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THE FREE ENERGY IN A MULTI-SPECIES
SHERRINGTON–KIRKPATRICK MODEL

BY DMITRY PANCHENKO

University of Toronto

The authors of [Ann. Henri Poincaré 16 (2015) 691–708] introduced
a multi-species version of the Sherrington–Kirkpatrick model and suggested
the analogue of the Parisi formula for the free energy. Using a variant of
Guerra’s replica symmetry breaking interpolation, they showed that, under
certain assumption on the interactions, the formula gives an upper bound on
the limit of the free energy. In this paper we prove that the bound is sharp.
This is achieved by developing a new multi-species form of the Ghirlanda–
Guerra identities and showing that they force the overlaps within species to
be completely determined by the overlaps of the whole system.

1. Introduction and main results. Recently, the following modification of
the Sherrington–Kirkpatrick model [15] was introduced in [3]. Given N ≥ 1, let
us denote by

σ = (σ1, . . . , σN) ∈ �N = {−1,+1}N(1)

a configuration of N Ising spins. Consider a finite set S that will be fixed through-
out the paper and, in particular, it does not change with N . We emphasize this
because we will often omit the dependence of other objects on N . The elements
of S will be called species and will be denoted by s or t . Let us divide all spin
indices into disjoint groups indexed by the species

I = {1, . . . ,N} = ⋃
s∈S

Is.(2)

These sets will, obviously, vary with N , and we will assume that their cardinalities
Ns = |Is | satisfy

lim
N→∞

Ns

N
= λs ∈ (0,1) for all s ∈ S .(3)

For simplicity of notation, we will omit the dependence of λN
s := Ns/N on N and

will simply write λs . The Hamiltonian proposed in [3] resembles the usual SK
Hamiltonian,

HN(σ) = 1√
N

N∑
i,j=1

gijσiσj ,(4)
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where the interaction parameters (gij ) are independent Gaussian random variables,
only now they are not necessarily identically distributed but, instead, satisfy

Eg2
ij = �2

st if i ∈ Is, j ∈ It for s, t ∈ S .(5)

In other words, the variance of the interaction between i and j depends only on
the species they belong to. We will make the same assumptions on the matrix
�2 = (�2

st )s,t∈S as in [3], namely, that it is symmetric and nonnegative definite,

�2
st = �2

ts for all s, t ∈ S and �2 ≥ 0.(6)

Let us denote the overlap of the restrictions of two spin configurations to a given
species s ∈ S by

Rs

(
σ 1, σ 2) = 1

Ns

∑
i∈Is

σ 1
i σ 2

i .(7)

Then it is easy to see that the covariance of the Gaussian Hamiltonian (4) is given
by

1

N
EHN

(
σ 1)

HN

(
σ 2) = ∑

s,t∈S

�2
stλsλtRs

(
σ 1, σ 2)

Rt

(
σ 1, σ 2)

.(8)

This already gives some idea about the main new difficulty one encounters in this
model compared to the classical Sherrington–Kirkpatrick model. Namely, now we
will need to understand the joint distributions of the overlap arrays in the ther-
modynamic limit simultaneously for all species s ∈ S . Our main goal will be to
compute the limit of the free energy in this model,

FN = 1

N
E logZN, where ZN = ∑

σ∈�N

expHN(σ).(9)

Notice that we do not consider the inverse temperature parameter here, because it
can be absorbed into the definition of the matrix �2. One can also consider the
externals fields that depend only on the species but, since it does not affect any
arguments in the paper, for simplicity of notation we will omit them.

Under assumption (6), the authors in [3] proved, using the Guerra–Toninelli
interpolation [7], that the free energy has a limit. They also proposed the following
analogue of the Parisi formula [11, 12] for the free energy, which was proved for
the original SK model by Talagrand in [16]; see also [17]. Given integer r ≥ 1,
consider a sequence

0 = ζ−1 < ζ0 < · · · < ζr−1 < ζr = 1(10)

and, for each s ∈ S , a sequence

0 = qs
0 ≤ qs

1 ≤ · · · ≤ qs
r−1 ≤ qs

r = 1.(11)
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We will also consider two types of nondecreasing combinations of these sequences
as follows. For 0 ≤ � ≤ r , we define

Q� = ∑
s,t∈S

�2
stλsλtq

s
�q

t
� and Qs

� = 2
∑
t∈S

�2
stλtq

t
� for s ∈ S .(12)

The meaning of these definitions will become clear when we look at the covariance
of the cavity fields in the Aizenman–Sims–Starr scheme in Section 5. Given these
sequences, let us consider i.i.d. standard Gaussian random variables (η�)1≤�≤r and,
for s ∈ S , define

Xs
r = log ch

∑
1≤�≤r

η�

(
Qs

� − Qs
�−1

)1/2
.(13)

Recursively over 0 ≤ � ≤ r − 1, we define

Xs
� = 1

ζ�

logE� exp ζ�X
s
�+1,(14)

where E� denotes the expectation with respect to η�+1 only. Notice that Xs
0 are

nonrandom. Finally, we define the analogue of the Parisi functional by

P(ζ, q) = log 2 + ∑
s∈S

λsX
s
0 − 1

2

∑
0≤�≤r−1

ζ�(Q�+1 − Q�).(15)

The main result of the paper is the following.

THEOREM 1. Under the assumption (6), the limit of the free energy is given
by

lim
N→∞FN = infP(ζ, q),(16)

where the infimum is taken over r ≥ 1 and the sequences (10) and (11).

