X4.
Scenario 1.3 is a single-index model with 8 true predictors and heteroscedastic
noise.

For each simulation setting, we randomly generated 100 data sets each with n

observations and applied variable selection methods to each data set. Two quan-
tities, the average number of irrelevant predictors falsely selected as true predic-
tors (which is referred to as FP) and the average number of true predictors falsely
excluded as irrelevant predictors (which is referred to as FN), were used to mea-
sure the variable selection performance of each method. For example, under Sce-
nario 1.1, the FPs and FNs range from 0 to 992 and from 0 to 8, respectively, with
smaller values indicating better accuracies in variable selection. The FP- and FN-
values of different methods together with their corresponding standard errors (in
brackets) are reported in Table 2.

Under Scenario 1.1, variable selection methods derived from additive models
(Lasso, SCAD, SpAM and hierNet) were able to detect all the relevant predictors
(FN = 0) with few false positives. On the other hand, COP, SIRI-AE and SIRI-CE
missed some (about 10%) relevant predictors while excluded most irrelevant ones
(lower FP values). The relatively high accuracy of methods developed for linear
models is expected under this scenario, because the observations were simulated
from a linear relationship. Under Scenario 1.2, Lasso achieved the lowest false
positives, but it almost always missed one of the relevant predictor, X4, because
of its nonlinear relationship with the response. The other methods developed un-
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der the linear model assumption suffered from the same issue. However, SIRI-AE
and SIRI-CE was able to detect most of the four relevant predictors (FN = 0.09
and 0.07) with a comparable number of false positives. Under the heteroscedastic
model in Scenario 1.3, the methods based on linear models failed to detect relevant
predictors. Among other methods, SIRI-AE achieved the lowest number of false
positives (FP = 0.43) but missed about half of the relevant predictors (FN = 4.82),
while SIRI-CE selected most of the relevant predictors (FN = 0.51) with a rea-
sonably low false positives (FP = 2.02). The performance of COP was in-between
SIRI-AE and SIRI-CE with FN = 3.32 and FP = 1.26. A possible explanation for
the better performance of SIRI-CE relative to SIRI-AE in this setting is because the
generative model under Scenario 1.3 contains a singular point at

∑8
j=1 Xj = −1.5.

Since the absolute error is less robust to outliers than the classification error, SIRI-
AE is more sensitive to the inclusion of irrelevant predictors and more conservative
in selecting predictors.

Next, we consider forward models containing variables with higher-order ef-
fects. Predictor variables X1,X2, . . . ,Xp were independent and identically dis-
tributed N(0,1) random variables, and the response was generated under the fol-
lowing models given the predictors:

Scenario 2.1: Y = αX1 + αX2 + X1X2 + σε, α = 0.2, n = 200,

Scenario 2.2: Y = X1 + X1X2 + X1X3 + σε, n = 200,

Scenario 2.3: Y = X1X2 + X1X3 + σε, n = 200,

Scenario 2.4: Y = X1X2X3 + σε, n = 200,500 and 1000,

Scenario 2.5: Y = X2
1X2 + σε, n = 200,

Scenario 2.6: Y = X1

X2 + X3
+ σε, n = 200,

where n is the number of observations, p is the number of predictors and is set as
1000 here, σ = 0.2 and ε is independent of X and follows N(0,1). The models
under Scenarios 2.1 and 2.2 have strong (both and X1 and X2 have main effects
in Scenario 2.1) and weak (only X1 has main effect in Scenario 2.2) hierarchical
interaction terms, respectively. Scenario 2.3 contains predictors with pairwise mul-
tiplicative interactions and without main effects. The three-way interaction model
in Scenario 2.4 was simulated under three settings with different sample sizes:
n = 200, n = 500 and n = 1000. Scenario 2.5 contains a quadratic interaction
term and Scenario 2.6 has a rational relationship.

