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GENERALIZED RESOLUTION FOR ORTHOGONAL ARRAYS
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The generalized word length pattern of an orthogonal array allows a
ranking of orthogonal arrays in terms of the generalized minimum aberra-
tion criterion (Xu and Wu [Ann. Statist. 29 (2001) 1066–1077]). We provide
a statistical interpretation for the number of shortest words of an orthogonal
array in terms of sums of R2 values (based on orthogonal coding) or sums of
squared canonical correlations (based on arbitrary coding). Directly related
to these results, we derive two versions of generalized resolution for qualita-
tive factors, both of which are generalizations of the generalized resolution
by Deng and Tang [Statist. Sinica 9 (1999) 1071–1082] and Tang and Deng
[Ann. Statist. 27 (1999) 1914–1926]. We provide a sufficient condition for
one of these to attain its upper bound, and we provide explicit upper bounds
for two classes of symmetric designs. Factor-wise generalized resolution val-
ues provide useful additional detail.

1. Introduction. Orthogonal arrays (OAs) are widely used for designing
experiments. One of the most important criteria for assessing the usefulness
of an array is the generalized word length pattern (GWLP) as proposed by
Xu and Wu (2001): A3,A4, . . . are the numbers of (generalized) words of lengths
3,4, . . . , and the design has resolution R, if Ai = 0 for all i < R and AR > 0. Anal-
ogously to the well-known minimum aberration criterion for regular fractional fac-
torial designs [Fries and Hunter (1980)], the quality criterion based on the GWLP
is generalized minimum aberration [GMA; Xu and Wu (2001)]: a design D1 has
better generalized aberration than a design D2, if its resolution is higher or—if
both designs have resolution R—if its number AR of shortest words is smaller; in
case of ties in AR , frequencies of successively longer words are compared, until a
difference is encountered.

The definition of the Ai in Xu and Wu is very technical (see Section 2). One
of the key results of this paper is to provide a statistical meaning for the num-
ber of shortest words, AR : we will show that AR is the sum of R2 values from
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linear models with main effects model matrix columns in orthogonal coding as de-
pendent variables and full models in R − 1 other factors on the explanatory side.
For arbitrary factor coding, the “sum of R2” interpretation cannot be upheld, but
it can be shown that AR is the sum of squared canonical correlations [Hotelling
(1936)] between a factor’s main effects model matrix columns in arbitrary coding
and the full model matrix from R − 1 other factors. These results will be derived
in Section 2.

For regular fractional factorial 2-level designs, the GWLP coincides with the
well-known word length pattern (WLP). An important difference between regular
and nonregular designs is that factorial effects in regular fractional factorial de-
signs are either completely aliased or not aliased at all, while nonregular designs
can have partial aliasing, which can lead to noninteger entries in the GWLP. In
fact, the absence of complete aliasing has been considered an advantage of non-
regular designs [e.g., those by Plackett and Burman (1946)] for screening appli-
cations. Deng and Tang (1999) and Tang and Deng (1999) defined “generalized
resolution” (GR) for nonregular designs with 2-level factors, in order to capture
their advantage over complete confounding in a number. For example, the 12 run
Plackett–Burman design has GR = 3.67, which indicates that it is resolution III,
but does not have any triples of factors with complete aliasing. Evangelaras et al.
(2005) have made a useful proposal for generalizing GR (called GRes by them)
for designs in quantitative factors at 3 levels; in conjunction with Cheng and Ye
(2004), their proposal can easily be generalized to cover designs with quantita-
tive factors in general. However, there is so far no convincing proposal for designs
with qualitative factors. The second goal of this paper is to close this gap, that is,
to generalize Deng and Tang’s/Tang and Deng’s GR to OAs for qualitative factors.
Any reasonable generalization of GR has to fulfill the following requirements:
(i) it must be coding-invariant, that is, must not depend on the coding chosen for
the experimental factors (this is a key difference vs. designs for quantitative fac-
tors), (ii) it must be applicable for symmetric and asymmetric designs (i.e., designs
with a fixed number of levels and designs with mixed numbers of levels), (iii) like
in the 2-level case, R + 1 > GR ≥ R must hold, and GR = R must be equiva-
lent to the presence of complete aliasing somewhere in the design, implying that
R + 1 > GR > R indicates a resolution R design with no complete aliasing among
projections of R factors. We offer two proposals that fulfill all these requirements
and provide a rationale behind each of them, based on the relation of the GWLP
to regression relations and canonical correlations among the columns of the model
matrix.

The paper is organized as follows: Section 2 formally introduces the GWLP and
provides a statistical meaning to its number of shortest words, as discussed above.
Section 3 briefly introduces generalized resolution by Deng and Tang (1999) and
Tang and Deng (1999) and generalizes it in two meaningful ways. Section 4 shows
weak strength R [in a version modified from Xu (2003) to imply strength R − 1]
to be sufficient for maximizing one of the generalized resolutions in a resolution
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R design. Furthermore, it derives an explicit upper bound for the proposed gener-
alized resolutions for two classes of symmetric designs. Section 5 derives factor
wise versions of both types of generalized resolution and demonstrates that these
provide useful additional detail to the overall values. The paper closes with a dis-
cussion and an outlook on future work.

Throughout the paper, we will use the following notation: An orthogonal ar-
ray of resolution R = strength R − 1 in N runs with n factors will be denoted as
OA(N, s1, . . . , sn,R − 1), with s1, . . . , sn the numbers of levels of the n factors
(possibly but not necessarily distinct), or as OA(N, s

n1
1 , . . . , s

nk

k , R − 1) with n1
factors at s1 levels, . . . , nk factors at sk levels (s1, . . . , sk possibly but not necessar-
ily distinct), whichever is more suitable for the purpose at hand. A subset of k in-
dices that identifies a k-factor projection is denoted by {u1, . . . , uk}(⊆ {1, . . . , n}).
The unsquared letter R always refers to the resolution of a design, while R2 de-
notes the coefficient of determination.

2. Projection frequencies and linear models. Consider an OA(N, s1, . . . ,

sn,R − 1). The resolution R implies that main effects can be confounded with in-
teractions among R − 1 factors, where the extent of confounding of degree R can
be investigated on a global scale or in more detail: Following Xu and Wu (2001),
the factors are coded in orthogonal contrasts with squared column length normal-
ized to N . We will use the expression “normalized orthogonal coding” to refer to
this coding; on the contrary, the expressions “orthogonal coding” or “orthogonal
contrast coding” refer to main effects model matrix columns that have mean zero
and are pairwise orthogonal, but need not be normalized. For later reference, note
that for orthogonal coding (whether normalized or not) the main effects model
matrix columns for an OA (of strength at least 2) are always uncorrelated.

We write the model matrix for the full model in normalized orthogonal coding
as

M = (M0,M1, . . . ,Mn),(1)

where M0 is a column of “+1”s, M1 contains all main effects model matrices,
and Mk is the matrix of all

(n
k

)
k-factor interaction model matrices, k = 2, . . . , n.

