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SOBOLEV REGULARITY FOR A CLASS OF SECOND ORDER
ELLIPTIC PDE’S IN INFINITE DIMENSION

BY GIUSEPPE DA PRATO AND ALESSANDRA LUNARDI

Scuola Normale Superiore and Università di Parma

We consider an elliptic Kolmogorov equation λu − Ku = f in a sepa-
rable Hilbert space H . The Kolmogorov operator K is associated to an infi-
nite dimensional convex gradient system: dX = (AX−DU(X))dt +dW(t),
where A is a self-adjoint operator in H , and U is a convex lower semi-
continuous function. Under mild assumptions we prove that for λ > 0 and
f ∈ L2(H,ν) the weak solution u belongs to the Sobolev space W2,2(H,ν),
where ν is the log-concave probability measure of the system. Moreover max-
imal estimates on the gradient of u are proved. The maximal regularity re-
sults are used in the study of perturbed nongradient systems, for which we
prove that there exists an invariant measure. The general results are applied
to Kolmogorov equations associated to reaction–diffusion and Cahn–Hilliard
stochastic PDEs.

1. Introduction. Let H be an infinite dimensional separable Hilbert space
(norm ‖ · ‖, inner product 〈·, ·〉). We are concerned with the differential equation

λu − 1
2 Tr

[
D2u

] − 〈
Ax − DU(x),Du

〉 = f,(1.1)

where A :D(A) ⊂ H → H is a linear self-adjoint negative operator, and such that
A−1 is of trace class, U :H → R ∪ {+∞} is convex, proper, lowerly bounded,
and lower semicontinuous. The data are λ > 0 and f :H → R, the unknown is
u :H → R. Du and D2u represent first and second derivatives of u, and Tr[D2u]
is the trace of D2u.

Equation (1.1) is the elliptic Kolmogorov equation corresponding to the differ-
ential stochastic equation

dX = (
AX − DU(X)

)
dt + dW(t),(1.2)

X(0) = x,(1.3)

where W(t), t ≥ 0, is an H -valued cylindrical Wiener process. Equation (1.2) is
a typical example of gradient system. Under suitable assumptions, it has a unique
invariant measure ν(dx) = Z−1e−2U(x)μ(dx), where Z = ∫

H e−2U(y)μ(dy) and μ

is the Gaussian measure in H with zero mean and covariance Q = −1
2A−1. This

Received August 2012; revised November 2013.
MSC2010 subject classifications. 35R15, 37L40, 35B65.
Key words and phrases. Kolmogorov operators in infinite dimensions, maximal Sobolev regular-

ity, invariant measures.

2113

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/14-AOP936
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2114 G. DA PRATO AND A. LUNARDI

is the reason to assume A−1 of trace class. Z is just a normalization constant in
order to have a probability measure. Moreover system (1.2) is reversible; that is, if
the law of X(0) coincides with ν, the reversed process Y(t) = X(T − t), t ∈ [0, T ]
fulfills again (1.2); see, for example, [17]. In statistical mechanics ν is called a
Gibbs measure.

The above assumptions do not guarantee well-posedness of problem (1.2)–(1.3);
however, under suitable additional assumptions, a solution in a weak sense may be
constructed, using the general strategy presented in [22] and applied in [12]. But in
this paper we shall concentrate on the solutions of the Kolmogorov equation (1.1)
only. The precise relation between the weak solution to (1.1) and the solution to
(1.2)–(1.3) is established in the case of Lipschitz continuous DU , and in the ex-
ample of Section 5. In such cases we prove that the expected formula

u =
∫ +∞

0
e−λt

E
(
f
(
X(t, ·)))dt

holds for every f ∈ Cb(H).
Throughout the paper we assume that U belongs to a suitable Sobolev space.

Then, the measure ν symmetrizes the operator

Ku := 1
2 Tr

[
D2u

] + 〈
Ax − DU(x),Du

〉
,

since for good functions u, v (e.g., smooth cylindrical functions) we have∫
H
Kuv dν = −1

2

∫
H

〈Du,Dv〉dν.