Because methods such as Lasso and SCAD are not specifically designed for
detecting variables with nonlinear effects and are clearly at a disadvantage, we
did not directly compare them with SIRI, SpAM and hierNet. For the purpose
of comparison, we created a benchmark method based on ISIS-SCAD by apply-
ing ISIS-SCAD to an expanded set of predictors that includes all the terms up to
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TABLE 3
False positive (FP) and false negative (FN) values of different variable selection methods under

Scenarios 2.1–2.3

Scenario 2.1 Scenario 2.2 Scenario 2.3

Method FP (0,998) FN (0,2) FP (0,997) FN (0,3) FP (0,997) FN (0,3)

ISIS-SCAD-2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.06 (0.04) 0.00 (0.00) 0.03 (0.03)
DC-SIS-SCAD-2 0.00 (0.00) 0.00 (0.00) 0.25 (0.09) 0.11 (0.03) 1.56 (0.19) 1.81 (0.11)
hierNet 10.45 (0.57) 0.00 (0.00) 10.34 (0.71) 0.02 (0.05) 12.17 (0.73) 0.04 (0.03)
SpAM 2.35 (0.30) 1.18 (0.05) 0.03 (0.02) 1.99 (0.01) 4.44 (0.29) 2.66 (0.05)
SIRI-AE 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.04 (0.02) 0.10 (0.04) 0.11 (0.05)
SIRI-CE 0.64 (0.11) 0.00 (0.00) 0.29 (0.06) 0.10 (0.04) 0.86 (0.12) 0.11 (0.05)

k-way multiplicative interactions. The corresponding method, which we referred
to as ISIS-SCAD-k, is an oracle benchmark under Scenarios 2.1–2.4 where re-
sponses were generated according to 2-way or 3-way multiplicative interactions.
Since DC-SIS as a screening tool has the ability to detect individual predictors
under the presence of second-order effects, we also augmented ISIS-SCAD with
DC-SIS and denoted the method as DC-SIS-SCAD-k. In DC-SIS-SCAD-k, we
first used DC-SIS to reduce the number of predictors. Then we expanded the se-
lected predictors to include up to k-way multiplicative interactions among them
and applied ISIS-SCAD. Because DC-SIS-SCAD-k does not need to consider all
the interaction terms among p predictors, it has a huge speed advantage over ISIS-
SCAD-k but it may fail to detect all the predictors if the DC-SIS step does not
retain all the relevant predictors. The FP- and FN-values (and their standard er-
rors) of different methods including ISIS-SCAD-k and DC-SIS-SCAD-k under
various scenarios are shown in Tables 3, 4 and 5, respectively. Note that FP- and
FN-values are calculated based on the number of predictors selected by a method,
not based on the number of parameters used in building the model. For example, if
X3, X4 and X3X4 all have nonzero coefficients from hierNet under Scenario 2.1,

TABLE 4
False positive (FP) and false negative (FN) values of different variable selection methods under

Scenario 2.4 with different sample sizes

Scenario 2.4 (n = 200) Scenario 2.4 (n = 500) Scenario 2.4 (n = 1000)

Method FP (0,997) FN (0,3) FP (0,997) FN (0,3) FP (0,997) FN (0,3)

DC-SIS-SCAD-3 0.45 (0.12) 0.85 (0.12) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
hierNet 7.99 (0.65) 2.29 (0.08) 7.83 (1.17) 2.37 (0.08) 3.66 (1.09) 2.61 (0.06)
SpAM 3.40 (0.27) 2.54 (0.06) 3.22 (0.30) 2.43 (0.07) 4.19 (0.42) 2.32 (0.07)
SIRI-AE 0.98 (0.12) 2.27 (0.06) 0.36 (0.09) 0.70 (0.07) 0.21 (0.06) 0.00 (0.00)
SIRI-CE 1.98 (0.16) 2.27 (0.07) 1.96 (0.17) 0.46 (0.05) 2.03 (0.19) 0.00 (0.00)
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TABLE 5
False positive (FP) and false negative (FN) values of different variable selection methods

Scenarios 2.5 and 2.6

Scenario 2.5 Scenario 2.6

Method FP (0,998) FN (0,2) FP (0,997) FN (0,3)