The portion Xu1,...,uk
of Mk = (X1,...,k, . . . ,Xn−k+1,...,n) denotes the model matrix

for the particular k-factor interaction indexed by {u1, . . . , uk} and is obtained by
all products from one main effects contrast column each from the k factors in
the interaction. Note that the normalized orthogonal coding of the main effects
implies that all columns of Mk have squared length N for k ≤ R − 1. Now, on the
global scale, the overall number of words of length k can be obtained as the sum of
squared column averages of Mk , that is, Ak = 1T

NMkMT
k 1N/N2. Obviously, this

sum can be split into contributions from individual k-factor projections for more
detailed considerations, that is,

Ak = ∑
{u1,...,uk}
⊆{1,...,n}

1T
NXu1,...,uk

XT
u1,...,uk

1N/N2 =: ∑
{u1,...,uk}
⊆{1,...,n}

ak(u1, . . . , uk),(2)
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where ak(u1, . . . , uk) is simply the Ak value of the k-factor projection {u1, . . . , uk}.
The summands ak(u1, . . . , uk) are called “projection frequencies.”

EXAMPLE 1. For 3-level factors, normalized polynomial coding has the lin-
ear contrast coefficients −√

3/2,0,
√

3/2 and the quadratic contrast coefficients√
1/2,−√

2,
√

1/2. For the regular design OA(9,33,2) with the defining relation
C = A + B (mod 3), the model matrix M has dimensions 9 × 27, including one
column for M0, six for M1, twelve for M2 and eight for M3. Like always, the
column sum of M0 is N (here: 9), and like for any orthogonal array, the column
sums of M1 and M2 are 0, which implies A0 = 1, A1 = A2 = 0. We now take a
closer look at M3, arranging factor A as (0 0 0 1 1 1 2 2 2), factor B as (0 1 2 0 1 2
0 1 2) and factor C as their sum (mod 3), denoting linear contrast columns by the
subscript l and quadratic contrast columns by the subscript q . Then

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

contrast AlBlCl AqBlCl AlBqCl AqBqCl AlBlCq AqBlCq AlBqCq AqBqCq

−
√

27
8

√
9
8

√
9
8 −

√
3
8

√
9
8 −

√
3
8 −

√
3
8

√
1
8

0 0 0 0 0 0 −√
6

√
2

−
√

27
8

√
9
8 −

√
9
8

√
3
8 −

√
9
8

√
3
8 −

√
3
8

√
1
8

0 0 0 0 0 −√
6 0

√
2

0 0 0
√

6 0 0 0
√

2

0
√

9
2 0

√
3
2 0 −

√
3
2 0 −

√
1
2

−
√

27
8 −

√
9
8

√
9
8

√
3
8 −

√
9
8 −

√
3
8

√
3
8

√
1
8

0 0
√

9
2

√
3
2 0 0 −

√
3
2 −

√
1
2

0 0 0 0 −
√

9
2 −

√
3
2 −

√
3
2 −

√
1
2

column −
√

243
8

√
81
8

√
81
8

√
243

8 −
√

81
8 −

√
243

8 −
√

243
8

√
81
8

sum

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Half of the squared column sums of M3 are 243/8 and 81/8, respectively. This
implies that the sum of the squared column sums is A3 = a3(1,2,3) = (4 ·243/8+
4 · 81/8)/81 = 2.

EXAMPLE 2. Table 1 displays the only OA(18,2132,2) that cannot be ob-
tained as a projection from the L18 design that was popularized by Taguchi (of

TABLE 1
A partially confounded OA(18,2132,2) (transposed)

A 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1
B 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
C 0 1 2 1 2 0 0 2 0 1 1 2 2 1 2 0 1 0
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course, this triple is not interesting as a stand-alone design, but as a projection
from a design in more factors only; the Taguchi L18 is for convenience dis-
played in Table 4 below). The 3-level factors are coded like in Example 1, for
the 2-level factor, normalized orthogonal coding is the customary −1/ + 1 cod-
ing. Now, the model matrix M has dimensions 18 × 18, including one column for
M0, five for M1, eight for M2 and four for M3. Again, A0 = 1, A1 = A2 = 0. The
squared column sums of M3 are 9 (1×), 27 (2×) and 81 (1×), respectively. Thus,
A3 = a3(1,2,3) = (9 + 2 · 27 + 81)/324 = 4/9.

The projection frequencies ak(u1, . . . , uk) from equation (2) are the building
blocks for the overall Ak . The aR(u1, . . . , uR) will be instrumental in defining
one version of generalized resolution. Theorem 1 provides them with an intuitive
interpretation. The proof is given in the Appendix.

THEOREM 1. In an OA(N, s1, . . . , sn,R − 1), denote by Xc the model matrix
for the main effects of a particular factor c ∈ {u1, . . . , uR} ⊆ {1, . . . , n} in normal-
ized orthogonal coding, and let C = {u1, . . . , uR} \ {c}. Then aR(u1, . . . , uR) is the
sum of the R2-values from the sc − 1 regression models that explain the columns
of Xc by a full model in the factors from C.

REMARK 1. (i) Theorem 1 holds regardless which factor is singled out for the
left-hand side of the model. (ii) The proof simplifies by restriction to normalized
orthogonal coding, but the result holds whenever the factor c is coded by any set
of orthogonal contrasts, whether normalized or not. (iii) Individual R2 values are
coding dependent, but the sum is not. (iv) In case of normalized orthogonal coding
for all factors, the full model in the factors from C can be reduced to the R − 1
factor interaction only, since the matrix Xc is orthogonal to the model matrices for
all lower degree effects in the other R − 1 factors.

EXAMPLE 1 (Continued). The overall a3(1,2,3) = 2 is the sum of two R2

values which are 1, regardless which factor is singled out as the main effects factor
for the left-hand sides of regression. This reflects that the level of each factor is
uniquely determined by the level combination of the other two factors.

EXAMPLE 2 (Continued). The R2 from regressing the single model matrix
column of the 2-level factor on the four model matrix columns for the interaction
among the two 3-level factors is 4/9. Alternatively, the R2-values for the regres-
sion of the two main effects columns for factor B on the AC interaction columns
are 1/9 and 3/9, respectively, which also yields the sum 4/9 obtained above for
a3(1,2,3). For factor B in dummy coding with reference level 0 instead of normal-
ized polynomical coding, the two main effects model matrix columns for factor B
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TABLE 2
An OA(8,4122,2) (transposed)

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 2 1 3 3 1 2 0

have correlation 0.5; the sum of the R2 values from full models in A and C for ex-
plaining these two columns is 1/3 + 1/3 = 2/3 �= a3(1,2,3) = 4/9. This demon-
strates that Theorem 1 is not applicable if orthogonal coding [see Remark 1(ii)] is
violated.