In [3], the inequality FN ≤ infP(ζ, q) was proved under assumption (6) using
the analogue of Guerra’s replica symmetry breaking interpolation [6]. For conve-
nience, we will reproduce this result in Section 2 in the formalism of the Ruelle
probability cascades, which will also allow us to introduce several objects that
will be used in the subsequent sections. In this paper we will prove the matching
lower bound using the analogue of the Aizenman–Sims–Starr scheme [1] and, in
this part, the assumption �2 ≥ 0 will not be needed. The approach was applied
previously in various situations in [10] and [4] and is based on the ultrametricity
result in [8]. As we mentioned above, in the multi-species model we encounter
a new nontrivial obstacle. Namely, we need to describe the joint distribution of
the overlap arrays simultaneously for all species, and even though it is clear that
the marginal distribution of each array will be generated by the Ruelle probabil-
ity cascades as in the SK model, it is not at all clear what their joint distribution
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should be. We will develop an approach to overcome this obstacle in Sections 3
and 4. In Section 3 we will prove a multi-species version of the Ghirlanda–Guerra
identities, which are similar to the original Ghirlanda–Guerra identities [5], but
apply to generic overlaps that may depend on the overlaps of all species. Using
these identities, we will show in Section 4 that the overlaps of different species
are synchronized in the sense that they are deterministic functions of the overlaps
of the whole system. This will describe the joint distribution of all overlaps and
allow us to obtain the lower bound in Section 5 in a straightforward way using the
Aizenman–Sims–Starr scheme. In the last section, we will mention several inter-
esting open questions.

2. Guerra’s replica symmetry breaking bound. Given r ≥ 1, let (vα)α∈Nr

be the weights of the Ruelle probability cascades [14] corresponding to the param-
eters (10); see, for example, Section 2.3 in [9] for the definition. For α,β ∈Nr , we
denote

α ∧ β = min{0 ≤ � ≤ r|α1 = β1, . . . , α� = β�,α�+1 	= β�+1},(17)

where α ∧ β = r if α = β . Since the sequences defined in (12) are nondecreasing,
we can consider Gaussian processes Cs(α) for s ∈ S and D(α) both indexed by
α ∈ Nr with the covariances

ECs(α)Cs(β) = Qs
α∧β and ED(α)D(β) = Qα∧β.(18)

These are the usual Gaussian fields that accompany the construction of the Ruelle
probability cascades; see, for example, Section 2.3 in [9]. For each s ∈ S and
each i ∈ Is , let Ci(α) be a copy of the process Cs(α), and suppose that all these
processes are independent of each other and of D(α). For 0 ≤ x ≤ 1, consider an
interpolating Hamiltonian defined on �N ×Nr by

HN,x(σ,α) = √
xHN(σ) + √

1 − x

N∑
i=1

σiCi(α) + √
x
√

ND(α)(19)

and the corresponding interpolating free energy

ϕ(x) = 1

N
E log

∑
σ,α

vα expHN,x(σ,α).(20)

Then it is easy to check the following.

LEMMA 1. Under assumption (6), the derivative of ϕ(x) in (20) satisfies
ϕ′(x) ≤ 0.

PROOF. Let us denote by 〈·〉x the average with respect to the Gibbs measure
�x(σ,α) on �N ×Nr defined by

�x(σ,α) ∼ vα expHN,x(σ,α).
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Then, obviously, for 0 < x < 1,

ϕ′(x) = 1

N
E

〈
∂HN,x(σ,α)

∂x

〉
x

.

It is easy to check from the above definitions that

1

N
E

∂HN,x(σ
1, α1)

∂x
HN,x

(
σ 2, α2)

= 1

2

∑
s,t∈S

�2
stλsλt

(
Rs

(
σ 1, σ 2)

Rt

(
σ 1, σ 2)

− 2Rs

(
σ 1, σ 2)

qt
α1∧α2 + qs

α1∧α2q
t
α1∧α2

)
.

In particular, this is zero when (σ 1, α1) = (σ 2, α2) and, in general, can be rewritten
as a quadratic form (�2(R − q), (R − q))/2, where

R = (
λsRs

(
σ 1, σ 2))

s∈S , q = (
λsq

s
α1∧α2

)
s∈S .

Notice that here we used the symmetry of the matrix �2. Finally, usual Gaussian
integration by parts then gives (see, e.g., Lemma 1.1 in [9])

ϕ′(x) = −1

2
E

〈(
�2(R − q), (R − q)

)〉
x ≤ 0,

where the last inequality follows from the assumption �2 ≥ 0 in (6). �

The lemma implies that ϕ(1) ≤ ϕ(0). It is easy to see that

ϕ(0) = log 2 + 1

N
E log

∑
α∈Nr

vα

∏
i≤N

chCi(α)

and

ϕ(1) = FN + 1

N
E log

∑
α∈Nr

vα exp
√

ND(α).