ISIS-SCAD-2 0.04 (0.02) 1.09 (0.04) 0.00 (0.00) 3.00 (0.00)
DC-SIS-SCAD-2 2.38 (0.18) 0.51 (0.05) 0.81 (0.16) 2.96 (0.02)
hierNet 0.06 (0.03) 0.97 (0.02) 6.18 (0.68) 2.92 (0.03)
SpAM 0.42 (0.09) 0.83 (0.04) 4.56 (0.32) 1.58 (0.06)
SIRI-AE 0.08 (0.03) 0.00 (0.00) 0.51 (0.11) 0.00 (0.00)
SIRI-CE 0.88 (0.11) 0.01 (0.01) 0.56 (0.11) 0.00 (0.00)

we count the number of false positives as 2, not 3. Under Scenarios 2.1–2.3, we
also compared the performances of SIRI-AE, SIRI-CE and DC-SIS-SCAD-2 when
the predictors are correlated [see Table 9 of Jiang and Liu (2014)]. In addition, to
investigate the performance of SIRI with nonnormally distributed predictor, we
simulated Scenarios 2.1–2.3 by generating predictors from the uniform distribu-
tion on (−2,2), and the results are reported in Table 9 of Jiang and Liu (2014).

Under Scenarios 2.1–2.3 of Table 3, the oracle benchmark, ISIS-SCAD-2, cor-
rectly discovered most of the relevant predictors with two-way interactions and
did not pick up any irrelevant predictor. It is encouraging to see that the perfor-
mance of the proposed method SIRI-AE was comparable with ISIS-SCAD-2 (in
terms of both false positives and false negatives), although SIRI-AE did not as-
sume the knowledge on the generative model. Moreover, since both ISIS-SCAD-2
and hierNet considered all the pairwise interactions between p predictor variables,
they have computational complexity O(np2) with p = 1000 and need much more
computational resources compared with SIRI. On average, ISIS-SCAD-2 and hi-
erNet are more than 100 times slower than SIRI (see Table 6 for running time
comparison of different methods). While we can dramatically increase the compu-
tational speed by using DC-SIS to screen variables before applying more refined

TABLE 6
Average running time (in seconds) of different variable selection methods under Scenarios 2.1–2.3,

2.5 and 2.6

Method Scenario 2.1 Scenario 2.2 Scenario 2.3 Scenario 2.5 Scenario 2.6

ISIS-SCAD-2 14,279.11 9406.27 11,581.55 10,232.31 4220.24
DC-SIS-SCAD-2 29.47 25.77 31.90 37.03 25.68
hierNet 16,625.38 26,171.28 34,733.13 37,312.59 27,255.16
SpAM 5.91 4.57 5.40 4.72 4.65
SIRI 28.86 44.85 20.01 44.36 35.26



SIR WITH VARIABLE SELECTION 1775

variable selection methods, relevant predictors may be incorrectly filtered out by
the DC-SIS procedure as shown by DC-SIS-SCAD’s higher false negative rates
under Scenario 2.3 of Table 3.

As shown in Table 9 of Jiang and Liu (2014), both false positives and false
negatives increased when predictors were moderately or highly correlated. DC-
SIS-SCAD-2 performed the best under Scenario 2.1, since it assumes the same
parametric form as the generative model, and this assumption is important for se-
lecting relevant predictors from many correlated ones. When there were multiple
pairwise interactions (Scenario 2.3), SIRI-AE outperformed DC-SIS-SCAD-2 as
DC-SIS falsely filtered out relevant predictors when their effects were weak. When
predictors were generated from the uniform distribution Unif(−2,2) [Setting 4 in
Table 9 Jiang and Liu (2014)], the performance of SIRI was relatively robust un-
der Scenarios 2.1 and 2.2 although the normality assumption is violated. Under
Scenario 2.3, magnitudes of interaction effects became much weaker when pre-
dictors were generated from Unif(−2,2) instead of the normal distribution. As a
consequence, both the FP- and FN-values increased for both SIRI-AE and SIRI-
CE compared with the normal case, and DC-SIS-SCAD-2 failed to detect relevant
predictors most of the time.