COROLLARY 1. In an OA(N, s1, . . . , sn,R − 1), let {u1, . . . , uR} ⊆ {1, . . . ,

n}, with smin = mini=1,...,R(sui
).

(i) A factor c ∈ {u1, . . . , uR} in sc levels is completely confounded by the fac-
tors in C = {u1, . . . , uR} \ {c}, if and only if aR(u1, . . . , uR) = sc − 1.

(ii) aR(u1, . . . , uR) ≤ smin − 1.
(iii) If several factors in {u1, . . . , uR} have smin levels, either all of them are or

none of them is completely confounded by the respective other R − 1 factors in
{u1, . . . , uR}.

(iv) A factor with more than smin levels cannot be completely confounded by
the other factors in {u1, . . . , uR}.

Part (i) of Corollary 1 follows easily from Theorem 1, as aR(u1, . . . , uR) =
sc − 1 if and only if all R2 values for columns of the factor c main effects model
matrix are 100%, that is, the factor c main effects model matrix is completely
explained by the factors in C. Part (ii) follows, because the sum of R2 values is of
course bounded by the minimum number of regressions conducted for any single
factor c, which is smin − 1. Parts (iii) and (iv) follow directly from parts (i) and (ii).
For symmetric s-level designs, part (ii) of the corollary has already been proven
by Xu, Cheng and Wu (2004).

EXAMPLE 3. For the design of Table 2, smin = 2, and a3(1,2,3) = 1, that is,
both 2-level factors are completely confounded, while the 4-level factor is only
partially confounded. The individual R2 values for the separate degrees of free-
dom of the 4-level factor main effect model matrix depend on the coding (e.g.,
0.2, 0 and 0.8 for the linear, quadratic and cubic contrasts in normalized orthogo-
nal polynomial coding), while their sum is 1, regardless of the chosen orthogonal
coding.

THEOREM 2. In an OA(N, s1, . . . , sn,R − 1), let {u1, . . . , uR} ⊆ {1, . . . , n}
with smin = mini=1,...,R(sui

). Let c ∈ {u1, . . . , uR} with sc = smin, C = {u1, . . . ,
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uR} \ {c}. Under normalized orthogonal coding denote by Xc the main effects
model matrix for factor c and by XC the R − 1 factor interaction model matrix for
the factors in C.

If aR(u1, . . . , uR) = smin − 1, XC can be orthogonally transformed (rotation
and or switching) such that smin − 1 of its columns are collinear to the columns
of Xc.

PROOF. aR(u1, . . . , uR) = smin − 1 implies all smin − 1 regressions of the
columns of Xc on the columns of XC have R2 = 1. Then, each of the smin − 1 Xc

columns can be perfectly matched by a linear combination XCb of the XC columns;
since all columns have the same length, this linear transformation involves rotation
and/or switching only. If necessary, these smin − 1 orthogonal linear combinations
can be supplemented by further length-preserving orthogonal linear combinations
so that the dimension of XC remains intact. �

Theorems 1 and 2 are related to canonical correlation analysis, and the redun-
dancy index discussed in that context [Stewart and Love (1968)]. In order to make
the following comments digestible, a brief definition of canonical correlation anal-
ysis is included without going into any technical detail about the method; details
can, for example, be found in Härdle and Simar [(2003), Chapter 14]. It will be
helpful to think of the columns of the main effects model matrix of factor c as
the Y variables and the columns of the full model matrix in the R − 1 other fac-
tors from the set C (excluding the constant column of ones for the intercept) as
the X variables of the following definition and explanation. As it would be un-
natural to consider the model matrices from experimental designs as random vari-
ables, we directly define canonical correlation analysis in terms of data matrices X
and Y (N rows each) and empirical covariance matrices Sxx = X∗TX∗/(N − 1),
Syy = Y∗TY∗/(N − 1), Sxy = X∗TY∗/(N − 1) and Syx = Y∗TX∗/(N − 1), where
the superscript ∗ denotes columnwise centering of a matrix. We do not attempt a
minimal definition, but prioritize suitability for our purpose. Note that our Sxx and
Syy are nonsingular matrices, since the designs we consider have strength R − 1;
the covariance matrix (X∗Y∗)T(X∗Y∗)/(N − 1) of the combined set of variables
may, however, be singular, which does not pose a problem to canonical correlation
analysis, even though some accounts request this matrix to be nonsingular.

DEFINITION 1. Consider a set of pX-variables and qY -variables. Let the N ×
p matrix X and the N × q matrix Y denote the data matrices of N observations,
and Sxx , Syy , Sxy and Syx the empirical covariance matrices obtained from them,
with positive definite Sxx and Syy .

(i) Canonical correlation analysis creates k = min(p, q) pairs of linear combina-
tion vectors ui = Xai and vi = Ybi with p×1 coefficient vectors ai and q ×1
coefficient vectors bi , i = 1, . . . , k, such that:
(a) the u1, . . . ,uk are uncorrelated to each other,
(b) the v1, . . . ,vk are uncorrelated to each other,
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(c) the pair (u1, v1) has the maximum possible correlation for any pair of
linear combinations of the X and Y columns, respectively,

(d) the pairs (ui , vi ), i = 2, . . . , k successively maximize the remaining cor-
relation, given the constraints of (a) and (b).

(ii) The correlations ri = cor(ui ,vi ) are called “canonical correlations,” and the
ui and vi are called “canonical variates.”

REMARK 2. (i) If the matrices X and Y are centered, that is, X = X∗ and Y =
Y∗, the u and v vectors also have zero means, and the uncorrelatedness in (a) and
(b) is equivalent to orthogonality of the vectors. (ii) It is well known that the canon-
ical correlations are the eigenvalues of the matrices Q1 = S−1

xx SxyS−1
yy Syx and Q2 =

S−1
yy SyxS−1

xx Sxy [the first min(p, q) eigenvalues of both matrices are the same; the
larger matrix has the appropriate number of additional zeroes] and the ai are the
corresponding eigenvectors of Q1, the bi the corresponding eigenvectors of Q2.