Accordingly, we say that u ∈ W 1,2(H, ν) is a weak solution of equation (1.1) if

λ

∫
H

uϕ dν + 1

2

∫
H

〈Du,Dϕ〉dν =
∫
H

f ϕ dμ ∀ϕ ∈ W 1,2(H, ν).(1.4)

For every λ > 0, the weak solutions to (1.1) when f runs in L2(H, ν) are precisely
the elements of the domain of the self-adjoint realization K of K associated to the
quadratic form (u, v) �→ 1

2

∫
H 〈Du,Dϕ〉dν. See Section 3.1 for the definition of K .

Existence and uniqueness of a weak solution to (1.1) have been extensively stud-
ied, even in more general situations. We quote [1] for the Dirichlet form approach
and [12] where it was proved that the restriction of K to exponential functions
is essentially m-dissipative in L2(H, ν). However, in all these papers only W 1,2

regularity of solutions was considered.
Our main concern is the investigation of the second derivative of the weak so-

lution and of other maximal regularity results. In Section 3 we shall prove that the
weak solution u of equation (1.1) has the following properties:

(i) u ∈ W 2,2(H, ν), (ii)
∫
H

∥∥(−A)1/2Du
∥∥2

dν < ∞,
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and under further assumptions,

(iii)
∫
H

〈
D2UDu,Du

〉
dν < ∞.

Regularity of the second derivative of u and sharp estimates for Du are challeng-
ing problems for the theory of elliptic equations, even in finite dimensions. (i) Is
a “natural” maximal regularity result for elliptic equations, both in finite and in
infinite dimensions, while (ii) is typical of the infinite dimensional setting; see,
for example, [15, 23] for the Ornstein–Uhlenbeck operator, when U ≡ 0. (iii) Is
meaningful in the case that D2U is unbounded; otherwise it is contained in (i). It
was known only in finite dimensions [19].

Properties (i)–(iii) allow us to study some perturbations of K of the type K1 =
K +B, where

Bu(x) = 〈
B(x),Du(x)

〉
,

and B :H → H is possibly unbounded. This is the subject of Section 4. Taking
advantage of (i)–(iii), we can solve

λu − Ku − 〈B,Du〉 = f,(1.5)

under reasonable assumptions on B , when λ is sufficiently large. The perturbed
operator inherits some of the properties of K . For instance, it generates an analytic
semigroup that preserves positivity. In some cases we can solve (1.5) for every
λ > 0, in a different L2 setting. More precisely, adapting arguments from [14] that
involve positivity preserving and compactness, we are able to prove the existence
of ρ ∈ L2(H, ν) such that a suitable realization of K̃1 of K1 is m-dissipative in
L2(H, ζ ) where ζ(dx) = ρ(x)ν(dx). Then, equation (1.5) can be solved for any
λ > 0 and any f ∈ L2(H, ζ ), and we prove that ζ is an invariant measure for the
semigroup generated by K̃1 in L2(H, ζ ).

It is worth to note that K1 is the Kolmogorov operator corresponding to system

dX = (
AX − DU(X) + B(X)

)
dt + dW(t), X(0) = x,(1.6)

which is not a gradient system in general. It may be useful in the study of nonequi-
librium problems arising in statistical mechanics; see, for example, [18]. Another
possible application of the regularity of the second derivative of the solution u

of (1.5) could be to the pathwise uniqueness of (1.6) (see the recent paper [11]),
through the Veretennikov transform. This will be the object of future investiga-
tions.

In Sections 5 and 6 we show that the general theory may be applied to Kol-
mogorov equations of reaction–diffusion and Cahn–Hilliard stochastic PDEs.
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2. Notation and preliminaries. In this section we fix notation and collect
several preliminary results needed in the sequel. Though essentially known, they
are scattered in different papers, so we will give details for the reader’s conve-
nience. Readers familiar with Sobolev spaces in infinite dimensions may jump to
Section 3.

Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
endowed with a Gaussian measure μ := N0,Q on the Borel sets of H , where Q ∈
L(H) is a self-adjoint positive operator with finite trace. We choose once and for
all an orthonormal basis {ek :k ∈ N} of H such that Qek = λkek for k ∈ N and set
xk = 〈x, ek〉 for each x ∈ H . We denote by Pn the orthogonal projection on the
linear span of e1, . . . , en. For each k ∈ N∪ {+∞} we denote by FCk

b(H) the set of
the cylindrical functions ϕ(x) = φ(x1, . . . , xn) for some n ∈ N, with φ ∈ Ck

b(Rn).

2.1. Sobolev spaces with respect to μ. For p > 1 we set as usual p′ := p/(p−
1). If a function ϕ :H �→R is Fréchet differentiable at x ∈ H , we denote by Dϕ(x)

its gradient at x. Moreover, we denote by Dkϕ(x) = 〈Dϕ(x), ek〉 its derivative in
the direction of ek , for every k ∈ N.

For 0 ≤ θ ≤ 1 and p > 1 the Sobolev spaces W
1,p
θ (H,μ) are the completions

of FC1
b(H) in the Sobolev norms

‖ϕ‖p

W
1,p
θ (H,μ)

:=
∫
H

(|ϕ|p + ∥∥QθDϕ
∥∥p)

dμ =
∫
H

|ϕ|p +
( ∞∑

k=1

(
λθ

kDkϕ
)2

)p/2

dμ.

For θ = 1/2 they coincide with the usual Sobolev spaces of the Malliavin Calculus;
see, for example, [3], Chapter 5; for θ = 0 and p = 2 they are the spaces considered
in [15]. Such completions are identified with subspaces of Lp(H,μ) since the
integration by parts formula∫

H
Dkϕψ dμ = −

∫
H

Dkψϕ dμ + 1

λk

∫
H

xkϕψ dμ,

(2.1)
ϕ,ψ ∈ FC1

b(H),

allows us to easily show that the operators QθD :FC1
b(H) �→ Lp(H,μ;H)

are closable in Lp(H,μ), and the domains of their closures coincide with
W

1,p
θ (H,μ).
Moreover, since x �→ xk ∈ Ls(H,μ) for every s ≥ 1, (2.1) is extended by den-

sity to all ϕ ∈ W
1,q
θ (H,μ), ψ ∈ W

1,p
θ (H,μ) such that 1/p + 1/q < 1. In fact,

extending [15], Lemma 9.2.7, to the case p ≥ 2 it is possible to see that it holds
for 1/p + 1/q = 1 too.

The spaces W
1,p
θ (H,μ;H) are defined in a similar way, replacing FC1

b(H) by
linear combinations of functions of the type ϕek , with ϕ ∈ FC1

b(H).
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2.2. Sobolev spaces with respect to ν. Concerning U we shall assume the fol-
lowing:

HYPOTHESIS 2.1. U :H → R ∪ {+∞} is convex, lower semicontinuous and
bounded from below. Moreover U ∈ W

1,2
1/2(H,μ).

We denote by ν the log-concave measure ν(dx) = Z−1e−2U(x)μ(dx). Since
e−2U is bounded, ν(H) = 1.

LEMMA 2.2. For every p ≥ 1, FC∞
b (H) is dense in Lp(H,ν).