Under Scenario 2.4 with three-way interactions, the computational cost pre-
vented us from directly applying ISIS-SCAD-3 to consider all the three-way inter-
action terms. So we only compared the performance of ISIS-SCAD-3 after variable
screening using DC-SIS, that is, DC-SIS-SCAD-3 in Table 4. DC-SIS-SCAD-3
performed the best under different sample sizes as it assumed the form of the un-
derlying generative model. Among other methods, the performance of SIRI-AE
improved dramatically as sample size increased, whereas hierNet had almost no
improvement. When sample size n = 1000, SIRI-AE was able to select all rele-
vant predictors with very low false positives.

Simulations in Scenarios 2.1–2.4 were generated under the same model assump-
tion as ISIS-SCAD-k and DC-SIS-SCAD-k, which gives them advantage in the
comparison. Under Scenarios 2.5 and 2.6 of Table 5, when the generative model
goes beyond multiplicative interactions, we can see that SIRI-AE and SIRI-CE
significantly outperformed other methods in detecting relevant predictors with low
false positives. In Table 6, we record the average running time of different methods
under Scenarios 2.1–2.3, 2.5 and 2.6. As expected, SIRI and DC-SIS-SCAD were
much more computationally efficient than hierNet and ISIS-SCAD, which need to
enumerate all the pairwise interaction terms.

6. Real data examples. We applied SIRI to two real data examples. The first
example studies the problem of leukemia subtype classification with ultra-high di-
mensional features. In the second example, we treat gene expression level in em-
bryonic stem cells as a continuous response variable, and are interested in selecting
regulatory factors that interact with DNA and other factors to regulate expression
patterns of genes.
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TABLE 7
Leukemia classification results

Method Training error Test error Number of genes

SIRI-CE 0/38 1/34 8
SIS-SCAD-LD 0/38 1/34 16
Nearest shrunken centroid 1/38 2/34 21

6.1. Leukemia classification. For the first example, we applied SIRI-CE to
select features for the classification of a leukemia data set from high density
Affymetrix oligonucleotide arrays [Golub et al. (1999)] that have been previously
analyzed by Tibshirani et al. (2002) using a nearest shrunken centroid method and
by Fan and Lv (2008) using a SIS-SCAD based linear discrimination method (SIS-
SCAD-LD). The data set consists of 7129 genes and 72 samples from two classes:
ALL (acute lymphocytic leukemia) with 47 samples and AML (acute mylogenous
leukemia) with 25 samples. The data set was divided into a training set of 38 sam-
ples (27 in class ALL and 11 in class AML) and a test set of 34 samples (20 in
class ALL and 14 in class AML).

The classification results of SIRI-CE, SIS-SCAD-LD and nearest shrunken cen-
troids method are shown in Table 7. The results of SIS-SCAD-LD and the nearest
shrunken centroids method were extracted from Fan and Lv (2008) and Tibshirani
et al. (2002), respectively. SIRI-CE and SIS-SCAD-LD both made no training er-
ror and one testing error, whereas the nearest shrunken centroids method made one
training error and two testing errors. Compared with SIS-SCAD-LD, SIRI used a
smaller number of genes (8 genes) to achieve the same classification accuracy.

6.2. Identifying regulating factors in embryonic stem cells. The mouse em-
bryonic stem cells (ESCs) data set has previously been analyzed by Zhong et al.
(2012) to identify important transcription factors (TFs) for regulating gene expres-
sions. The response variable, expression levels of 12,408 genes, was quantified
using the RNA-seq technology in mouse ESCs [Cloonan et al. (2008)]. To under-
stand the ESC development, it is important to identify key regulating TFs, whose
binding profiles on promoter regions are associated with corresponding gene ex-
pression levels. To extract features that are associated with potential gene regulat-
ing TFs, Chen et al. (2008) performed ChIP-seq experiments on 12 TFs that are
known to play different roles in ES-cell biology as components of the important
signaling pathways, self-renewal regulators, and key reprogramming factors. For
each pair of gene and one of these 12 TFs, a score named transcription factor as-
sociation strength (TFAS) that was proposed by Ouyang, Zhou and Wong (2009)
was calculated. In addition, Zhong et al. (2012) supplemented the data set with
motif matching scores of 300 putative mouse TFs compiled from the TRANSFAC
database. The TF motif matching scores were calculated based on the occurrences
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TABLE 8
The ranks of 12 known ES-cell TFs (among 312 predictors) using