According to the definition, the canonical correlations are nonnegative. It can
also be shown that ui and vj , i �= j , are uncorrelated, and orthogonal in case of
centered data matrices; thus, the pairs (ui , vi ) decompose the relation between X
and Y into uncorrelated components, much like the principal components decom-
pose the total variance into uncorrelated components. In data analysis, canonical
correlation analysis is often used for dimension reduction. Here, we retain the full
dimensionality. For uncorrelated Y variables like the model matrix columns of Xc

in Theorem 1, it is straightforward to see that the sum of the R2 values from re-
gressing each of the Y variables on all the X variables coincides with the sum
of the squared canonical correlations. It is well known that the canonical corre-
lations are invariant to arbitrary nonsingular affine transformations applied to the
X- and Y -variables, which translate into nonsingular linear transformations ap-
plied to the centered X- and Y-matrices [cf., e.g., Härdle and Simar (2003), The-
orem 14.3]. For our application, this implies invariance of the canonical correla-
tions to factor coding. Unfortunately, this invariance property does not hold for
the R2 values or their sum: according to Lazraq and Cléroux [(2001), Section 2]
the aforementioned redundancy index—which is the average R2 value calculated
as aR(u1, . . . , uR)/(sc − 1) in the situation of Theorem 1—is invariant to linear
transformations of the centered X matrix, but only to orthonormal transformations
of the centered Y matrix or scalar multiples thereof. For correlated Y -variables,
the redundancy index contains some overlap between variables, as was already
seen for Example 2, where the sum of the R2 values from dummy coding ex-
ceeded a3(1,2,3); in that case, only the average or sum of the squared canonical
correlations yields an adequate measure of the overall explanatory power of the X-
variables on the Y -variables. Hence, for the case of arbitrary coding, Theorem 1
has to be restated in terms of squared canonical correlations.

THEOREM 3. In an OA(N, s1, . . . , sn,R − 1), denote by Xc the model matrix
for the main effects of a particular factor c ∈ {u1, . . . , uR} in arbitrary coding,
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and let C = {u1, . . . , uR} \ {c}. Then aR(u1, . . . , uR) is the sum of the squared
canonical correlations from a canonical correlation analysis of the columns of Xc

and the columns of the full model matrix FC in the factors from C.

EXAMPLE 1 (Continued). smin = 3, a3(1,2,3) = 2, that is, the assumptions of
Theorems 2 and 3 are fulfilled. Both canonical correlations must be 1, because the
sum must be 2. The transformation of XC from Theorem 2 can be obtained from
the canonical correlation analysis: For all factors in the role of Y , vi ∝ yi (with
yi denoting the ith column of the main effects model matrix of the Y -variables
factor) can be used. For the first or second factor in the role of Y , the corresponding
canonical vectors on the X side fulfill

u1 ∝ BqCl − BlCq − √
3BlCl − √

3BqCq,

u2 ∝ √
3BlCq − √

3BqCl − BlCl − BqCq

(or B replaced by A for the second factor in the role of Y ),

with the indices l and q denoting the normalized linear and quadratic coding in-
troduced above. For the third factor in the role of Y ,

u1 ∝ −√
3AlBl + AqBl + AlBq + √

3AqBq,

u2 ∝ −AlBl − √
3AlBq − √

3AqBl + AqBq.

EXAMPLE 1 (Now with dummy coding). When using the design of Exam-
ple 1 for an experiment with qualitative factors, dummy coding is much more
usual than orthogonal contrast coding. This example shows how Theorem 3 can
be applied for arbitrary nonorthogonal coding: A1 is 1 for A = 1 and 0 otherwise,
A2 is 1 for A = 2 and 0 otherwise, B and C are coded analogously; interaction
matrix columns are obtained as products of the respective main effects columns.
The main effect and two-factor interaction model matrix columns in this coding
do not have column means zero and have to be centered first by subtracting 1/3 or
1/9, respectively. As canonical correlations are invariant to affine transformations,
dummy coding leads to the same canonical correlations as the previous normal-
ized orthogonal polynomial coding. We consider the first factor in the role of Y ;
the centered model matrix columns y1 = A1 − 1/3 and y2 = A2 − 1/3 are cor-
related, so that we must not choose both canonical variates for the Y side pro-
portional to the original variates. One instance of the canonical variates for the Y

side is v1 = −y1/
√

2,v2 = (y1 + 2y2)/
√

6; these canonical vectors are unique up
to rotation only, because the two canonical correlations have the same size. The
corresponding canonical vectors on the X side are obtained from the centered full
model matrix

FC = ((
B1 − 1

3

)
,
(
B2 − 1

3

)
,
(
C1 − 1

3

)
,
(
C2 − 1

3

)
,
(
B1C1 − 1

9

)
,
(
B2C1 − 1

9

)
,(

B1C2 − 1
9

)
,
(
B2C2 − 1

9

))
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as u1 = (−f2 − f3 + f5 + 2f6 − f7 + f8)/
√

2 and u2 = (2f1 + f2 + f3 + 2f4 − 3f5 −
3f7 − 3f8)/

√
6, with fj denoting the j th column of FC.

Note that the canonical vectors u1 and u2 now contain contributions not only
from the interaction part of the model matrix but also from the main effects part,
that is, we do indeed need the full model matrix as stated in Theorem 3.

EXAMPLE 2 (Continued). smin = 2, a3(1,2,3) = 4/9, that is, the assumption
of Theorem 2 is not fulfilled, the assumption of Theorem 3 is. The canonical cor-
relation using the one column main effects model matrix of the 2-level factor A
in the role of Y is 2/3, the canonical correlations using the main effects model
matrix for the 3-level factor B in the role of Y are 2/3 and 0; in both cases, the
sum of the squared canonical correlations is a3(1,2,3) = 4/9. For any other cod-
ing, for example, the dummy coding for factor B considered earlier, the canonical
correlations remain unchanged (2/3 and 0, resp.), since they are coding invariant;
thus, the sum of the squared canonical correlations remains 4/9, even though the
sum of the R2 values was found to be different. Of course, the linear combination
coefficients for obtaining the canonical variates depend on the coding [see, e.g.,
Härdle and Simar (2003), Theorem 14.3].

Canonical correlation analysis can also be used to verify that a result anal-
ogous to Theorem 2 cannot be generalized to sets of R factors for which
aR(u1, . . . , uR) < smin − 1. For this, note that the number of nonzero canonical
correlations indicates the dimension of the relationship between the X- and the
Y -variables.

Table 3 displays the R2 values from two different orthogonal codings and the
squared canonical correlations from the main effects matrix of the first factor (Y -
variables) vs. the full model matrix of the other two factors (X-variables) for
the ten nonisomorphic GMA OA(32,43,2) obtained from Eendebak and Schoen

TABLE 3
Main effects matrix of factor A regressed on full model in factors B and C for the 10 nonisomorphic

GMA OA(32,43,2)

R2 values from R2 values from Squared canonical
polynomial coding Helmert coding correlations

L Q C 1 2 3 1 2 3 A3 Designs

0.8 0 0.2 0 2/3 1/3 1 0 0 1 1
0.65 0 0.35 1/8 13/24 1/3 0.75 0.25 0 1 2
0.5 0 0.5 1/4 5/12 1/3 0.5 0.5 0 1 3, 6, 8, 10
0.45 0.25 0.3 1/4 5/12 1/3 0.5 0.25 0.25 1 4, 5, 7
0.375 0.25 0.375 5/16 17/48 1/3 0.375 0.375 0.25 1 9
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(2013). These designs have one generalized word of length 3, that is, they are non-
regular. There are cases with one, two and three nonzero canonical correlations,
that is, neither is it generally possible to collapse the linear dependence into a one-
dimensional structure nor does the linear dependence generally involve more than
one dimension.

