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MOMENTS OF TRACES OF CIRCULAR BETA-ENSEMBLES

BY TIEFENG JIANG1 AND SHO MATSUMOTO2

University of Minnesota and Nagoya University

Let θ1, . . . , θn be random variables from Dyson’s circular β-ensemble
with probability density function Const ·∏

1≤j<k≤n |eiθj − eiθk |β . For each

n ≥ 2 and β > 0, we obtain some inequalities on E[pμ(Zn)pν(Zn)], where
Zn = (eiθ1 , . . . , eiθn ) and pμ is the power-sum symmetric function for par-
tition μ. When β = 2, our inequalities recover an identity by Diaconis and
Evans for Haar-invariant unitary matrices. Further, we have the following:
limn→∞ E[pμ(Zn)pν(Zn)] = δμν( 2

β )l(μ)zμ for any β > 0 and partitions

μ,ν; limm→∞E[|pm(Zn)|2] = n for any β > 0 and n ≥ 2, where l(μ) is the
length of μ and zμ is explicit on μ. These results apply to the three important
ensembles: COE (β = 1), CUE (β = 2) and CSE (β = 4). We further examine
the nonasymptotic behavior of E[|pm(Zn)|2] for β = 1,4. The central limit
theorems of

∑n
j=1 g(eiθj ) are obtained when (i) g(z) is a polynomial and

β > 0 is arbitrary, or (ii) g(z) has a Fourier expansion and β = 1,4. The main
tool is the Jack function.

1. Introduction. Let Mn be an n×n Haar-invariant unitary matrix, that is, the
entries of unitary matrix Mn are random variables satisfying that the probability
distribution of the entries of Mn is the same as that of UMn and that of MnU for
any n × n unitary matrix U . Diaconis and Evans (Theorem 2.1 from [4]) proved
that

(a) Consider a = (a1, . . . , ak) and b = (b1, . . . , bk) with aj , bj ∈ {0,1,2, . . .}.
Then for n ≥ ∑k

j=1 jaj ∨ ∑k
j=1 jbj ,

E

[
k∏

j=1

(
Tr

(
Mj

n

))aj
(
Tr

(
M

j
n

))bj

]
= δab

k∏
j=1

jaj aj !,(1.1)

where δab is Kronecker’s delta.
(b) For any positive integers j and k,

E
[
Tr

(
Mj

n

)
Tr

(
Mk

n

)] = δjk · j ∧ n.(1.2)

The idea of the proof is based on the group representation theory of unitary
group U(n). Some other derivations for (1.1) and (1.2) are given in [5, 23–25].

Received March 2013; revised August 2014.
1Supported in part by NSF Grants DMS-04-49365, DMS-12-08982 and DMS-14-06279.
2Supported in part by JSPS Grant-in-Aid for Young Scientists (B) 25800062.
MSC2010 subject classifications. Primary 60B20; secondary 15B52, 05E05.
Key words and phrases. Random matrix, circular beta-ensemble, moment, Jack function, parti-

tion, Haar-invariance, central limit theorem.

3279

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/14-AOP960
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


3280 T. JIANG AND S. MATSUMOTO

FIG. 1. Circular Ensembles and Haar-invariant matrices from classical compact groups.

The right-hand side of (1.1) is evidently equal to E[∏k
j=1 ξ

aj

j ξ̄
bj

j ] where ξj ’s are
independent complex-normal random variables with ξj ∼ CN(0, j) for each j .

Notice an n × n Haar-invariant unitary matrix is also called a CUE, which be-
longs to the Circular Ensembles of three members: the Circular Orthogonal En-
semble (COE), the Circular Unitary Ensemble (CUE) and the Circular Symplec-
tic Ensemble (CSE); see Figure 1 for the relationship, where the left circle con-
sists of matrices which induce the Haar probability measure on the orthogonal
group O(n), Haar probability measure on the unitary group U(n) and Haar prob-
ability measure on the real symplectic group Sp(n), respectively.

Let eiθ1, . . . , eiθn be the eigenvalues of an n × n Haar-invariant unitary matrix,
or equivalently, an n × n CUE, it is known (see, e.g., [12, 22]) that the density
function of θ1, . . . , θn is f (θ1, . . . , θn|β) with β = 2, where

f (θ1, . . . , θn|β) = (2π)−n · �(1 + β/2)n

�(1 + βn/2)

∏
1≤j<k≤n

∣∣eiθj − eiθk
∣∣β(1.3)

with β > 0 and θi ∈ [0,2π) for 1 ≤ i ≤ n. The density function of θ1, . . . , θn for
the COE is f (θ1, . . . , θn|β) with β = 1, and that for the CSE is f (θ1, . . . , θn|β)

with β = 4.
The purpose of this paper is to study the analogues of (1.1) and (1.2) for the

circular β-ensembles with density function f (θ1, . . . , θn|β) in (1.3) for any β > 0.
Further, we develop the central limit theorems for functions of (eiθ1, . . . , eiθn).
Before stating the main results, we next introduce some background about the
circular β-ensembles.

The circular ensembles were first introduced by physicist Dyson [8–10] for the
study of nuclear scattering data. In fact, as studied in [8], Dyson shows that the
consideration of time reversal symmetry leading to the three Gaussian ensembles
behaves equally well to unitary matrices. A time reversal symmetry requires that
U = UT , no time reversal symmetry has no constraint, and a time reversal symme-
try for a system with an odd number of spin 1/2 particles requires U = UD , where
D denotes the quaternion dual. Choosing such matrices with a uniform probabil-
ity then gives COE, CUE and CSE, respectively (see, e.g., [11, 22]). The entries
of COE and CUE are asymptotically complex normal random variables when the
sizes of the matrices are large [14, 16, 17].
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Let U be an n×n Haar-invariant unitary matrix. As mentioned earlier, U is also
a CUE; the matrix UT U gives a COE. Furthermore, the matrix UDU gives a CSE
when n is even; see Chapter 9 from [22]. For the relations among the zonal poly-
nomials, the Schur functions, the Gelfand pairs and the three circular ensembles;
see, for example, Chapter VII in [20] or Section 2.7 in [1] for reference.

Now we consider the moments in (1.1) and (1.2) for the circular β-ensembles.
Taking β = 1 in (1.3), that is, choosing Wn such that it is an n × n COE, by an
elementary check in Lemma A.1, we have

E
[∣∣Tr(Wn)

∣∣2] = 2n

n + 1
(1.4)

for all n ≥ 2. This suggests that, unlike the right-hand sides of (1.1) or (1.2) that
are free of n, the moments for the general circular β-ensemble may depend on n

for β 
= 2. In fact, by using the Jack functions, we will soon see from (2.4) below
that the second moment in (1.4) does depend on n except β = 2, in which case Wn

is an n × n CUE.
In this paper, we will first prove some inequalities on the moments in (1.1) and

(1.2) for the circular β-ensembles with arbitrary β > 0. In particular, some of our
inequalities for β = 2 recover the equality in (1.1) by Diaconis and Evans [4]. Fur-
ther, we evaluate the limiting behavior by letting n → ∞ for the left-hand side
in (1.1) and k → ∞ for the left-hand side in (1.2), respectively. Their limits ex-
ist and look quite similar to the right-hand sides of (1.1) and (1.2). Finally, we
spend much effort to study the central limit theorems of

∑n
j=1 g(eiθj ) for two sit-

uations: (a) g(x) is a polynomial and β > 0 is arbitrary; (b) g(x) has a Fourier
expansion and β = 1,4. The key to obtain (b) is the nonasymptotic behavior of
E|∑n

j=1 eimθj |2 for any n and m, which are analyzed in detail.
The method of the proof is the Jack functions. The main results are obtained by

using their orthogonal properties and combinatorial structures.
From the studies in this paper, it is obvious to see the importance of understand-

ing the circular β-ensembles through the Jack functions. Realizing that the Jack
functions are a special class of the Macdonald polynomials, we have obtained the
analogue of the results in this paper in the setting of the Macdonald polynomials.
These will be published elsewhere in the future.

The organization of the rest of the paper is as follows. We present the moment
inequalities in Section 2 and their proofs are given in Section 4; the nonasymptotic
behavior of E|∑n

j=1 eimθj |2 and the central limit theorems are stated in Section 3
and their proofs are arranged in Section 5. In the Appendix, we prove (1.4) by two
ways different from the method of the Jack functions. Some other explicit formulas
of moments are also given in the same section.

2. Moment inequalities for circular beta-ensembles. Let λ = (λ1, λ2, . . .)

be a partition, that is, the sequence is in nonincreasing order and only finite of
λi ’s are nonzero. The weight of λ is |λ| = λ1 + λ2 + · · ·. Denote by mi(λ) the
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multiplicity of i in (λ1, λ2, . . .) for each i, and l(λ) the length of λ: l(λ) = m1(λ)+
m2(λ) + · · · . Recall the convention 0! = 1. Set

zλ = ∏
i≥1

imi(λ)mi(λ)!.(2.1)

Let ρ = (ρ1, ρ2, . . .) be a partition, and

pρ =
l(ρ)∏
i=1

pρi
where pk(x1, x2, . . .) = xk

1 + xk
2 + · · ·(2.2)

for integer k ≥ 1 and indeterminates xi ’s. The function pρ is called the power-sum
symmetric function. For real number α > 0, integers K ≥ 1 and n ≥ 1, define two
constants A = A(n,K,α) and B = B(n,K,α) by

A =
(

1 − |α − 1|
n − K + α

δ(α ≥ 1)

)K

and

(2.3)

B =
(

1 + |α − 1|
n − K + α

δ(α < 1)

)K

,

where δ(α ≥ 1) = 1 − δ(α < 1) is 1 if α ≥ 1, or 0 otherwise. With these notation,
we have one of main results as follows.

THEOREM 1. Let β > 0 and θ1, . . . , θn have density f (θ1, . . . , θn|β) as
in (1.3). Set Zn = (eiθ1, . . . , eiθn) and α = 2/β . For partitions μ and ν, the fol-
lowing hold:

(a) If n ≥ K = |μ|, then

A ≤ E[|pμ(Zn)|2]
αl(μ)zμ

≤ B.

(b) If |μ| 
= |ν|, then E[pμ(Zn)pν(Zn)] = 0. If μ 
= ν and n ≥ K = |μ| ∨ |ν|,
then ∣∣E[

pμ(Zn)pν(Zn)
]∣∣ ≤ max

{|A − 1|, |B − 1|} · α(l(μ)+l(ν))/2(zμzν)
1/2.

(c) There exists a constant C depending only on β such that for any m ≥ 1 and
n ≥ 2, we have

∣∣E[∣∣pm(Zn)
∣∣2] − n

∣∣ ≤ C
n32nβ

m1∧β
.

Take β = 2 in (a) and (b) of Theorem 1, then A = 1 and B = 1. The two results
recover the result of Diaconis and Evans in (1.1). Further, letting n → ∞ in (a)
and (b) of Theorem 1, we see that A and B (depending on n) converge to 1; letting
m → ∞ in (c) of the theorem, then the last term in (c) goes to 0. So we obviously
have the following results.
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COROLLARY 1. Let the conditions be as in Theorem 1. Then, for any β > 0,

(a) lim
n→∞E

[
pμ(Zn)pν(Zn)

] = δμν

(
2

β

)l(μ)

zμ;

(b) lim
m→∞E

[∣∣pm(Zn)
∣∣2] = n for any n ≥ 2.

Part (b) of the above corollary says that, as m → ∞, the limit of E[|pm(Zn)|2]
does not depend on parameter β , which is consistent with (1.2). We further take
a careful examination on E[|pm(Zn)|2] as β = 1 and 4. Some upper bounds of
E[|pm(Zn)|2] are given in Propositions 1 and 2. By studying A and B in (2.3), we
have the following corollary from Theorem 1.

COROLLARY 2. Let β > 0 and f (θ1, . . . , θn|β) be as in (1.3). Set α = 2/β

and Zn = (eiθ1, . . . , eiθn). Let μ and ν be partitions with μ 
= ν and K = |μ| ∨ |ν|.
If n ≥ 2K , then

(a)
∣∣∣∣E[|pμ(Zn)|2]

αl(μ)zμ

− 1
∣∣∣∣ ≤ 6|1 − α|K

n
;

(b)
∣∣E[

pμ(Zn)pν(Zn)
]∣∣ ≤ 6|1 − α|K

n
· α(l(μ)+l(ν))/2(zμzν)

1/2.

The above results are in the forms of inequalities or limits. We actually derive an
exact formula in Proposition 3 to compute E[|pμ(Zn)|2] for every partition μ. In
general, it is not easy to evaluate this quantity for arbitrary μ, however, we are able
to do so when μ is special. For instance, by using the exact formula we calculate
the moment in (1.4) for any β > 0 as follows.

EXAMPLE. For any n ≥ 1,

E
[∣∣p1(Zn)

∣∣2] = 2

β

n

n − 1 + 2β−1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n

n + 1
, if β = 1;

1, if β = 2;
n

2n − 1
, if β = 4.

(2.4)

The verification of this formula through Proposition 3 is provided in the Appendix.
We also give E[|p1(Zn)|4], E[|p2(Zn)|2] and E[p2(Zn)p1(Zn)2] in closed forms
in the Appendix.

The main tool used in our proofs is the Jack functions. Diaconis and Evans [4]
and Diaconis and Shahshahani [5] use the group representation theory to study
(1.1) and (1.2) because U(n) is a compact Lie group. The situations for the Circular
Orthogonal Ensembles (β = 1) and the Circular Symplectic Ensembles (β = 4) are
different. In fact, the two ensembles are not groups.
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The proofs of (1.1) and (1.2) involve with the Schur functions. The connection
is that the irreducible characters of the unitary groups, when seen as symmetric
functions in the eigenvalues, are given by Schur functions. Looking at Figure 1,
an Haar-invariant unitary matrix is also a CUE. From the perspective of symmetric
functions, the COE is connected to the zonal polynomials, and the CSE to symplec-
tic zonal polynomials. The three functions are special cases of the Jack polynomial
J

(α)
λ with α = 1,2 and 1/2, respectively, where λ is a partition. See Section 4.1

for this or [20] for general properties of the Jack polynomials. By using the Jack
functions, we are able to prove (a) and (b) in Theorem 1. Part (c) in the theorem
is proved by evaluating the expectation/integral with respect to f (θ1, . . . , θn|β)

in (1.3) directly.
Treating n as a variable, the bound n32nβm−(1∧β) in (c) of Theorem 1 seems

quite large. It is possibly to be improved. However, as β = 4, we show in Propo-
sition 2 in the next section that E[|pm(Zn)|2] has the scale of m logm when n and
m are not far from each other. This partially explains why the bound is large.

3. Central limit theorems for circular beta-ensembles. For the sake of
precision, we replace Zn appeared earlier with Zα

n . Specifically, let Zα
n =

(eiθ1, . . . , eiθn) follow the β-circular ensemble with α = 2
β

and the density func-
tion f (θ1, . . . , θn|β) as in (1.3). According to our notation in previous sections,
pm(Zα

n ) = ∑n
j=1 eimθj for any integer m ≥ 0. In the paper, the symbol CN(0, σ 2)

stands for the complex normal distribution generated by σ · (ξ1 + iξ2)/
√

2, where
ξ1 an ξ2 are i.i.d. real random variables with the standard normal distribution
N(0,1). The first result is a CLT for general circular β-ensemble.

THEOREM 2 (CLT for any β-circular ensemble). Let Zα
n = (eiθ1, . . . , eiθn)

follow the β-circular ensemble. Then, for fixed m ≥ 1, the random vector
(p1(Z

α
n ),p2(Z

α
n ), . . . , pm(Zα

n )) converges weakly to (ξ1, . . . , ξm) as n → ∞,
where ξj ’s are independent random variables with ξj ∼ CN(0,

2j
β

) for each j .

An immediate consequence of the theorem is as follows.

COROLLARY 3. Let (eiθ1, . . . , eiθn) follow the β-circular ensemble. Let
g(z) = ∑m

k=0 ckz
k with fixed m ≥ 1 and ck ∈ C for all k. Set Xn = ∑n

j=1 g(eiθj ).

Then Xn − μn converges weakly to CN(0, σ 2) as n → ∞, where

μn = nc0 and σ 2 = 2

β

m∑
k=1

k|ck|2.

We next study the central limit theorem when the function g(z) is not a poly-
nomial. To avoid a lengthier paper, we only focus on the cases β = 1 and β = 4.
A discussion on the general case will be given later in this section. We first need
to understand the variance of pm(Zα

n ).
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PROPOSITION 1 (Bound of variance on COE). For all m ≥ 1, n ≥ 2 and
β = 1, there exists a universal constant K > 0 such that

E
[∣∣pm

(
Z2

n

)∣∣2] ≤
{

2m, if 1 ≤ m ≤ n;
Kn, if m > n.

PROPOSITION 2 (Bound of variance on CSE). Let β = 4. Then there exists a
universal constant K > 0 such that the following hold:

(i) E[|pm(Z
1/2
n )|2] ≤ Kδ−1n for all m ≥ (1 + δ)n and δ ∈ (0,1].

(ii) E[|pm(Z
1/2
n )|2] ≤ Km log(m + 1) for all m ≥ 1 and n ≥ 2.