Now, standard properties of the Ruelle probability cascades imply that (see, e.g.,
the proof of Lemma 3.1 in [9]),

1

N
E log

∑
α∈Nr

vα

∏
i≤N

chCi(α) = 1

N

∑
1≤i≤N

E log
∑

α∈Nr

vαchCi(α)

(21)
= ∑

s∈S

λsX
s
0

and
1

N
E log

∑
α∈Nr

vα exp
√

ND(α) = 1

2

∑
0≤�≤r−1

ζ�(Q�+1 − Q�).(22)

Recalling (15), the inequality ϕ(1) ≤ ϕ(0) can be written as FN ≤ P(ζ, q), which
yields the upper bound in (16).
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3. Multi-species Ghirlanda–Guerra identities. In order to prepare for the
proof of the lower bound, we need to obtain some strong coupling properties for
the overlaps in different species, which will be achieved in the next section using
a multi-species version of the Ghirlanda–Guerra identities that we will now prove.
Let us consider a countable dense subset W of [0,1]|S |. For a vector

w = (ws)s∈S ∈ W ,(23)

let si(w) = √
ws for i ∈ Is and s ∈ S , and consider the following p-spin Hamil-

tonian,

hN,w,p(σ ) = 1

Np/2

∑
1≤i1,...,ip≤N

g
w,p
i1,...,ip

σi1si1(w) · · ·σipsip (w),(24)

where g
w,p
i1,...,ip

are i.i.d. standard Gaussian random variables independent for all
combinations of indices p ≥ 1,w ∈ W and i1, . . . , ip ∈ {1, . . . ,N}. If we define

Rw

(
σ 1, σ 2) = ∑

s∈S

λswsRs

(
σ 1, σ 2)

,(25)

where Rs(σ
1, σ 2) was defined in (7), then it is easy to check that the covariance

of (24) is

EhN,w,p

(
σ 1)

hN,w,p

(
σ 2) = Rw

(
σ 1, σ 2)p

.(26)

Since the set W is countable, we can consider some one-to-one function
j :W →N. Then we let xw,p for p ≥ 1,w ∈ W be i.i.d. random variables uni-
form on the interval [1,2] and define a Hamiltonian

hN(σ) = ∑
w∈W

∑
p≥1

2−j (w)−pxw,phN,w,p(σ ).(27)

Note that, conditionally on x = (xw,p)p≥1,w∈W , this is a Gaussian process and its
variance is bounded by 4. The Hamiltonian hN(σ) will play a role of a perturbation
Hamiltonian, which means that, instead of HN(σ) in (4), from now on we will
consider the perturbed Hamiltonian

H
pert
N (σ) = HN(σ) + sNhN(σ),(28)

where sN = Nγ for any 1/4 < γ < 1/2. First of all, it is easy to see, using Jensen’s
inequality on each side, that

1

N
E log

∑
σ∈�N

expHN(σ) ≤ 1

N
E log

∑
σ∈�N

expH
pert
N (σ)

(29)

≤ 1

N
E log

∑
σ∈�N

expHN(σ) + 2s2
N

N
,
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and, since limN→∞ N−1s2
N = 0, the perturbation term does not affect the limit

of the free energy. As in the Sherrington–Kirkpatrick and mixed p-spin models,
the purpose of adding the perturbation term is to obtain the Ghirlanda–Guerra
identities for the Gibbs measure

GN(σ) = expH
pert
N (σ)

ZN

where ZN = ∑
σ∈�N

expH
pert
N (σ),(30)

corresponding to the perturbed Hamiltonian (28). We will denote the average with
respect to G⊗∞

N by 〈·〉. Now, given n ≥ 2, let

Rn = (
Rs

(
σ�, σ �′))

s∈S ,�,�′≤n

and consider an arbitrary bounded measurable function f = f (Rn). For p ≥ 1 and
w ∈ W , let

Δ(f,n,w,p) =
∣∣∣∣E〈

f Rw

(
σ 1, σ n+1)p〉 − 1

n
E〈f 〉E〈

Rw

(
σ 1, σ 2)p〉

(31)

− 1

n

n∑
�=2

E
〈
f Rw

(
σ 1, σ �)p〉∣∣∣∣,

where E denotes the expectation conditionally on the i.i.d. uniform sequence x =
(xw,p)p≥1,w∈W . If we denote by Ex the expectation with respect to x then the
following holds.

THEOREM 2. For any n ≥ 2 and any bounded measurable function f =
f (Rn),

lim
N→∞ExΔ(f,n,w,p) = 0(32)

for all p ≥ 1 and w ∈ W .

PROOF. The proof is identical to the one of Theorem 3.2 in [9]. For a given
p ≥ 1 and w ∈ W , equation (32) is obtained by utilizing the term hN,w,p(σ ) in the
perturbation (27). �

Theorem 2 implies that we can choose a nonrandom sequence xN =
(xN

w,p)p≥1,w∈W changing with N such that

lim
N→∞Δ(f,n,w,p) = 0(33)

for the Gibbs measure GN with the parameters x in the perturbation Hamilto-
nian (27) equal to xN rather than random. In fact, the choice of xN will be made
below in a special way to coordinate with the Aizenman–Sim–Starr scheme. In this
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section, we will simply assume that we have any such sequence xN . Moreover, let
us now consider any subsequence (Nk)k≥1 along which the array

(
Rs

(
σ�, σ �′))

s∈S ,�,�′≥1

of the overlaps within species for infinitely many replicas (σ �)�≥1 converges in
distribution under the measure EG⊗∞

N . Again, later we will be interested in a spe-
cial choice of such subsequence. Let(

Rs
�,�′

)
s∈S ,�,�′≥1(34)

be the array with the limiting distribution, and similarly to (25), define

Rw
�,�′ =

∑
s∈S

λswsR
s
�,�′ .(35)

Then equations (31) and (33) imply that the limiting array satisfies

Ef
(
Rn)(

Rw
1,n+1

)p = 1

n
Ef

(
Rn)

E
(
Rw

1,2
)p + 1

n

n∑
�=2

Ef
(
Rn)(

Rw
1,�

)p
,(36)

where, of course, now Rn = (Rs
�,�′)s∈S ,�,�′≤n. From this we will deduce the fol-

lowing multi-species form of the Ghirlanda–Guerra identities for such limiting
arrays. Let us consider an array

Q�,�′ = ϕ
((

Rs
�,�′

)
s∈S

)
(37)

for any bounded measurable function ϕ of the overlaps in different species.