3. Generalized resolution. Before presenting the new proposals for gener-
alized resolution, we briefly review generalized resolution for symmetric 2-level
designs by Deng and Tang (1999) and Tang and Deng (1999). For 2-level factors,
each effect has a single degree of freedom (df) only, that is, all the X’s in any Mk

[cf. equation (1)] are one-column matrices. Deng and Tang (1999) looked at the
absolute sums of the columns of M, which were termed J -characteristics by Tang
and Deng (1999). Specifically, for a resolution R design, these authors introduced
GR as

GR = R + 1 − maxJR

N
,(3)

where JR = |1T
NMR| is the row vector of the J -characteristics |1T

NXu1,...,uR
| ob-

tained from the
(n
R

)
R-factor interaction model columns Xu1,...,uR

. For 2-level de-
signs, it is straightforward to verify the following identities:

GR = R + 1 −
√

max
(u1,...,uR)

aR(u1, . . . , uR)

(4)
= R + 1 − max

(u1,...,uR)

∣∣ρ(Xu1,Xu2,...,uR
)
∣∣,

where ρ denotes the correlation; note that the correlation in (4) does not depend on
which of the ui takes the role of u1. Deng and Tang [(1999), Proposition 2] proved
a very convincing projection interpretation of their GR. Unfortunately, Proposi-
tion 4.4 of Diestelkamp and Beder (2002), in which a particular OA(18,33,2) is
proven to be indecomposable into two OA(9,33,2), implies that Deng and Tang’s
result cannot be generalized to more than two levels.

The quantitative approach by Evangelaras et al. [(2005), their equation (4)] gen-
eralized the correlation version of (4) by applying it to single df contrasts for the
quantitative factors. For the qualitative factors considered here, any approach based
on direct usage of single df contrasts is not acceptable because it is coding depen-
dent. The approach for qualitative factors taken by Evangelaras et al. is unreason-
able, as will be demonstrated in Example 5. Pang and Liu (2010) also proposed
a generalized resolution based on complex contrasts. For designs with more than
3 levels, permuting levels for one or more factors will lead to different general-
ized resolutions according to their definition, which is unacceptable for qualita-
tive factors. For 2-level designs, their approach boils down to omitting the square
root from

√
max(u1,...,uR) aR(u1, . . . , uR) in (4), which implies that their proposal

does not simplify to the well-grounded generalized resolution of Deng and Tang
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(1999)/Tang and Deng (1999) for 2-level designs. This in itself makes their ap-
proach unconvincing. Example 5 will compare their approach to ours for 3-level
designs. The results from the previous section can be used to create two adequate
generalizations of GR for qualitative factors. These are introduced in the following
two definitions.

For the first definition, an R factor projection is considered as completely
aliased, whenever all the levels of at least one of the factors are completely de-
termined by the level combination of the other R − 1 factors. Thus, generalized
resolution should be equal to R, if and only if there is at least one R factor projec-
tion with aR(u1, . . . , uR) = smin − 1. The GR defined in Definition 2 guarantees
this behavior and fulfills all requirements stated in the Introduction:

DEFINITION 2. For an OA(N, s1, . . . , sn,R − 1),

GR = R + 1 −
√√√√√ max{u1,...,uR}

⊆{1,...,n}

aR(u1, . . . , uR)

min
i=1,...,R

sui
− 1

.

In words, GR increases the resolution by one minus the square root of the worst
case average R2 obtained from any R factor projection, when regressing the main
effects columns in orthogonal coding from a factor with the minimum number of
levels on the other factors in the projection. It is straightforward to see that (4)
is a special case of the definition, since the denominator is 1 for 2-level designs.
Regarding the requirements stated in the Introduction, (i) GR from Definition 2 is
coding invariant because the aR(·) are coding invariant according to Xu and Wu
(2001). (ii) The technique is obviously applicable for symmetric and asymmetric
designs alike, and (iii) GR < R + 1 follows from the resolution, GR ≥ R follows
from part (ii) of Corollary 1, GR = R is equivalent to complete confounding in at
least one R-factor projection according to part (i) of Corollary 1.

EXAMPLE 4. The GR values for the designs from Examples 1 and 3 are
3(GR = R), the GR value for the design from Example 2 is 3 + 1 − √

4/9 = 3.33,
and the GR values for all designs from Table 3 are 3 + 1 − √

1/3 = 3.42.

Now, complete aliasing is considered regarding individual degrees of freedom
(df). A coding invariant individual df approach considers a factor’s main effect as
completely aliased in an R factor projection, whenever there is at least one pair
of canonical variates with correlation one. A projection is considered completely
aliased, if at least one factor’s main effect is completely aliased in this individual
df sense. Note that it is now possible that factors with the same number of levels
can show different extents of individual df aliasing within the same projection, as
will be seen in Example 5 below.
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DEFINITION 3. For an OA(N, s1, . . . , sn,R − 1) and tuples (c,C) with C =
{u1, . . . , uR} \ {c},

GRind = R + 1 − max{u1,...,uR}⊆{1,...,n} max
c∈{u1,...,uR} r1(Xc;FC)

with r1(Xc;FC) the largest canonical correlation between the main effects model
matrix for factor c and the full model matrix of the factors in C.

In words, GRind is the worst case confounding for an individual main effects df
in the design that can be obtained by the worst case coding (which corresponds to
the v1 vector associated with the worst canonical correlation). Obviously, GRind
is thus a stricter criterion than GR. Formally, Theorem 3 implies that GR from
Definition 2 can be written as

GR = R + 1 −
√√√√√√ max

(u1,...,uR) :
{u1,...,uR}⊆{1,...,n}

∑su1−1
j=1 rj (Xu1;F{u2,...,uR})2

minisui
− 1

.(5)

Note that maximization in (5) is over tuples, so that it is ensured that the factor
with the minimum number of levels does also get into the first position. Compar-
ing (5) with Definition 3, GRind ≤ GR is obvious, because r2

1 cannot be smaller
than the average over all r2

i (but can be equal, if all canonical correlations have the
same size). This is stated in a theorem.

THEOREM 4. For GR from Definition 2 and GRind from Definition 3, GRind ≤
GR.

REMARK 3. (i) Under normalized orthogonal coding, the full model matrix
FC in Definition 3 can again be replaced by the R −1 factor interaction matrix XC.
(ii) Definition 3 involves calculation of R

(n
R

)
canonical correlations (R correlations

for each R factor projection). In any projection with at least one 2-level factor, it is
sufficient to calculate one single canonical correlation obtained with an arbitrary
2-level factor in the role of Y , because this is necessarily the worst case. Never-
theless, calculation of GRind carries some computational burden for designs with
many factors.