(iii) E[|pm(Z
1/2
n )|2] ≥ K(w+1)−2m logm for all 12 ≤ n ≤ m ≤ 2n where w =

m − n ≥ 0.

From (ii) and (iii), we see that E[|pm(Z
1/2
n )|2] is of the scale “m logm” when

m and n are not far from each other. It is known from (1.2) and Proposition 1
that E|pm(Zα

n )|2 ≤ Kn for any n ≥ 2, m ≥ 1 and β = 1,2, where K is a universal
constant. This together with (b) of Corollary 1 seems to suggest that the second
moment for β = 4 is always bounded by Kn. Proposition 2 tells us a different
story. However, (b) of Corollary 1 is indeed consistent with (i).

The proofs of Propositions 1 and 2 are very involved. We use the combinato-
rial structure (5.1) to understand the second moments. Major effort is devoted to
analyzing (5.1) through (5.2) and (5.10).

Another way to calculate above variance is through the covariance of eimθ1 and
eimθ2 by symmetry [see (4.31)], which again can be computed by using the two-
point correlation function ρ(2)(θ1, θ2). The explicit form of ρ(2)(θ1, θ2) is given in
Proposition 13.2.2 from [11]. It seems very hard to estimate the variance by using
the proposition. But it is possible in principle.

THEOREM 3 (CLT for COE). Let (eiθ1, . . . , eiθn) follow the circular orthog-
onal ensemble (β = 1). Let {aj , bj ∈ C; j = 1,2, . . .} satisfy

∑∞
j=1 j (|aj |2 +

|bj |2) = σ 2 ∈ (0,∞). Then,
∑∞

j=1(ajpj (Z
2
n) + bjpj (Z2

n)) converges weakly to

the law of U + iV as n → ∞, where (U,V ) ∈ R2 has the law N2(0,�) with

� =

⎛
⎜⎜⎜⎜⎜⎝

∞∑
j=1

j |aj + b̄j |2 2 · Im

( ∞∑
j=1

jajbj

)

2 · Im

( ∞∑
j=1

jajbj

) ∞∑
j=1

j |aj − b̄j |2

⎞
⎟⎟⎟⎟⎟⎠ .

Obviously, if bj = 0 for all j , then � = σ 2I2 with σ 2 = ∑∞
j=1 j |aj |2, and hence

U + iV ∼ CN(0,2σ 2).
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THEOREM 4 (CLT for CSE). Let (eiθ1, . . . , eiθn) follow the circular symplec-
tic ensemble (β = 4). Let {aj , bj ∈ C; j = 1,2, . . .} satisfy

∑∞
j=1(j log j)(|aj |2 +

|bj |2) ∈ (0,∞). Set σ 2 = ∑∞
j=1 j (|aj |2 + |bj |2). Then

∑∞
j=1(ajpj (Z

1/2
n ) +

bjpj (Z
1/2
n )) converges weakly to the law of U + iV as n → ∞, where (U,V ) ∈ R2

has the law N2(0,�) with

� = 1

4

⎛
⎜⎜⎜⎜⎜⎝

∞∑
j=1

j |aj + b̄j |2 2 · Im

( ∞∑
j=1

jajbj

)

2 · Im

( ∞∑
j=1

jajbj

) ∞∑
j=1

j |aj − b̄j |2

⎞
⎟⎟⎟⎟⎟⎠ .

Similar to the comment below Theorem 3, if bj = 0 for all j , then � = σ 2I2

with σ 2 = 1
4

∑∞
j=1 j |aj |2, and hence U + iV ∼CN(0,2σ 2).

Though Proposition 2 says that E[|pm(Z
1/2
n )|2] is of scale “m logm” when m

and n are not far from each other, the variance of the limiting distribution in The-
orem 4 is not affected by this fact. The variance is similar to those in the circular
orthogonal and unitary ensemble (β = 1,4).

Diaconis and Evans [4] obtains the CLTs for the orthogonal groups, the unitary
groups and the symplectic groups. Their tool is the identities in (1.1) and (1.2).
Reviewing Corollary 2, we no longer have identities for any β 
= 2; this increases
much difficulty to get the corresponding CLTs. It is understandable because after
all the three members in the classical compact groups have group structures in
addition to their combinatorial ones. So the group representation theory can be
possibly used in the paper by Diaconis and Evans. The general circular β-ensemble
loses the former property and has only the combinatorial structure.

Johansson in [18] further explores the convergence speed of Tr(Mm
n ) to a normal

distribution, where m is fixed and Mn is an Haar-invariant orthogonal, unitary or
symplectic random matrix. He shows that the convergence rate is exponentially
fast.

By Proposition 2, the condition “
∑∞

j=1(j log j)(|aj |2 + |bj |2) < ∞” in The-
orem 4 can be slightly relaxed. For simplicity, we just leave it as it is. Also, the
conditions “

∑∞
j=1 j (|aj |2 +|bj |2) < ∞” and “

∑∞
j=1(j log j)(|aj |2 +|bj |2) < ∞”

can be easily satisfied. For instance, the first condition is satisfied if aj and bj are
of the order 1

j (log j)(1/2)+δ for some δ > 0, and the second one is satisfied if aj and

bj are of the order 1
j (log j)1+δ for some δ > 0.

To study the number of eigenvalues falling in an arc of the unit circle in the
complex plane, namely,

∑n
j=1 I (eiθj ∈ A) with A being a subset of S1 = {z ∈

C; |z| = 1}, one needs to handle the Fourier expansion of the indicator function
I[a,b](x) with [a, b] ⊂ [0,2π ]. It is known from [4] that the coefficients aj and bj

in the contexts of Theorems 3 and 4 are of scale 1
j

. Our theorems do not cover this
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special case. By using a construction of the circular β-ensemble, Killip [19] specif-
ically considers this situation and obtains a CLT. The author does not investigate
the general CLTs as treated in our Theorems 2, 3 or 4.

Finally, we provide some examples which satisfy the condition

∞∑
j=1

(j log j)
(|aj |2 + |bj |2)

< ∞.

They are the solutions of some classical partial differential equations. We leave
readers for the trivial calculations of the means and the variances of the limiting
normal distributions.

EXAMPLE. Let u = u(x, y) be defined on R2 and satisfy the Laplace equation{

u = 0, x2 + y2 < a2;
u = h(θ), x2 + y2 = a2,

where h(θ) is a known function and a > 0 is given. Let (x, y) = (r cos θ, r sin θ).
The solution has a Poisson’s formula. It can also be expressed in the following
Fourier series:

u(r, θ) = 1

2
A0 +

∞∑
j=1

rj (Aj cos jθ + Bj sin jθ)(3.1)

for r ∈ (0, a) and θ ∈ [0,2π ], where Aj ’s and Bj ’s are obtained from the Fourier
series of h(θ) so that

Aj = 1

πaj

∫ 2π

0
h(φ) cos jφ dφ and Bj = 1

πaj

∫ 2π

0
h(φ) sin jφ dφ.

See, for example, more details on page 160 from [26]. Clearly, if C :=
supφ∈[0,2π ] |h(φ)| < ∞, then |Aj | ≤ 2C

aj and |Bj | ≤ 2C
aj . And the coefficients

|rjAj | and |rjBj | in (3.1) are bounded by 2C( r
a
)j for 0 < r < a. Then use the

formulas cos jθ = eijθ+e−ijθ

2 and sin jθ = eijθ−e−ijθ

2i
to transfer u(r, θ) in (3.1)

to the form of a0 + ∑∞
j=1(aj e

ijθ + bj e
−ijθ ), where aj ’s and bj ’s are com-

plex numbers. Fix r < a. It is easy to see that |aj | = O((ra−1)j ) and bj =
O((ra−1)j ) as j → ∞. Theorems 3 and 4 can then be applied to get the CLT
for a0 + ∑∞

j=1(ajpj (Z
α
n ) + bjpj (Zα

n )) for α = 2 and α = 1
2 , respectively.

EXAMPLE. Let u(x, t) be a function defined on [0, π] × [0,∞). Consider the
following heat equation with boundary conditions defined by⎧⎪⎨

⎪⎩
ut = kuxx, x ∈ (0, π), t > 0;
u(0, t) = u(π, t) = 0;
u(x,0) = φ(x),

(3.2)
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where k > 0 is a constant. Suppose φ(x) = ∑∞
j=1 Aj sin jx for all x ∈ [0, π]. Then

the solution of (3.2) is given by

u(x, t) =
∞∑

j=1

Aje
−j2kt sin jx.

See, for example, page 85 from [26]. If supj≥0 |Aj | < ∞, then Aje
−j2kt =

O(e−j2kt ) as j → ∞. Similar to the previous example, we can write u(x, t) in
the form of a0 + ∑∞

j=1(aj e
ijθ + bj e

−ijθ ), where aj ’s and bj ’s are complex num-

bers with |aj |∨|bj | = O(e−j2kt ) as j → ∞. Theorems 3 and 4 can then be applied
to obtain the CLT for a0 + ∑∞

j=1(ajpj (Z
α
n ) + bjpj (Zα

n )) with α = 2 and α = 1
2 ,

respectively.

To get the analogues of Theorems 3 and 4 for any β 
= 1,2,4, one needs to
get upper bounds for E[|pm(Zα

n )|2] as in Propositions 1 and 2. It will be even
more involved because of the lack of classifications of partitions as in (5.4) for
general β > 0, particularly for irrational β > 0. However, by using our method, it
is possible to get upper bounds for any β = . . . , 1

4 , 1
3 , 1

2 ,1,2,3,4, . . . .

4. Proofs of moment inequalities in Section 2. This section is divided into
two parts. In Section 4.1, the necessary background of the Jack functions including
their orthogonal properties and combinatorial structures are given. With this prepa-
ration, we prove parts (a) and (b) of Theorem 1 and Corollary 2. In Section 4.2, we
prove part (c) of Theorem 1 by analysis.

4.1. Proofs of (a) and (b) of Theorem 1 and Corollary 2. For a partition λ, the
notation λ′ = (λ′

1, λ
′
2, . . .) represents the conjugate partition of λ, whose Young

diagram is obtained by transposing the Young diagram of λ.
Let us review Jack symmetric functions briefly. We do not need the exact defi-

nition of Jack functions. In fact, their orthogonal properties are actively used here.
For any real number α > 0 and each integer k ≥ 1, we denote by �k(α) the al-
gebra of symmetric functions of degree k over the field Q(α). Recall power-sum
symmetric function pρ in (2.2). The family of pρ over partitions ρ of k forms a
basis on �k(α). A scalar product on �k(α) is defined by

〈pλ,pμ〉α = δλμαl(λ)zλ(4.1)

for any partitions λ and μ of k, where zλ is as in (2.1). Set

Cλ(α) = ∏
(i,j)∈λ

{(
α(λi − j) + λ′

j − i + 1
)(

α(λi − j) + λ′
j − i + α

)}
,(4.2)

where (i, j) runs over all cells of the Young diagram of λ. By definition, Jack
functions {J (α)

λ } form an orthogonal basis on �k(α) and satisfy〈
J

(α)
λ , J (α)

μ

〉
α = δλμCλ(α);(4.3)
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see, for example, Chapter VI from [20] or [11].
Since both power-sum symmetric functions and Jack functions form a basis

of �k(α), they can be mutually expanded. Let θλ
ρ (α) denote the coefficient of pρ

in J
(α)
λ , that is,

J
(α)
λ = ∑

ρ:|ρ|=|λ|
θλ
ρ (α)pρ.(4.4)

The θλ
ρ (α)’s are real numbers. Inversely, let �λ

ρ(α) be the coefficient of J
(α)
λ in pρ ,

that is,

pρ = ∑
λ:|λ|=|ρ|

�λ
ρ(α)J

(α)
λ .(4.5)

LEMMA 4.1. Recalling θλ
ρ (α) in (4.4) and �λ

ρ(α) in (4.5). Then, for any par-
titions λ and ρ with |λ| = |ρ|, we have

�λ
ρ(α) = αl(ρ)zρ

Cλ(α)
θλ
ρ (α).(4.6)

PROOF. It follows from (4.4) and (4.1) that

〈
J

(α)
λ ,pρ

〉
α =

〈∑
v

θλ
v (α)pv,pρ

〉
α

= ∑
v

θλ
v (α)〈pv,pρ〉α = θλ

ρ (α)αl(ρ)zρ.

Similarly, by (4.5) and (4.3),

〈
J

(α)
λ ,pρ

〉
α =

〈
J

(α)
λ ,

∑
v

�v
ρ(α)J (α)

v

〉
α

= ∑
v

�v
ρ(α)

〈
J

(α)
λ , J (α)

v

〉
α = �λ

ρ(α)Cλ(α).

These two equalities lead to (4.6). �

The coefficients θλ
ρ ’s satisfy the following orthogonality relations ((10.31)

and (10.32) from [20]):∑
ρ

zραl(ρ)θλ
ρ (α)θμ

ρ (α) = δλμCλ(α);
(4.7) ∑

λ

1

Cλ(α)
θλ
ρ (α)θλ

σ (α) = δρσ z−1
ρ α−l(ρ).

In other words, if aλρ := (zραl(ρ)/Cλ(α))1/2θλ
ρ (α), then Am = (aλρ)|λ|=|ρ|=m is an

orthogonal matrix of size p(m) for m ≥ 1. Here, p(m) is the number of partitions
of m. The following are some special cases of the Jack polynomials.

In other words, if aλρ := (zραl(ρ)/Cλ(α))1/2θλ
ρ (α), then Am = (aλρ)|λ|=|ρ|=m

is an orthogonal matrix of size p(m) for m ≥ 1. Here, p(m) is the number of
partitions of m. The following are some special cases of the Jack polynomials.
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EXAMPLE. Let α = 1, sλ be the Schur polynomial and χλ
μ the character value

for the irreducible representation of the symmetric groups. It is well known that
J

(1)
λ = h(λ)sλ with h(λ) = √

Cλ(1) as the hook-length product. Further, by (7.8)
from Chapter VI of [20] and (4.5) that

θλ
μ(1) = h(λ)χλ

μ

zμ

and �λ
μ(1) = χλ

μ

h(λ)
.

EXAMPLE. Let α = 2. Then J
(2)
λ coincides with the zonal polynomial Zλ.

By (2.13) and (2.16) from Chapter VII of [20], we have

θλ
μ(2) = 2kk!

2l(μ)zμ

ωλ
μ and �λ

μ(2) = 2kk!
h(2λ)

ωλ
μ,

with k = |λ| = |μ|, where h(2λ) = Cλ(2) is the hook-length product of 2λ =
(2λ1,2λ2, . . .) and ωλ

μ is the value of the zonal spherical function of a Gelfand
pair (S2k,Bk). Here, S2k is the symmetric group and Bk is the hyperoctahedral
group in S2k .

EXAMPLE (Example 1(a) on page 383 from [20]). For each partition ρ of k,
we have

θ(k)
ρ (α) = k!

zρ

αk−l(ρ) and θ(1k)
ρ (α) = k!

zρ

(−1)k−l(ρ).(4.8)

For each partition λ with l(λ) ≤ n, we define

N α
λ (n) = ∏

(i,j)∈λ

n + (j − 1)α − (i − 1)

n + jα − i
,

which is a positive real number. As we saw in (4.3), Jack functions are orthogo-
nal with respect to the scalar product 〈·, ·〉α . We next need the second orthogonal
property for them.

LEMMA 4.2. Let λ and μ be two partitions. Let α > 0 and n ≥ 1. Then

1

(2π)n

∫
[0,2π)n

J
(α)
λ

(
eiθ1, . . . , eiθn

)
J (α)

μ

(
e−iθ1, . . . , e−iθn

)
× ∏

1≤p<q≤n

∣∣eiθp − eiθq
∣∣2/α

dθ1 · · ·dθn

= δλμ · δ(
l(λ) ≤ n

) · �(n/α + 1)

�(1 + 1/α)n
Cλ(α)N α

λ (n).
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PROOF. Since J
(α)
λ (x1, . . . , xn) = 0 if l(λ) > n, we assume l(λ) ≤ n in the

following discussion. It is known (e.g., Theorem 12.1.1 from [22]) that

1

(2π)n

∫
[0,2π)n

∏
1≤p<q≤n

∣∣eiθp − eiθq
∣∣2/α

dθ1 · · ·dθn = �(n/α + 1)

�(1 + 1/α)n
.(4.9)

From (10.22), (10.35) and (10.37) in [20], we see that

1

(2π)nn!Cλ(α)

∫
[0,2π)n

J
(α)
λ

(
eiθ1, . . . , eiθn

)
J (α)

μ

(
e−iθ1, . . . , e−iθn

)
× ∏

1≤p<q≤n

∣∣eiθp − eiθq
∣∣2/α

dθ1 · · ·dθn

= δλμ · cnN α
λ (n),

where

cn := 1

(2π)nn!
∫
[0,2π)n

∏
1≤p<q≤n

∣∣eiθp − eiθq
∣∣2/α

dθ1 · · · dθn = 1

n! · �(n/α + 1)

�(1 + 1/α)n

by (4.9). Hence, the desired conclusion follows. �

PROPOSITION 3. Let β > 0 be a constant. Suppose θ1, . . . , θn have a joint
density as in (1.3). Let Zn = (eiθ1, . . . , eiθn). Given partitions μ and ν of weight K ,
then

E
[
pμ(Zn)pν(Zn)

] = αl(μ)+l(ν)zμzν

∑
λ�K:l(λ)≤n

θλ
μ(α)θλ

ν (α)

Cλ(α)
N α

λ (n).