SIRI-AE and COP

Ranks

TF names SIRI-AE COP

E2f1 1 1
Zfx 3 3
Mycn 4 10
Klf4 5 19
Myc 6 –
Esrrb 8 –
Oct4 9 11
Tcfcp2l1 10 36
Nanog 14 –
Stat3 17 20
Sox2 18 –
Smad1 32 13

of TF binding motifs on gene promoter regions [Zhong et al. (2005)]. The data
consists of a 12,408 × 312 matrix with (i, j)th entry representing the score of the
j th TF on the ith gene’s promoter region.

Zhong et al. (2012) reported that COP selected a total of 42 predictors, which
include 8 of the 12 TFASs and 34 of the 300 TF motif scores. Here, we used
SIRI-AE to re-analyze the mouse ESCs data set and selected 34 predictors, which
include all the 12 TFASs and 22 TF motif matching scores. Relative ranks of the
12 TFASs from SIRI-AE and COP are shown in Table 8. Among the top-10 TFs
ranked by SIRI-AE, 8 of them are known ES-cell TFs. SIRI-AE is also able to
identify Nanog and Sox that are generally believed to be the master ESC regulators
but were missed in the results of COP. The ranked list of 22 other TFs seleted
by SIRI is given in Jiang and Liu (2014). A further study of these TFs whose
roles in ES cells have not been well understood could help us better understand
transcriptional regulatory networks in embryonic stem cells.

In Figure 3, we illustrate combinatorial effects of several identified TFs by plot-
ting the distribution of gene expression levels given the signs of a pair of TF motif
matching scores. In Figure 3(A), E2f1 and Zfx (ranked among top 3 by both SIRI
and COP) have additive effects, that is, the combined effect of two TFs is approx-
imately equal to the sum of their individual effects (which can be described by
a linear model). The joint effects of TFs in Figure 3(B), (C) and (D) show non-
additive patterns. For example, in Figure 3(B), gene expression levels are signif-
icantly lower when both Mycn and Zfx have negative matching scores compared
with other scenarios. A similar pattern is observed for Tcfcp2l1 and Esrrb in Fig-
ure 3(D). Figure 3(C) shows that the effect of Nanog is only present when E2f1 has
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FIG. 3. The distribution of gene expression levels given the signs (“+” or “−”) of TF motif match-
ing scores. (A) E2f1 and Zfx (ranked among top 3 by both SIRI and COP) show additive effects.
(B) Gene expression level is significantly lower when both Mycn (ranked 4 by SIRI and 10 by COP)
and Zfx have negative scores. (C) The matching score of Nanog (ranked 14 by SIRI and missed
by COP) has an effect on gene expression only when E2f1 also has a negative score. (D) Tcfcp2l1
(ranked 10 by SIRI and 36 by COP) and Esrrb (ranked 8 by SIRI and missed by COP) have nonad-
ditive effects in regulating gene expression.

a negative matching score. As a result, COP, which is based on linear combinations
of TF matching scores, misses Nanog and Esrrb while ranks Mycn and Tcfcp2l1
relatively lower. SIRI is able to identify these TFs by capturing the nonadditive
effects.

7. Concluding remarks. We study the problem of variable selection in high
dimensions from an inverse modeling perspective. The contributions of the pro-
posed procedure that we named SIRI are twofold. First, it is effective and compu-
tationally efficient in selecting relevant variables among a large set of candidates
useful for predicting the response, possibly through complex interactions and other
forms of nonlinear effects. Combined with independence screening, SIRI can be
used to detect complex relationships in ultra-high dimensionality. Second, SIRI
does not impose any specific assumption on the relationship between the predic-
tors and the response, and is a powerful tool for variable selections beyond linear
models and for detecting variables with unknown form of nonlinear effects. As a
trade-off, SIRI imposes a few assumptions on the distribution of the predictors. As
demonstrated in our simulation studies, SIRI has competitive performance when
the generative model is different from the inverse model assumption. However, we
found that SIRI is not very robust against extreme outliers in values of the predic-
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tors. Data preprocessing, such as quantile normalization, is advised when extreme
outliers are spotted from exploratory analysis. We have implemented the SIRI pro-
cedure using programming language R, and the source code can be downloaded
from http://www.people.fas.harvard.edu/~junliu/SIRI/ or requested from the au-
thors directly.