PROOF. Since H is separable, then Cb(H) is dense in Lp(H,ν). Any f ∈
Cb(H) may be approached in Lp(H,ν) by the sequence fn(x) := f (Pnx), by
the dominated convergence theorem. In its turn, the cylindrical functions fn are
approached by their (finite dimensional) convolutions with smooth mollifiers that
belong to FC∞

b (H). �

We may apply the integration by parts formula (2.1) with ψ replaced by ψe−2U ,
that belongs to W

1,2
1/2(H,μ) for ψ ∈ FC1

b(H). We get, for ϕ, ψ ∈ FC1
b(H) and

h ∈ N, ∫
H

Dhϕψ dν +
∫
H

Dhψϕ dν = 2
∫
H

DhUϕψ dν + 1

λh

∫
H

xhϕψ dν.(2.2)

Once again, the Sobolev spaces associated to the measure ν are introduced in a
standard way with the help of the integration by parts formula (2.2). We recall that
L2(H) is the space of the Hilbert–Schmidt operators that are the bounded linear
operators L :H �→ H such that ‖L‖2

L2(H) := ∑∞
h,k=1〈Leh, ek〉2 < ∞.

LEMMA 2.3. For all q ≥ 2 the operators

D :FC1
b(H) �→ Lq(H,ν;H),

(2.3)
Q±1/2D :FC1

b(H) �→ Lq(H,ν;H),(
D,D2) :FC2

b(H) �→ Lq(H,ν;H) × Lq(H,ν;L2(H)
)

(2.4)

are closable in Lq(H,ν).

PROOF. Let (ϕn) ⊂ FC1
b(H) converge to 0 in Lq(H,ν) and be such that

QθDϕn → W in Lq(H,ν;H), with θ = 0 or θ = 1/2 or θ = −1/2. Then for
every h ∈ N the sequence (〈QθDϕn, eh〉) = (λθ

hDhϕn) converges to 〈W,eh〉 in
Lq(H,ν). By formula (2.2) for each ψ ∈ FC1

b(H) we have∫
H

Dhϕnψ dν +
∫
H

Dhψϕn dν = 2
∫
H

DhUϕnψ dν + 1

λk

∫
H

xhϕnψ dν,(2.5)
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and letting n → ∞, we get

lim
n→∞

∫
H

Dhϕnψ dν = lim
n→∞

∫
H

λ−θ
h 〈W,eh〉ψ dν = 0.

Since FC1
b(H) is dense in Lq ′

(H, ν), then 〈W,eh〉 = 0 ν-a.e. for every h ∈ N,
hence W = 0 ν-a.e., and the first statement is proved.

The proof of the second statement is similar. If (ϕn) ⊂ FC2
b(H) converge to 0

in Lq(H,ν) and Dϕn → W in Lq(H,ν;H), D2ϕn → Q in Lq(H,ν;L2(H)), by
the first part of the proof we have W = 0, so that for every k ∈ N, Dkϕn → 0 in
Lq(H,ν). On the other hand, for each h, k ∈ N, 〈D2ϕneh, ek〉 = Dhkϕn goes to
〈Qeh, ek〉 in Lq(H,ν). Formula (2.2) applied to Dkϕn instead of ϕ reads as∫
H

Dhkϕnψ dν +
∫
H

DhψDkϕn dν = 2
∫
H

DhUDkϕnψ dν + 1

λk

∫
H

xkDkϕnψ dν,

for all ψ ∈FC1
b(H). Letting n → ∞ we get

lim
n→∞

∫
H

Dhkϕnψ dν = lim
n→∞

∫
H

〈Qeh, ek〉ψ dν = 0.

Then, 〈Qeh, ek〉 = 0 a.e. for each h and k, so that Q = 0, ν-a.e. �

REMARK 2.4. We remark that the restriction q ≥ 2 comes from the integral∫
H DhUϕnψ dν in (2.5), where DhU ∈ L2(H, ν) as a consequence of Hypothe-

sis 2.1. If ‖DU‖ ∈ Lp(H,μ) for some p > 2 the proof of Lemma 2.3 works for
any q ≥ p′.

DEFINITION 2.5. For q ≥ 2 we still denote by D, Q1/2D, Q−1/2D, and by
(D,D2) the closures in Lq(H,ν) of the operators defined in (2.3), (2.4).