THEOREM 3. For any n ≥ 2 and any bounded measurable function f =
f (Rn),

Ef
(
Rn)

Q1,n+1 = 1

n
Ef

(
Rn)

EQ1,2 + 1

n

n∑
�=2

Ef
(
Rn)

Q1,�.(38)

PROOF. Since equation (36) holds for all w ∈ W , both sides are continuous
in w, and W is dense in [0,1]|S |, equation (36) holds for all w ∈ [0,1]|S |. Take
any integers ps ≥ 0 for s ∈ S , and let p = ∑

s∈S ps . If we recall the definition of
Rw

�,�′ in (35),

∂p

∏
s∈S ∂w

ps
s

(
Rw

�,�′
)p = p! ∏

s∈S

(
λsR

s
�,�′

)ps .

Computing this partial derivative on both sides of (36) implies

Ef
(
Rn) ∏

s∈S

(
Rs

1,n+1
)ps = 1

n
Ef

(
Rn)

E
∏
s∈S

(
Rs

1,2
)ps

(39)

+ 1

n

n∑
�=2

Ef
(
Rn) ∏

s∈S

(
Rs

1,�

)ps .
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Approximating continuous functions by polynomials, this implies (38) for contin-
uous functions ϕ in (37), and the general case follows. �

REMARK. In particular, Theorem 3 implies that the array (Q�,�′)�,�′≥1 itself
satisfies the usual Ghirlanda–Guerra identities,

Ef
(
Qn)

ψ(Q1,n+1) = 1

n
Ef

(
Qn)

Eψ(Q1,2) + 1

n

n∑
�=2

Ef
(
Qn)

ψ(Q1,�),(40)

for any bounded measurable function ψ and f = f (Qn), where Qn =
(Q�,�′)�,�′≤n. In the case when the array Q is also nonnegative definite, the main
result in [8] will allow us to use the full force of the Ghirlanda–Guerra identities
and, in particular, will imply that such arrays are ultrametric and can be generated
by the Ruelle probability cascades; see Section 2.4 in [9].

4. Synchronizing the species. Now, let us consider any limiting distribution
as in (34), and let us notice that the overlap

R
(
σ�, σ �′) = 1

N

N∑
i=1

σ�
i σ �′

i = ∑
s∈S

λsRs

(
σ�, σ �′)

of two configurations over the whole system in the limit will become

R�,�′ = ∑
s∈S

λsR
s
�,�′ .(41)

In this section, we will prove the main result that will allow us to characterize the
limits that will arise in the Aizenman–Sims–Starr scheme.

THEOREM 4. For any array (34) that satisfies (38), there exist nondecreasing
(1/λs)-Lipschitz functions Ls : [0,1] → [0,1] such that Rs

�,�′ = Ls(R�,�′) almost
surely for all s ∈ S and all �, �′ ≥ 1.

The reason we can consider the domain and range of Ls to be [0,1] is be-
cause each array Rs is nonnegative definite and satisfies the Ghirlanda–Guerra
identities (40), and therefore, its entries are nonnegative by Talagrand’s positivity
principle (Theorem 2.16 in [9]). Theorem 4 implies that the joint distribution of
the overlap arrays for all species will be determined trivially by the overlap array
(R�,�′)�,�′≥1. On the other hand, the Ghirlanda–Guerra identities imply that this
array can be generated using the Ruelle probability cascades, which will be used
in Section 5. We begin with the following observation.

LEMMA 2. If Rs
�,�′ > Rs

�,�′′ for some s ∈ S , then Rt
�,�′ ≥ Rt

�,�′′ for all t ∈ S .
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PROOF. By Theorem 3, for any s, t ∈ S , the arrays
(
Rs

�,�′
)
�,�′≥1,

(
Rt

�,�′
)
�,�′≥1 and

(
Rs

�,�′ + Rt
�,�′

)
�,�′≥1

satisfy the Ghirlanda–Guerra identities. Since all these arrays are nonnegative def-
inite, the main result in [8] (or Theorem 2.14 in [9]) implies that these arrays are
ultrametric, that is,

Rs
�′,�′′ ≥ min

(
Rs

�,�′,Rs
�,�′′

)
(42)

for any different �, �′, �′′ ≥ 1 and, similarly, for the other two arrays. In other
words, given three replica indices, the smallest two overlaps are equal. Suppose
now that Rs

�,�′ > Rs
�,�′′ but Rt

�,�′ < Rt
�,�′′ . By ultrameticity of the first two arrays,

Rs
�,�′ > Rs

�,�′′ = Rs
�′,�′′ and Rt

�′,�′′ = Rt
�,�′ < Rt

�,�′′ .

However, this implies that

Rs
�′,�′′ + Rt

�′,�′′ < min
(
Rs

�,�′ + Rt
�,�′,Rs

�,�′′ + Rt
�,�′′

)
,

violating ultrametricity of the third array. �

Let us state one obvious corollary of the above lemma.