PROOF. Reviewing (1.3), by (4.5) and Lemma 4.2, we have

E
[
pμ(Zn)pν(Zn)

] = ∑
λ�K:l(λ)≤n

�λ
μ(α)�λ

ν(α)Cλ(α)N α
λ (n),

where α = 2/β . By Lemma 4.1, the above is identical to

αl(μ)+l(ν)zμzν

∑
λ�K:l(λ)≤n

θλ
μ(α)θλ

ν (α)

Cλ(α)
N α

λ (n).

The proof is completed. �

For positive integers n and K and real number α > 0. Define

�α
n,K = max

λ�K:l(λ)≤n
N α

λ (n)

(4.10)

= max
λ�K:l(λ)≤n

∏
(i,j)∈λ

n + (j − 1)α − (i − 1)

n + jα − i
;
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γ α
n,K = min

λ�K:l(λ)≤n
N α

λ (n)

(4.11)

= min
λ�K:l(λ)≤n

∏
(i,j)∈λ

n + (j − 1)α − (i − 1)

n + jα − i
.

LEMMA 4.3. Let α > 0,K ≥ 1 and �α
n,K be as in (4.10) and γ α

n,K be as
in (4.11). If n ≥ K , then A ≤ γ α

n,K ≤ �α
n,K ≤ B where A and B are as in (2.3).

Further, if n ≥ K , then

max
λ�K

∣∣N α
λ (n) − 1

∣∣ ≤ max
{|A − 1|, |B − 1|}.(4.12)

PROOF. For λ � K such that l(λ) ≤ n and (i, j) ∈ λ, it is easy to check that

1 ≤ i ≤ min{n,K} and 1 ≤ j ≤ K.(4.13)

Thus, n + (j − 1)α − (i − 1) ≥ n − i + 1 > 0 and n + jα − i ≥ jα > 0. It follows
that

bi,j (α) := n + (j − 1)α − (i − 1)

n + jα − i
> 0.(4.14)

Write

bi,j (α) = 1 + 1 − α

n + jα − i
.(4.15)

Case 1: α ≥ 1. By (4.14) and (4.15), we see that bi,j (α) ∈ [0,1] for all λ � K

such that l(λ) ≤ n and (i, j) ∈ λ, which concludes �α
n,K ≤ 1.

Further, by (4.13), n+ jα − i ≥ n−K +α > 0 for all λ � K such that l(λ) ≤ n

and (i, j) ∈ λ. Thus, noticing 1 − α ≤ 0, we get

bi,j (α) ≥ 1 + 1 − α

n − K + α
= 1 − |1 − α|

n − K + α
> 0

for all n ≥ K . This yields

γ α
n,K ≥

(
1 − |1 − α|

n − K + α

)K

.

The above two conclusions lead to that(
1 − |1 − α|

n − K + α

)K

≤ γ α
n,K ≤ �α

n,K ≤ 1(4.16)

for all n ≥ K and α ≥ 1.
Case 2: α ∈ (0,1]. By (4.15), bi,j (α) ≥ 1 for all λ � K such that l(λ) ≤ n and

(i, j) ∈ λ, which shows γ α
n,K ≥ 1.



MOMENTS OF TRACES OF CIRCULAR BETA-ENSEMBLES 3293

Moreover, by (4.13) again, n + jα − i ≥ n − K + α for all λ � K such that
l(λ) ≤ n and (i, j) ∈ λ. Thus, with 1 − α > 0, we have from (4.15) that

bi,j (α) ≤ 1 + 1 − α

n − K + α
.

By the definition of �α
n,K and the earlier conclusion, we get

1 ≤ γ α
n,K ≤ �α

n,K ≤
(

1 + 1 − α

n − K + α

)K

for all n ≥ K and α ∈ (0,1]. This and (4.16) prove the first part of the lemma.
Finally, by the definitions in (4.10) and (4.11),

γ α
n,K ≤ N α

λ (n) = ∏
(i,j)∈λ

bi,j (α) ≤ �α
n,K

for all λ � K since l(λ) ≤ n holds automatically if n ≥ K . By the proved conclu-
sion,

A − 1 ≤N α
λ (n) − 1 ≤ B − 1

for all λ � K . This implies (4.12). �

PROOF OF (A) AND (B) OF THEOREM 1. (a) By Proposition 3, take μ = ν

with weight K to have

E
[∣∣pμ(Zn)

∣∣2] = α2l(μ)z2
μ

∑
λ�K:l(λ)≤n

θλ
μ(α)2

Cλ(α)
N α

λ (n).

Lemma 4.3 says that �α
n,K > 0 and γ α

n,K > 0 for all n ≥ K . By the definitions of
�α

n,K in (4.10) and γ α
n,K in (4.11), since Cλ(α) > 0 for any partition λ and α > 0,

γ α
n,K · α2l(μ)z2

μ

∑
λ�K:l(λ)≤n

θλ
μ(α)2

Cλ(α)
≤ E

[∣∣pμ(Zn)
∣∣2]

(4.17)

≤ �α
n,K · α2l(μ)z2

μ

∑
λ�K:l(λ)≤n

θλ
μ(α)2

Cλ(α)
.

From assumption n ≥ K , if λ � K , we know l(λ) ≤ n automatically. Therefore,
from (4.7) the two sums in (4.17) are both equal to z−1

μ α−l(μ). Consequently,

γ α
n,K ≤ E[|pμ(Zn)|2]

αl(μ)zμ

≤ �α
n,K.

The conclusion (a) then follows from the first part of Lemma 4.3.
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(b) First, assume |μ| 
= |ν|. Notice

E
[
pμ(Zn)pν(Zn)

]
= Const ·

∫ 2π

0
· · ·

∫ 2π

0
pμ

(
eiθ1, . . . , eiθn

)
pν

(
eiθ1, . . . , eiθn

)
× ∏

1≤j<k≤n

∣∣eiθj − eiθk
∣∣β dθ1 · · ·dθn.

For an integrable function h(x), we know
∫ 2π

0 h(eix) dx = ∫ b+2π
b h(eix) dx for any

b ∈ R. Using the induction and the Fubini theorem, we see that

E
[
pμ(Zn)pν(Zn)

]
= Const ·

∫ b+2π

b
· · ·

∫ b+2π

b
pμ

(
eiθ1, . . . , eiθn

)
pν

(
eiθ1, . . . , eiθn

)
× ∏

1≤j<k≤n

∣∣eiθj − eiθk
∣∣β dθ1 · · ·dθn.

Making transform ηj = θj − b for 1 ≤ j ≤ n, noting that pμ(eib+iη1, . . . ,

eib+iηn) = eib|μ|pμ(eiη1, . . . , eiηn) for any b ∈ R, we obtain that

E
[
pμ(Zn)pν(Zn)

] = eib(|μ|−|ν|)E
[
pμ(Zn)pν(Zn)

]
for any b ∈ R. If |μ| 
= |ν|, since b is arbitrary, we then conclude

E
[
pμ(Zn)pν(Zn)

] = 0

for all n ≥ 2.
To prove the second part of (b), by the first part, it suffices to prove the conclu-

sion for n ≥ |μ| = |ν| = K . Observe that l(λ) ≤ n if λ � K . Thus, it follows from
Proposition 3 that

E
[
pμ(Zn)pν(Zn)

]
= αl(μ)+l(ν)zμzν

∑
λ�K

θλ
μ(α)θλ

ν (α)

Cλ(α)
N α

λ (n)

= αl(μ)+l(ν)zμzν

[ ∑
λ�K

θλ
μ(α)θλ

ν (α)

Cλ(α)
+ ∑

λ�K

θλ
μ(α)θλ

ν (α)

Cλ(α)

(
N α

λ (n) − 1
)]

= αl(μ)+l(ν)zμzν

∑
λ�K

θλ
μ(α)θλ

ν (α)

Cλ(α)

(
N α

λ (n) − 1
)
,

where the last identity comes from the orthogonal property in (4.7). Therefore,∣∣E[
pμ(Zn)pν(Zn)

]∣∣
≤ max

λ�K

∣∣N α
λ (n) − 1

∣∣ · αl(μ)+l(ν)zμzν

∑
λ�K

|θλ
μ(α)| · |θλ

ν (α)|
Cλ(α)

.
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Now, by the Cauchy–Schwarz inequality the sum above is bounded by

( ∑
λ�K

|θλ
μ(α)|2
Cλ(α)

)1/2

·
( ∑

λ�K

|θλ
ν (α)|2
Cλ(α)

)1/2

= z−1/2
μ z−1/2

ν α−(l(μ)+l(ν))/2

by (4.7). The above two inequalities imply∣∣E[
pμ(Zn)pν(Zn)

]∣∣ ≤ max
λ�K

∣∣N α
λ (n) − 1

∣∣ · α(l(μ)+l(ν))/2(zμzν)
1/2

≤ max
{|A − 1|, |B − 1|} · α(l(μ)+l(ν))/2(zμzν)

1/2

by (4.12). �

LEMMA 4.4. Let A and B be as in (2.3) with β > 0. Set α = 2/β . If n ≥ 2K ,
then

max
{|A − 1|, |B − 1|} ≤ 6|1 − α|K

n
.

PROOF. By the definitions of A and B , it suffices to show that, as n ≥ 2K ,

1 −
(

1 − α − 1

n − K + α

)K

≤ 6|1 − α|K
n

for α ≥ 1;(4.18)

(
1 + 1 − α

n − K + α

)K

− 1 ≤ 6|1 − α|K
n

for α ∈ (0,1).(4.19)

First, if α ≥ 1, then (α − 1)/(n − K + α) ∈ [0,1). Notice (1 + x)K ≥ 1 + Kx for
all x ≥ −1 (see, e.g., Theorem 42 on page 40 from [13]), we have

1 −
(

1 − α − 1

n − K + α

)K

≤ K(α − 1)

n − K + α
≤ 2K|1 − α|

n

since n − K + α ≥ n/2 as n ≥ 2K . This proves (4.18).
Second, for α ∈ (0,1), it is easy to verify that (1 − α)/(n − K + α) ≤ 1/K

provided n ≥ 2K . By the fact that (1 + x)K ≤ 1 + 3Kx for all 0 ≤ x ≤ 1/K , we
obtain (

1 + 1 − α

n − K + α

)K

− 1 ≤ 3(1 − α)K

n − K + α
≤ 6|1 − α|K

n

since n − K + α ≥ n/2 if n ≥ 2K as used earlier. This concludes (4.19). �

PROOF OF COROLLARY 2. (a) By Theorem 1

A − 1 ≤ E[|pμ(Zn)|2]
αl(μ)zμ

− 1 ≤ B − 1.
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Thus, ∣∣∣∣E[|pμ(Zn)|2]
αl(μ)zμ

− 1
∣∣∣∣ ≤ max

{|A − 1|, |B − 1|}.
The conclusion (a) then follows from Lemma 4.4.

(b) The conclusion obviously holds if |μ| 
= |ν| by (b) of Theorem 1. If |μ| =
|ν| = K , by (b) of Theorem 1 and Lemma 4.4, we get the desired result. �

4.2. Proof of (c) of Theorem 1. We start the proof through a series of lemmas.

LEMMA 4.5. Let β > 0. For positive integers m and k and real numbers
a1, . . . , ak , define

D =
∫ π

0
cos(2mt)

∣∣∣∣∣
k∏

i=1

sin(t + ai)

∣∣∣∣∣
β

dt.

Then |D| ≤ 6(1 + β)( k
m

)1∧β .

PROOF. First, since |D| ≤ ∫ π
0 1dt = π , the conclusion obviously holds for

m = 1. Now we assume m ≥ 2. Set s = mt . Then

D = 1

m

∫ mπ

0
cos(2s)

∣∣∣∣∣
k∏

i=1

sin
(

s

m
+ ai

)∣∣∣∣∣
β

ds

= 1

m

m−1∑
j=0

∫ (j+1)π

jπ
cos(2s)

∣∣∣∣∣
k∏

i=1

sin
(

s

m
+ ai

)∣∣∣∣∣
β

ds

(4.20)

= 1

m

m−1∑
j=0

∫ π

0
cos(2s)

∣∣∣∣∣
k∏

i=1

sin
(

s + jπ

m
+ ai

)∣∣∣∣∣
β

ds

=
∫ π

0
Lm(s) cos(2s) ds,

where we make a transform: s → s − jπ in the second identity to get the third
one, and

Lm(s) = 1

m

m−1∑
j=0

∣∣∣∣∣
k∏

i=1

sin
(
bij + s

m

)∣∣∣∣∣
β

for 0 ≤ s ≤ π and bij = ai + jπ
m

. Since (a + b)β ≤ aβ + bβ for any a ≥ 0, b ≥
0, β ∈ (0,1], and |cβ − dβ | ≤ β|c − d| for any c, d ∈ [−1,1], β > 1, it is not
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difficult to see that ||x|β − |y|β | ≤ (1 + β)||x| − |y||1∧β ≤ (1 + β)|x − y|1∧β for
any β > 0 and x, y ∈ [−1,1]. Therefore,∣∣∣∣∣Lm(s) − 1

m

m−1∑
j=0

∣∣∣∣∣
k∏

i=1

sinbij

∣∣∣∣∣
β ∣∣∣∣∣

≤ 1

m

m−1∑
j=0

∣∣∣∣∣
∣∣∣∣∣

k∏
i=1

sin
(
bij + s

m

)∣∣∣∣∣
β

−
∣∣∣∣∣

k∏
i=1

sinbij

∣∣∣∣∣
β ∣∣∣∣∣(4.21)

≤ 1 + β

m

m−1∑
j=0

∣∣∣∣∣
k∏

i=1

sin
(
bij + s

m

)
−

k∏
i=1

sinbij

∣∣∣∣∣
β∧1

.

Now, by the product rule, (
∏k

i=1 sin(bij + t))′ = ∑k
l=1 cos(blj + t) ×∏

1≤i≤k,i 
=l sin(bij + t) for any t ∈ R. Thus, the absolute value of the derivative
is bounded by k for ant t ∈ R. By the mean-value theorem,∣∣∣∣∣

k∏
i=1

sin
(
bij + s

m

)
−

k∏
i=1

sinbij

∣∣∣∣∣ ≤ ks

m
.

This implies that the last term in (4.21) is controlled by

1 + β

m

m−1∑
j=0

(
ks

m

)1∧β

= (1 + β)

(
ks

m

)1∧β

.

It follows from (4.21) that∣∣∣∣∣Lm(s) − 1

m

m−1∑
j=0

∣∣∣∣∣
k∏

i=1

sinbij

∣∣∣∣∣
β ∣∣∣∣∣ ≤ (1 + β)

(
ks

m

)1∧β

.

Set C = 1
m

∑m−1
j=0 |∏k

i=1 sinbij |β . Notice
∫ π

0 cos(2s) ds = 0. From the above, we
use the simple fact that | cos(2s)| ≤ 1 to have∣∣∣∣

∫ π

0
Lm(s) cos(2s) ds

∣∣∣∣ =
∣∣∣∣
∫ π

0
C cos(2s) ds +

∫ π

0

(
Lm(s) − C

)
cos(2s) ds

∣∣∣∣
≤ (1 + β)

(
k

m

)1∧β ∫ π

0
s1∧β ds.

Now the last integral above is bounded by
∫ 1

0 1ds + ∫ π
1 s ds = (π2 + 1)/2 ≤ 6.

The proof is completed by using (4.20). �

LEMMA 4.6. For β > 0, let f (θ1, . . . , θn|β) be as in (1.3). Define

I (m,n) =
∫ 2π

0
· · ·

∫ 2π

0
cos

(
m(θ2 − θ1)

)
× f (θ1, . . . , θn|β)dθ1 · · ·dθn (m ≥ 0, n ≥ 2).
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Then, for some constant K = K(β), we have |I (m,n)| ≤ (Kn2nβ)m−(1∧β) for all
m ≥ 1 and n ≥ 2.

PROOF. Evidently, since f (θ1, . . . , θn|β) is a probability density function, we
know

I (0, n) = 1(4.22)

for all n ≥ 2. Since |eix −eiy |2 = |1−ei(x−y)|2 = (1−cos(x−y))2 +sin2(x−y) =
2(1 − cos(x − y)) = 4 sin2((x − y)/2) for any x, y ∈ R, the probability density
function in (1.3) becomes

f (θ1, . . . , θn|β) = Cn

∏
1≤j<k≤n

∣∣∣∣sin
(

θj − θk

2

)∣∣∣∣
β

,

where θ1, . . . , θn ∈ [0,2π ] and

Cn = 2n(n−1)β/2(2π)−n · �(1 + β/2)n

�(1 + βn/2)
.