We denote by W 1,q(H, ν) and by W
1,q
1/2 (H, ν), W

1,q
−1/2(H, ν), the domains of

D, Q1/2D, Q−1/2D in Lq(H,ν), respectively, and by W 2,q(H, ν) the domain of
(D,D2) in Lq(H,ν).

Then, W 1,q(H, ν), W
1,q
±1/2(H, ν) and W 2,q(H, ν) are Banach spaces with the

norms

‖u‖q

W 1,q (H,ν)
=

∫
H

|u|q dν +
∫
H

‖Du‖qdν,

‖u‖q

W
1,q
±1/2(H,ν)

=
∫
H

|u|q dν +
∫
H

∥∥Q±1/2Du
∥∥q

dν,

‖u‖q

W 2,q (H,ν)
= ‖u‖q

W 1,q (H,ν)
+

∫
H

∥∥D2u
∥∥q
L2(H) dν.
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Denoting by Dku := λ−θ
k 〈QθDu, ek〉, with θ ∈ {0,1/2,−1/2}, Dhku :=

〈D2ueh, ek〉, the above Sobolev norms may be written in a more explicit way as

‖u‖q

W 1,q (H,ν)
=

∫
H

|u|q dν +
∫
H

(∑
k∈N

(Dku)2
)q/2

dν,

‖u‖q

W
1,q
±1/2(H,ν)

=
∫
H

|u|q dν +
∫
H

(∑
k∈N

λ±1
k (Dku)2

)q/2

dν,

‖u‖q

W 2,q (H,ν)
= ‖u‖q

W 1,q (H,ν)
+

∫
H

( ∑
h,k∈N

(Dhku)2
)q/2

dν

= ‖u‖q

W 1,q (H,ν)
+

∫
H

Tr
([

D2u
]2)

dν.

For q = 2, such spaces are Hilbert spaces with the respective scalar products

〈u, v〉W 1,2(H,ν) =
∫
H

uv dν +
∫
H

∑
k∈N

DkuDkv dν,

〈u, v〉
W

1,2
±1/2(H,ν)

=
∫
H

uv dν +
∫
H

∑
k∈N

λ±1
k DkuDkv dν,

〈u, v〉W 2,2(H,ν) = 〈u, v〉W 1,2(H,ν) +
∫
H

∑
h,k∈N

DhkuDhkv dν.

REMARK 2.6. Let us make some remarks about the above definitions.

(1) It follows immediately from the definition that for every u ∈ W 1,p(H, ν)

and ϕ ∈ C1
b(R), the superposition ϕ ◦ u belongs to W 1,p(H, ν), and D(ϕ ◦ u) =

(ϕ′ ◦ u)Du. This fact will be used frequently in the sequel.
(2) Formula (2.2) holds for each ϕ ∈ FC1

b(H), ψ ∈ W 1,q(H, ν) with q ≥ 2.
Indeed, it is sufficient to approach ψ by a sequence of cylindrical functions in
FC1

b(H), and to use (2.2) for the approximating functions, recalling that DhU ,
xh ∈ L2(H, ν).

(3) Similarly, (2.2) holds for ϕ ∈ W 1,p(H, ν), ψ ∈ W 1,q(H, ν) such that 1/p+
1/q ≤ 1/2.

2.2.1. Positive and negative parts of elements of W 1,2(H, ν). The following
technical lemma will be used later to study positivity of solutions of (1.1).

LEMMA 2.7. Let u ∈ W 1,2(H, ν). Then |u| (and consequently, u+ =
sup{u,0}, u− = sup{−u,0}) belongs to W 1,2(H, ν), and D|u| = signuDu. More-
over Du = 0 a.e. in the set u−1(0), and Du+ = Du1{u≥0} = Du1{u>0}, Du− =
−Du1{u≤0} = −Du1{u<0}.
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PROOF. Set fn(ξ) =
√

ξ2 + 1/n, ξ ∈ R. If (un) is a sequence of functions in

FC1
b(H) that approach u in W 1,2(H, ν) and pointwise a.e., the functions fn ◦ un

belong to FC1
b(H) and approach |u| in W 1,2(H, ν). Indeed, they converge to |u| in