COROLLARY 1. The following statements hold:

(a) If R�,�′ > R�,�′′ , then Rs
�,�′ ≥ Rs

�,�′′ for all s ∈ S .
(b) If Rs

�,�′ > Rs
�,�′′ for some s ∈ S , then R�,�′ > R�,�′′ .

This already gives some indication that the overlaps in different species will
be synchronized. However, keeping in mind the ultrametric tree structure of the
Ruelle probability cascades that generate them, we need to show that the entire
clusters are synchronized and the corresponding cascades are completely coupled.
To prove this, for q ∈ [0,1] and s ∈ S , we will consider the array

R
s,q

�,�′ = I(R�,�′ ≥ q)
(
Rs

�,�′ + 1
)
.(43)

First of all, we add +1 to the overlap Rs
�,�′ to ensure that the only way the right-

hand side can be equal to zero is when R�,�′ < q and not, for example, when
Rs

�,�′ = 0. As in (42), by Theorem 3, the array (R�,�′)�,�′≥1 is ultrametric, which
implies that the array (I(R�,�′ ≥ q))�,�′≥1 is nonnegative definite, as it consists of
blocks on the diagonal with all entries equal to one. Therefore, the array

Rs,q = (
R

s,q

�,�′
)
�,�′≥1

is nonnegative definite as the Hadamard product of two such arrays. By Theo-
rem 3, the array Rs,q also satisfies the Ghirlanda–Guerra identities, so all the
consequences of the Ghirlanda–Guerra identities for nonnegative definite arrays
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described, for example, in Section 2.4 in [9], hold in this case. One such conse-
quence is the following. Let

μ = L (R1,2) and μs,q = L
(
R

s,q
1,2

)
(44)

be the distributions of one entry of the arrays R and Rs,q correspondingly.
Lemma 2.7 in [9] implies the following consequence of the Ghirlanda–Guerra
identities, which was first observed in [13].

LEMMA 3. For any s ∈ S , � ≥ 1 and q ∈ [0,1], with probability one, the set

As
�(q) = {

R
s,q

�,�′ |�′ 	= �
} = {

I(R�,�′ ≥ q)
(
Rs

�,�′ + 1
)|�′ 	= �

}
(45)

is a dense subset of the support of μs,q .

This will be the key to the proof of Theorem 4. Now, for any q ∈ [0,1], let us
define

�s(q) = inf
{
x ≥ 1|x ∈ suppμs,q} − 1.(46)

Equivalently, one could take the infimum over x > 0, because R
s,q

�,�′ > 0 if and

only if R
s,q

�,�′ ≥ 1. To understand the meaning of this definition, let us notice that,
whenever the set As

�(q) in (45) is dense in the support of μs,q (which happens with
probability one for a given q),

�s(q) = inf
{
Rs

�,�′ |�′ 	= �,R�,�′ ≥ q
}
,(47)

so �s(q) is just the smallest value that Rs
�,�′ can take whenever R�,�′ ≥ q . This

alternative definition, obviously, implies the following.

LEMMA 4. For any s ∈ S , the function �s(q) in (46) is nondecreasing in q .

To obtain the functions Ls in Theorem 4, we will first need to regularize �s(q)

as follows:

Ls(q) = lim
x↑q

�s(x)(48)

for q > 0 and Ls(0) = �s(0). Theorem 4 will be now proved in two steps. First,
we will show that Rs

�,�′ = Ls(R�,�′) almost surely. Second, we will show that Ls is
(1/λs)-Lipschitz on the support of the distribution μ of R1,2. Then we can redefine
Ls outside of the support to be (1/λs)-Lipschitz extension which, obviously, does
not change the first claim, Rs

�,�′ = Ls(R�,�′), since R�,�′ belongs to the support of
μ almost surely.

PROOF OF THEOREM 4. Step 1. We will use that the claim in Lemma 3 holds
with probability one simultaneously for all q ∈ Q∩ [0,1]. Let us fix some indices
� 	= �′. If μ({0}) = 0, then all R�,�′ > 0 almost surely. If μ({0}) > 0 and R�,�′ = 0,
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then we must have Rs
�,�′ = 0 for all s ∈ S , and definition (46) implies that �s(0) =

0. In this case,

Rs
�,�′ = �s(R�,�′) = Ls(R�,�′).

Let us now consider the case when R�,�′ > 0. First of all, for any x < R�,�′ we must
have that �s(x) ≤ Rs

�,�′ , because the function �s(x) is nondecreasing and, for any
rational q ≤ R�,�′ , (47) implies that �s(q) ≤ Rs

�,�′ . Next, consider arbitrary ε > 0,
and consider any rational q such that

q < R�,�′ ≤ q + ε.(49)

Consider two possibilities. First, suppose that Rs
�,�′ = �s(q). Since for q ≤ x <

R�,�′ we showed that

�s(x) ≤ Rs
�,�′ = �s(q) ≤ �s(x)

[so �s(x) = �s(q) for such x], we get the desired claim,

Rs
�,�′ = �s(q) = lim

x↑R�,�′
�s(x) = Ls(R�,�′).

Second, suppose that �s(q) < Rs
�,�′ . By (47), we can find a sequence (�n) such

that R�,�n ≥ q and Rs
�,�n

↓ �s(q). Since we assumed that �s(q) < Rs
�,�′ , for large

enough n we must have Rs
�,�n

< Rs
�,�′ and, by Corollary 1, we get R�,�n < R�,�′

and Rt
�,�n

≤ Rt
�,�′ for all t ∈ S . Therefore,

0 ≤ λs

(
Rs

�,�′ − Rs
�,�n

) ≤ ∑
t∈S

λt

(
Rt

�,�′ − Rt
�,�n

)
(50)

= R�,�′ − R�,�n ≤ q + ε − q = ε.

