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We prove a geometrically meaningful stochastic representation of the
derivative of the heat semigroup on sub-Riemannian manifolds with tran-
verse symmetries. This representation is obtained from the study of Bochner–
Weitzenböck type formulas for sub-Laplacians on 1-forms. As a conse-
quence, we prove new hypoelliptic heat semigroup gradient bounds under
natural global geometric conditions. The results are new even in the case of
the Heisenberg group which is the simplest example of a sub-Riemannian
manifold with transverse symmetries.

1. Introduction. As shown in the monographs by Hsu [22], Stroock [34] and
Wang [37], stochastic analysis provides a set of powerful tools to study the geom-
etry of manifolds. However, as of today, most of the applications are restricted to
Riemannian geometry. The goal of the present work is to introduce some stochas-
tic analysis tools in sub-Riemannian geometry. We will, in particular, focus on the
special class of sub-Riemannian manifolds with transverse symmetries that was
introduced in [7].

A sub-Riemannian manifold is a smooth manifold M equipped with a nonholo-
nomic, or bracket generating, subbundle H ⊂ TM and a fiber inner product gH.
This means that if we denote by L(H) the Lie algebra of the vector fields generated
by the global C∞ sections of H, then span{X(x)|X ∈ L(H)} = Tx(M) for every
x ∈ M. We note that when H = TM, a sub-Riemannian manifold is simply a Rie-
mannian one, and thus sub-Riemannian manifolds encompass Riemannian ones.
However, some aspects of the geometry of sub-Riemannian manifolds are consid-
erably less regular than their Riemannian ancestors. Some of the major differences
between the two geometries are the following:

1. The Hausdorff dimension is usually greater than the manifold dimension.
2. The sub-Riemannian distance to a point x is in general not smooth on any

pointed neighborhood of x.
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3. The exponential map defined by the geodesics is in general not a local dif-
feomorphism in a neighborhood of the point at which it is based (see [28]).

4. The space of horizontal paths joining two fixed points may have singularities
(the so-called abnormal geodesics, see [27]).

5. The sub-Riemannian Brownian motion (Xt)t≥0 does not fill the space in an
isotropic way as the Riemannian Brownian does. Intuitively, for small times t the
process Xt will move at a speed

√
t in the direction of the vector fields in H, t in

the direction of the vector fields in [H,H], t3/2 in the direction of the vector fields
in [H, [H,H]], and so on (see [3]).

6. The sub-Laplacian is only subelliptic and not elliptic, that is, the diffusion
matrix at a point x is in general not invertible.

Sub-Riemannian geometry takes its roots in very old problems related to
isoperimetry, but was internationally brought to the attention of mathematicians
by E. Cartan’s pioneering address [12] at the Bologna International Congress of
Mathematicians in 1928. Since then, it has been the focus of numerous studies by
geometers. In particular, one should consult the monographs by Agrachev [1], Bel-
laïche [8], Gromov [21] and Montgomery [27] and the references therein. For the
last four decades, sub-Riemannian geometry has also been a center of interest for
analysts because it is the natural geometry associated to subelliptic partial differen-
tial equations (see [29, 31]). Perhaps more surprisingly, sub-Riemannian geometry
has also been widely studied by probabilists since the breakthrough [26] by Malli-
avin in 1976, where stochastic analysis and hypoellipticity theory merged together.
The paper gave birth to what nowadays is called Malliavin calculus. This calcu-
lus has then been successfully applied to the study of hypoelliptic heat kernels.
We mention in particular the works by Ben Arous [9] and Kusuoka and Stroock
[23]. One may also consult the monograph [3] for further connections between
probability theory and sub-Riemannian geometry.

Despite being an object of intensive studies, partly due to the above obstruc-
tions most of the developments in sub-Riemannian geometry to date are of a local
nature, that is, are restricted to compact manifolds only. As a consequence, the
theory presently lacks a body of results which, similar to the case of non compact
manifolds, connect global properties of solutions of the relevant partial differen-
tial equations, or of the relevant stochastic processes to curvature properties of the
ambient manifold.

However, in some special sub-Riemannian structures, a notion of Ricci lower
bound has been made precise in several recent papers [5–7]. Numerous new hy-
poelliptic functional inequalities were then obtained as a consequence. We mention
in particular the subelliptic Li–Yau inequalities (see [7]), the subelliptic parabolic
Harnack inequalities (see [7]), the Poincaré inequalities on balls (see [6]) and the
log-Sobolev inequalities (see [5]).

In the present paper, by using probabilistic methods, we reprove and actually
greatly improve under weaker conditions several inequalities that were obtained
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in [5] by using purely analytic methods. We also get new hypoelliptic inequalities
which seem difficult to prove directly by analytical tools. We mention, that in our
opinion, the probability methods are in a sense more direct and overall simpler
than the analytical methods that were developed in [7]. More precisely, the results
in Sections 3 and 4 in [7] which were used to prove Hypothesis 1.4 in [7] may
now be omitted, since this Hypothesis 1.4 is a straightforward consequence of
Corollary 4.9 that we prove in this paper.

We now describe our main results. The paper is divided into two parts, a ge-
ometric part and a probabilistic part. The geometric part is devoted to the study
of Bochner–Weitzenböck type formulas on sub-Riemannian manifolds with trans-
verse symmetries (see Section 2 for the definitions). More precisely, our goal will
be to introduce a natural family �ε , ε > 0, of sub-Laplacians on one-forms that
satisfy the intertwining

dL = �εd,(1.1)

where L is the sub-Laplacian and d the exterior derivative. The operator �ε is self-
adjoint with respect to a Riemannian metric extension that contracts in the sense of
Strichartz [33] to the sub-Riemannian metric when ε → ∞. Our main geometric
result is then Theorem 3.3 where we prove that

�ε = −(∇H −Tε
H
)∗(∇H −Tε

H
)+ 1

2ε
J ∗J −RicH,

and that for any smooth one-form η,

1

2
L‖η‖2

2ε − 〈�εη, η〉2ε =
d∑

i=1

∥∥∇Xi
η −Tε

Xi
η
∥∥2

2ε +
〈(
RicH − 1

2ε
J ∗J

)
η,η

〉
2ε

.

The quantities Tε , J ∗J and RicH are tensors that will be introduced in the text.
We should mention that, to our knowledge, this Bochner–Weitzenböck formula is
new even in the case of the Heisenberg group and it implies in a straightforward
way the horizontal and the vertical Bochner’s identities proved in [7].