Now,

I (m,n) =
∫ 2π

0
· · ·

∫ 2π

0
cos

(
m(θ2 − θ1)

)
f (θ1, . . . , θn|β)dθ1 · · ·dθn

= Cn

∫ 2π

0
· · ·

∫ 2π

0
cos

(
m(θ2 − θ1)

)

× ∏
1≤j<k≤n

∣∣∣∣sin
(

θj − θk

2

)∣∣∣∣
β

dθ2 · · ·dθn dθ1.

Making transforms xi = θi − θ1 for i = 2,3, . . . , n, we obtain that

I (m,n) = Cn

∫ 2π

0

∫ 2π−θ1

−θ1

· · ·
∫ 2π−θ1

−θ1

cos(mx2) · Gn(x)dx2 · · ·dxn dθ1

with

Gn(x) =
n∏

i=2

∣∣∣∣sin
(

xi

2

)∣∣∣∣
β

· ∏
2≤j<k≤n

∣∣∣∣sin
(

xj − xk

2

)∣∣∣∣
β

,

where the second product is understood to be 1 if n = 2. For a periodic and inte-
grable function h(x) with period 2π , we know that

∫ b+2π
b h(x) dx = ∫ 2π

0 h(x) dx.
By induction and the Fubini theorem, we have

I (m,n) = Cn

∫ 2π

0
· · ·

∫ 2π

0
cos(mx2) · Gn(x)dx2 · · ·dxn dθ1

= (2π)Cn

∫ 2π

0
· · ·

∫ 2π

0
cos(mx2) · Gn(x)dx2 · · ·dxn(4.23)

= (2π)Cn

∫ 2π

0
· · ·

∫ 2π

0
cos(mx2)Jn(x)Hn(x) dx2 · · ·dxn,(4.24)
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where Gn(x) = Jn(x)Hn(x) and

Hn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∏
i=3

∣∣∣∣sin
(

xi

2

)∣∣∣∣
β

· ∏
3≤j<k≤n

∣∣∣∣sin
(

xj − xk

2

)∣∣∣∣
β

, if n ≥ 4;

∣∣∣∣sin
(

x3

2

)∣∣∣∣
β

, if n = 3;

1, if n = 2,

and

Jn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣sin
(

x2

2

)∣∣∣∣
β n∏

i=3

∣∣∣∣sin
(

x2 − xi

2

)∣∣∣∣
β

, if n ≥ 3;

∣∣∣∣sin
(

x2

2

)∣∣∣∣
β

, if n = 2.

In particular,

I (m,2) = 2πC2

∫ 2π

0
cos(mx2)J2(x) dx2.(4.25)

Taking m = 0 in (4.23), we know from (4.22) that

∫ 2π

0
· · ·

∫ 2π

0

n∏
i=2

∣∣∣∣sin
(

xi

2

)∣∣∣∣
β

· ∏
2≤j<k≤n

∣∣∣∣sin
(

xj − xk

2

)∣∣∣∣
β

dx2 dx3 · · ·dxn = 1

2πCn

for all n ≥ 2, where the second product above is understood to be 1 if n = 2. This
implies

∫ 2π

0
· · ·

∫ 2π

0
Hn(x)dx3 · · ·dxn = 1

2πCn−1
(4.26)

for all n ≥ 3. Now, recalling the definition of Jn(x), let t = x2/2, we have

∫ 2π

0
cos(mx2)Jn(x) dx2 = 2

∫ π

0
cos(2mt)

∣∣∣∣∣
n−1∏
i=1

sin(t + ai)

∣∣∣∣∣
β

dt

for all n ≥ 2, where a1 = 0, ai = −xi+1/2 for i = 2, . . . , n − 1. By Lemma 4.5,

∣∣∣∣
∫ 2π

0
cos(mx2)Jn(x) dx2

∣∣∣∣ ≤ 12(1 + β)

(
n

m

)1∧β

(4.27)

for all n ≥ 2. Therefore, this and (4.25) imply that for some constant K1 = K1(β),

∣∣I (m,2)
∣∣ ≤ K1

m(1∧β)
.(4.28)
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Now assume n ≥ 3. By (4.24) and (4.27), and then (4.26), we obtain

∣∣I (m,n)
∣∣ ≤ 24π(1 + β)Cn

(
n

m

)1∧β ∫ 2π

0
· · ·

∫ 2π

0
Hn(x)dx3 · · ·dxn

(4.29)

= 12(1 + β)

(
n

m

)1∧β Cn

Cn−1

for all n ≥ 3. Now,

Cn

Cn−1
= �(1 + β/2)

2π
· �(1 + βn/2 − β/2)

�(1 + βn/2)
· 2(n−1)β(4.30)

for all n ≥ 3. By Lemma 2.4 from [6], there exists a constant K2 = K2(β) such
that

�(1 + βn/2 − β/2)

�(1 + βn/2)
≤ K2

nβ/2

for all n ≥ 1. This, (4.29) and (4.30) imply that there exists a constant K = K(β)

such that

∣∣I (m,n)
∣∣ ≤ K ·

(
n

m

)1∧β

· 1

nβ/2 · 2nβ = Kn(1∧β)−β/2 2nβ

m1∧β
≤ K

n2nβ

m1∧β

for all n ≥ 3. This together with (4.28) proves the lemma. �

PROOF OF (C) OF THEOREM 1. Observe that, for any real numbers x1, . . . , xn,

∣∣∣∣∣
n∑

j=1

eixj

∣∣∣∣∣
2

=
n∑

j=1

eixj ·
n∑

j=1

e−ixj

= n + ∑
j 
=k

ei(xj−xk) = n + ∑
1≤j<k≤n

(
ei(xj−xk) + e−i(xj−xk)

)

= n + 2
∑

1≤j<k≤n

cos(xj − xk).

Thus, by the symmetry of f (θ1, . . . , θn|β),

E
[∣∣pm(Zn)

∣∣2] = E

[∣∣∣∣∣
n∑

j=1

eimθj

∣∣∣∣∣
2]

(4.31)
= n + n(n − 1) ·E[

cos
{
m(θ1 − θ2)

}]
.

The conclusion then follows from Lemma 4.6. �
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5. Proofs of central limit theorems in Section 3. Before proving the cen-
tral limit theorems, we will spend a lot efforts in studying the second moments,
which enable us to reduce the infinite Fourier series in Theorems 3 and 4 to finite
sums, and hence we can apply the moment inequalities stated in Section 2. We will
prove Proposition 1 in Section 5.1, and Proposition 2 in Section 5.2. All of the cen-
tral limit theorems will be proved in Section 5.3. We start with the combinatorial
structure of the second moment.

Review that Zα
n = (eiθ1, . . . , eiθn) follow the β-circular ensemble with α = 2

β
.

Its probability density function is given in (1.3). Following our notation, pm(Zα
n ) =∑n

j=1 eimθj for any integer m ≥ 0. We know from Proposition 3 that

E
[∣∣pm

(
Zα

n

)∣∣2] = α2m2
∑

λ�m:l(λ)≤n

θλ
(m)(α)2

Cλ(α)
N α

λ (n),(5.1)

where

N α
λ (n) = ∏

(i,j)∈λ

n + (j − 1)α − (i − 1)

n + jα − i

(5.2)

= ∏
(i,j)∈λ

(
1 + 1 − α

n + jα − i

)
.

We also know the following formula (page 383 from [20]): For each λ � m,

θλ
(m)(α) = ∏

(i,j)∈λ

(i,j) 
=(1,1)

(
α(j − 1) − (i − 1)

)
,(5.3)

where the product runs over all boxes of Young diagram λ, except the (1,1)-box.

5.1. Proof of Proposition 1. Let us first evaluate θλ
(m)(2) and Cλ(2). Suppose

α = 2. The (3,2)th box in the Young diagram λ gives α(j − 1) − (i − 1) = 2 ·
(2 − 1) − (3 − 1) = 0, and hence θλ

(m)(2) vanishes if λ has the (3,2)-box. In other

words, θλ
(m)(2) vanishes unless λ3 ≤ 1. Denote by P(2)

m (n) the set of such partitions
of m with lengths ≤ n:

P(2)
m (n) = {

λ = (λ1, λ2, . . . , λn) � m;λ3 ≤ 1
}
.(5.4)

The elements in P(2)
m (n) can be classified into the following three categories.

1. The one-row partition (m);
2. A two-row partition (m − r, r) with r = 1,2, . . . , [m

2 ];
3. λ = (r, s,1m−r−s) with r ≥ s ≥ 1 and 3 ≤ l(λ) = m − r − s + 2 ≤ n.
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For each case, the quantity θλ
(m)(2) = ∏

(i, j) ∈ λ

(i, j) 
= (1,1)

(2j − i − 1) is computed as

follows:

θ
(m)
(m) (2) = 2 · 4 · · · (2m − 2) = 2m−1 · (m − 1)!;(5.5)

θ
(m−r,r)
(m) (2) = (−1)2m−2r (m − r − 1)! · (2r − 2)!

(r − 1)! ;(5.6)

θ
(r,s,1m−r−s )
(m) (2) = (−1)m−r−s+1 · 2r−s · (r − 1)!

(5.7)

× (2s − 2)!
(s − 1)! · (m − r − s + 1)!.

Now we study Cλ(2). Note that Cλ(2) coincides with the hook-length product
of 2λ = (2λ1,2λ2, . . .). The hook-length product of λ is computed in Section 6
from [3]:

1. C(m)(2) = (2m)!;
2. C(m−r,r)(2) = (2r)!(2m−2r+1)!

2m−4r+1 ;
3. C(r,s,1m−r−s )(2) = (m + r − s + 1)(m + r − s)(m − r + s)(m − r + s − 1) ·

(m − r − s + 1)!(m − r − s)! (2r−1)!(2s−2)!
2r−2s+1 .

Hence, the term [(αl(μ)zμ)2 θλ
μ(α)2

Cλ(α)
]μ=(m),α=2 = 4m2 θλ

(m)(2)2

Cλ(2)
is given below.

4m2
θ

(m)
(m) (2)2

C(m)(2)
= 22m(m!)2

(2m)! ;(5.8)

4m2
θ

(m−r,r)
(m) (2)2

C(m−r,r)(2)
=

(2r
r

)
(2(m−r)

m−r

) · 22m−4rm2(2m − 4r + 1)

(m − r)2(2r − 1)2(2m − 2r + 1)
;(5.9)

4m2
θ

(r,s,1m−r−s )
(m) (2)2

C(r,s,1m−r−s )(2)

= 4m2(m − r − s + 1)

(m + r − s + 1)(m + r − s)(m − r + s)(m − r + s − 1)
(5.10)

· 22r−2s[(r − 1)!]2(2r − 2s + 1)·(2s − 2)!
[(s − 1)!]2(2r − 1)! .

Note: through the rest of the paper, C stands for a generic constant which may
change from line to line.

LEMMA 5.1. Recall N 2
λ (n) as in (5.2). Then there exists a universal constant

K ∈ (0,∞) such that N 2
λ (n) ≤ K

√
n
m

uniformly for all m,n and all λ satisfying:
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(i) λ = (m) and m ≥ n ≥ 1,
(ii) λ = (m − r, r) with 1 ≤ r ≤ m/2 and m ≥ n ≥ 2 or

(iii) λ = (r, s,1m−r−s) with r ≥ s ≥ 1, 3 ≤ m − r − s + 2 ≤ n and m ≥ n.

PROOF. The following basic estimate will be used several times.

log
l

k
≤

l∑
j=k

1

j
≤ 1 + log

l

k
(5.11)

for all 1 ≤ k ≤ l. It is obviously true if k = l. Now, for 1 ≤ k < l,

l∑
j=k

1

j
≤ 1 +

l∑
j=k+1

∫ j

j−1

1

x
dx = 1 +

∫ l

k

1

x
dx = 1 + log

l

k
.

Similarly,

l∑
j=k

1

j
≥

l∑
j=k

∫ j+1

j

1

x
dx =

∫ l+1

k

1

x
dx ≥ log

l

k
.

(i) Since λ = (m), we have from (5.2) and the fact 1 − x ≤ e−x for all x ∈ R

that

N 2
λ (n) = ∏

(i,j)∈λ

(
1 − 1

n + 2j − i

)
=

m∏
j=1

(
1 − 1

n + 2j − 1

)
(5.12)

≤ exp

(
−1

2

m∑
j=1

1

n − 1 + j

)

since n + 2j − 1 ≤ 2(n − 1 + j). From (5.11), we get that

m∑
j=1

1

n − 1 + j
=

n+m−1∑
j=n

1

j
≥ log

n + m − 1

n
≥ log

m

n

for all m ≥ n ≥ 1. This gives that N 2
λ (n) ≤

√
n
m

for any m ≥ n ≥ 1.
(ii) Now, λ = (m − r, r) with 1 ≤ r ≤ m/2 and n ≥ 2. Recall (5.12). We have

N 2
λ (n) = ∏

(i,j)∈λ

(
1 − 1

n + 2j − i

)

=
m−r∏
j=1

(
1 − 1

n + 2j − 1

)
·

r∏
j=1

(
1 − 1

n + 2j − 2

)

≤ exp

(
−1

2

m−r∑
j=1

1

n − 1 + j
− 1

2

r∑
j=1

1

n − 2 + j

)



3304 T. JIANG AND S. MATSUMOTO

by the inequality n + 2j − i ≤ 2(n − i + j) for i = 1,2. Hence,

−2 logN 2
λ (n) ≥

m+n−r−1∑
j=n

1

j
+

n+r−2∑
j=n−1

1

j

≥ log
(

m + n − r − 1

n
· n + r − 2

n − 1

)

for any 1 ≤ r ≤ m/2 by (5.11). Notice m+n−r−1
n

≥ m
2n

and n+r−2
n−1 ≥ 1 since 1 ≤

r ≤ m/2. We then have

N 2
λ (n) ≤ 2

√
n

m
.

(iii) In this case, λ = (r, s,1m−r−s) with r ≥ s ≥ 1 and 3 ≤ l(λ) = m − r − s +
2 ≤ n and m ≥ n. First, these restrictions imply

r ≥ m − n

2
+ 1, m − r ≥ 2 and n ≥ 3.(5.13)

Now,

N 2
λ (n) = ∏

(i,j)∈λ

(
1 − 1

n + 2j − i

)

=
r∏

j=1

(
1 − 1

n + 2j − 1

)
·

s∏
j=1

(
1 − 1

n + 2j − 2

)

×
m−r−s+2∏

i=3

(
1 − 1

n + 2 − i

)

≤ exp

(
−1

2

r∑
j=1

1

n − 1 + j
− 1

2

s∑
j=1

1

n − 2 + j
− 1

2

m−r−s+2∑
i=3

1

n − i + 1

)

by the inequality n+2j − i ≤ 2(n+ j − i) for all j ≥ 1 and i ≤ m− r − s +2 ≤ n.
Rearranging the indices in the sums and using (5.11), we obtain that

−2 logN 2
λ (n) ≥

n+r−1∑
j=n

1

j
+

n+s−2∑
j=n−1

1

j
+

n−2∑
j=n+r+s−m−1

1

j

≥ log
n + r − 1

n
· n + s − 2

n − 1
· n − 2

n + r + s − m − 1

≥ log
(n + r − 1)(n + s − 2)

2n(n + r + s − m)
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since n−2
n−1 ≥ 1

2 by (5.13). Equivalently,

N 2
λ (n) ≤

√
2n(n + r + s − m)

(n + r − 1)(n + s − 2)

≤ 2
√

n

m
·

√
n + r + s − m

n + s − 2

≤ 2
√

n

m

since n + r − 1 ≥ n + (m − n)/2 ≥ m/2 and n+s−(m−r)
n+s−2 ≤ 1 by (5.13). �

LEMMA 5.2. Let m,r, s be positive integers such that r ≥ s ≥ 1 and m >

r + s. Set μ = (m) and λ = (r, s,1m−r−s). Then there exists a universal constant
K > 0 such that

m2 θλ
μ(2)2

Cλ(2)
≤ K · 1

m − r + s
·
√

r

s
.

Further, if r ≥ 2s then

m2 θλ
μ(2)2

Cλ(2)
≥ 1

K
· m − r − s

(m − r + s)2 ·
√

r

s
.

PROOF. From (5.10), we see that

m2 θλ
μ(2)2

Cλ(2)

= m2(m − r − s + 1)

(m + r − s + 1)(m + r − s)(m − r + s)(m − r + s − 1)
(5.14)

× 22r−2s[(r − 1)!]2(2s − 2)!(2r − 2s + 1)

[(s − 1)!]2(2r − 1)!

≤ (m − r − s + 1)

(m − r + s − 1)2 · 22r−2s[(r − 1)!]2(2s − 2)!(2r − 2s + 1)

[(s − 1)!]2(2r − 1)!(5.15)

since m + r − s + 1 ≥ m and m + r − s ≥ m. Now, write

22r−2s[(r − 1)!]2(2s − 2)!(2r − 2s + 1)

[(s − 1)!]2(2r − 1)!