Using that Rs
�,�n

↓ �s(q) implies that �s(q) ≤ Rs
�,�′ ≤ �s(q)+ ελ−1

s . Finally, letting
q ↑ R�,�′ and ε ↓ 0 in such a way that (49) holds, again, implies the desired claim

Rs
�,�′ = lim

q↑R�,�′
�s(q) = Ls(R�,�′).

Step 2. Let us now show that Ls is (1/λs)-Lipschitz on the support of the distribu-
tion μ of R1,2. Take q1 < q2 in the support of μ. Let q ′

2 = q2 − ε2 for some small
ε2 > 0 such that q ′

2 > 0, and let q ′
1 = max(q1 − ε1,0) for some small ε1 > 0. Let

us also make sure that q ′
1 and q ′

2 are rational. By (47), given ε > 0, we can find
indices �j for j = 1,2 such that

R�,�j
≥ q ′

j and �s

(
q ′
j

) ≤ Rs
�,�j

≤ �s

(
q ′
j

) + ε.(51)

Similarly to Lemma 3, Lemma 2.7 in [9] implies that the set {R�,�′ |�′ 	= �} is a
dense subset of the support of μ = L (R1,2) with probability one and, since we
chose q1 and q2 in the support of μ, we can find other indices �′

j for j = 1,2 such
that

q ′
j ≤ R�,�′

j
≤ qj + ε.
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If the index �j already satisfies this condition, we simply take �′
j = �j . Otherwise,

because of the first inequality in (51), we must have R�,�′
j
< R�,�j

and, by (47),
Corollary 1 and the second inequality in (51),

�s

(
q ′
j

) ≤ Rs
�,�′

j
≤ Rs

�,�j
≤ �s

(
q ′
j

) + ε.

In both cases, we have

q ′
j ≤ R�,�′

j
≤ qj + ε and �s

(
q ′
j

) ≤ Rs
�,�′

j
≤ �s

(
q ′
j

) + ε.

Since q1 < q2, by taking ε > 0 small enough, we can assume that R�,�′
1
< R�,�′

2
.

Then, as in (50),

λs

(
Rs

�,�′
2
− Rs

�,�′
1

) ≤ R�,�′
2
− R�,�′

1
.

Combining all the inequalities, we showed that

λs

(
�s

(
q ′

2
) − �s

(
q ′

1
) − ε

) ≤ q2 + ε − q ′
1.

Letting ε, ε1, ε2 ↓ 0 implies λs(Ls(q2) − Ls(q1)) ≤ q2 − q1, which proves that Ls

is (1/λs)-Lipschitz on the support of μ. As we mentioned above, (1/λs)-Lipschitz
extension of Ls outside of the support does not affect the fact that Rs

�,�′ = Ls(R�,�′)
almost surely. �

5. Lower bound via the Aizenman–Sims–Starr scheme. Given the main
result in the previous section, the arguments of this section will be a standard
exercise. To a reader familiar with the corresponding arguments in the setting of
the classical SK model (e.g., Sections 3.5 and 3.6 in [9]) these arguments will be
completely obvious. Otherwise, we recommend to study them first in the easier
case of the SK model.

It is clear that small modifications of the vector (λs)s∈S result in small changes
both of the free energy for large N and the Parisi formula (16), so without loss of
generality, we can assume that all λs are rational and can be written as

λs = ks

k
.(52)

In the proof of the lower bound, we will use an obvious fact that

lim inf
N→∞ FN ≥ 1

k
lim inf
n→∞ (E logZnk+k −E logZnk).(53)

Let us consider the right-hand side for a fixed N = nk, and in addition to parti-
tion (2), let us consider a partition of k new coordinates

I+ = {N + 1, . . . ,N + k} = ⋃
s∈S

I+
s(54)
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into different species, so that |I+
s | = ks . Let us compare the partition functions ZN

and ZN+k . If we denote ρ = (σ, ε) ∈ �N+k for σ ∈ �N and ε ∈ �k , then we can
write

HN+k(ρ) = H ′
N(σ) + ∑

i∈I+
εizN,i(σ ) + r(ε),(55)

where

H ′
N(σ) = 1√

N + k

N∑
i,j=1

gijσiσj ,(56)

zN,i(σ ) = 1√
N + k

N∑
j=1

(gij + gji)σj(57)

and

r(ε) = 1√
N + k

∑
i,j∈I+

gij εiεj .(58)

On the other hand, the Gaussian process HN(σ) on �N can be decomposed into a
sum of two independent Gaussian processes

HN(σ)
d= H ′

N(σ) + yN(σ),(59)

where

yN(σ) =
√

k√
N(N + k)

N∑
i,j=1

g′
ij σiσj(60)

and (g′
ij ) are independent copies of the Gaussian random variables (gij ). Using

that the term r(ε) is of a small order, we can write

E logZN+k = E log
∑

σ∈�N

∏
i∈I+

2ch
(
zN,i(σ )

)
expH ′

N(σ) + o(1)(61)

and, using equation (59),

E logZN = E log
∑

σ∈�N

exp
(
yN(σ)

)
expH ′

N(σ).(62)

Finally, if we consider the Gibbs measure on �N corresponding to the Hamiltonian
H ′

N(σ) in (56),

G′
N(σ) = expH ′

N(σ)

Z′
N

where Z′
N = ∑

σ∈�N

expH ′
N(σ),(63)
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then combining (61), (62) we can replace the right-hand side of (53) by

1

k
lim inf
n→∞

(
E log

∑
σ∈�N

∏
i∈I+

2ch
(
zN,i(σ )

)
G′

N(σ)

(64)

−E log
∑

σ∈�N

exp
(
yN(σ)

)
G′

N(σ)

)
.