Obviously, (4) is a special case of GRind, since the average R2 coincides with
the only squared canonical correlation for projections of R 2-level factors. GRind
also fulfills all requirements stated in the Introduction: (i) GRind is coding invariant
because the canonical correlations are invariant to affine transformations of the X

and Y variables, as was discussed in Section 2. (ii) The technique is obviously
applicable for symmetric and asymmetric designs alike, and (iii) GRind < R +
1 again follows from the resolution, GRind ≥ R follows from the properties of
correlations, and GRind = R is obviously equivalent to complete confounding of at
least one main effects contrast in at least one R factor projection, in the individual
df sense discussed above.
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TABLE 4
The Taguchi L18 (transposed)

Row

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
4 0 1 2 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1
5 0 1 2 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0
6 0 1 2 1 2 0 2 0 1 1 2 0 0 1 2 2 0 1
7 0 1 2 2 0 1 1 2 0 1 2 0 2 0 1 0 1 2
8 0 1 2 2 0 1 2 0 1 0 1 2 1 2 0 1 2 0

EXAMPLE 5. We consider the three nonisomorphic OA(18,33,2) that can be
obtained as projections from the well-known Taguchi L18 (see Table 4) by using
columns 3, 4 and 5 (D1), columns 2, 3 and 6 (D2) or columns 2, 4 and 5 (D3). We
have A3(D1) = 0.5, A3(D2) = 1 and A3(D3) = 2, and consequently GR(D1) =
3.5, GR(D2) = 3.29 and GR(D3) = 3. For calculating GRind, the largest canonical
correlations of all factors in the role of Y are needed. These are all 0.5 for D1 and
all 1 for D3, such that GRind = GR for these two designs. For D2, the largest
canonical correlation is 1 with the first factor (from column 2 of the L18) in the
role of Y , while it is

√
0.5 with either of the other two factors in the role of Y ;

thus, GRind = 3 < GR = 3.29. The completely aliased 1 df contrast of the first
factor is the contrast of the third level vs. the other two levels, which is apparent
from Table 5: the contrast A = 2 vs. A in (0,1) is fully aliased with the contrast of
one level of B vs. the other two, given a particular level of C. Regardless of factor
coding, this direct aliasing is reflected by a canonical correlation “one” for the first
canonical variate of the main effects contrast matrix of factor A.

Using this example, we now compare the GR introduced here to proposals by
Evangelaras et al. (2005) and Pang and Liu (2010): The GRes values reported by
Evangelaras et al. (2005) for designs D1, D2 and D3 in the qualitative case are
3.75, 3.6464, 3.5, respectively; especially the 3.5 for the completely aliased design

TABLE 5
Frequency table of columns 2 (= A), 3 (= B) and 6 (= C) of the Taguchi L18

, , C = 0 , , C = 1 , , C = 2
B

A 0 1 2
0 1 0 1
1 1 0 1
2 0 2 0

B
A 0 1 2

0 1 1 0
1 1 1 0
2 0 0 2

B
A 0 1 2

0 0 1 1
1 0 1 1
2 2 0 0
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D3 does not make sense. Pang and Liu reported values 3.75, 3.75 and 3, respec-
tively; here, at least the completely aliased design D3 is assigned the value “3.”
Introducing the square root, as was discussed in connection with equation (4),
their generalized resolutions become 3.5, 3.5 and 3, respectively, that is, they co-
incide with our GR results for designs D1 and D3. For design D2, their value 3.5
is still different from our 3.29 for the following reason: our approach considers
A3 = a3(1,2,3) as a sum of two R2-values and subtracts the square root of their
average or maximum (GR or GRind, resp.), while Pang and Liu’s approach con-
siders it as a sum of 23 = 8 summands, reflecting the potentially different linear
combinations of the three factors in the Galois field sense, the (square root of the)
maximum of which they subtract from R + 1.

4. Properties of GR. Let G be the set of all runs of an s1 × · · · × sn full
factorial design, with |G| = ∏n

i=1 si the cardinality of G. For any design D in N

runs for n factors at s1, . . . , sn levels, let Nx be the number of times that a point
x ∈ G appears in D. N̄ = N/|G| denotes the average frequency for each point of
G in the design D. We can measure the goodness of a fractional factorial design
D by the uniformity of the design points of D in the set of all points in G, that is,
the uniformity of the frequency distribution Nx. One measure, suggested by Tang
(2001) and Ai and Zhang (2004), is the variance

V(D) = 1

|G|
∑
x∈G

(Nx − N̄)2 = 1

|G|
∑
x∈G

N2
x − N̄2.

Let N = q|G| + r with nonnegative integer q and r and 0 ≤ r < |G| (often
q = 0), that is, r = N mod |G| is the remainder of N when divided by |G|. Note
that

∑
x∈G Nx = N , so V(D) is minimized if and only if each Nx takes values on q

or q + 1 for any x ∈ G. When r points in G appear q + 1 times and the remaining
|G| − r points appear q times, V(D) reaches the minimal value r(|G| − r)/|G|2.
Ai and Zhang (2004) showed that V(D) is a function of GWLP. In particular, if D

has strength n − 1, their result implies that V (D) = N̄2An(d). Combining these
results, and using the following definition, we obtain an upper bound for GR for
some classes of designs and provide a necessary and sufficient condition under
which this bound is achieved.

DEFINITION 4 [Modified from Xu (2003)]. (i) A design D has maximum t-
balance, if and only if the possible level combinations for all projections onto t

columns occur as equally often as possible, that is, either q or q + 1 times, where
q is an integer such that N = q|Gproj| + r with Gproj the set of all runs for the full
factorial design of each respective t-factor-projection and 0 ≤ r < |Gproj|.

(ii) An OA(N, s1, . . . , sn, t − 1) with n ≥ t has weak strength t if and only if it
has maximum t-balance. We denote weak strength t as OA(N, s1, . . . , sn, t

−).
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REMARK 4. Xu (2003) did not require strength t − 1 in the definition of weak
strength t , that is, the Xu (2003) definition of weak strength t corresponds to our
definition of maximum t-balance. For the frequent case, for which all t-factor pro-
jections have q = 0 or q = 1 and r = 0 in Definition 4(i), maximum t-balance
is equivalent to the absence of repeated runs in any projection onto t factors. In
that case, maximum t-balance implies maximum k-balance for k > t , and weak
strength t is equivalent to strength t − 1 with absence of repeated runs in any
projection onto t or more factors.

THEOREM 5. Let D be an OA(N, s1, . . . , sR,R − 1). Then AR(D) ≥
r(

∏R
i=1 si−r)

N2 , where r is the remainder when N is divided by
∏R

i=1 si . The equality
holds if and only if D has weak strength R.

As all R factor projections of any OA(N, s1, . . . , sn,R
−) fulfill the necessary

and sufficient condition of Theorem 5, we have the following corollary.

COROLLARY 2. Suppose that an OA(N, s1, . . . , sn,R) does not exist. Then
any OA(N, s1, . . . , sn,R

−) has maximum GR among all OA(N, s1, . . . , sn,R−1).