= 22r−2s(2s − 2)![r!]2

[(s − 1)!]2(2r)! · 2(2r − 2s + 1)

r
(5.16)

≤ 4 · 22r−2s
(2s−2

s−1

)
(2r

r

)
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due to the fact that 2(2r−2s+1)
r

≤ 4. We regard
(0
0

) = 1. The Stirling formula says
that

1 <
k!√

2πkkke−k
< 2(5.17)

for all k ≥ 1. It is easy to check from (5.17) that there exists a universal constant
K > 0 such that

1

K
· 22k

√
k

≤
(

2k

k

)
≤ K · 22k

√
k

(5.18)

for all k ≥ 1. We claim that

22r−2s
(2s−2

s−1

)
(2r

r

) ≤ C

√
r

s
(5.19)

for all r ≥ s ≥ 1. In fact, if s = 1,

22r−2s
(2s−2

s−1

)
(2r

r

) = 22r−2(2r
r

) ≤ C
√

r = C

√
r

s

by (5.18). If r ≥ s ≥ 2, by (5.18) again,

22r−2s
(2s−2

s−1

)
(2r

r

) ≤ C

√
r

s − 1
≤ 2C

√
r

s
.

So (5.19) holds. Hence, this and (5.15) imply that

m2 θλ
μ(2)2

Cλ(2)
≤ C · m − r − s + 1

(m − r + s − 1)2 ·
√

r

s

≤ C · 1

m − r + s
·
√

r

s

since m − r − s + 1 ≤ m − r + s − 1 and m − r + s − 1 ≥ 1
2(m − r + s).

Now we prove the lower bound. By the fact r ≤ m it is seen that m+ r − s +1 ≤
2m. Therefore, by (5.14) and (5.16),

m2 θλ
μ(2)2

Cλ(2)
≥ 1

4
· m − r − s

(m − r + s)2 · 22r−2s[(r − 1)!]2(2s − 2)!(2r − 2s + 1)

[(s − 1)!]2(2r − 1)!

= 1

4
· m − r − s

(m − r + s)2 · 22r−2s
(2s−2

s−1

)
(2r

r

) · 2(2r − 2s + 1)

r
.

The condition r ≥ 2s implies that 2(2r−2s+1)
r

≥ 2. By (5.18) again,

22r−2s
(2s−2

s−1

)
(2r

r

) ≥ C

√
r

s
.
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We complete the proof. �

PROOF OF PROPOSITION 1. Look at (a) of Theorem 1, B = 1 since α = 2.
It follows that E[|pμ(Zn)|2] ≤ 2m for 1 ≤ m ≤ n. So, in the rest of the paper, we
only need to study the case for m > n ≥ 2.

Review (5.1),

E
[∣∣pm

(
Z2

n

)∣∣2] = 4m2
∑

λ�m:l(λ)≤n

θλ
(m)(2)2

Cλ(2)
N 2

λ (n).(5.20)

To study this quantity, we will differentiate the three cases for λ in the sum as
appeared earlier.

Case 1: λ = (m). By (5.8) and (5.17),

4m2
θλ
(m)(2)2

Cλ(2)
= 22m(m!)2

(2m)! <
22m(2

√
2πmmme−m)2

√
4πm(2m)2me−2m

< C
√

m.(5.21)

Hence, by (i) of Lemma 5.1,

4m2
θλ
(m)(2)2

Cλ(2)
N 2

λ (n) ≤ C
√

n(5.22)

for any m ≥ n ≥ 1 and λ = (m).
Case 2: λ = (m − r, r) with 1 ≤ r ≤ m/2. First, by (5.9),

4m2
θλ
(m)(2)2

Cλ(2)
=

(2r
r

)
(2(m−r)

m−r

) · 22m−4rm2(2m − 4r + 1)

(m − r)2(2r − 1)2(2m − 2r + 1)
.(5.23)

By using the fact 1 ≤ r ≤ m/2, we have that (m − r)2r2(2m − 2r + 1) ≥ m3r2/4
and 22m−4rm2(2m − 4r + 1) ≤ 2 · 22m−4rm3. It follows that the last ratio in (5.23)
is dominated by 8 · 22m−4r/r2. Thus, by (5.18),

4m2
θλ
(m)(2)2

Cλ(2)
≤ C

√
m − r

22m−2r
· 22r

√
r

· 22m−4r

r2

(5.24)

= C

√
m − r

r5/2 ≤ C

r5/2

√
m

for all 1 ≤ r ≤ m/2. It follows from (ii) of Lemma 5.1 that

4m2
∑

λ=(m−r,r),1≤r≤m/2

θλ
(m)(2)2

Cλ(2)
N 2

λ (n)

≤ C · ∑
1≤r≤m/2

1

r5/2

√
m ·

√
n

m
(5.25)

≤ C ·
( ∞∑

r=1

1

r5/2

)√
n.
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Case 3: λ = (r, s,1m−r−s) with r ≥ s ≥ 1 and 3 ≤ l(λ) = m − r − s + 2 ≤ n.
From (iii) of Lemma 5.1 and the first assertion of Lemma 5.2, we get that

4m2
∑

λ=(r,s,1m−r−s )

θλ
(m)(2)2

Cλ(2)
N 2

λ (n)

(5.26)

≤ C
√

n
∑
r,s

1

m − r + s
· 1√

s
,

where both sums are taken over all possible r ≥ s ≥ 1 with 3 ≤ l(λ) = m − r −
s + 2 ≤ n. These restrictions imply that s + 1 ≤ m− r ≤ s +n and hence 2s + 1 ≤
m − r + s ≤ 2s + n. It follows that the last sum in (5.26) is bounded by

m∑
s=1

2s+n∑
j=2s+1

1

j
· 1√

s
=

m∑
s=1

1√
s

2s+n∑
j=2s+1

1

j
(5.27)

for all n ≥ 2. Now,

2s+n∑
j=2s+1

1

j
≤

2s+n∑
j=2s+1

∫ j

j−1

1

x
dx =

∫ 2s+n

2s

1

x
dx = log

(
1 + n

2s

)

for all s ≥ 1. This implies that (5.27) is controlled by

m∑
s=1

1√
s

log
(

1 + n

s

)
≤

m∑
s=1

∫ s

s−1

1√
y

log
(

1 + n

y

)
dy =

∫ m

0

1√
y

log
(

1 + n

y

)
dy.

Set u = y/n. Then the last integral is equal to∫ m/n

0

1√
nu

log
(

1 + 1

u

)
· ndu ≤ √

n

∫ ∞
0

1√
u

log
(

1 + 1

u

)
du.

Trivially, 1√
u

log(1 + 1
u
) ∼ 1

u3/2 as u → +∞ and 1√
u

log(1 + 1
u
) ∼ − logu√

u
as u →

0+. It follows that 0 <
∫ ∞

0
1√
u

log(1 + 1
u
) du < ∞. Therefore, by (5.26),

4m2
∑

λ=(r,s,1m−r−s )

θλ
(m)(2)2

Cλ(2)
N 2

λ (n) ≤ Cn

for all m ≥ n ≥ 2, where the sum is taken over all possible r ≥ s ≥ 1 and 3 ≤
l(λ) = m − r − s + 2 ≤ n. Combining this, (5.20), (5.22) and (5.25), we arrive at

E
[∣∣pm(Zn)

∣∣2] ≤ Kn

for all m ≥ n ≥ 2, where K is a universal constant. �
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5.2. Proof of Proposition 2. The following result allows us to express the vari-
ance for the circular symplectic ensembles (β = 4) in terms of some familiar quan-
tities treated earlier in the case of the circular orthogonal ensembles and a new
quantity N 2

λ (−2n).

LEMMA 5.3 (Duality lemma). Recall (5.1). For any m ≥ 1 and n ≥ 2, the
following holds:

E
[∣∣pm

(
Z1/2

n

)∣∣2] = m2
∑

λ�m:λ1≤n

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n),(5.28)

where λ = (λ1, λ2, . . .) and

N 2
λ (−2n) = ∏

(i,j)∈λ

(
1 + 1

2n − 2j + i

)
.(5.29)

PROOF. The quantity θλ
μ(α) has the following duality (see (10.30) from [20]):

for partitions λ,μ of m,

θλ
μ(α) = (−α)m−l(μ)θλ′

μ (1/α),

where λ′ is the partition of m corresponding to the Young diagram of the transpose
of λ. From (4.2), it is easy to see the duality

Cλ(α) = ∏
(i,j)∈λ

(
α(λi − j) + λ′

j − i + 1
)(

α(λi − j) + λ′
j − i + α

) = α2mCλ′(1/α).

We furthermore have

N α
λ (n) = ∏

(i,j)∈λ

n + (j − 1)α − (i − 1)

n + jα − i

= ∏
(i,j)∈λ′

n + (i − 1)α − (j − 1)

n + iα − j

= ∏
(i,j)∈λ′

−n/α − (i − 1) + (j − 1)/α

−n/α − i + j/α

= N 1/α

λ′ (−n/α),

where

N γ
μ (x) := ∏

(i,j)∈μ

x − (i − 1) + γ (j − 1)

x − i + γj
(5.30)
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for any partition μ,γ > 0 and x ∈ R satisfying that the denominators in the product
are not equal to zero. It follows from dualities given above and (5.1) that

E
[∣∣pm

(
Zα

n

)∣∣2] = α2m2
∑

λ�m:l(λ)≤n

α2m−2θλ′
(m)(1/α)2

α2mCλ′(1/α)
N 1/α

λ′ (−n/α)

= m2
∑

λ�m:λ1≤n

θλ
(m)(1/α)2

Cλ(1/α)
N 1/α

λ (−n/α),

where λ = (λ1, λ2, . . .). Plugging α = 1/2 into this identity,

E
[∣∣pm

(
Z1/2

n

)∣∣2] = m2
∑

λ�m:λ1≤n

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n).

Finally, from (5.30),

N 2
λ (−2n) = ∏

(i,j)∈λ

−2n + 2j − i − 1

−2n + 2j − i
= ∏

(i,j)∈λ

(
1 + 1

2n − 2j + i

)
.

The proof is completed. �

LEMMA 5.4. Let m ≥ n ≥ 1 and λ = (λ1, λ2, . . .) � m with λ1 ≤ n. Let
N2

λ(−2n) be as in (5.29). Then there exists a universal constant K > 0 such that:

(i) N2
λ(−2n) ≤ K

√
n if m = n and λ = (n);

(ii) N2
λ(−2n) ≤ K n√

(n−r+1)(n−s+1)
if λ = (r, s) with 1 ≤ s ≤ r ≤ n and r +

s = m.

PROOF. Let C := maxλ,n≤2 N2
λ(−2n), where λ goes over all partitions as in (i)

and (ii) with λ1 ≤ 2. Since 2n − 2j + i ≥ i ≥ 1 for all (i, j) ∈ λ with λ1 ≤ n, we
know N2

λ(−2n) > 1, and hence C > 1. Also, since m = r + s ≤ 2n ≤ 4, these
partitions are only of finitely many. Thus, 1 < C < ∞. Then (i) and (ii) hold by
taking K = C. From now on, we assume, without loss of generality, that n ≥ 3.

(i) In this case,

N2
λ(−2n) =

n∏
j=1

(
1 + 1

2n − 2j + 1

)
=

n∏
k=1

(
1 + 1

2k − 1

)
≤ exp

(
n∑

k=1

1

2k − 1

)
.

Now,

n∑
k=1

1

2k − 1
≤ 1 +

n∑
k=2

∫ k

k−1

1

2x − 1
dx = 1 +

∫ n

1

1

2x − 1
dx = 1 + 1

2
log(2n − 1).

The desired result then follows.
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(ii) By the same argument as in the proof of (i),

logN2
λ(−2n) ≤

r∑
j=1

1

2n − 2j + 1
+

s∑
j=1

1

2n − 2j + 2
(5.31)

≤
n∑

k=n−r+1

1

2k − 1
+

n∑
k=n−s+1

1

2k − 1
.

Similar to (i),

n∑
k=n−r+1

1

2k − 1
≤ 1 +

∫ n

n−r+1

1

2x − 1
dx = 1 + 1

2
log

2n − 1

2(n − r) + 1

≤ 1 + 1

2
log

2n

n − r + 1
.

A similar inequality also holds true for the last sum in (5.31). Thus,

logN2
λ(−2n) ≤ C + 1

2
log

n2

(n − r + 1)(n − s + 1)
.

This implies (ii). �

LEMMA 5.5. Let N 2
λ (−2n) be as in (5.29). Let λ = (r, s,1m−r−s) with 1 ≤

s ≤ r ≤ n, m > r + s and m ≥ n. Then there exists a universal constant K > 0
such that

1

K
· m√

(n − r + 1)(n − s + 1)
≤ N 2

λ (−2n) ≤ K · m√
(n − r + 1)(n − s + 1)

.

PROOF. We prove the upper bound and lower bound in two steps.
Step 1: Upper bound. First,

logN2
λ(−2n) =

r∑
j=1

log
(

1 + 1

2n − 2j + 1

)
+

s∑
j=1

log
(

1 + 1

2n − 2j + 2

)
(5.32)

+
m−r−s+2∑

i=3

log
(

1 + 1

2n + i − 2

)

≤
r∑

j=1

1

2n − 2j + 1
(5.33)

+
s∑

j=1

1

2n − 2j + 2
+

m−r−s+2∑
i=3

1

2n + i − 2



3312 T. JIANG AND S. MATSUMOTO

by the inequality log(1 + x) ≤ x for all x > −1. Easily, if r > 1 then

r∑
j=1

1

2n − 2j + 1
≤ 1 +

r−1∑
j=1

∫ j+1

j

1

2n − 2x + 1
dx

= 1 +
∫ r

1

1

2n − 2x + 1
dx

= 1 + 1

2
log

2n − 1

2n − 2r + 1
and this assertion is evidently true for r = 1. So the above inequality holds for all
r ≥ 1. Thus,

s∑
j=1

1

2n − 2j + 2
≤

s∑
j=1

1

2n − 2j + 1
≤ 1 + 1

2
log

2n − 1

2n − 2s + 1
.

Likewise,
m−r−s+2∑

i=3

1

2n + i − 2
≤

m−r−s+2∑
i=3

∫ i

i−1

1

2n + x − 2
dx

=
∫ m−r−s+2

2

1

2n + x − 2
dx = log

m + 2n − r − s

2n
.

Combining the three inequalities with (5.33), we get

logN2
λ(−2n) ≤ 2 + 1

2
log

(2n − 1)2(m + 2n − r − s)2

(2n)2(2n − 2r + 1)(2n − 2s + 1)

≤ 2 + log 3 + 1

2
log

m2

(2n − 2r + 1)(2n − 2s + 1)
(5.34)

≤ (2 + log 3) + log
m√

(n − r + 1)(n − s + 1)
,

where the fact 2n−1
2n

≤ 1 and the fact m+2n− r − s ≤ m+2n ≤ 3m are used in the
second inequality; the facts 2n − 2r + 1 ≥ n − r + 1 and 2n − 2s + 1 ≥ n − s + 1
are used in the last inequality.

Step 2: Lower bound. Review (5.32). Use the inequality that log(1+x) ≥ x −x2

for all x ≥ 0 to have

logN 2
λ (−2n)

≥
r∑

j=1

1

2n − 2j + 1
+

s∑
j=1

1

2n − 2j + 2
+

m−r−s+2∑
i=3

1

2n + i − 2

−
r∑

j=1

1

(2n − 2j + 1)2 −
s∑

j=1

1

(2n − 2j + 2)2 −
m−r−s+2∑

i=3

1

(2n + i − 2)2 .
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Observe that each term in the last three sums is strictly monotone in its correspond-
ing index. From the fact

∑∞
i=1

1
i2 = π2

6 , we know that the sum of the last three sums

is bounded by π2

2 . By the same arguments as before,

r∑
j=1

1

2n − 2j + 1
≥

r∑
j=1

∫ j

j−1

1

2n − 2x + 1
dx

=
∫ r

0

1

2n − 2x + 1
dx

= 1

2
log

2n + 1

2n + 1 − 2r
.

And
s∑

j=1

1

2n − 2j + 2
≥

s∑
j=1

1

2(n + 1) − 2j + 1
≥ 1

2
log

2n + 3

2n + 3 − 2s
.

Now,

m−r−s+2∑
i=3

1

2n + i − 2
≥

m−r−s+2∑
i=3

∫ i+1

i

1

2n + x − 2
dx

=
∫ m−r−s+3

3

1

2n + x − 2
dx = log

m + 2n − r − s + 1

2n + 1
.

In summary,

logN 2
λ (−2n) ≥ −π2

2
+ 1

2
log

(2n + 3)(m + 2n − r − s + 1)2

(2n + 1)(2n − 2r + 1)(2n − 2s + 3)

≥ −π2

2
+ 1

2
log

m2

(2n − 2r + 1)(2n − 2s + 3)

≥
(
−π2

2
− 1

2
log 6

)
+ log

m√
(n − r + 1)(n − s + 1)

,

where we use the fact that r + s ≤ 2n in the second inequality, and the facts that
2n − 2r + 1 ≤ 2(n − r + 1) and 2n − 2s + 3 ≤ 3(n − s + 1) in the last inequality.