In the second part of the paper, we exploit the commutation (1.1) to give a prob-
abilistic representation of the derivative dPt where Pt is the semigroup generated
by the sub-Laplacian L. The representation actually follows from (1.1) by adapt-
ing in our case classical ideas by Bismut [10], Driver and Thalmaier [15], Elworthy
[16, 17] and Thalmaier [35]. We deduce from this representation an integration by
part formula in the spirit of Driver [13]. Several new hypoelliptic heat semigroup
gradient estimates are then obtained as a consequence.

We point out that these two parts are largely independent and that the more
probability inclined reader may skip Section 3 since the main results proved in this
section are summarized in Proposition 4.1.

To conclude, we should mention that the inequalities we obtain, in the spirit
of [5], involve a vertical gradient. This, of course, does not mean that they are
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not geometrically meaningful, because we can see for instance that the gradient
bound in Corollary 4.9 is actually equivalent to a global lower bound on the hori-
zontal Ricci tensor of the sub-Riemannian connection. These hypoelliptic inequal-
ities with vertical gradient have also been successfully been used in geometry,
where real geometric theorems were proved as a consequence, like the subelliptic
Bonnet–Myers [7] and in analysis where convergence to equilibrium for hypoellip-
tic kinetic Fokker–Planck equations were established [4, 36]. On the other hand,
we have to say that the Driver–Melcher inequality [14] (see also [2, 24]) in the
Heisenberg group, which only involves the horizontal gradient still remains a little
mysterious for us, and that it would of course be extremely interesting to connect
those type of inequalities to natural geometric quantities.

2. Sub-Riemannian manifolds with transverse symmetries. The notion of
sub-Riemannian manifold with transverse symmetries was introduced in [7]. We
recall here the main geometric quantities and operators related to this structure
that will be needed in the sequel and we refer to [7] for further details. We also
introduce some new geometric invariants that shall later be needed.

Let M be a smooth, connected manifold with dimension d + h. We assume
that M is equipped with a bracket generating distribution H of dimension d and
a fiberwise inner product gH on that distribution. The distribution H is referred to
as the set of horizontal directions. Sub-Riemannian geometry is the study of the
geometry which is intrinsically associated to (H, gH) (see [33]). In general, there
is no canonical vertical complement of H in the tangent bundle TM, but in some
cases the fiberwise inner product gH determines one.

DEFINITION 2.1. It is said that M is a sub-Riemannian manifold with trans-
verse symmetries if there exists a h-dimensional Lie algebra V of sub-Riemannian
Killing vector fields such that for every x ∈ M,

TxM = H(x) ⊕ V(x),

where

V(x) = {
Z(x),Z ∈ V(x)

}
.

We recall that a vector field Z on M is called a sub-Riemannian Killing field if:

• The flow generated by Z infinitesimally preserves H, that is for every horizontal
vector field X (i.e., a smooth section of H), the vector field [Z,X] is horizontal.

• The flow generated by Z infinitesimally preserves the metric gH, that is
LZgH = 0, where LZ denotes the Lie derivative in the direction of Z.

Some of the most interesting examples of sub-Riemannian manifolds with trans-
verse symmetries come from a principal fiber bundle projection π :M → N with
totally geodesic fibers isomorphic to the structure group. The sub-Riemannian
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objects of M we are interested in are then the lifts of the Riemannian objects
of N: The sub-Laplacian on M is the lift of the Laplace–Beltrami operator on N

and the horizontal Brownian motion on M which is our main object of interest
is the lift of the Brownian motion on N. The study of the horizontal diffusion
processes associated to this type of submersions has already attracted a lot of
attention in the past, mostly in connection with skew-product type decomposi-
tion theorems (see Elworthy and Kendall [19] or Liao [25]). In our work, we are
more interested in developing an intrinsic horizontal stochastic calculus rather than
skew-product considerations. Though a sub-Riemannian manifold with transverse
symmetries may not be globally associated with a submersion, it is always lo-
cally. More precisely, as recently observed by Elworthy in [18], a sub-Riemannian
structure with transverse symmetries induces on M a Riemannian foliation with
totally geodesic leaves and bundle-like metric. We refer to the monograph by
Elworthy, Le Jan and Li [20] for a discussion of diffusions on foliated mani-
folds.

From now on in the sequel of the paper, we assume that M is a sub-Riemannian
manifold with transverse symmetries.

The distribution V is referred to as the set of vertical directions. The choice
of an inner product gV on the Lie algebra V naturally endows M with a one-
parameter family of Riemannian metrics that makes the decomposition H ⊕ V
orthogonal:

gε = gH ⊕ 1

ε
gV , ε > 0.

For notational convenience, we will often use the notation 〈·, ·〉ε , respectively
〈·, ·〉H, respectively 〈·, ·〉V , instead of gε , respectively gH, respectively gV .
We can extend gH on TxM × TxM by the requirement that gH(u, v) = 0
whenever u or v is in V(x). We similarly extend gV . Hence, for any u ∈
TxM,

‖u‖2
ε = ‖u‖2

H + 1

ε
‖u‖2

V .

Although gε will be useful for the purpose of computations, the geometric ob-
jects that we are eventually interested in, like the sub-Laplacian L and its associ-
ated semigroup will of course not depend on ε.

The Riemannian volume measure of (M, gε) is always a multiple of the Rie-
mannian volume measure of (M, g1), therefore, we will always use the Rieman-
nian volume measure of (M, g1) which we will denote μ.

At every point x ∈ M, we can find a local frame of vector fields {X1, . . . ,Xd,

Z1, . . . ,Zh} such that on a neighborhood of x:

(a) {X1, . . . ,Xd} is a gH-orthonormal basis of H;
(b) {Z1, . . . ,Zh} is a gV -orthonormal basis of V .
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We observe that the following commutation relations hold:

[Xi,Xj ] =
d∑

�=1

ω�
ijX� +

h∑
m=1

γ m
ij Zm,(2.1)

[Xi,Zm] =
d∑

�=1

δ�
imX�,(2.2)

for smooth functions ω�
ij , γ m

ij and δ�
im such that

δ�
im = −δi

�m, i, � = 1, . . . , d and m = 1, . . . ,h.(2.3)

Property (2.3) follows from the property of Zm being a sub-Riemannian Killing
field. By convention, ω�

ij = −ω�
ji , γ m

ij = −γ m
ji and δ�

im = −δ�
mi .

We define the horizontal gradient ∇Hf of a function f as the projection of
the Riemannian gradient of f on the horizontal bundle. Similarly, we define the
vertical gradient ∇Vf of a function f as the projection of the Riemannian gradient
of f on the vertical bundle. In a local adapted frame, we have

∇Hf =
d∑

i=1

(Xif )Xi

and

∇Vf =
h∑

m=1

(Zmf )Zm.

The canonical sub-Laplacian in a sub-Riemannian manifold with transverse sym-
metries is the generator of the symmetric Dirichlet form

EH(f, g) =
∫
M

〈∇Hf,∇Hg〉H dμ.