We have adopted an ad hoc rule to choose the slicing scheme in SIRI. By al-
lowing adaptive choices of slices based on observed data, we are currently de-
veloping a dynamic programming algorithm to find the optimal slicing scheme
under a sliced inverse model. Theoretical studies of such an algorithm, however, is
more challenging and delicate. Like other stepwise procedures such as linear step-
wise regression, SIRI may encounter issues that are typical to stepwise variable
selection methods as discussed in Miller (1984). When relevant predictors have
weak marginal effects but strong joint effects, iterative sampling procedures such
as Gibbs sampling could be more powerful than stepwise procedures like SIRI.
This motivates us to further study the problem of variable selection from a full
Bayesian perspective.

The main goal of SIRI is to select relevant predictors with nonlinear (includ-
ing interaction and other second-order) effects on the response without a specific
parametric form. Without a specific parametric form, however, it is impossible
to precisely define what an “interaction” means. Interestingly, in many scientific
problems, scientists often cannot reach an agreement on what analytic form an in-
teraction should take even if they all agree that the interaction exists. As shown
in Zhang and Liu (2007), the inverse modeling approach as in naïve Bayes mod-
els (as well as in index models), we can finesse the interaction definition problem
by stating that the two predictors X1 and X2 have interactions if and only if their
joint distribution conditional on Y , that is, [X1,X2|Y ], cannot be factored into the
product of two marginal conditionals, that is, [X1|Y ][X2|Y ]. In order to be com-
putationally efficient, SIRI does not aim to pinpoint exactly which subsets (e.g.,
pairs, triplets etc.) of variables are interacting sets, but focuses on the overall set of
predictors that may influence Y . However, a follow-up study on the selected vari-
ables can provide further information on which subsets of variables actually form
an “interaction clique” in the sense of Zhang and Liu (2007).

Finally, inverse models are not substitutes of, but complements to, forward mod-
els. When a specific form is derived from solid scientific arguments, a forward
perspective that treats the distribution of predictors as a nuisance can be more
powerful in building predictive models. Depending on one’s research questions
and objectives, it may be helpful to alternate between the two perspectives in ana-
lyzing and interpreting data.

APPENDIX: PROOFS

A.1. Proof of Theorem 1 in Section 2.1. Given the set of relevant predictors
indexed by A with size |A| in model (2.2), we denote BA = Cov(E(XA|S(Y ))),

http://www.people.fas.harvard.edu/~junliu/SIRI/
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WA = E(Cov(XA|S(Y ))) and �A = BA + WA. The corresponding sample esti-
mates are given by B̂A, ŴA and �̂A = B̂A + ŴA. To prove Theorem 1, we will
need the following lemma that is proved in Jiang and Liu (2014).

LEMMA 1. Under the same conditions as in Theorem 1, for any set of predic-
tors indexed by C, we let λ̂C

i be the ith largest eigenvalue of �̂−1
C B̂C and let λC

i be
the ith largest eigenvalue of �−1

C BC . Then, for 0 < ε < 1 and i = 1,2, . . . , q , there
exist positive constants C1 and C2 such that

Pr
(

max
C⊂{1,2,...,p}

∣∣log
(
1 − λ̂C

i

) − log
(
1 − λC

i

)∣∣ > ε
)

(A.1)

≤ 2p(p + 1)C1 exp
(
−C2n

τ 4
minε

2

64τ 2
maxp

2

)
,

where τmin and τmax are defined in Condition 1.