L2(H, ν) by the dominated convergence theorem, and D(fn ◦ un) = f ′
n ◦ unDun

converge to signuDu in L2(H, ν;H). The first statement follows.
Let us prove that Du vanishes a.e. in the kernel of u. It is sufficient to prove that

for every u ∈ W 1,2(H, ν) and i ∈ N we have∫
{u=0}

Diuϕ dν = 0, ϕ ∈ FC1
b(H).(2.6)

Indeed, since FC1
b(H) is dense in L2(H, ν), (2.6) implies that Diu1{u=0} is or-

thogonal to all elements of L2(H, ν), hence it vanishes a.e.
Let θ :R �→ R be a smooth function with support contained in [−1,1], with

values in [0,1] and such that θ(0) = 1. For ε > 0 set θε(ξ) = θ(ξ/ε). The func-
tions θε ◦ u have values in [0,1] and converge pointwise to 1{u=0}. Moreover, they
belong to W 1,2(H, ν) and we have Di(θε ◦ u) = (θ ′

ε ◦ u)Diu = (θ ′ ◦ u/ε)Diu/ε.
Integrating we obtain∫

H
Diuϕ(θε ◦ u)dν = −

∫
H

uDiϕ(θε ◦ u)dν

−
∫
H

uϕDi(θε ◦ u)dν + 2
∫
H

uϕ(θε ◦ u)DiU dν

+ 1

λi

∫
H

xiuϕ(θε ◦ u)dν.

As ε → 0 we obtain by the dominated convergence theorem

lim
ε→0

∫
H

Diuϕ(θε ◦ u)dν =
∫
{u=0}

Diuϕ dν,

lim
ε→0

∫
H

uDiϕ(θε ◦ u)dν =
∫
{u=0}

uDiϕ dν = 0,

lim
ε→0

∫
H

uϕ(θε ◦ u)DiU dν =
∫
{u=0}

uϕDiU dν = 0,

lim
ε→0

1

λi

∫
H

xiuϕ(θε ◦ u)dν = 1

λi

∫
{u=0}

xiuϕ dν = 0.

The integral
∫
H uϕDi(θε ◦ u)dν vanishes too as ε → 0, by the dominated conver-

gence theorem. Indeed the support of uϕDi(θε ◦u) is contained in u−1([−ε, ε]) so
that its modulus is bounded by ‖θ ′‖∞‖ϕ‖∞. Moreover it converges to 0 pointwise
as ε → 0. So, letting ε → 0 we obtain (2.6).

Once we know that Du vanishes a.e. in the kernel of u, the formulas for Du+
and Du− follow from the equalities u+ = (|u| + u)/2, u− = (|u| − u)/2. �
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2.2.2. Functional inequalities and embeddings. Under some additional as-
sumptions important functional inequalities hold in the space W 1,2(H, ν).

HYPOTHESIS 2.8. U ∈ W
1,2
0 (H,μ) and ‖DU‖ ∈ Lp(H,μ) for some p > 2.

We recall that since A is invertible, and −A−1 is nonnegative and compact, then

−ω := sup
{〈Ax,x〉 :x ∈ D(A)

}
< 0.

PROPOSITION 2.9. Let Hypotheses 2.1 and 2.8 hold. Then the following
Poincaré and Logarithmic Sobolev inequalities hold:∫

H

(
ϕ −

∫
H

ϕ dν

)2
dν ≤ 1

2ω

∫
H

‖Dϕ‖2 dν, ϕ ∈ W 1,2(H, ν),(2.7) ∫
H

ϕ2 log
(
ϕ2)dν ≤ 1

ω

∫
H

‖Dϕ‖2 dν +
∫
H

ϕ2 dν log
(∫

H
ϕ2 dν

)
,

(2.8)
ϕ ∈ W 1,2(H, ν).