COROLLARY 3. Suppose that an OA(N, sn,R) does not exist. Let D be an

OA(N, sn,R − 1). Then GR(D) ≤ R + 1 −
√

r(sR−r)

N2(s−1)
, where r is the remainder

when N is divided by sR . The equality holds if and only if D has weak strength R.

EXAMPLE 6. (1) Any projection onto three 3-level columns from an
OA(18,6136,2) has 18 distinct runs (q = 0, r = N = 18) and is an OA of weak

strength 3, so it has A3 = 1/2 and GR = 4 −
√

18 · 9/(182 · 2) = 3.5. (2) Any pro-

jection onto three or more s-level columns from an OA(s2, ss+1,2) has GR = 3,
since N = r = s2, so that the upper limit from the corollary becomes GR = R = 3.

Using the following lemma according to Mukerjee and Wu (1995), Corollary 3
can be applied to a further class of designs.

LEMMA 1 [Mukerjee and Wu (1995)]. For a saturated OA(N, s
n1
1 sn2

2 ,2) with
n1(s1 − 1)+n2(s2 − 1) = N − 1, let δi(a, b) be the number of coincidences of two
distinct rows a and b in the ni columns of si levels, for i = 1,2. Then

s1δ1(a, b) + s2δ2(a, b) = n1 + n2 − 1.

Consider a saturated OA(2s2, (2s)1s2s,2), where r = N = 2s2, s1 = 2s, s2 =
s, n1 = 1, n2 = 2s. From Lemma 1, we have 2δ1(a, b) + δ2(a, b) = 2. So any
projection onto three or more s-level columns has no repeated runs, and thus it
achieves the upper limit GR = 4 − √

(s − 2)/(2s − 2) according to Corollary 3.
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COROLLARY 4. For a saturated OA(2s2, (2s)1s2s,2), any projection onto
three or more s-level columns has GR = 4 − √

(s − 2)/(2s − 2), which is opti-
mum among all possible OAs in 2s2 runs.

EXAMPLE 7. Design 1 of Table 3 is isomorphic to a projection from a sat-
urated OA(32,8148,2). A3 attains the lower bound from Theorem 5 (32 · (64 −
32)/322 = 1), and thus GR attains the upper bound 4 − (1/3)1/2 = 3.42 from the
corollary.

Because of Theorem 4, any upper bound for GR is of course also an upper
bound for GRind, that is, Corollaries 3 and 4 also provide upper bounds for GRind.
However, for GRind the bounds are not tight in general; for example, GRind = 3
for the design of Example 7 (see also Example 9 in the following section).

Butler (2005) previously showed that all projections onto s-level columns of
OA(s2, ss+1,2) or OA(2s2, (2s)1s2s,2) have GMA among all possible designs.

5. Factor wise GR values. In Section 3, two versions of overall generalized
resolution were defined: GR and GRind. These take a worst case perspective: even
if a single projection in a large design is completely confounded—in the case
of mixed level designs or GRind affecting perhaps only one factor within that
projection—the overall metric takes the worst case value R. It can therefore be
useful to accompany GR and GRind by factor specific summaries. For the factor
specific individual df perspective, one simply has to omit the maximization over
the factors in each projection and has to use the factor of interest in the role of
Y only. For a factor specific complete confounding perspective, one has to divide
each projection’s aR(·) value by the factor’s df rather than the minimum df, in
order to obtain the average R2 value for this particular factor. This leads to the
following definition.

DEFINITION 5. For an OA(N, s1, . . . , sn,R − 1), define

(i) GRtot(i) = R + 1 −
√

max{u2,...,uR}⊆{1,...,n}\{i} aR(i,u2,...,uR)
si−1 ,

(ii) GRind(i) = R + 1 − max{i,u2,...,uR}⊆{1,...,n} r1(Xi;Xu2,...,uR
), with Xi the

model matrix of factor i and Xu2,...,uR
the R − 1 factor interaction model ma-

trix of the factors in {u2, . . . , uR} in normalized orthogonal coding, and r1(Y;X)

the first canonical correlation between matrices X and Y.

It is straightforward to verify that GR and GRind can be calculated as the re-
spective minima of the factor specific GR values from Definition 5.

THEOREM 6. For the quantities from Definitions 2, 3 and 5, we have

(i) GR = miniGRtot(i),
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(ii) GRind = miniGRind(i).

EXAMPLE 8. The Taguchi L18 has GR = GRind = 3, and the following
GRind(i) and GRtot(i) values (GRind(i) = GRtot(i) for all i): 3.18, 3, 3.29, 3, 3, 3.29,
3.29, 3.29. When omitting the second column, the remaining seven columns have
GR = GRind = 3.18, again with GRind(i) = GRtot(i) and the value for all 3-level
factors at 3.42. When omitting the fourth column instead, the then remaining seven
columns have GR = 3.18, GRind = 3, GRtot(i) values 3.18, 3.29, 3.29, 3.42, 3.29,
3.29, 3.29 and GRind(i) values the same, except for the second column, which has
GRind(2) = 3.

GR from Definition 2 and GRind from Definition 3 are not the only possible
generalizations of (4). It is also possible to define a GRtot, by declaring only those
R factor projections as completely confounded for which all factors are completely
confounded. For this, the factor wise average R2 values for each projection—also
used in GRtot(i)—need to be considered. A projection is completely confounded,
if these are all one, which can be formalized by requesting their minimum or their
average to be one. The average appears more informative, leading to

GRtot = R + 1 −
√√√√√√ max{u1,...,uR}

⊆{1,...,n}

1

R

R∑
i=1

aR(u1, . . . , uR)

sui
− 1

.(6)

It is straightforward to see that GRtot ≥ GR, and that GRtot = GR for sym-
metric designs. The asymmetric design of Table 2 (Example 3) has GR = 3 and
GRtot = 3 + 1 − √

(1 + 1 + 1/3)/3 = 3.12 > 3, in spite of the fact that two of its
factors are completely confounded. Of course, mixed level projections can never
be completely confounded according to (6), which is the main reason why we have
not pursued this approach.

The final example uses the designs of Table 3 to show that GRind and the
GRind(i) can introduce meaningful differentiation between GMA designs.

EXAMPLE 9. All designs of Table 3 had A3 = 1 and GR = 3.42. The infor-
mation provided in Table 3 is insufficient for determining GRind. Table 6 provides
the necessary information: the largest canonical correlations are the same regard-
less which variable is chosen as the Y variable for seven designs, while they vary
with the choice of the Y variable for three designs. There are five different GRind
values for these 10 designs that were not further differentiated by A3 or GR, and
in combination with the GRind(i), seven different structures can be distinguished.