PROOF OF THEOREM 1. Let RC = ∑q
i=1 log(1 − λ̂C

i ) − ∑q
i=1 log(1 − λC

i ).
Then, according to Lemma 1, for 0 < ε < 1, there exist constant C1 and C2 such
that

Pr
(

max
C⊂{1,2,...,p} |RC| > ε

)
≤ 2p(p + 1)qC1 exp

(
−C2n

τ 4
minε

2

64τ 2
maxp

2q2

)
.

Under Condition 2, p = o(nρ) with 2ρ + 2κ < 1, and for any positive constant C,

Pr
(

max
C⊂{1,2,...,p} |RC| > Cn−κ

)

≤ 2p(p + 1)qC1 exp
(
−C2n

1−2κ−2ρ τ 4
minC

2

64τ 2
maxq

2

)
→ 0

as n → ∞. For j /∈ C and d = |C|,

D̂j |C = −
q∑

i=1

log
(
1 − λ̂d+1

i

) +
q∑

i=1

log
(
1 − λ̂d

i

)

= −
q∑

i=1

log
(
1 − λd+1

i

) +
q∑

i=1

log
(
1 − λd

i

) − R[C∪{j}] + RC

= log
(

1 + Var(Mj) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

)
−R[C∪{j}] + RC,

where Mj = E(Xj |XC, S(Y )), Vj = Var(Xj |XC, S(Y )), and Vj is a constant that
does not depend on XC or S(Y ) under model (2.2).
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When Cc ∩ A = ∅, according to definition of first-order detectable predictors,
there exist κ ≥ 0 and ξ0 > 0 such that

max
j∈Cc∩A

[
Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

]
≥ ξ0n

−κ .

Then, for sufficiently large n, there exists j ∈ Cc ∩A such that

log
(

1 + Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

)
≥ ξ1

2
n−κ

and

D̂j |C ≥ ξ1

2
n−κ − (|R[C∪{j}]| + |RC|).

Let c = ξ0
4 . Since

Pr
(

max
C⊂{1,2,...,p} |RC| > c

2
n−κ

)
→ 0,

we have

Pr
(

min
C : Cc∩A=∅

max
j∈Cc∩A D̂j |C ≥ cn−κ

)
→ 1,

as n → ∞.
When variable Cc ∩ A = ∅, for j ∈ Cc ⊂ Ac, Mj = E(Xj |XC, S(Y )) =

E(Xj |XC) is a linear combination of XC under model (2.2), and

Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )
= 0.

Thus,

D̂j |C ≤ (|R[C∪{j}]| + |RC|)
and

Pr
(

max
C : Cc∩A=∅

max
j∈Cc

D̂j |C ≥ Cn−κ
)

≤ Pr
(

max
C⊂{1,2,...,p} |RC| ≥ C

2
n−κ

)
→ 0

for any positive constant C as n → ∞. �

A.2. Proof of Theorem 2 in Section 2.2. The following lemma is proved in
Jiang and Liu (2014).

LEMMA 2. Under the same condition as in Theorem 2, for 0 < ε < 1, there
exist positive constants C1 and C2 such that

Pr
(

max
C⊂{1,2,...,p} max

j∈Cc

∣∣log σ̂ 2
j |C − logσ 2

j |C
∣∣ > ε

)
≤ p(p + 1)

2
C1 exp

(
−C2n

ε2

p2L2

)
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and

Pr

(
max

C⊂{1,2,...,p} max
j∈Cc

∣∣∣∣∣
H∑

h=1

sh log
[
σ̂

(h)
j |C

]2 −
H∑

h=1

sh log
[
σ

(h)
j |C

]2

∣∣∣∣∣ > ε

)

≤ Hp(p + 1)

2
C1 exp

(
−C2n

ε2

H 2p2L2

)
,

where L = 4
τmin

(3( τmax
τmin

)3/2 + 1), and τmin and τmax are defined in Condition 1.

PROOF OF THEOREM 2. We denote Rj |C = log σ̂ 2
j |C − logσ 2

j |C and

R̃j |C =
H∑

h=1

sh log
[
σ̂

(h)
j |C

]2 −
H∑

h=1

sh log
[
σ

(h)
j |C

]2
.