For the proof we refer to [15], Section 12.3.1.
Another useful property is the compact embedding of W 1,2(H, ν) in L2(H, ν);

see [10].

PROPOSITION 2.10. Under Hypotheses 2.1 and 2.8, W 1,2(H, ν) is compactly
embedded in L2(H, ν).

PROOF. Let (fn) be a bounded sequence in W 1,2(H, ν). We look for a sub-
sequence that converges in L2(H, ν). By the Log-Sobolev inequality (2.8) the se-
quence is uniformly integrable, and hence it is sufficient to find a subsequence that
converges almost everywhere.

The sequence (fne
−U) is bounded in W

1,q
0 (H,μ), with q = 2p/(2 + p) ∈

(1,2). Indeed, it is bounded in L2(H,μ), and hence it is bounded in Lq(H,μ),
moreover D(fne

−U) = Dfne
−U −fnDUe−U . Once again, ‖Dfne

−U‖ is bounded
in L2(H,μ), while the second addendum fnDUe−U satisfies∫

H

∥∥fnDUe−U
∥∥q

dμ ≤
(∫

H
f 2

n e−2U dμ

)q/2(∫
H

‖DU‖2q/(2−q) dμ

)(2−q)/q

= ‖fn‖q

L2(H,ν)

(∫
H

‖DU‖p dμ

)(2−q)/q

so that it is bounded in Lq(H,μ).
Since the embedding W

1,q
0 (H,μ) ⊂ Lq(H,μ) is compact [5], there exists a

subsequence that converges in Lq(H,μ) and a further subsequence that converges
pointwise μ-a.e. and also ν-a.e., since ν is absolutely continuous with respect to μ.

�
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2.3. Moreau–Yosida approximations. An important tool in our analysis are the
Moreau–Yosida approximations of U defined for α > 0 by

Uα(x) = inf
{
U(y) + |x − y|2

2α
,y ∈ H

}
, x ∈ H.(2.9)

We recall that Uα(x) ≤ U(x) and Uα(x) converges monotonically to U(x) for each
x as α → 0. Moreover, each Uα is differentiable at any point, DUα is Lipschitz
continuous and ‖DUα‖ converges monotonically to ‖D0U‖, at any x such that the
subdifferential of U(x) is not empty. Here, D0U(x) is the element with minimal
norm in the subdifferential of U(x). At such points we have∥∥DUα(x) − D0U(x)

∥∥2 ≤ ∥∥D0U(x)
∥∥2 − ∥∥DUα(x)

∥∥2;(2.10)

see, for example, [4], Chapter 2. If in addition U ∈ C2, then D0U = DU , and we
have convergence of the second order derivatives, as the next lemma shows.

LEMMA 2.11. Let U :H �→ R be convex and C2. Then limα→0 D2Uα(x) =
D2U(x) in L(H) for all x ∈ H .

PROOF. For each x ∈ H set yα(x) = (I + αDU)−1(x), so that

yα(x) + αDU
(
yα(x)

) = x,(2.11)

and by [4], Chapter 2,

DUα(x) = DU(yα).(2.12)

Since U is convex, then 〈DU(x) − DU(yα(x)), αDU(yα(x))〉 = 〈DU(x) −
DU(yα(x)), x − yα(x)〉 ≥ 0. Taking the scalar product with DU(yα(x)) yields
‖DU(yα(x))‖ ≤ ‖DU(x)‖/(1 − α), and letting α → 0 in (2.11) we get

lim
α→0

yα(x) = x ∀x ∈ H.

Now it is clear that yα is of class C1, and differentiating (2.11) yields

y′
α(x) + αD2U

(
yα(x)

)
y′
α(x) = I.(2.13)

Since U is convex, ∥∥y′
α(x)

∥∥
L(H) ≤ 1,

so that, letting α → 0 in (2.13) and recalling that D2U is continuous, we obtain

lim
α→0

y′
α(x) = I.