It is a diffusion operator L on M which is symmetric on C∞
0 (M) with respect to

the measure μ.
Actually, it is readily seen that in an adapted frame, one has

L = −
d∑

i=1

X∗
i Xi,

where X∗
i is the formal adjoint of Xi . From the commutation relations in an

adapted frame, we see that

X∗
i = −Xi +

d∑
k=1

ωk
ik,
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so that

L =
d∑

i=1

X2
i + X0,(2.4)

with

X0 = −
d∑

i,k=1

ωk
ikXi.(2.5)

On sub-Riemannian manifolds with transverse symmetries, there is a canonical
connection.

PROPOSITION 2.2 (See [7]). There exists a unique connection ∇ on M satis-
fying the following properties:

(i) ∇gε = 0, for all ε > 0;
(ii) If X and Y are horizontal vector fields, ∇XY is horizontal;

(iii) If Z ∈ V , ∇Z = 0;
(iv) If X,Y are horizontal vector fields and Z ∈ V , the torsion vector field

T (X,Y ) is vertical and T (X,Z) = 0.

Intuitively ∇ is the connection which coincides with the Levi–Civita connection
of the Riemannian metric g1 on the horizontal bundle H and that parallelizes the
Lie algebra V . We stress that this connection does not depend on ε and straightfor-
ward computations show that one has in a local adapted frame:

∇Xi
Xj =

d∑
k=1

1

2

(
ωk

ij + ω
j
ki + ωi

kj

)
Xk,(2.6)

∇ZmXi = −
d∑

�=1

δ�
imX�,(2.7)

∇Zm = 0(2.8)

and

T (Xi,Xj ) = −
h∑

m=1

γ m
ij Zm.

We observe that, thanks to (2.4) and (2.5), in a local adapted frame we have

L =
d∑

i=1

X2
i − ∇Xi

Xi.

To establish Bochner–Weitzenböck formulas, it will expedient to work in nor-
mal frames.
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LEMMA 2.3. Let x ∈ M. There exists a local adapted frame of vector fields

{X1, . . . ,Xd,Z1, . . . ,Zh}
around x, such that, at x,

∇Xi
Xj (x) = 0.

Such frame will be called an adapted normal frame around x.

PROOF. Since ∇ coincides with a Levi–Civita connection on the horizontal
bundle, the result essentially boils down to the existence of normal frames in Rie-
mannian geometry. �

Observe that in a normal adapted frame, we have ωk
ij = 0 at the center of the

frame. We now introduce some maps that will play an important role in the sequel.
For Z ∈ V , there is a unique skew-symmetric map JZ defined on the horizontal
bundle H such that for all horizontal vector fields X and Y ,

gH
(
JZ(X),Y

)= gV
(
Z,T (X,Y )

)
.(2.9)

In a local adapted frame, we have

JZm(Xi) = −
d∑

j=1

γ m
ij Xj .

We then extend JZm to be 0 on the vertical bundle V .
We finally recall the following definition that was introduced in [7].

DEFINITION 2.4. The sub-Riemannian manifold M is said to be of Yang–
Mills type, if for every horizontal vector field X, and any adapted local frame
{X1, . . . ,Xd,Z1, . . . ,Zh}

d∑
�=1

(∇X�
T )(X�,X) = 0.

A quick computation shows that M is of Yang–Mills type if and only if for every
x ∈ M and any adapted normal frame {X1, . . . ,Xd,Z1, . . . ,Zh} around x, we have
at x,

d∑
i=1

Xiγ
m
ij = 0, 1 ≤ j ≤ d,1 ≤ m ≤ h.

We conclude the section with simple examples of sub-Riemannian manifolds
with transverse symmetries: The 3-dimensional model spaces in K-contact geom-
etry.

Given a number ρ ∈ R, suppose that G(ρ) is a simply connected three-
dimensional Lie group whose Lie algebra g has a basis {X,Y,Z} satisfying:
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(i) [X,Y ] = Z,
(ii) [X,Z] = −ρY ,

(iii) [Y,Z] = ρX.

For instance, for ρ = 0, G(ρ) is the Heisenberg group. For ρ = 1, G(ρ) is SU(2)

and for ρ = −1, G(ρ) is SL(2). It is easy to see that if we consider the left-invariant
distribution H generated by {X,Y } and chose for gH the left-invariant metric that
makes {X,Y } orthonormal then (M,H, gH) is a Yang–Mills sub-Riemannian man-
ifold with transverse symmetry Z.

The sub-Laplacian on G(ρ) is the left-invariant, second-order differential oper-
ator

L = X2 + Y 2

and the connection ∇ is given by

∇XY = ∇Y X = ∇XZ = ∇Y Z = 0

and

∇ZX = −ρY, ∇ZY = ρX.

3. Bochner–Weitzenböck formulas for sub-Laplacians on one-forms. The
purpose of the section is to establish the Bochner–Weitzenböck formula for the
sub-Laplacian. This formula is the key to the stochastic representation of the heat
semigroup on one-forms. The reader only interested in the probabilistic conse-
quences of the formula may directly jump to Section 4 and admit Proposition 4.1
which summarizes the results proved in this section.

From now on, in all the paper we consider a Yang–Mills sub-Riemannian mani-
fold M with transverse symmetries and adopt the notation of the previous section.
In particular L denotes the sub-Laplacian on M.

Obviously, there exist infinitely many second-order differential operators L de-
fined on one-forms such that for every smooth function f ,

dLf = Ldf,

where d is the exterior derivative. In Riemannian geometry, a canonical L that
satisfies the above commutation is the Hodge–de Rham Laplacian. On sub-
Riemannian manifolds, even contact manifolds, there is no such canonical sub-
Laplacian (see [30]) on one-forms. However, in our case, we will see in this section
that there is a distinguished one-parameter family of sub-Laplacians on one-forms
which are optimal when interested in Bochner–Weitzenböck’s type formulas and
that satisfy the above commutation.

We start with some general preliminaries about one-forms. By declaring a one-
form horizontal (resp., vertical) if it vanishes on the vertical bundle V (resp., on
the horizontal bundle H), the splitting of the tangent space

TxM =H(x) ⊕ V(x)
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gives a splitting of the cotangent space

T ∗
x M= H∗(x) ⊕ V∗(x).