This is the analogue of the Aizenman–Sims–Starr representation in [1]; see Sec-
tion 3.5 in [9]. From the construction it is clear that the Gaussian processes zN,i(σ )

for i ∈ I+ and yN(σ) are independent of each other and the randomness of the
measure G′

N . For s ∈ S and i ∈ I+
s ,

EzN,i

(
σ 1)

zN,i

(
σ 2) = 1

N + k

∑
t∈S

∑
j∈It

2�2
stσ

1
j σ 2

j

= N

N + k

∑
t∈S

2�2
stλtRt

(
σ 1, σ 2)

(65)

= 2
∑
t∈S

�2
stλtRt

(
σ 1, σ 2) + O

(
N−1)

and, similarly to the computation of the covariance in (8),

EyN

(
σ 1)

yN

(
σ 2) = kN2

N(N + k)

∑
s,t∈S

�2
stλsλtRs

(
σ 1, σ 2)

Rt

(
σ 1, σ 2)

(66)
= k

∑
s,t∈S

�2
stλsλtRs

(
σ 1, σ 2)

Rt

(
σ 1, σ 2) + O

(
N−1)

.

Notice how these expressions resemble the definition in (12). Of course, one can
ignore the lower error terms O(N−1) from now on.

The same computation can be carried out just as easily in the case when the
free energy FN in (53) corresponds to the perturbed Hamiltonian H

pert
N (σ) in (28)

instead of the original Hamiltonian HN(σ). Moreover, since the perturbation term
sNhN(σ) in (28) is of a smaller order, one can show that the perturbation term
sN+khN+k(ρ) in the partition function ZN+k can simply be replaced by the one in
ZN , sNhN(σ). This is standard and is explained, for example, in Section 3.5 in [9].
In this case, we obtain the representation (64) with the Gibbs measure G′

N in (63)
corresponding to the perturbed Hamiltonian

H ′
N(σ) + sNhN(σ).

Also, in this case the expectation E in (64) includes the average Ex in the uniform
random variables x = (xw,p) in the definition of the perturbation Hamiltonian (27).

The proof of Theorem 2 applies verbatim to the measure G′
N , and right be-

low Theorem 2 we mentioned that one can choose a nonrandom sequence xN =
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(xN
w,p)p≥1,w∈W changing with N such that (33) holds for the Gibbs measure G′

N

with the parameters x in the perturbation Hamiltonian (27) equal to xN rather than
random. By Lemma 3.3 in [9], one can choose this sequence xN in such a way
that the lower limit in (64) is not affected by fixing x = xN instead of averaging
in x. To finish the proof, we will use Theorem 1.3 in [9] (a trivial modification of)
which implies that

E log
∑

σ∈�N

∏
i∈I+

2ch
(
zN,i(σ )

)
G′

N(σ) −E log
∑

σ∈�N

exp
(
yN(σ)

)
G′

N(σ)(67)

is a continuous functional of the distribution of the array
(
Rs

(
σ�, σ �′))

s∈S ,�,�′≥1(68)

under the measure EG′⊗∞
N . Passing to a subsequence, if necessary, we can assume

that this array converges in distribution to some array (Rs
�,�′)s∈S ,�,�′≥1 that, by

construction, satisfies Theorem 3. In particular, by Theorem 4,

Rs
�,�′ = Ls(R�,�′)(69)

for some nondecreasing (1/λs)-Lipschitz functions Ls , where R�,�′ is the overlap
of the whole system in (41).

Let us consider sequence (10) and a sequence

0 = q0 < q1 < · · · < qr−1 < qr = 1(70)

such that the distribution ζ on [0,1] defined by

ζ
({q�}) = ζ� − ζ�−1 for � = 0, . . . , r(71)

is close to the distribution L (R1,2) of one element of the array (R�,�′)�,�′≥1 in
some metric that metrizes weak convergence of distributions on [0,1]. As in Sec-
tion 2, let (vα)α∈Nr be the weights of the Ruelle probability cascades correspond-
ing to the parameters (10). Let (α�)�≥1 be an i.i.d. sample from Nr according to
these weights and, using sequence (70), define

Q�,�′ = q
α�∧α�′ .(72)

Since from Theorem 3 it is clear that the overlap array (R�,�′)�,�′≥1 satisfies the
Ghirlanda–Guerra identities, Theorems 2.13 and 2.17 in [9] imply that its distri-
bution will be close to the distribution of the array (Q�,�′)�,�′≥1. If for each s ∈ S
we define the sequence in (11) by

qs
� = Ls(q�) for 0 ≤ l ≤ r,(73)

and let

Qs
�,�′ = Ls(Q�,�′) = qs

α�∧α�′ ,(74)
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equation (69) implies that the entire array (Qs
�,�′)s,∈S ,�,�′≥1 will be close in distri-

bution to the array (Rs
�,�′)s∈S ,�,�′≥1.