�

LEMMA 5.6. Let N 2
λ (−2n) be as in (5.29). Then there exists a universal con-

stant K > 0 such that

(i) N2
λ(−2n) ≤ K

√
n

n − m + 1
if λ = (m) and 1 ≤ m ≤ n;

(ii) N2
λ(−2n) ≤ K

n√
(n − r + 1)(n − s + 1)
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if λ = (r, s) with 1 ≤ s ≤ r and r +s = m ≤ n, or λ = (r, s,1m−r−s) with 1 ≤ s ≤ r

and n ≥ m > r + s.

PROOF. (i) Look at (i) in the proof of Lemma 5.4, replace “
∏n

j=1” with
“
∏m

j=1” to have

logN2
λ(−2n) ≤

m∑
j=1

1

2n − 2j + 1
=

n∑
k=n−m+1

1

2k − 1
≤ 1 +

∫ n

n−m+1

1

2x − 1
dx

since 1
2k−1 ≤ ∫ k

k−1
1

2x−1 dx for all k ≥ 2. Thus,

logN2
λ(−2n) ≤ 1 + 1

2
log

2n − 1

2n − 2m + 1
≤

(
1 + 1

2
log 2

)
+ 1

2
log

n

n − m + 1

since 2n − 1 < 2n and 2n − 2m + 1 ≥ n − m + 1. This gives (i).
(ii) We consider the two aforementioned cases separately.
Case (a): λ = (r, s) with 1 ≤ s ≤ r and r + s = m ≤ n. Review the proof of (ii)

of Lemma 5.4. The first paragraph is still true. The only occurrence of “m”, which
is in “r + s = m”, does not show up in the proof. So we obtain the same inequality.

Case (b): λ = (r, s,1m−r−s) with 1 ≤ s ≤ r and n ≥ m > r + s. Review step 1
in the proof of Lemma 5.5, no restriction on the relationship between m and n is
used from the beginning to (5.34). So, by (5.34), we have

logN2
λ(−2n) ≤ 2 + 1

2
log

(2n − 1)2(m + 2n − r − s)2

(2n)2(2n − 2r + 1)(2n − 2s + 1)

≤ 2 + 1

2
log

9n2

(2n − 2r + 1)(2n − 2s + 1)

≤ (2 + log 3) + 1

2
log

n2

(n − r + 1)(n − s + 1)

since m + 2n − r − s ≤ 3n. This gives the conclusion. �

LEMMA 5.7. There exists a universal constant K > 0 such that

(i)
√

mn

n − m
≤ Km for all 1 ≤ m < n;

(ii) log
(

1 +
√

m

n − m

)
≤ K

√
m

n
log(m + 1) for all 1 ≤ m < n;

(iii) sup
m>n≥1

{
m

n
· 1√

m − n
tan−1

√
n

m − n

}
≤ K.

PROOF. (i) If 1 ≤ m ≤ n
2 , then n − m ≥ n

2 and hence
√

mn
n−m

≤ √
2m. If n

2 ≤
m ≤ n − 1, then

√
mn

n−m
≤ √

mn ≤ √
2m.
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(ii) If 1 ≤ m ≤ n
2 then:

log
(

1 +
√

m

n − m

)
≤

√
m

n − m
≤ 2

√
m

n
≤ 2

log 2
·
√

m

n
· log(m + 1).

If n
2 < m < n, then m

n−m
≥ 1 and 2

√
m
n

≥ 1. It follows that

log
(

1 +
√

m

n − m

)
≤ log

(
2

√
m + 1

n − m

)

≤ log 2 + 1

2
log(m + 1)

≤ 2 log(m + 1) ≤ 4
√

m

n
log(m + 1).

(iii) Define

Am,n = m

n
· 1√

m − n
tan−1

√
n

m − n
.

Obviously,

sup
m>n≥1

Am,n ≤ sup
n<m≤5n

Am,n + sup
m>5n

Am,n ≤ 5π

2
+ sup

m>5n

Am,n.

Note that tan−1 x < x for all x > 0. It follows that

sup
m>5n

Am,n ≤ sup
m>5n

{
m

n
· 1√

m − n

√
n

m − n

}

≤ sup
m>5n

{
1√
n

· 1

1 − n/m

}
≤ 5

4
.

Then (iii) follows. �

LEMMA 5.8. Recall (5.28). Let m ≥ n ≥ 2. Define

Em,n = m2
∑
λ

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n),

where the sum is taken over all λ = (r, s,1m−r−s) with 1 ≤ s ≤ r ≤ n and m >

r + s. Then there exists a universal constant K > 0 such that the following hold

(i) Em,n ≤ Kδ−1n for all m ≥ (1 + δ)n and δ ∈ (0,1].
(ii) Em,n ≤ Kn logn for all m ≥ n ≥ 2.

(iii) Let w = m − n ≥ 0. Then Em,n ≥ K(w + 1)−2n logn for all n ≥ 12.
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PROOF. (i) From the first assertion of Lemmas 5.2 and 5.5, we know

Em,n ≤ Cm
√

n
∑
r,s

1√
(n − r + 1)(n − s + 1)s(m − r + s)

,

where the sum runs over all possible r and s satisfying 1 ≤ s ≤ r ≤ n,
m − r − s ≥ 1. Obviously, s ≤ m

2 . Therefore,

Em,n ≤ Cm
√

n

mn∑
s=1

1√
(n − s + 1)s

n∑
r=s

1√
n − r + 1(m − r + s)

,(5.35)

where mn = n ∧ [m/2].
Step 1. First, we consider the term corresponding to s = 1 dividing by C, which

is equal to

m

n∑
r=1

1√
(n − r + 1)(m − r + 1)

:= V 1
m,n.(5.36)

Easily V 1
n,n = n

∑n
r=1

1
(n−r+1)3/2 < n

∑∞
j=1

1
j3/2 = nζ(3/2), where ζ(z) is the Rie-

mann zeta function. Assume now m > n ≥ 1. Then

V 1
m,n = m

n∑
j=1

1√
j

· 1

m − n + j
(5.37)

by setting j = n− r + 1. Each term in the sum is bounded by
∫ j
j−1

1√
x

· 1
m−n+x

dx.
Consequently,

V 1
m,n ≤ m

∫ n

0

1√
x

· 1

m − n + x
dx

= 2m√
m − n

∫ √
n/(m−n)

0

1

1 + y2 dy

= 2m√
m − n

tan−1
√

n

m − n

by defining y =
√

x
m−n

. From (iii) of Lemma 5.7, we obtain that

V 1
m,n ≤ (2n) · sup

m>n≥1

{
m

n
· 1√

m − n
tan−1

√
n

m − n

}
≤ Cn(5.38)

for any m > n ≥ 1. Hence, to prove the conclusion, it suffices to show

Wm,n :=
mn∑
s=2

1√
(n − s + 1)s

n∑
r=s

1√
n − r + 1(m − r + s)

≤ Cδ−1
√

n

m
.(5.39)
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Step 2. In this step, we prove (5.39) holds for all m ≥ (1+δ)n. Set j = n−r +1.
Then, using the same argument as in estimating the term in (5.37), we have

n∑
r=s

1√
(n − r + 1)(m − r + s)

=
n−s+1∑
j=1

1

(m − n + s − 1) + j
· 1√

j

≤
n−s+1∑
j=1

∫ j

j−1

1

a + x
· 1√

x
dx

=
∫ n−s+1

0

1

a + x
· 1√

x
dx,

where a = m − n + s − 1 ≥ 1 for s ≥ 2. Let y = √
x/a. It follows that∫ n−s+1

0

1

a + x
· 1√

x
dx = 2√

a

∫ √
(n−s+1)/a

0

1

1 + y2 dy

= 2√
a

· tan−1

√
n − s + 1

a
.

Thus,
n∑

r=s

1√
(n − r + 1)(m − r + s)

≤ 2√
a

· tan−1

√
n − s + 1

a
(5.40)

for any m ≥ n ≥ 1 and s ≥ 2 [we do not need the condition “m ≥ (1 + δ)n” here].
Therefore, for any n ≥ 2,

Wm,n ≤ 2
n∑

s=2

1√
s(n − s + 1)(m − n + s − 1)

· tan−1

√
n − s + 1

m − n + s − 1

≤ 2
n−1∑
k=1

1√
k(m − k)(n − k)

· tan−1

√
k

m − k

by letting k = n − s + 1. The term corresponding to k = n − 1 in the sum is equal
to

1√
(n − 1)(m − n + 1)

tan−1

√
n − 1

m − n + 1
.

By the inequality tan−1 x < x for all x > 0, it is seen that the above quantity is

controlled by 1
m−n+1 ≤ 2

δ
·

√
n

m
due to the fact m

m−n
= (1 − n

m
)−1 ≤ 1 + δ−1 ≤ 2δ−1

from the assumption m ≥ (1 + δ)n. Consequently, to prove (5.39), it suffices to
show

Um,n :=
n−2∑
k=1

1√
k(m − k)(n − k)

· tan−1

√
k

m − k
≤ Cδ−1

√
n

m
(5.41)
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for all m ≥ (1 + δ)n and n ≥ 3. In fact, since tan−1 x < x for all x > 0,

Um,n ≤
n−2∑
k=1

1

(m − k)
√

n − k

≤
n−2∑
k=1

∫ k+1

k

1

(m − x)
√

n − x
dx

=
∫ n−1

1

1

(m − x)
√

n − x
dx

by the obvious monotonicity. Now,

Um,n ≤ 1

m − n + 1

∫ n−1

1

1√
n − x

dx

= 2
√

n − 1 − 2

m − n + 1

≤ 2
√

n

m − n
.

By the inequality m
m−n

≤ 2δ−1 again, Um,n ≤ 4δ−1
√

n
m

. We get (5.41).

(ii) By taking δ = 1
2 in (i), we know Em,n ≤ Cn for m ≥ 3

2n. So, to prove (ii),
we assume, without loss of generality, that n ≤ m ≤ 3

2n. Recall (5.35). We know
mn = n ∧ [m/2] ≤ 3

4n. Then n − s + 1 ≥ n
4 for 1 ≤ s ≤ mn. It follows that

Em,n ≤ CV 1
m,n + Cm

mn∑
s=2

1√
s

n∑
r=s

1√
n − r + 1(m − r + s)

≤ Cn + Cn

n∑
s=2

1√
s

n∑
r=s

1√
n − r + 1(n − r + s)

by (5.36) and (5.38) since n ≤ m ≤ 3
2n. Thus, to complete the proof, we only need

to show

Hn :=
n∑

s=2

1√
s

n∑
r=s

1√
n − r + 1(n − r + s)

≤ C logn(5.42)

for all n ≥ 2. In fact, apply (5.40) to the case m = n so that a = s − 1 ≥ s
2 for

s ≥ 2. We know that

n∑
r=s

1√
n − r + 1(n − r + s)

≤ π√
a

≤ 2π√
s
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for s ≥ 2. It follows that

Hn ≤ (2π) ·
n∑

s=2

1

s
≤ (2π) ·

(
1 + logn

log 2

)
≤ C logn

by (5.11) where C = (4π)(log 2)−1. This gives (5.42).
(iii) From Lemmas 5.2 and 5.5,

Em,n ≥ Cm
∑
r,s

m − r − s

(m − r + s)2 ·
√

r

s
· 1√

(n − r + 1)(n − s + 1)
,

where 2s ≤ r ≤ n and m > r + s. Since n − s + 1 ≤ n and
√

r
s

≥
√

n
2s

if r ≥ n
2 .

Then

Em,n ≥ Cn
∑

(r,s)∈T1

m − r − s

(m − r + s)2 · 1√
s

· 1√
n − r + 1

= Cn
∑

(s,t)∈T2

w + t − s

(w + t + s)2 · 1√
s

· 1√
t + 1

,

where w = m − n as defined in the statement of the lemma,

T1 =
{
(r, s) ∈ N2;2s ≤ r ≤ n,m > r + s and r ≥ n

2

}
,

t = n − r and

T2 =
{
(s, t) ∈ Z2; s ≥ 1, t ≥ 0,2s + t ≤ n, t ≤ n

2
and w + t − s ≥ 1

}
,

where N is the set of positive integers and Z is the set of real integers. Easily,

T2 ⊃ T3 :=
{
(s, t) ∈N2;1 ≤ s ≤ t

2
and 2 ≤ t ≤ n

2

}
.

Consequently,

Em,n ≥ Cn
∑

2≤t≤n/2

∑
1≤s≤t/2

w + t − s

(w + t + s)2 · 1√
s

· 1√
t + 1

≥ Cn

(1 + w)2

∑
2≤t≤n/2

∑
1≤s≤t/2

t − s

(t + s)2 · 1√
s

· 1√
t

since w + t + s ≤ (w + 1)(t + s) and t + 1 ≤ 2t . Note that t−s
(t+s)2 is strictly de-

creasing in s ∈ [1, t
2 ], it is bounded below by 2

9 · 1
t

for all 1 ≤ s ≤ t
2 . Thus,

Em,n ≥ Cn

(w + 1)2

∑
2≤t≤n/2

∑
1≤s≤t/2

1

t3/2 · 1√
s

≥ Cn

(w + 1)2

∑
2≤t≤n/2

1

t
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because 1
t3/2 · 1√

s
≥ 1

t2 for 1 ≤ s ≤ t . Finally, by (5.11),

∑
2≤t≤n/2

1

t
≥ log

(
1

2

[
n

2

])
≥ C logn

for n ≥ 12, where C = infn≥12{(logn)−1 log(1
2 [n

2 ])} ∈ (0,∞). In summary,

Em,n ≥ C · n logn

(w + 1)2

for all n ≥ 12. �

LEMMA 5.9. Recall (5.28). There exists a universal constant K > 0 such that

E
[∣∣pm

(
Z1/2

n

)∣∣2] ≤ Km log(m + 1)

for all 1 ≤ m < n.

PROOF. By Lemma 5.3,

E
[∣∣pm

(
Z1/2

n

)∣∣2] = m2
∑

λ�m:λ1≤n

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n).(5.43)

Since m < n, the restriction λ1 ≤ n automatically holds. Review (5.4). Many of the
terms in the sum are equal to zero except the following three types of partitions:
(i) λ = (m); (ii) λ = (m − r, r) with 1 ≤ r ≤ m

2 ; (iii) λ = (r, s,1m−r−s) with 1 ≤
s ≤ r and m − r − s ≥ 1.

Now let us analyze the three sums separately.
Step 1: Analysis of the sum corresponding to case (i). By (5.21), (i) of

Lemma 5.6 and (i) of Lemma 5.7,

m2
∑

λ=(m)

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n) ≤ C

√
mn

n − m + 1
≤ C′m,(5.44)

where both C and C′ are universal constants.
Step 2: Analysis of the sum corresponding to case (ii). Review (5.24). Replace

“(r, s)” in (ii) of Lemma 5.6 by “(m − r, r)” to obtain

m2
∑

λ=(m−r,r)

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n)

≤ Cn
√

m
∑

λ=(m−r,r)

1

r5/2 · 1√
(n − r + 1)(n − m + r + 1)

,

where the sum runs over all possible λ = (m − r, r) with 1 ≤ r ≤ m
2 and m < n.

Use the trivial estimate n − r + 1 ≥ n
2 and n − m + r + 1 ≥ n − m to see that

m2
∑

λ=(m−r,r)

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n) ≤ C

√
mn

n − m

∞∑
r=1

1

r5/2 = C · ζ
(

5

2

)
· m(5.45)
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by (i) of Lemma 5.7, where ζ(z) is the Riemann zeta function.
Step 3: Analysis of the sum corresponding to case (iii). Consider

Em,n := m2
∑

λ=(r,s,1m−r−s )

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n),

where the sum is taken over all partition λ = (r, s,1m−r−s) with 1 ≤ s ≤ r and
n > m > r + s. From the first assertion of Lemmas 5.2 and 5.6, we know

Em,n ≤ Cn
√

m
∑
r,s

1√
(n − r + 1)(n − s + 1)s(m − r + s)

,

where the sum runs over all possible r and s satisfying 1 ≤ s ≤ r , m−r −s ≥ 1 and
n > m. Clearly, s ≤ m

2 , hence n−s+1 ≥ n
2 . Further, the restriction “m−r −s ≥ 1”

implies that m ≥ 3. Therefore,

Em,n ≤ C
√

mn ·
m−2∑
r=1

1√
n − r

r∑
s=1

1√
s(m − r + s)

.(5.46)

Use the inequality 1√
s(m−r+s)

≤ ∫ s
s−1

1√
x(m−r+x)

dx to get

r∑
s=1

1√
s(m − r + s)

≤
∫ r

0

1√
x(m − r + x)

dx

= 2√
m − r

∫ √
r/(m−r)

0

1

1 + y2 dy = 2√
m − r

tan−1
√

r

m − r

by setting y =
√

x
m−r

. Since tan−1 x ≤ min{x, π
2 } for all x > 0, we have

m−2∑
r=1

1√
n − r

r∑
s=1

1√
s(m − r + s)

(5.47)

≤ 2
∑

1≤r≤m/2

√
r√

n − r(m − r)
+ π

∑
m/2≤r≤m−2

1√
(n − r)(m − r)

.