If {X1, . . . ,Xd,Z1, . . . ,Zh} is a local adapted frame, the dual frame will
be denoted {θ1, . . . , θd, ν1, . . . , νh} and referred to as a local adapted coframe.
With a slight abuse of notation, for ε > 0, the metric on T ∗

x M that makes
{θ1, . . . , θd, 1√

ε
ν1, . . . ,

1√
ε
νh} orthonormal will still be denoted gε or 〈·, ·〉ε . This

metric on the cotangent bundle can thus be written

gε = gH ⊕ εgV , ε > 0,(3.1)

where gH (resp., gV ) is the metric on H∗ (resp., V∗) that makes {θ1, . . . , θd} (resp.,
{ν1, . . . , νh}) orthonormal. We use similar notation and conventions as before so
that for every η in T ∗

x M,

‖η‖2
ε = ‖η‖2

H + ε‖η‖2
V .

We will denote by L the covariant extension on one-forms of the sub-Laplacian.
In a local adapted frame, we have thus

L=
d∑

i=1

∇Xi
∇Xi

− ∇∇Xi
Xi

.(3.2)

We define then RicH as the fiberwise symmetric linear map on one forms such
that for every smooth functions f,g,〈

RicH(df ), dg
〉
ε = Ricci(∇Hf,∇Hg),

where Ricci is the Ricci curvature of the connection ∇ . Of course, RicH does not
depend on ε because the above definition implies that RicH is horizontal, that is,
it transforms any one-form into a horizontal form. Actually, a computation shows
that in a normal adapted frame around x, we have at x,

RicH(η) =
d∑

k,�=1

1

2
(ρk� + ρ�k)fkθ�,

where η =∑d
i=1 fiθi +∑h

m=1 gmνm and

ρk� =
d∑

j=1

h∑
m=1

γ m
kj δ�

jm +
d∑

j=1

X�ω
j
kj − Xjω

k
�j .

Finally, we consider the first-order differential operator J defined in a local
adapted frame by

J(η) =
d∑

i,j=1

h∑
m=1

γ m
ij (Xjgm)θi,
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where, again, η =∑d
i=1 fiθi +∑h

m=1 gmνm. By defining JZm on one-forms using
the duality

JZm(θi) = JZm(Xi), JZm(νi) = 0,

we can write more intrinsically

J=
h∑

m=1

JZm(dιZm),

where ι is the interior product. This last expression shows that J does not depend
on the choice on the local frame, and is therefore a globally defined first-order
differential operator on one-forms.

We are now in a position to prove our first commutation result.

PROPOSITION 3.1. Let

�∞ = L+ 2J−RicH.

Then, we have for every smooth function f ,

dLf = �∞df.(3.3)

PROOF. Let x ∈ M. It is enough to prove this commutation at x in a local
adapted normal frame {X1, . . . ,Xd,Z1, . . . ,Zh} around x. Observing that L and
Zm commute (see [7]), we have at x:

dLf =
d∑

i=1

(XiLf )θi +
h∑

m=1

(ZmLf )νm

=
d∑

i=1

(LXif )θi +
h∑

m=1

(LZmf )νm +
d∑

i=1

([Xi,L]f )θi

= Ldf −
d∑

i=1

(Xif )Lθi +
d∑

i=1

([Xi,L]f )θi.

Keeping in mind that at the center of the frame ωk
ij = 0, and thanks to the Yang–

Mills assumption
d∑

i=1

Xiγ
m
ij = 0,

we now compute:
d∑

i=1

([Xi,L]f )θi

=
d∑

i,j=1

([
Xi,X

2
j

]
f
)
θi +

d∑
i=1

([Xi,X0]f )θi
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=
d∑

i=1

(
[Xi,Xj ]Xjf + Xj [Xi,Xj ]f −

d∑
j,k=1

[
Xi,ω

k
jkXj

]
f

)
θi

=
d∑

i=1

(
d∑

j=1

h∑
m=1

γ m
ij (ZmXjf + XjZmf ) +

d∑
j,k=1

(
Xjω

k
ij − Xiω

j
kj

)
Xkf

)
θi

=
d∑

i=1

(
2

d∑
j=1

h∑
m=1

γ m
ij (XjZmf )

−
d∑

j,k=1

h∑
m=1

γ m
ij δk

jmXkf +
d∑

j,k=1

(
Xjω

k
ij − Xiω

k
jk

)
Xkf

)
θi.

It is now elementary to identify the terms in the above equality by using the for-
mula

Lθi =
n∑

j,k=1

(−Xj
i
jk

)
θk,

where the k
ij ’s are the Cristofell symbols of the connection. �

Obviously, �∞ is not the only operator that satisfies (3.3). Actually, since
d2 = 0, if � is any fiberwise linear map from the space of two-forms into the
space of one-forms, then we have

dLf = (�∞ + � ◦ d)df.

This raises the question of an optimal choice of �. The following proposition
answers this question if optimality is understood in the sense of a corresponding
Bochner–Weitzenböck’s formula.

PROPOSITION 3.2. For any fiberwise linear map � from the space of two-
forms into the space of one-forms, and any x ∈ M, we have

inf
η,‖η(x)‖ε=1

(
1

2

(
L‖η‖2

ε

)
(x) − 〈(�∞ + � ◦ d)η(x), η(x)

〉
ε

)

≤ inf
η,‖η(x)‖ε=1

(
1

2

(
L‖η‖2

ε

)
(x) −

〈(
�∞ − 1

ε
T ◦ d

)
η(x), η(x)

〉
ε

)
,

where in the above notation, the torsion tensor T is interpreted, by duality, as a
fiberwise linear map from the space of two-forms into the space of one-forms.

PROOF. Let x ∈ M and consider a normal adapted frame around x. The
following computations are done at the center x of the frame. Let us consider
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a smooth one-form

η =
d∑

i=1

fiθi +
h∑

m=1

gmνm.

We have
1

2

(
L‖η‖2

ε

)− 〈
(�∞ + � ◦ d)η, η

〉
ε

=
d∑

i=1

‖∇Hfi‖2
H + ε

h∑
m=1

‖∇Vgm‖2
V − 2

d∑
i,j=1

h∑
m=1

γ m
ij (Xjgm)fi(3.4)

− 〈
�(dη), η

〉
ε + 〈RicHη,η〉H.