The differentiation achieved by GRind is meaningful, as can be seen by compar-
ing frequency tables of the first, third and ninth design (see Table 7). The first and
third design have GRind = 3, which is due to a very regular confounding pattern: in
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TABLE 6
Largest canonical correlations, GRind(i) and GRind values for the GMA OA(32,43,2)

r1(1;23) r1(2;13) r1(3;12) GRind(1) GRind(2) GRind(3) GRind

1 1.000 1.000 1.000 3.000 3.000 3.000 3.000
2 0.866 0.866 0.866 3.134 3.134 3.134 3.134
3 0.707 0.707 1.000 3.293 3.293 3.000 3.000
4 0.707 0.707 0.866 3.293 3.293 3.134 3.134
5 0.707 0.707 0.791 3.293 3.293 3.209 3.209
6 0.707 0.707 0.707 3.293 3.293 3.293 3.293
7 0.707 0.707 0.707 3.293 3.293 3.293 3.293
8 0.707 0.707 0.707 3.293 3.293 3.293 3.293
9 0.612 0.612 0.612 3.388 3.388 3.388 3.388

10 0.707 0.707 0.707 3.293 3.293 3.293 3.293

the first design, dichotomizing each factor into a 0/1 vs. 2/3 design yields a regu-
lar resolution III 2-level design (four different runs only), that is, each main effect
contrast 0/1 vs. 2/3 is completely confounded by the two-factor interaction of the
other two 0/1 vs. 2/3 contrasts; the third design shows this severe confounding for
factor C only, whose 0/1 vs. 2/3 contrast is likewise completely confounded by
the interaction between factors A and B. Design 9 is the best of all GMA designs
in terms of GRind. It does not display such a strong regularity in behavior. GRind
treats designs 1 and 3 alike, although design 1 is clearly more severely affected
than design 3, which can be seen from the individual GRind(i). However, as gener-
alized resolution has always taken a “worst case” perspective, this way of handling
things is appropriate in this context.

6. Discussion. We have provided a statistically meaningful interpretation for
the building blocks of GWLP and have generalized resolution by Deng and Tang
(1999) and Tang and Deng (1999) in two meaningful ways for qualitatitve fac-
tors. The complete confounding perspective of GR of Definition 2 appears to be
more sensible than the individual df perspective of GRind as a primary criterion.
However, GRind provides an interesting new aspect that may provide additional
understanding of the structure of OAs and may help in ranking tied designs. The
factor wise values of Section 5 add useful detail. It will be interesting to pursue
concepts derived from the building blocks of GRtot(i) and GRind(i) for the ranking
of mixed level designs. As was demonstrated in Section 5, GR from Definition 2
and GRind from Definition 3 are not the only possible generalizations of (4) for
qualitative factors. The alternative given in equation (6) appears too lenient and
has therefore not been pursued. The concept of weak strength deserves further at-
tention: For symmetric designs with weak strength t according to Definition 4, Xu
[(2003), Theorem 3] showed that these have minimum moment aberration (MMA),
and consequently GMA (as MMA is equivalent to GMA for symmetric designs)
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TABLE 7
Frequency tables of designs 1, 3 and 9 from Table 6

, , C = 0 , , C = 1 , , C = 2 , , C = 3
Design 1

B
A 0 1 2 3

0 1 1 0 0
1 1 1 0 0
2 0 0 1 1
3 0 0 1 1

B
A 0 1 2 3

0 1 1 0 0
1 1 1 0 0
2 0 0 1 1
3 0 0 1 1

B
A 0 1 2 3

0 0 0 1 1
1 0 0 1 1
2 1 1 0 0
3 1 1 0 0

B
A 0 1 2 3

0 0 0 1 1
1 0 0 1 1
2 1 1 0 0
3 1 1 0 0

Design 3
B

A 0 1 2 3
0 1 1 0 0
1 1 0 1 0
2 0 1 0 1
3 0 0 1 1

B
A 0 1 2 3

0 1 1 0 0
1 1 0 1 0
2 0 1 0 1
3 0 0 1 1

B
A 0 1 2 3

0 0 0 1 1
1 0 1 0 1
2 1 0 1 0
3 1 1 0 0

B
A 0 1 2 3

0 0 0 1 1
1 0 1 0 1
2 1 0 1 0
3 1 1 0 0

Design 9
B

A 0 1 2 3
0 1 1 0 0
1 1 0 1 0
2 0 0 1 1
3 0 1 0 1

B
A 0 1 2 3

0 1 0 1 0
1 0 1 0 1
2 1 1 0 0
3 0 0 1 1

B
A 0 1 2 3

0 0 1 0 1
1 1 0 0 1
2 0 1 1 0
3 1 0 1 0

B
A 0 1 2 3

0 0 0 1 1
1 0 1 1 0
2 1 0 0 1
3 1 1 0 0

if they also have maximum k-balance for k = t + 1, . . . , n. In particular, this im-
plies that an OA(N, sn, t−) with N ≤ st has GMA, because of Remark 4. Here,
we showed that designs of the highest possible resolution R maximize GR if they
have weak strength R. It is likely that there are further beneficial consequences
from the concept of weak strength.

APPENDIX: PROOF OF THEOREM 1

Let MC = (1N,M1;C, . . . ,MR−1;C), with Mk;C the model matrix for all k-
factor interactions, k = 1, . . . ,R − 1. The assumption that the resolution of the
array is R and the chosen orthogonal contrasts imply XT

c Mk;C = 0 for k < R − 1,
with Xc as defined in the theorem. Denoting the R − 1-factor interaction matrix
MR−1;C as XC, the predictions for the columns of Xc can be written as

X̂c = XC
(
XT

CXC
)−1XT

CXc = 1

N
XCXT

CXc,

since XT
CXC = NIdf(C). As the column averages of X̂c are 0 because of the coding,

the nominators for the R2 values are the diagonal elements of the matrix

X̂T
c X̂c = 1

N2 XT
c XCXT

CXCXT
CXc =

XT
CXC=NIdf(C)

1

N
XT

c XCXT
CXc.
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Analogously, the corresponding denominators are the diagonal elements of

XT
c Xc = NIdf(c),

which are all identical to N . Thus, the sum of the R2 values is the trace of
1

N2 XT
c XCXT

CXc, which can be written as

tr
(

1

N2 XT
c XCXT

CXc

)
= 1

N2 vec
(
XT

CXc

)T vec
(
XT

CXc

)
,(7)

where the vec operator stacks the columns of a matrix on top of each other, that
is, generates a column vector from all elements of a matrix [see, e.g., Bernstein
(2009) for the rule connecting trace to vec]. Now, realize that

vec
(
XT

CXc

)T = vec

((
N∑

i=1

XC(i,f )Xc(i,g)

)
(f,g)

)T

= 11×NXu1,...,uR
,

where an index pair (i, j ) stand for the ith row and j th column, respectively, and
the columns in Xu1,...,uR

are assumed to appear in the order that corresponds to
that in vec(XT

CXc)
T (w.l.o.g.). Then (7) becomes

1

N2 11×NXu1,...,uR
XT

u1,...,uR
1T

1×N = aR(u1, . . . , uR),

which proves the assertion.
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