Observe that n − r ≥ n
2 and m − r ≥ m

2 for 1 ≤ r ≤ m
2 . Then

∑
1≤r≤m/2

√
r√

n − r(m − r)
≤ 4

m
√

n

∑
1≤r≤m/2

√
r

≤ 4

m
√

n

∑
1≤r≤m/2

∫ r+1

r

√
x dx(5.48)

≤ 4

m
√

n

∫ m

1

√
x dx ≤ 3

√
m

n
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since
∫ m

1
√

x dx = 2
3(m3/2 − 1). On the other hand,

∑
m/2≤r≤m−2

1√
(n − r)(m − r)

≤ ∑
m/2≤r≤m−2

∫ r+1

r

1√
(n − x)(m − x)

dx

≤
∫ m−1

m/2

1√
(n − x)(m − x)

dx

=
∫ m/2

1

1√
y(n − m + y)

dy

by taking y = m − x. Now, let u = √
y/(n − m), the above integral becomes

2
∫ √

m/(2(n−m))

1/
√

n−m

1√
1 + u2

du ≤ 4
∫ √

m/(n−m)

0

1

u + 1
du

= 4 log
(

1 +
√

m

n − m

)

by using the inequality 1 + u2 ≥ 1
2(1 + u)2. By (ii) of Lemma 5.7,

∑
m/2≤r≤m−2

1√
(n − r)(m − r)

≤ C

√
m

n
log(m + 1),

which together with (5.47) and (5.48) gives

m−2∑
r=1

1√
n − r

r∑
s=1

1√
s(m − r + s)

≤ C ·
(√

m

n
+

√
m

n
log(m + 1)

)
.

This inequality and (5.46) conclude that

Em,n ≤ C · m log(m + 1).(5.49)

At last, according to (5.43) and its following paragraph, the desired result follows
by considering (5.44), (5.45) and (5.49) together. �

PROOF OF PROPOSITION 2. From Lemma 5.9, we know that we only need to
prove the theorem for the case m ≥ n. By (5.28),

E
[∣∣pm

(
Z1/2

n

)∣∣2] = m2
∑
λ

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n),(5.50)

where the sum is taken over all λ � m :λ1 ≤ n. Review (5.4). Many of the terms in
the sum are equal to zero except the following three types of partitions: (i) λ = (m);
(ii) λ = (m− r, r) with 1 ≤ m− r ≤ n and 1 ≤ r ≤ m

2 ; (iii) λ = (r, s,1m−r−s) with
1 ≤ s ≤ r ≤ n and m − r − s ≥ 1.

Now let us analyze the three cases one by one.
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(a): The estimate of the sum corresponding to case (i). When λ = (m) with
λ1 = m ≤ n, it is seen that m = n, then from (5.21),

m2
θλ
(m)(2)2

Cλ(2)
= m2

θ
(m)
(m) (2)2

C(m)(2)
≤ C

√
n.

By (i) of Lemma 5.4, we know

m2
θλ
(m)(2)2

Cλ(2)
N2

λ(−2n) ≤ Cn.(5.51)

(b): The estimate of the sum corresponding to case (ii). If λ = (m − r, r) with
1 ≤ m − r ≤ n and 1 ≤ r ≤ m

2 , then from (5.24) and (ii) of Lemma 5.4 [replace
“(r, s)” by “(m − r, r)”],

m2
θλ
(m)(2)2

Cλ(2)
N2

λ(−2n) ≤ C

r5/2

√
m · n√

(n − r + 1)(n − m + r + 1)

≤ C · n3/2

r5/2 · 1√
n − r + 1

since the restrictions on r imply that m ≤ 2n and 1 ≤ r ≤ n. Therefore,

m2
∑
λ

θλ
(m)(2)2

Cλ(2)
N2

λ(−2n)

≤ Cn3/2
∑

1≤r≤n/2

1

r5/2 · 1√
n − r + 1

+ Cn3/2
∑

n/2≤r≤n

1

r5/2 · 1√
n − r + 1

,

where the sum is taken over all λ = (m − r, r) with 1 ≤ m − r ≤ n and 1 ≤ r ≤ m
2 .

The term in the first sum is controlled by 2
r5/2√n

; each term in the second sum is

dominated by 8
n5/2 . Consequently,

m2
∑
λ

θλ
(m)(2)2

Cλ(2)
N2

λ(−2n)

(5.52)

≤ C ·
(

2ζ

(
5

2

)
n + 8

)
≤ C ·

(
2ζ

(
5

2

)
+ 8

)
n,

where the sum is taken corresponding to case (ii) and ζ(z) is the Riemann zeta
function.

(c): The estimate of the sum corresponding to case (iii). Let m ≥ n ≥ 2. Define

Em,n = m2
∑
λ

θλ
(m)(2)2

Cλ(2)
N 2

λ (−2n),
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where the sum is taken over all λ = (r, s,1m−r−s) with 1 ≤ s ≤ r ≤ n and
m > r + s. By Lemma 5.8, there exists a universal constant K > 0 such that the
following hold:

(A) Em,n ≤ Kδ−1n for all m ≥ (1 + δ)n and δ ∈ (0,1].
(B) Em,n ≤ Kn logn for all m ≥ n ≥ 2.
(C) Let w = m − n ≥ 0. Then Em,n ≥ K(w + 1)−2n logn for all n ≥ 12.

If 12 ≤ n ≤ m ≤ 2n then n logn ≥ 1
4m logm. It follows that Em,n ≥ K(w +

1)−2m logm for all 12 ≤ n ≤ m ≤ 2n. These combined with (5.50), (5.51)
and (5.52) imply that

(A)′ E[|pm(Z
1/2
n )|2] ≤ Kδ−1n for all m ≥ (1 + δ)n and δ ∈ (0,1].

(B)′ E[|pm(Z
1/2
n )|2] ≤ Km logm for all m ≥ n ≥ 2.

(C)′ E[|pm(Z
1/2
n )|2] ≥ Em,n ≥ K(w + 1)−2m logm for all 12 ≤ n ≤ m ≤ 2n.

Finally, (A)′ and (C)′ are identical to (i) and (iii) in the statement of Propo-
sition 2, respectively. As mentioned at the beginning of the proof, (B)′ and
Lemma 5.9 implies (ii) of the proposition. �

5.3. Proofs of Theorems 2, 3 and 4. With the preparations in Sections 5.1
and 5.2, we are now ready to prove the central limit theorems.

PROOF OF THEOREM 2. For any complex numbers ck’s and dk’s with∑m
k=1(|ck| + |dk|) 
= 0, define

Xn =
m∑

j=1

[
cjpj

(
Zα

n

) + djpj

(
Zα

n

)]
and X =

m∑
j=1

[cj ξj + dj ξj ].

We claim that, to prove the theorem, it is enough to show

lim
n→∞E

(
Xp

n X̄q
n

) = E
(
XpX̄q)

(5.53)

for any integers p ≥ 0 and q ≥ 0 with p + q ≥ 1. In fact, for a complex random
vector U = (U1, . . . ,Um) ∈ Cm, we treat it as the real vector Ũ ∈ R2m by listing
their real and imaginary parts in a column. Since the real and the complex parts of

Uj are Uj+Ūj

2 and Uj−Ūj

2i
, respectively, for each j , then a′Ũ for a ∈ R2m is a linear

combination of Uj ’s and Ūj ’s with complex coefficients. Thus, by the Cramér–
Wold device (see, e.g., page 176 from [7]), to prove the theorem, it suffices to show
Xn converges weakly to X as n → ∞. Trivially, X has the same distribution as that
of aη1 + bη2 where η1, η2 are i.i.d. with distribution N(0,1) and a, b are complex
numbers, hence X is uniquely determined by its moments. By the moment method,
we only need to check (5.53).

First, E[pμ(Zα
n )pν(Zα

n )] = 0 unless the weights |μ| and |ν| are equal. This fact
follows in a way similar to the proof of Proposition 3. The key is Lemma 4.2: Jack
polynomials are orthogonal. We have

E
[
pμ

(
Zα

n

)] = 0 in particular E
[
pk

(
Zα

n

)] = 0(5.54)
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for all |μ| ≥ 1 and k ≥ 1.
Second, expand X

p
n X̄

q
n and XpX̄q as sums of M terms, where the number M

does not depend on n. In the same way, it is seen that, to prove (5.53), we only
need to show

lim
n→∞E

(
m∏

j=1

pj

(
Zα

n

)lj ·
m∏

j=1

pj

(
Zα

n

)l′j )
= E

(
m∏

j=1

ξ
lj
j ·

m∏
j=1

ξ̄
l′j
j

)
(5.55)

for nonnegative integers lj ’s and l′j ’s with
∑m

j=1 lj ≥ 1 or
∑m

j=1 l′j ≥ 1. Set μ =
(1l1,2l2, . . . ,mlm) and ν = (1l′1,2l′2, . . . ,ml′m). Then, according to (2.1),

l(μ) =
m∑

j=1

lj and zμ =
s∏

j=1

j lj lj !.

The quantities l(ν) and zν are defined similarly. Hence, by (a) of Corollary 1,

The left-hand side of (5.55) = lim
n→∞E

[
pμ

(
Zα

n

)
pν

(
Zα

n

)]

= δμν

(
2

β

)l(μ)

zμ.

By independence and rotation-invariance, we know that the right-hand side
of (5.55) is zero if lj 
= l′j for some j , or equivalently, μ 
= ν. If μ = ν, then

E

(
m∏

j=1

ξ
lj
j ·

m∏
j=1

ξ̄
l′j
j

)
=

m∏
j=1

E
(|ξj |2lj

) =
(

2

β

)l(μ) m∏
j=1

j lj lj !(5.56)

since |ξj |2 ∼ 2j
β

W where W is the exponential distribution with density e−xI (x ≥
0) and EWl = l! for all integer l ≥ 1. We then obtain (5.55). �

PROOF OF COROLLARY 3. Let α = 2
β

and Zα
n = (eiθ1, . . . , eiθn). Write

Xn =
n∑

j=1

m∑
k=0

cke
ikθj =

m∑
k=0

ck

n∑
j=1

eikθj = μn +
m∑

k=1

ckpk

(
Zα

n

)

with pk(z) = ∑n
j=1 zk

j for z = (z1, . . . , zn). By Theorem 2 and the continuous
mapping theorem, Xn − μn converges weakly to Z := ∑m

j=1 cj ξj as n → ∞,

where ξj ’s are independent random variables and ξj ∼ CN(0,
2j
β

) for each j . It

is easy to check that Z ∼ CN(0, σ 2). �

LEMMA 5.10. Let X ∼ CN(0,1) and c, d be two complex numbers. Then
cX + dX̄ = U + iV where (U,V )′ ∼ N2(0,�) with

� = 1

2

( |c + d̄|2 2 Im(cd)

2 Im(cd) |c − d̄|2
)

.
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PROOF. Let ξ be a standard normal random variable and a = a1 + a2i be a
complex number, where a1 ∈ R and a2 ∈ R. Then aξ , as a 2-dimensional random
vector, has the same distribution as that of (a1ξ, a2ξ) ∼ N2(0,�1) where

�1 =
(

a2
1 a1a2

a1a2 a2
2

)
= 1

4

(
(a + ā)2 (

ā2 − a2)
i(

ā2 − a2)
i −(a − ā)2

)
.

Let ξ1, ξ2 be i.i.d. with distribution N(0,1), and c, d be complex numbers. Then

c
ξ1 + iξ2√

2
+ d

ξ1 − iξ2√
2

= c + d√
2

ξ1 + i
c − d√

2
ξ2,

as a sum of independent (2-dimensional) normal random vectors, has distribution
N2(0,�2) where

�2 =
(

σ11 σ12
σ12 σ22

)
.

Since the covariance matrix of the sum of two independent random variables is the
sum of their individual covariance matrices, we have

σ11 = 1
8

(
(c + d + c̄ + d̄)2 − (c − d − c̄ + d̄)2)

= 1
8 · 4(c + d̄)(c̄ + d) = 1

2 |c + d̄|2

by using the identity x2 − y2 = (x + y)(x − y). And by the identity again,

σ22 = −1
8

(
(c + d − c̄ − d̄)2 − (c + c̄ − d − d̄)2)

= −1
8 · 4(c − d̄)(d − c̄) = 1

2 |c − d̄|2.
Now,

σ12 = i

8

(
(c̄ + d̄)2 − (c + d)2 − (c̄ − d̄)2 + (c − d)2) = i

2
(cd − cd).

Thus, cξ + dξ̄ = U + iV where (U,V )′ ∼ N2(0,�3) and

�3 = 1

2

( |c + d̄|2 (cd − cd)i

(cd − cd)i |c − d̄|2
)

. �

LEMMA 5.11. Let {Xn;1 ≤ n ≤ ∞} be complex normal random variables
with mean zero for each n. Then, Xn converges to X∞ weakly if and only if
limn→∞E(X

p
n X̄

q
n) = E(X

p∞X̄
q∞) for any integers p ≥ 0 and q ≥ 0 with p+q ≥ 1.

PROOF. Write Xn = Un + iVn for all 1 ≤ n ≤ ∞, where Un and Vn are real
random variables. Then there exists a 2 × 2 nonnegative definite matrix �n such
that (Un,Vn) ∼ N2(0,�n) for each n. Since both Un and Vn can be expressed
by linear combinations of Xn and X̄n and vice versa. The lemma then can be
interpreted as follows: (Un,Vn) converges to (U∞,V∞) weakly if and only if
limn→∞E(U

p
n V

q
n ) = E(U

p∞V
q∞) for any integers p ≥ 0 and q ≥ 0 with p +q ≥ 1.
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The sufficiency is obtained by using the moment method and the Cramér–Wold
device. We now show the necessity. By using characteristic functions, it is easily
seen that (Un,Vn) converges to (U∞,V∞) weakly if and only if limn→∞(�n)ij =
(�∞)ij for all 1 ≤ i, j ≤ 2. Now, assuming (Un,Vn) converges to (U∞,V∞),
then U

p
n V

q
n converges weakly to U

p∞V
q∞ by the continuous mapping theorem.

So we only need to show the uniform integrability. In fact, let r = p + q + 1,
then by the Hölder inequality, E(U

2p
n V

2q
n ) ≤ [E(U2r

n )]p/r · [E(V 2r
n )]q/r . We know

E(U2r
n ) = (�n)

2r
11E(N(0,1)2r ) → (�∞)2r

11E(N(0,1)2r ) = E(U2r∞ ) as n → ∞.

This shows that supn≥1 E(U
2p
n V

2q
n ) < ∞. In particular, {Up

n V
q
n ;n ≥ 1} is uni-

formly integrable. �

PROOF OF THEOREM 3. Set m = mn = [logn]+ 1 for n ≥ 1, where [x] is the
integer part of x ≥ 0. Review (b) of Theorem 1 and (5.54). We know

E
[
pj

(
Z2

n

)
pk

(
Z2

n

)] = 0 for any j 
= k ≥ 1;
E

[
pj

(
Z2

n

)
pk

(
Z2

n

)] = Epμ

(
Z2

n

) = 0 for any j ≥ 1 and k ≥ 1,

where μ := (j, k) is a partition. In particular,

E
[(

ajpj

(
Z2

n

) + bjpj

(
Z2

n

)) · (
akpk

(
Z2

n

) + bkpk

(
Z2

n

))]
= δjk · (|aj |2 + |bj |2)

E
∣∣pj

(
Z2

n

)∣∣2
for all j ≥ 1 and k ≥ 1. Set

Yn :=
m∑

j=1

(aj ξj + bj ξ̄j ),

where ξj ’s are i.i.d. random variables such that ξj ∼ CN(0,2j) for each j ≥ 1. By
the Minkowski inequality,

E

∣∣∣∣∣
∞∑

j=1

(aj ξj + bj ξ̄j )

∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣
∞∑

j=1

aj ξj

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣
m∑

j=1

bj ξ̄j

∣∣∣∣∣
2

≤ 4
∞∑

j=1

j
(|aj |2 + |bj |2)

< ∞.