On the other hand, the exterior derivative can be computed as follows:

dη =
d∑

i,j=1

(
Xifj − 1

2

h∑
m=1

γ m
ij gm

)
θi ∧ θj

+
d∑

j=1

h∑
m=1

(
Xjgm − Zmfj −

d∑
i=1

δi
jmfi

)
θj ∧ νm

+
h∑

m,�=1

αm,�ν� ∧ νm,

where αm,� are coefficients which are unimportant to compute explicitly. Because
of the vertical derivatives Zmfi and Z�gm that do not appear in (3.4), the quantity

inf
η,‖η(x)‖ε=1

(
1

2

(
L‖η‖2

ε

)
(x) − 〈

(�∞ + � ◦ d)η(x), η(x)
〉
ε

)
(3.5)

is then finite if and only if �(ν� ∧ νm) = �(θi ∧ νm) = 0, which we assume from
now on. Also, clearly, every nonzero term 〈�(θi ∧ θj ), θk〉H would decrease (3.5),
so we can assume 〈�(θi ∧ θj ), θk〉H = 0. Completing the squares in (3.4), we see
then that the quantity to be maximized is

inf
η,‖η(x)‖ε=1

(
−1

4
ε2

d∑
i,j=1

(
h∑

�=1

g�

〈
�(θi ∧ θj ), ν�

〉
V

)2

+ 1

2
ε

d∑
i,j=1

h∑
m,�=1

γ m
ij gmg�

〈
�(θi ∧ θj ), ν�

〉
V

)
.

We then easily see that the optimal choice of 〈�(θi ∧ θj ), ν�〉V is given by

〈
�(θi ∧ θj ), ν�

〉
V = 1

ε
γ l
ij . �
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In the sequel, we shall denote

�ε = �∞ − 1

ε
T ◦ d.

For our purpose, we will need to rewrite �ε in a sum of squares form, from which
we will be able to deduce a stochastic representation of the semigroup e(1/2)t�ε .

If V is a horizontal vector field, we consider the fiberwise linear map from the
space of one-forms into itself which is given by in a local adapted frame by

Tε
V η = −

d∑
j=1

η
(
T (V,Xj )

)
θj + 1

2ε

h∑
m=1

η(JZmV )νm.

We see that Tε
V does not depend of the choice of the local adapted frame and

thus, is a globally well-defined, smooth section. In a local adapted frame, if η =∑d
i=1 fiθi +∑h

m=1 gmνm, then we have

Tε
Xi

η =
d∑

j=1

h∑
�=1

γ �
ij g�θj − 1

2ε

d∑
j=1

h∑
m=1

γ m
ij fj νm.

THEOREM 3.3. In a local adapted frame, we have

�ε =
d∑

i=1

(∇Xi
−Tε

Xi

)2 − (∇∇Xi
Xi

−Tε∇Xi
Xi

)+ 1

2ε

h∑
m=1

J ∗
Zm

JZm −RicH,

and for any smooth one-form η,

1

2
L‖η‖2

2ε − 〈�εη, η〉2ε

=
d∑

i=1

∥∥∇Xi
η −Tε

Xi
η
∥∥2

2ε +
〈(

RicH − 1

2ε

h∑
m=1

J ∗
Zm

JZm

)
η,η

〉
2ε

.

PROOF. It is enough to prove the two identities at the center of an adapted
normal frame. From the definition of �ε , at the center of the frame, we have for
η =∑d

i=1 fiθi +∑h

m=1 gmνm,

�ε =
d∑

i=1

∇2
Xi

η + 2
d∑

i,j=1

h∑
m=1

γ m
ij (Xjgm)θi

+ 1

ε

d∑
i,j=1

(
Xifj − 1

2

h∑
m=1

γ m
ij gm

)(
h∑

m=1

γ m
ij νm

)
−RicH.
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On the other hand, still at the center of the frame, we compute

(∇Xi
−Tε

Xi

)
η =

d∑
j=1

(
Xifj −

m∑
�=1

γ �
ij gl

)
θj +

h∑
m=1

(
Xigm + 1

2ε

d∑
j=1

γ m
ij fj

)
νm.

Keeping in mind that in a local adapted frame, we have

JZm(Xi) = −
d∑

j=1

γ m
ij Xj ,

it is now an elementary exercise to check that

�ε =
d∑

i=1

(∇Xi
−Tε

Xi

)2 + 1

2ε

h∑
m=1

J ∗
Zm

JZm −RicH.

The proof of the second identity follows the same lines as in the proof of Proposi-
tion 3.2. The details are let to the reader. �

If V is a horizontal vector field, Tε
V is a skew-symmetric operator for the Rie-

mannian metric g2ε , as a consequence, �ε is a symmetric operator for the met-
ric g2ε on the space of smooth and compactly supported one-forms. It is interesting
that �ε is symmetric with respect to the metric g2ε but not gε which is the one that
was used to construct �ε .

The operator
∑h

m=1 J ∗
Zm

JZm does not depend on the choice of the frame and
shall concisely be denoted by J ∗J . We can note that in the case where M is
a Sasakian manifold, like the Heisenberg group for instance, J ∗J is the identity
map on the horizontal distribution.

Similarly, the operator
∑d

i=1(∇Xi
−Tε

Xi
)2 −(∇∇Xi

Xi
−Tε∇Xi

Xi
) does not depend

on the choice of the frame and can be more intrinsically described as follows.
If η is a one-form, we define the horizontal gradient in a local adapted frame of

η as the (0,2) tensor

∇Hη =
d∑

i=1

∇Xi
η ⊗ θi.

Similarly, we will use the notation

Tε
Hη =

d∑
i=1

Tε
Xi

η ⊗ θi.

It is then easily seen that, in a local adapted frame,

−(∇H −Tε
H
)∗(∇H −Tε

H
)= d∑

i=1

(∇Xi
−Tε

Xi

)2 − (∇∇Xi
Xi

−Tε∇Xi
Xi

)
,
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where the adjoint is of course understood with respect to the metric g2ε . We there-
fore globally have

�ε = −(∇H −Tε
H
)∗(∇H −Tε

H
)+ 1

2ε
J ∗J −RicH.

To finish the section, we illustrate our formulas in the case of the model space
G(ρ) that was introduced in Section 2. In that case, we have a basis of left invariant
vector fields {X,Y,Z} satisfying: [X,Y ] = Z, [X,Z] = −ρY , and [Y,Z] = ρX

and the sub-Laplacian is given by

L = X2 + Y 2.

Every one-form can be written as η = f1θ1 + f2θ2 + gν where {θ1, θ2, ν} is the
dual basis of {X,Y,Z}. We identify η with the column vector

η =
⎛
⎝f1

f2
g

⎞
⎠ .

Elementary computations show then that

RicH =
⎛
⎝ρ 0 0

0 ρ 0
0 0 0

⎞
⎠ ,

�ε =

⎛
⎜⎜⎝

L − ρ 0 2Y

0 L − ρ −2X

−1

ε
Y

1

ε
X L − 1

ε

⎞
⎟⎟⎠ ,

TX =
⎛
⎜⎝

0 0 0
0 0 1

0 − 1

2ε
0

⎞
⎟⎠ ,

TY =
⎛
⎜⎝

0 0 −1
0 0 0
1

2ε
0 0

⎞
⎟⎠

and

J ∗J =
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ .

4. Gradient formulas and bounds for the heat semigroup. Throughout the
section, we work under the same assumptions as the previous section, and we
moreover assume that for every horizontal one-form η,〈

RicH(η), η
〉
H ≥ −K‖η‖2

H,
〈
J ∗Jη,η

〉
H ≤ κ‖η‖2

H,
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with K,κ ≥ 0. We also assume that the manifold M is metrically complete with
respect to the sub-Riemannian distance. Under these assumptions, it was proved
in [7] that the sub-Laplacian L is essentially self-adjoint on C∞

0 (M) and that the
semigroup Pt = e(1/2)tL is stochastically complete.

The following result was proved in the previous section.

PROPOSITION 4.1. Consider the operator defined on one-forms by the for-
mula

�ε = −(∇H −Tε
H
)∗(∇H −Tε

H
)+ 1

2ε
J ∗J −RicH,

then for any smooth function f ,

dLf = �εdf

and for any smooth one-form η

1

2
L‖η‖2

2ε − 〈�εη, η〉2ε =
d∑

i=1

∥∥∇Xi
η −Tε

Xi
η
∥∥2

2ε +
〈(
RicH − 1

2ε
J ∗J

)
η,η

〉
2ε

≥
(
ρ − κ

2ε

)
‖η‖2

H.

REMARK 4.2. We note again that the operator �ε depends on ε, but since
dLf = �εdf , �εη does not depend on ε when η is an exact one-form.

4.1. Heat semigroup on one-forms. We are interested in a stochastic represen-
tation of the semigroup on one-forms which is generated by �ε . This semigroup
is well-defined by using the spectral theorem thanks to the following lemma.

LEMMA 4.3. The operator �ε is essentially self-adjoint on the space of
smooth and compactly supported one-forms for the Riemannian metric g2ε .

PROOF. Since we assume M to be metrically complete for the sub-Riemannian
distance, it is also complete for the Riemannian distance associated to g2ε , because
g2ε is a Riemannian extension of gH. From [32], there exists therefore a sequence
hn ∈ C∞

0 (M), such that 0 ≤ hn ≤ 1 and ‖∇Hhn‖2∞ + 2ε‖∇Vhn‖2∞ → 0. In partic-
ular, note that we have ‖∇Hhn‖∞ → 0.

To prove that �ε is essentially self-adjoint it is enough (see [32]) to prove that
for some λ > 0, �εη = λη with η ∈ L2 implies η = 0. So, let λ > 0 and η ∈ L2

such that �εη = λη. We have then

λ

∫
M

h2
n‖η‖2

2ε

=
∫
M

〈
h2

nη,�εη
〉
2ε
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= −
∫
M

〈∇H
(
h2

nη
)−Tε

H
(
h2

nη
)
,∇Hη −Tε

Hη
〉
2ε

+
∫
M

h2
n

〈(
1

2ε
J ∗J −RicH

)
(η), η

〉
2ε

= −
∫
M

h2
n

∥∥∇Hη −Tε
Hη
∥∥2

2ε − 2
∫
M

hn〈η,∇∇Hhnη〉2ε

+
∫
M

h2
n

〈(
1

2ε
J ∗J −RicH

)
(η), η

〉
2ε

.

From our assumptions, the symmetric tensor 1
2ε

J ∗J − RicH is bounded from
above, thus by choosing λ big enough, we have∫

M

h2
n

∥∥∇η −Tεη
∥∥2

2ε + 2
∫
M

hn〈η,∇∇Hhnη〉2ε ≤ 0.

By letting n → ∞, we easily deduce that ‖∇Hη − Tε
Hη‖2

2ε = 0 which implies
∇Hη − Tε

Hη = 0. If we come back to the equation �εη = λη and the expression
of �ε , we see that it implies that:(

1

2ε
J ∗J −RicH

)
(η) = λη.

Our choice of λ forces then η = 0. �

Since 1
2�ε is essentially self-adjoint, it admits a unique self-adjoint extension

which generates through the spectral theorem a semigroup Qε
t = e(1/2)t�ε . As al-

ready mentioned, we will denote by Pt = e(1/2)tL the semigroup generated by 1
2L.

We have the following commutation property.

LEMMA 4.4. If f ∈ C∞
0 (M), then for every t ≥ 0,

dPtf = Qε
t df.

PROOF. Let ηt = Qε
t df . It is the unique solution in L2 of the heat equation

∂η

∂t
= 1

2
�εη,

with initial condition η0 = df . From [7], we have that αt = dPtf is in L2, and
from the fact that

dL = �εd,

we see that α solves the heat equation

∂α

∂t
= 1

2
�εα

with the same initial condition α0 = df . We conclude thus α = η. �
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REMARK 4.5. As a consequence, we point out that though Qε
t depends on ε,

the previous lemma implies that the operator Qε
t d does not depend on ε.

4.2. Stochastic representation of the semigroup on one-forms. We now turn to
the stochastic representation of Qε

t . We denote by (Xt)t≥0 the symmetric diffu-
sion process generated by 1

2L. Since Pt is stochastically complete, (Xt)t≥0 has an
infinite lifetime.

Consider the process τ ε
t :T ∗

Xt
M → T ∗

X0
M to be the solution of the following

covariant Stratonovitch stochastic differential equation:

d
[
τ ε
t α(Xt)

]= τ ε
t

(
∇◦dXt −Tε◦dXt

+ 1

2

(
1

2ε
J ∗J −RicH

)
dt

)
α(Xt),

(4.1)
τ ε

0 = Id,

where α is any smooth one-form. We have the following key estimate.

LEMMA 4.6. For every t ≥ 0, we have almost surely∥∥τ ε
t α(Xt)

∥∥
2ε ≤ e1/2(K+κ/(2ε))t

∥∥α(X0)
∥∥

2ε.

PROOF. The estimate stems from the fact that Tε is skew-symmetric for the
Riemannian metric g2ε , which implies that the connection ∇ − Tε is metric. The
deterministic upper bound on τ ε is therefore a consequence of the pointwise lower
bound on RicH − 1

2ε
J ∗J and Gronwall’s lemma.

More precisely, consider the process �ε
t :T ∗

Xt
M → T ∗

X0
M to be the solution of

the following covariant Stratonovitch stochastic differential equation:

d
[
�ε

t α(Xt)
]= �ε

t

(∇◦dXt −Tε◦dXt

)
α(Xt), τ ε

0 = Id,(4.2)

where α is any smooth one-form. Since Tε is skew-symmetric, �ε
t is an isom-

etry for the Riemannian metric g2ε . Consider now the multiplicative functional
(Mε

t )t≥0, solution of the equation

dMε
t

dt
= 1

2
Mt�

ε
t

(
1

2ε
J ∗J −RicH

)(
�ε

t

)−1
, Mε

0 = Id.