Let us now consider Gaussian processes Cs(α) for s ∈ S and D(α) indexed by
α ∈Nr as in Section 2. For each s ∈ S and each i ∈ I+

s , let Ci(α) be a copy of the
process Cs(α), and suppose that all these processes are independent of each other
and of D(α). Similarly to (67), consider

E log
∑

α∈Nr

∏
i∈I+

2ch
(
Ci(α)

)
vα −E log

∑
α∈Nr

exp
(√

kD(α)
)
vα.(75)

By (12), (18) and (74), the covariances of these Gaussian processes can be written
as

ECi

(
α1)

Ci

(
α2) = 2

∑
t∈S

�2
stλtq

s
α1∧α2 = 2

∑
t∈S

�2
stλtQ

s
1,2(76)

for s ∈ S and i ∈ I+
s , and

E
√

kD
(
α1)√

kD
(
α2) = k

∑
s,t∈S

�2
stλsλtq

s
α1∧α2q

t
α1∧α2

(77)
= k

∑
s,t∈S

�2
stλsλtQ

s
1,2Q

t
1,2.

If we compare the covariances in (65) and (66) with (76) and (77), Theorem 1.3
in [9] implies that (75) is the same continuous functional of the distribution of the
array

(
Qs

�,�′
)
s∈S ,�,�′≥1,(78)

as (67) is of the array (68). Since both arrays, by construction, approximate in
distribution the array (Rs

�,�′)s∈S ,�,�′≥1, we proved that the quantities

1

k

(
E log

∑
α∈Nr

∏
i∈I+

2ch
(
Ci(α)

)
vα −E log

∑
α∈Nr

exp
(√

kD(α)
)
vα

)
(79)

can be used to approximate the lower limit of the free energy. It remains to observe
that, similarly to (21) and (22), using standard properties of the Ruelle probability
cascades (again, we refer to the proof of Lemma 3.1 in [9]),

1

k
E log

∑
α∈Nr

∏
i∈I+

2ch
(
Ci(α)

)
vα = 1

k

∑
i∈I+

E log
∑

α∈Nr

2ch
(
Ci(α)

)
vα

= ∑
s∈S

λsE log
∑

α∈Nr

2ch
(
Cs(α)

)
vα

= log 2 + ∑
s∈S

λsX
s
0
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and
1

k
E log

∑
α∈Nr

exp
(√

kD(α)
)
vα = 1

2

∑
0≤�≤r−1

ζ�(Q�+1 − Q�).

Therefore, (79) is precisely P(ζ, q) defined in (15), and this finishes the proof of
the lower bound.

6. Some open questions. An obvious question that arises is what happens
when �2 is not positive definite, for example, in the case of a bipartite model
with two interacting species and no interactions within species, that is, �2

12 > 0,
and �2

11 = �2
22 = 0. Notice that our proof of the lower bound for the free energy

still works in this case, but the Guerra-type upper bound in Section 2 utilized the
condition �2 ≥ 0 in an essential way.

It was clear from the proof of the lower bound, in particular from the equa-
tions (71) and (73), that the parameters (ζ�) in (10) and (q�) in (11) can be inter-
preted as encoding the joint distribution of the overlaps within species and, there-
fore, the minimizer in formula (16) for the free energy has an important physical
interpretation. As a result, as in the original Sherrington–Kirkpatrick model, there
are many interesting questions about this formula that one can study. For example,
can one extend the result in [2] to show the uniqueness of this minimizer? The
main result in [2] implies that the functional in (15) is strictly convex in the vector
(ζ�)�≤r for fixed parameters (11), which is sufficient to prove the uniqueness of the
minimizer for one system, but not obviously for the multi-species case. Another
important problem would be to understand the phase transition in this model and
to describe the replica symmetric (RS) region when the minimizer corresponds to
a distribution (71) concentrated on one point q ∈ [0,1], that is,

ζ0 = 0, ζ1 = 1, ζ2 = 1, q0 = 0, q1 = q, q2 = 1.

For technical reasons (to define the Ruelle probability cascades) we assumed that
the inequalities in (10) are strict, but the infimum in (16) may be achieved on the
limiting case when some inequalities become equalities. If the infimum is replica
symmetric, it is easy to write down the following critical point equations for the
parameters qs = qs

1 for s ∈ S :
∑
s∈S

λs�
2
st

(
qs −Eth2(

z
√

Qs + hs

)) = 0 for all t ∈ S ,

where z is a standard Gaussian random variable, Qs = 2
∑

t∈S �2
stλtq

t and
(hs)s∈S is a vector of external fields corresponding to each species. (For simplic-
ity of notation, we did not consider external fields above, but including them does
not affect any arguments.) Assuming that �2 is invertible, this system is equivalent
to

qs = Eth2(
z
√

Qs + hs

)
for all t ∈ S .
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In the SK model, this reduces to one equation, and the uniqueness of its solution
is known as the Latala–Guerra lemma; see Section A.14 in [17]. It would be in-
teresting to see if the solution of the above system of equations is also unique. In
that case, it should not be difficult to prove replica symmetry breaking above some
analogue of the AT line (in this case, some surface) by the same method as in the
SK model; see [18] or Theorem 13.3.1 in [17]. However, to characterize the replica
symmetric region exactly, one would probably need to work much harder. Notice
that the multi-species model allows for some interesting possibilities; for exam-
ple, one can imagine that for some choice of parameters, the replica symmetry is
broken in some species but not the others.
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