Therefore, Yn converges weakly to Y := ∑∞
j=1(aj ξj +bj ξ̄j ). Write aj ξj +bj ξ̄j =

Uj + iVj for each j such that (Uj ,Vj ) ∈ R2 and (Uj ,Vj ) ∼ N2(0,�j ). Then, by
Lemma 5.10,

�j =
(

j |aj + b̄j |2 2j · Im(ajbj )

2j · Im(ajbj ) j |aj − b̄j |2
)
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for each j . Thus,
∑∞

j=1(aj ξj + bj ξ̄j ) has the law of U + iV where (U,V )′ ∼
N2(0,�) with

� =

⎛
⎜⎜⎜⎜⎝

∞∑
j=1

j |aj + b̄j |2 2 · Im

( ∞∑
j=1

jajbj

)

2 · Im

( ∞∑
j=1

jajbj

) ∞∑
j=1

j |aj − b̄j |2

⎞
⎟⎟⎟⎟⎠

since the covariance matrix of the sum of independent random variables is the sum
of their individual covariance matrices. By Lemma 5.11,

lim
n→∞E

[
Yp

n Ȳ q
n

] = E
[
YpȲ q]

.(5.57)

Proposition 1 tells us that E[|pj (Z
2
n)|2] ≤ Kj for all j ≥ 1 and n ≥ 2, where K is

a universal constant. We then have

E

∣∣∣∣∣
∞∑

j>m

(
ajpj

(
Z2

n

) + bjpj

(
Z2

n

))∣∣∣∣∣
2

= ∑
j>m

(|aj |2 + |bj |2)
E

∣∣pj

(
Z2

n

)∣∣2
(5.58)

≤ K

∞∑
j>m

j
(|aj |2 + |bj |2) → 0

as n → ∞. This shows that
∑∞

j>m(ajpj (Z
2
n) + bjpj (Z2

n)) converges to zero in
probability as n → ∞. By the Slutsky lemma, to prove the theorem, we only need
to show

Xn :=
m∑

j=1

(
ajpj

(
Z2

n

) + bjpj

(
Z2

n

)) → Y(5.59)

weakly as n → ∞. Thus from (5.57), similar to (5.53), to prove (5.59) it suffices
to show that

lim
n→∞

(
E

[
Xp

n X̄q
n

] −E
[
Yp

n Ȳ q
n

]) = 0.(5.60)

Recall the multinomial formula,

(x1 + · · · + xk)
p = ∑

l1+···+lk=p

(
p

l1, l2, . . . , lk

)
x

l1
1 x

l2
2 · · ·xlk

k(5.61)

for any complex number xi’s, positive integers k ≥ 2 and p ≥ 1, where li ’s are
nonnegative integers. Note that Xn is a sum of 2m terms. Expand X

p
n X̄

q
n to have

E
[
Xp

n X̄q
n

] = ∑ (
p

l1, . . . , l2m

)
·

(
q

l′1, . . . , l′2m

)
·

m∏
j=1

(
a

lj
j b

lm+j

j

) ·
m∏

j=1

ā
l′j
j b̄

l′j+m

j

×E

[
m∏

j=1

(
pj

(
Z2

n

)lj pj

(
Z2

n

)lm+j ) ·
m∏

j=1

(
pj

(
Z2

n

)l′j
pj

(
Z2

n

)l′m+j
)]

,
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where the sum runs over all possible nonnegative integers lj ’s and l′j ’s with∑2m
j=1 lj = p and

∑2m
j=1 l′j = q . Rearranging the products in the expectation, we

get

E
[
Xp

n X̄q
n

] = ∑ (
p

l1, . . . , l2m

)
·
(

q

l′1, . . . , l′2m

)
·

m∏
j=1

(
a

lj
j b

lm+j

j

) ·
m∏

j=1

ā
l′j
j b̄

l′m+j

j

(5.62)

×E

[
m∏

j=1

pj

(
Z2

n

)lj+l′m+j ·
m∏

j=1

pj

(
Z2

n

)l′j+lm+j

]
.

Similarly,

E
[
Yp

n Ȳ q
n

] = ∑ (
p

l1, . . . , l2m

)
·

(
q

l′1, . . . , l′2m

)
·

m∏
j=1

(
a

lj
j b

lm+j

j

) ·
m∏

j=1

ā
l′j
j b̄

l′m+j

j

(5.63)

×E

[
m∏

j=1

ξ
lj+l′m+j

j ·
m∏

j=1

ξ̄
l′j+lm+j

j

]
.

We claim that ∣∣∣∣∣E
[

m∏
j=1

pj

(
Z2

n

)lj+l′m+j ·
m∏

j=1

pj

(
Z2

n

)l′j+lm+j

]

−E

[
m∏

j=1

ξ
lj+l′m+j

j ·
m∏

j=1

ξ̄
l′j+lm+j

j

]∣∣∣∣∣(5.64)

≤ Cp,q · m

n
·

m∏
j=1

j (lj+lm+j )/2 ·
m∏

j=1

j
(l′j+l′m+j )/2

uniformly for all possible lj ’s and l′j ’s in the two sums, where Cp,q is constant
depending on p and q only. In fact, let μ and ν be two partitions so that

μ = (
1l1+l′m+1,2l2+l′m+2, . . . ,mlm+l′2m

);
ν = (

1l′1+lm+1,2l′2+lm+2, . . . ,ml′m+l2m
)
.

Then l(μ) = ∑m
j=1(lj + l′m+j ) ≤ p + q and similarly l(ν) ≤ p + q , and

K := |μ| ∨ |ν| =
m∑

j=1

j
(
lj + l′m+j

) ∨
m∑

j=1

j
(
l′j + lm+j

) ≤ m(p + q).

According to this notation,

E

[
m∏

j=1

pj

(
Z2

n

)lj+l′m+j ·
m∏

j=1

pj

(
Z2

n

)l′j+lm+j

]
= E

[
pμ

(
Z2

n

)
pν

(
Z2

n

)]
.(5.65)
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By (5.56),

E

[
m∏

j=1

ξ
lj+l′m+j

j ·
m∏

j=1

ξ̄
l′j+lm+j

j

]

(5.66)

= δμν

(
2

β

)l(μ) m∏
j=1

j
lj+l′m+j (lj + lm+j ′)! = δμνα

l(μ)zμ,

where α = 2
β

= 2 and zμ is as in (2.1). Since
∑m

j=1(lj + lm+j ′) ≤ p + q , then

Card{1 ≤ j ≤ m; lj + lm+j ′ ≥ 2} ≤ p + q

2
.

Using lj + lm+j ′ ≤ p + q for all 1 ≤ j ≤ m, we get

0 < αl(μ)zμ ≤ (
2p+q(

(p + q)!)(p+q)/2) ·
m∏

j=1

j
lj+l′m+j .

A similar inequality also holds for αl(ν)zν . From (a) and (b) of Corollary 2, we see
that

∣∣E[
pμ

(
Z2

n

)
pν

(
Z2

n

)] − δμνα
l(μ)zμ

∣∣ ≤ Cp,q · m

n
·

m∏
j=1

j
(lj+l′m+j )/2 ·

m∏
j=1

j
(l′j+lm+j )/2

,

where Cp,q is a constant depending on p and q only. This together with (5.65) and
(5.66) yields (5.64).

Now, combining (5.62), (5.63) and (5.64), we arrive at∣∣E[
Xp

n X̄q
n

] −E
[
Yp

n Ȳ q
n

]∣∣
≤ Cp,q · m

n
· ∑ (

p

l1, . . . , l2m

)
·

(
q

l′1, . . . , l′2m

)
·

m∏
j=1

(√
j |aj |)lj (√

j |bj |)lm+j

×
m∏

j=1

(√
j |aj |)l′j (√

j |bj |)l′m+j

= Cp,q · m

n
·

(
m∑

j=1

(√
j |aj | +

√
j |bj |)

)p

·
(

m∑
j=1

(√
j |aj | +

√
j |bj |)

)q

= Cp,q · m

n
·

(
m∑

j=1

(√
j |aj | +

√
j |bj |)

)p+q

,

where (5.61) is used in the first identity. From the inequality (x1 + · · · + x2m)2 ≤
2m(x2

1 + · · · + x2
2m) for any real number xi ’s we see that

∣∣E[
Xp

n X̄q
n

] −E
[
Yp

n Ȳ q
n

]∣∣ ≤ (
C′

p,qσ
p+q) 1

n
m1+(p+q)/2 → 0



MOMENTS OF TRACES OF CIRCULAR BETA-ENSEMBLES 3331

as n → ∞ since m = [logn] for n ≥ 3, where C′
p,q is a constant depending on p

and q only. This confirms (5.60). �

PROOF OF THEOREM 4. From the assumption that
∑∞

j=1(j log j)(|aj |2 +
|bj |2) ∈ (0,∞), we know σ 2 ∈ (0,∞). Take m = mn = [logn] for n ≥ 3. By (ii)
of Proposition 2, the assumption

∑∞
j=1(j log j)(|aj |2 + |bj |2) ∈ (0,∞) and the

same argument as the derivation of (5.58), to prove the theorem, it is enough to
show that

m∑
j=1

(
ajpj

(
Z1/2

n

) + bjpj

(
Z

1/2
n

)) →
∞∑

j=1

(aj ξj + bj ξ̄j )

weakly as n → ∞, where {ξj ; j ≥ 1} are independent random variables with ξj ∼
CN(0, 1

2j) for each j . Write aj ξj + bj ξ̄j = Uj + iVj for each j with (Uj ,Vj ) ∈
R2. By Lemma 5.10, (Uj ,Vj ) has the distribution N2(0,�j ) where

�j = 1

4

(
j |aj + b̄j |2 2j · Im(ajbj )

2j · Im(ajbj ) j |aj − b̄j |2
)

.

It follows from the independence that
∑∞

j=1(aj ξj + bj ξ̄j ) has the law of U + iV

where (U,V )′ ∼ N2(0,�) with

� = 1

4

⎛
⎜⎜⎜⎜⎝

∞∑
j=1

j |aj + b̄j |2 2 · Im

( ∞∑
j=1

jajbj

)

2 · Im

( ∞∑
j=1

jajbj

) ∞∑
j=1

j |aj − b̄j |2

⎞
⎟⎟⎟⎟⎠ .

Then the rest proof will be completed by following the same arguments as in the
corresponding parts in the proof of Theorem 3. �

APPENDIX

In this section, we calculate some moments for the circular β-ensembles. The
first result below is an independent check of the second moment of the trace of a
COE given in (1.4). The derivation does not depend on the Jack function as used
in Section 4.1. It only uses the distribution of the entries of the COE.

LEMMA A.1. Let Wn be an n × n circular orthogonal ensemble (COE), that
is, Wn = UT

n Un for some Haar-invariant unitary matrix Un. Then E[|Tr(Wn)|2] =
2n/(n + 1) for all n ≥ 2.

FIRST PROOF OF LEMMA A.1. We prove the lemma in three steps.
Step 1. Write Un = (urs). First, we claim that

E
[
u2

rs ū
2
pq

] = 0(A.1)



3332 T. JIANG AND S. MATSUMOTO

if r 
= p or s 
= q . In fact, since Un is Haar-invariant unitary, the distributions of
UUn and UnU are the same as that of Un for any unitary matrix U . In particular,
take U = diag(eiθk )1≤k≤n to obtain that

L
((

eiθr urs

)
1≤r,s≤n

) = L
((

eiθs urs

)
1≤r,s≤n

)
(A.2)

= L
(
(urs)1≤r,s≤n

)
for any θ1, . . . , θn ∈ R, where L(X) is the joint distribution of the entries of random
matrix X. If r 
= p, taking θr − θp = π/2, then by (A.2), we have that

E
[
u2

rs ū
2
pq

] = e2i(θr−θp)E
[
u2

rs ū
2
pq

] = −E
[
u2

rs ū
2
pq

]
,

which means (A.1). The case for s = q can be proved similarly.
Step 2. Recall notation (2m − 1)!! = (2m − 1)(2m − 3) · · ·3 · 1 for any integer

m ≥ 1, and (−1)!! = 1 by convention. We have the following fact (Lemma 2.4
from [15]):

E
[
ξ

a1
1 ξ

a2
2 · · · ξan

n

] =
∏n

i=1(2ai − 1)!!∏a
i=1(n + 2i − 2)

,(A.3)

where a1, . . . , an are nonnegative integers with a = ∑n
i=1 ai , ξi = X2

i /(X
2
1 + · · ·+

X2
n) and X1, . . . ,Xn are i.i.d. random variables with X1 ∼ N(0,1).
Step 3. Evidently, Tr(Wn) = ∑

1≤i,j≤n u2
ij . Notice, from the invariant property,

by exchanging some rows and some columns of Un, we see that the distributions
of urs and u11 are identical for any 1 ≤ r, s ≤ n. By (A.1),

E
[∣∣Tr(Wn)

∣∣2] = E

[(∑
r,s

u2
rs

)(∑
p,q

ū2
p,q

)]
(A.4)

= E

[∑
r,s

|urs |4
]

= n2E
[|u11|4]

.

It is known (e.g., Lemma 2.1 in [15, 17]) that the probability distribution of |u11|2
is the same as that of (X2

1 + X2
2)/

∑2n
i=1 Xi

2. By (A.3),

E
[
ξ2

1
] = 3

2n(2n + 2)
and E[ξ1ξ2] = 1

2n(2n + 2)
.

Then

E
[|u11|4] = E

[
(ξ1 + ξ2)

2] = 2E
[
ξ2

1
] + 2E[ξ1ξ2] = 2

n(n + 1)
.

Substitute this into (A.4) to see that E[|Tr(Wn)|2] = 2n/(n + 1). �
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SECOND PROOF OF LEMMA A.1. We use the following formula due to
Collins [2] (see also [21]): let (uij )1≤i,j≤n be an n × n CUE matrix (or equiva-
lently, an Haar-distributed unitary matrix) and let i1, . . . , ik , j1, . . . , jk , i ′1, . . . , i′k ,
j ′

1, . . . , j
′
k be elements in {1,2, . . . , n}. Then

E[ui1j1 · · ·uikjk
ui′1j ′

1
· · ·ui′kj ′

k
]

(A.5)

= ∑
σ,τ∈Sk

Wgn,k

(
σ−1τ

)(
k∏

p=1

δip,i′σ(p)

)(
k∏

q=1

δjq,j ′
τ(q)

)
.

Here, Sk is the symmetric group and Wgn,k is a class function on Sk , called the
Weingarten function for the unitary group. For our purpose, we do not need the
explicit definition of Wgn,k but use the case for k = 2. In fact, for n ≥ 2, we know
(see (5.2) of [2])

Wgn,2(id2) = 1

n2 − 1
and

(A.6)

Wgn,2
(
(1 2)

) = − 1

n(n2 − 1)
,

where id2 and (1 2) are the identity permutation and the transposition on {1,2},
respectively.

We have |Tr(Wn)|2 = ∑
r,s,p,q u2

rsu
2
pq . By (A.5), E[u2

rsu
2
pq] is zero unless r = p

and s = q . Moreover, E[u2
rsu

2
rs] = E[|u11|4] for all 1 ≤ r, s ≤ n. Therefore, us-

ing (A.5) and (A.6), we obtain

E
[∣∣Tr(Wn)

∣∣2] = n2E
[|u11|4] = 2n2{

Wgn,2(id2) + Wgn,2
(
(1 2)

)} = 2n

n + 1
. �

Lemma A.1 corresponds to the conclusion for β = 1 in (2.4), which is derived
through Proposition 3 by the Jack functions. Now we apply the same proposition
to derive some other moments for the circular β-ensembles. Let pk and Zn be as
in Theorem 1.

EXAMPLE. Assume α = 2/β > 0. For n ≥ 2,

E
[∣∣p1(Zn)

∣∣4] = 2nα2(n2 + 2(α − 1)n − α)

(n + α − 1)(n + α − 2)(n + 2α − 1)
(A.7)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

8(n2 + 2n − 2)

(n + 1)(n + 3)
, if β = 1;

2, if β = 2;
2n2 − 2n − 1

(2n − 1)(2n − 3)
, if β = 4.
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EXAMPLE. Assume α = 2/β > 0. For n ≥ 2,

E
[∣∣p2(Zn)

∣∣2] = 2αn(n2 + 2(α − 1)n + α2 − 3α + 1)

(n + α − 1)(n + 2α − 1)(n + α − 2)
(A.8)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4(n2 + 2n − 1)

(n + 1)(n + 3)
, if β = 1;

2, if β = 2;
4n2 − 4n − 1

(2n − 1)(2n − 3)
, if β = 4.

EXAMPLE. Assume α = 2/β > 0. For n ≥ 2,

E
[
p2(Zn)p1(Zn)2

] = E
[
p2(Zn)p1(Zn)

2]
= 2α2(α − 1)n

(n + α − 1)(n + 2α − 1)(n + α − 2)
(A.9)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

8

(n + 1)(n + 3)
, if β = 1;

0, if β = 2;
−1

(2n − 1)(2n − 3)
, if β = 4.

In particular, if β 
= 2, as n → ∞,

E
[
p2(Zn)p1(Zn)2

] ∼ 2α2(α − 1)n−2.(A.10)

PROOFS OF (2.4), (A.7), (A.8) AND (A.9). Let n ≥ 2, μ and ν be partitions
of 2. Set α = 2/β . By Proposition 3 and (4.8), we have

E
[
pμ(Zn)pν(Zn)

]
= αl(μ)+l(ν)

(
4α2−l(μ)α2−l(ν)

2α2(α + 1)

n(n + α)

(n + α − 1)(n + 2α − 1)
(A.11)

+ 4(−1)2−l(μ)(−1)2−l(ν)

2α(α + 1)

n(n − 1)

(n + α − 1)(n + α − 2)

)

= 2αl(μ)+l(ν)n

α2(α + 1)(n + α − 1)

(
α4−l(μ)−l(ν)(n + α)

n + 2α − 1
+ (−1)l(μ)+l(ν)α(n − 1)

n + α − 2

)
.

(i) Take μ = ν = (1) in Proposition 3. Since θ
(1)
(1) (α) = 1,C(1)(α) = α for any

α > 0, we obtain (2.4).
(ii) Taking μ = ν = (1,1) in (A.11), (A.7) follows.

(iii) Taking μ = ν = (2) in (A.11), (A.8) follows.
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(iv) Taking μ = (2) and ν = (1,1) in (A.11), we get the identity for the first
expectation in (A.9). Since the value of the expectation is real, the identity for the
second expectation follows. With the earlier conclusion, (A.10) is obvious. �
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