With the previous notation, we of course have τ ε
t =Mε

t �
ε
t . Thus, the upper bound

on τ ε boils down to an upper bound on Mε which is obtained as a consequence of
Gronwall’s inequality. �

THEOREM 4.7. Let η be a smooth and compactly supported one-form. Then
for every t ≥ 0, and x ∈ M, (

Qε
t η
)
(x) = Ex

(
τ ε
t η(Xt)

)
.
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PROOF. It is basically a consequence of the definition of τε and Itô’s formula
which implies that for every t ≥ 0 the process

Ns = τ ε
s

(
Qε

t−sη
)
(Xs),

is a martingale. �

Combining Lemma 4.4 with Theorem 4.7, we get therefore the following rep-
resentation for the derivative of the semigroup.

COROLLARY 4.8. Let f ∈ C∞
0 (M). Then for every t ≥ 0, and x ∈M,

dPtf (x) = Ex

(
τ ε
t df (Xt)

)
.

This eventually leads to a neat gradient bound for the semigroup Pt .

COROLLARY 4.9. For every f ∈ C∞
0 (M), ε > 0, t ≥ 0,√

‖∇HPtf ‖2
H + 2ε‖∇VPtf ‖2

V ≤ e1/2(K+κ/(2ε))tPt

(√
‖∇Hf ‖2

H + 2ε‖∇Vf ‖2
V
)
.

We remark that this gradient bound is new in our framework and is stronger than
similar gradient bounds in [5]. It also immediately implies that Hypothesis 1.4 of
[7] is satisfied on Yang–Mills sub-Riemannian manifolds with transverse symme-
tries.

4.3. Integration by parts formula. As before, we denote by (Xt)t≥0 the
L-diffusion process. The stochastic parallel transport for the connection ∇ along
the paths of (Xt)t≥0 will be denoted by //0,t . Since the connection ∇ is horizontal,
the map //0,t :TX0M → TXtM is an isometry that preserves the horizontal bundle,
that is, if u ∈ HX0 , then //0,tu ∈ HXt . We see then that the antidevelopment of
(Xt)t≥0,

Bt =
∫ t

0
//−1

0,s ◦ dXs,

is a Brownian motion in the horizontal space HX0 . The following integration by
parts formula will play an important role in the sequel.

PROPOSITION 4.10. Let x ∈ M. For any C1 adapted process γ :R≥0 → Hx

such that Ex(
∫+∞

0 ‖γ ′(s)‖2
H ds) < +∞ and any f ∈ C∞

0 (M), t ≥ 0,

Ex

(
f (Xt)

∫ t

0

〈
γ ′(s), dBs

〉
H

)
= Ex

(〈
τ ε
t df (Xt),

∫ t

0

(
τ ε,∗
s

)−1
//0,sγ

′(s) ds

〉
2ε

)
.
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PROOF. We fix t ≥ 0 and denote

Ns = τ ε
s (dPt−sf )(Xs).

It is a martingale process. We have then for f ∈ C∞
0 (M),

Ex

(
f (Xt)

∫ t

0

〈
γ ′(s), dBs

〉
H

)

= Ex

(
f (Xt)

∫ t

0

〈
//0,sγ

′(s), //0,s dBs

〉
H

)

= Ex

((
f (Xt) −Ex

(
f (Xt)

)) ∫ t

0

〈
//0,sγ

′(s), //0,s dBs

〉
H

)

= Ex

(∫ t

0

〈
dPt−sf (Xs), //0,s dBs

〉
H

∫ t

0

〈
//0,sγ

′(s), //0,s dBs

〉
H

)

= Ex

(∫ t

0

〈
dPt−sf (Xs), //0,sγ

′(s)
〉
H ds

)

= Ex

(∫ t

0

〈
τ ε
s dPt−sf (Xs),

(
τ ε,∗
s

)−1
//0,sγ

′(s)
〉
2ε ds

)

= Ex

(∫ t

0

〈
Ns,

(
τ ε,∗
s

)−1
//0,sγ

′(s)
〉
2ε ds

)

= Ex

(〈
Nt,

∫ t

0

(
τ ε,∗
s

)−1
//0,sγ

′(s) ds

〉
2ε

)
,

where we integrated by parts in the last equality. �

Let us observe that we can reinterpret the integration by parts formula of Propo-
sition 4.10 in a slightly different way.

COROLLARY 4.11. Let x ∈ M. For any C1 adapted process γ :R≥0 → Hx

such that Ex(
∫+∞

0 ‖γ ′(s)‖2
H ds) < +∞ and any f ∈ C∞

0 (M), t ≥ 0,

Ex

(〈
df (Xt), //0,t v(t)

〉
2ε

)= Ex

(
f (Xt)

∫ t

0

〈
γ ′(s), dBs

〉
H

)
,

where v is the solution of the Stratonovitch stochastic differential equation in TxM:⎧⎨
⎩dv(t) = //−1

0,t

(
Tε◦dXt

+ 1

2

(
1

2ε
J ∗J −RicH

)
dt

)
//0,t v(t) + γ ′(t) dt,

v(0) = 0.

PROOF. It is a consequence of Itô’s formula that

v(t) = //−1
0,t τ

ε,∗
t

∫ t

0

(
τ ε,∗
s

)−1
//0,sγ

′(s) ds
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is the solution of the above stochastic differential equation. We conclude then with
Proposition 4.10. �

As an immediate consequence of the integration by parts formula, we obtain the
following Clark–Ocone type representation.

PROPOSITION 4.12. Let X0 = x ∈ M. For every f ∈ C∞
0 (M), and every

t ≥ 0,

f (Xt) = Ptf (x) +
∫ t

0

〈
Ex

((
τ ε
s

)−1
τ ε
t df (Xt)|Fs

)
, //0,s dBs

〉
H,

where (Ft )t≥0 is the natural filtration of (Bt )t≥0.

PROOF. Let t ≥ 0. From Itô’s integral representation theorem, we can write

f (Xt) = Ptf (x) +
∫ t

0
〈as, dBs〉H,

for some adapted and square integrable (as)0≤s≤t . Using the Proposition 4.10, we
obtain therefore,

Ex

(∫ t

0

〈
γ ′(s), as

〉
H ds

)
= Ex

(〈
τ ε
t df (Xt),

∫ t

0

(
τ ε,∗
s

)−1
//0,sγ

′(s) ds

〉
2ε

)
.

Since γ ′ is arbitrary, we obtain that

as = Ex

(
//−1

0,s

(
τ ε
s

)−1
τ ε
t df (Xt)|Fs

)
. �

We deduce first the following Poincaré inequality for the heat kernel measure.