According to Lemma 2, for 0 < ε < 1, there exist C1 and C2 such that

Pr
(

max
C⊂{1,2,...,p} max

j∈Cc
|Rj |C| > ε

)
≤ p(p + 1)

2
C1 exp

(
−C2n

ε2

p2L2

)
and

Pr
(

max
C⊂{1,2,...,p} max

j∈Cc
|R̃j |C| > ε

)
≤ Hp(p + 1)

2
C1 exp

(
−C2n

ε2

H 2p2L2

)
,

where L = 4
τmin

(3( τmax
τmin

)3/2 + 1). Under Condition 2, p = o(nρ) and 2ρ + 2κ < 1,

Pr
(

max
C⊂{1,2,...,p} max

j∈Cc
|Rj |C| > Cn−κ

)
≤ p(p + 1)

2
C1 exp

(
−C2n

1−2κ−2ρ C2

L2

)
→ 0

and

Pr
(

max
C⊂{1,2,...,p} max

j∈Cc
|R̃j |C| > Cn−κ

)
≤ Hp(p + 1)

2
C1 exp

(
−C2n

1−2κ−2ρ C2

H 2L2

)
→ 0,

for any positive constant C as n → ∞. We have

D̂∗
j |C = log σ̂ 2

j |C −
H∑

h=1

sh log
[
σ̂

(h)
j |C

]2

= logσ 2
j |C −

H∑
h=1

sh log
[
σ

(h)
j |C

]2 + Rj |C − R̃j |C
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= log
(

1 + Var(Mj) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

)
+ log(EVj ) −E log(Vj ) + Rj |C − R̃j |C,

where Mj = E(Xj |XC, S(Y )) and Vj = Var(Xj |XC, S(Y )).
When Cc ∩ A = ∅ and all the relevant predictors indexed by A are stepwise

detectable with constant κ , then there exists m ≥ 0 such that
⋃m−1

i=0 Ti ⊂ C and
Cc ∩ Tm = ∅. According to Definition 3, there exist j ∈ Cc ∩ Tm and ξ1, ξ2 > 0
such that either

Var(Mj) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )
≥ ξ1n

−κ ,

that is, with sufficiently large n,

log
(

1 + Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

)
≥ ξ1

2
n−κ

or

log(EVj ) −E log(Vj ) ≥ ξ2n
−κ .

Let c = min(
ξ1
4 ,

ξ2
2 ). Therefore,

D̂∗
j |C ≥ log

(
1 + Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )

)
+ log(EVj ) −E log(Vj ) − (|Rj |C| + |R̃j |C|)

≥ 2cn−κ − (|Rj |C| + |R̃j |C|).
Since

Pr
(

max
C⊂{1,2,...,p} max

j∈Cc
|Rj |C| > c

2
n−κ

)
→ 0

and

Pr
(

max
C⊂{1,2,...,p} max

j∈Cc
|R̃j |C| > c

2
n−κ

)
→ 0,

we have

Pr
(

min
C : Cc∩A=∅

max
j∈Cc∩A D̂∗

j |C ≥ cn−κ
)

→ 1,

as n → ∞.
When Cc ∩A = ∅ under model (2.5), for any j ∈ Cc, Mj = E(Xj |XC, S(Y )) =

E(Xj |XC), which is a linear combination of predictors in XC , and Vj =
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Var(Xj |XC, S(Y )) = Var(Xj |XC), which is a constant that does not depend on
XC or S(Y ). Then

Var(Mj ) − Cov(Mj ,XC)[Cov(XC)]−1 Cov(Mj ,XC)T

E(Vj )
= 0

and

log(EVj ) −E log(Vj ) = 0.

Thus,

D̂∗
j |C ≤ |Rj |C| + |R̃j |C|

and

Pr
(

max
C : Cc∩A=∅

max
j∈Cc

D̂∗
j |C < Cn−κ

)
→ 1,

for any positive constant C as n → ∞. �
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tional supporting materials that include detailed proofs and additional simulation
results.
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