PROPOSITION 4.13. For every f ∈ C∞
0 (M), t ≥ 0, x ∈M, ε > 0,

Pt

(
f 2)(x)−(Ptf )2(x) ≤ e(K+κ/(2ε))t − 1

K + κ/(2ε)

[
Pt

(‖∇Hf ‖2)(x)+2εPt

(‖∇Vf ‖2)(x)
]
.

PROOF. From the previous proposition and Lemma 4.6, we have

Ex

((
f (Xt) − Ptf (x)

)2)≤ ∫ t

0
e(K+κ/(2ε))(t−s) dsPt

(‖df ‖2
2ε

)
(x). �

We also get the log-Sobolev inequality for the heat kernel measure.

PROPOSITION 4.14. For every f ∈ C∞
0 (M), t ≥ 0, x ∈M, ε > 0,

Pt

(
f 2 lnf 2)(x) − Pt

(
f 2)(x) lnPt

(
f 2)(x)

≤ 2
e(K+κ/(2ε))t − 1

K + κ/(2ε)

[
Pt

(‖∇Hf ‖2)(x) + 2εPt

(‖∇Vf ‖2)(x)
]
.
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PROOF. The method for proving the log-Sobolev inequality from a repre-
sentation theorem like Proposition 4.12 is due to [11] and the argument is easy
to reproduce in our setting. Denote G = f (Xt)

2 and consider the martingale
Ns = E(G|Fs). Applying now Itô’s formula to Ns lnNs and taking expectation
yields

Ex(Nt lnNt) −Ex(N0 lnN0) = 1

2
Ex

(∫ t

0

d[N ]s
Ns

)
,

where [N ] is the quadratic variation of N . From Proposition 4.12 applied with f 2,
we have

dNs = 2
〈
E
(
f (Xt)

(
τ ε
s

)−1
τ ε
t df (Xt)|Fs

)
, //0,s dBs

〉
H.

Thus, we have from Cauchy–Schwarz inequality

Ex(Nt lnNt) −Ex(N0 lnN0) ≤ 2Ex

(∫ t

0

‖E(f (Xt)(τ
ε
s )−1τ ε

t df (Xt)|Fs)‖2
2ε

Ns

ds

)

≤ 2
∫ t

0
e(K+κ/(2ε))(t−s) dsPt

(‖df ‖2
2ε

)
(x). �

4.4. Positive curvature and convergence to equilibrium. In this final section,
we prove that if the tensor RicH is bounded from below by a positive constant on
the horizontal bundle, then by exploiting a further geometric quantity we can prove
convergence of the semigroup when t → +∞ and get sharp quantitative estimates
in the form of a Poincaré and a log-Sobolev inequality with an exponential decay
for the heat kernel measure.

So, we assume throughout the section that for every horizontal one-form η,〈
RicH(η), η

〉
H ≥ ρ1‖η‖2

H,
〈
J ∗Jη,η

〉
H ≤ κ‖η‖2

H,

and that for every vertical one-form η, and any horizontal coframe {θ1, . . . , θd},
1

4

d∑
�,j=1

〈
T (θ�, θj ), η

〉2
V ≥ ρ2‖η‖2

V ,

where ρ1, ρ2 > 0 and κ ≥ 0. As proved in Section 3, this implies that for every
one-form η,

1

2
L‖η‖2

ε − 〈�εη, η〉ε ≥
(
ρ1 − κ

ε

)
‖ηH‖2

H + ρ2‖ηV‖2
V .

This implies of course

1

2
L‖η‖2

ε − 〈�εη, η〉ε ≥ inf
(
ρ1 − κ

ε
,
ρ2

ε

)
‖η‖2

ε.
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The constant inf(ρ1 − κ
ε
,

ρ2
ε

) is maximal when ρ1 − κ
ε

= ρ2
ε

, that is ε = κ+ρ2
ρ1

. For
this choice of ε, we have then

inf
(
ρ1 − κ

ε
,
ρ2

ε

)
= ρ1ρ2

κ + ρ2
.

We have then following estimate which is obtained by analyzing the Itô–
Stratonovitch correction term in the stochastic differential equation (4.2).

LEMMA 4.15. Let ε = κ+ρ2
ρ1

. For every t ≥ 0,

E
(∥∥τ ε

t α(Xt)
∥∥2
ε

)≤ e−((ρ1ρ2)/(κ+ρ2))tE
(∥∥α(X0)

∥∥2
ε

)
.

Arguing then as before, we obtain the following Bakry–Émery, Poincaré and
log-Sobolev inequalities.

PROPOSITION 4.16. For every f ∈ C∞
0 (M), t ≥ 0, x ∈M,

‖∇HPtf ‖2 + κ + ρ2

ρ1
‖∇VPtf ‖2

≤ e−((ρ1ρ2)/(κ+ρ2))t

[
Pt

(‖∇Hf ‖2)(x) + κ + ρ2

ρ1
Pt

(‖∇Vf ‖2)(x)

]
,

Pt

(
f 2)(x) − (Ptf )2(x)

≤ κ + ρ2

ρ1ρ2

(
1 − e−((ρ1ρ2)/(κ+ρ2))t

)

×
[
Pt

(‖∇Hf ‖2)(x) + κ + ρ2

ρ1
Pt

(‖∇Vf ‖2)(x)

]

and

Pt

(
f 2 lnf 2)(x) − Pt

(
f 2)(x) lnPt

(
f 2)(x)

≤ 2
κ + ρ2

ρ1ρ2

(
1 − e−((ρ1ρ2)/(κ+ρ2))t

)

×
[
Pt

(‖∇Hf ‖2)(x) + κ + ρ2

ρ1
Pt

(‖∇Vf ‖2)(x)

]
.

The first of the above inequality was already proved in [5] by completely dif-
ferent methods and implies μ(M) < +∞ and also that when t → +∞, in L2,
Ptf → 1

μ(M)
. It is worth pointing out that in the present framework, the two

above Poincaré and log-Sobolev inequalities are new but, by taking the limit when
t → ∞ we get the two inequalities∫

M

f 2 dμ −
(∫

M

f dμ

)2

≤ κ + ρ2

ρ1ρ2

[∫
M

‖∇Hf ‖2 dμ + κ + ρ2

ρ1

∫
M

‖∇Vf ‖2 dμ

]
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and ∫
M

f 2 lnf 2 dμ −
∫
M

f 2 dμ ln
∫
M

f 2 dμ

≤ 2(κ + ρ2)

ρ1ρ2

[∫
M

‖∇Hf ‖2 dμ + κ + ρ2

ρ1

∫
M

‖∇Vf ‖2 dμ

]
,

which were also already proved in [5] with the very same constants.
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