On the other hand, differentiating identity (2.12) gives D2Uα(x) = D2U(yα(x)) ·
y′
α(x) which yields the statement. �
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3. Elliptic problems. This section is devoted to the main result of the pa-
per. In Section 3.1 we prove existence and uniqueness of a weak solution u of
equation (1.1). Section 3.2 is devoted to the particular case that DU is Lipschitz
continuous. This is an intermediate step in order to prove in Section 3.3 that under
Hypothesis 2.1 we have

u ∈ W 2,2(H, ν) ∩ W
1,2
−1/2(H, ν).

In Section 3.4 we show that if in addition U is twice continuously differentiable,
then ∫

H

〈
D2U(x)Du(x),Du(x)

〉
ν(dx) < ∞.

3.1. Weak solutions. We consider a Kolmogorov operator defined on FC2
b(H)

by

Kϕ = 1
2 Tr

[
D2ϕ

] + 1
2

〈
x,Q−1Dϕ

〉 − 〈
DU(x),Dϕ

〉
.(3.1)

Using the partial derivatives Dk and Dkk , K may be rewritten as

Kϕ(x) = 1

2

∞∑
k=1

Dkkϕ(x) − 1

2

∞∑
k=1

λ−1
k xkDkϕ(x) −

∞∑
k=1

DkU(x)Dkϕ(x).

The measure ν enjoys the following important symmetrizing property:

PROPOSITION 3.1. For all ϕ ∈ FC2
b(H), ψ ∈ FC1

b(H) we have∫
H
Kϕψ dν = −1

2

∫
H

〈Dϕ,Dψ〉dν.(3.2)

PROOF. Recalling (2.2) we get

1

2

∫
H

∞∑
k=1

Dkkϕ(x)ψ(x)dν = −1

2

∫
H

∞∑
k=1

Dkϕ(x)Dkψ(x)dν

+
∫
H

∞∑
k=1

(
DkU(x)Dkϕ(x) + 1

2λk

xkDkϕ(x)

)
dν,

and the conclusion follows (note that all series are finite sums in our case). �

Let f ∈ L2(H, ν), λ > 0. Taking into account formula (3.2), we say that u ∈
W 1,2(H, ν) is a weak solution of equation (1.1) if we have

λ

∫
H

uϕ dν + 1

2

∫
H

〈Du,Dϕ〉dν =
∫
H

f ϕ dν ∀ϕ ∈ W 1,2(H, ν).(3.3)

Since FC1
b(H) is dense in W 1,2(H, ν), it is enough that the above equality is sat-

isfied for every ϕ ∈FC1
b(H).
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The function A : (W 1,2(H, ν))2 �→ R, A(u,ϕ) = λ
∫
H uϕ dν + 1

2

∫
H 〈Du,

Dϕ〉dν is bilinear, continuous and coercive, while the function F :W 1,2(H, ν) �→
R, F(ϕ) = ∫

H f ϕ dν, is linear and continuous. By the Lax–Milgram theorem
there exists a unique u ∈ W 1,2(H, ν) such that A(u,ϕ) = F(ϕ) for each ϕ ∈
W 1,2(H, ν); namely equation (1.1) has a unique weak solution u ∈ W 1,2(H, ν).

We denote by K :D(K) ⊂ L2(H, ν) �→ L2(H, ν) the operator associated to
the quadratic form A in W 1,2(H, ν). So, the domain D(K) consists of all u ∈
W 1,2(H, ν) such that there exists v ∈ L2(H, ν) satisfying

1

2

∫
H

〈Du,Dϕ〉dν = −〈v,ϕ〉L2(H,ν)

for all ϕ ∈ W 1,2(H, ν), or equivalently for all ϕ ∈ FC1
b(H). In this case, v = Ku.

The weak solution u to (1.1) belongs to D(K), and it is just (λI − K)−1f .

REMARK 3.2. We have FC2
b(H) ⊂ D(K). In fact, for u ∈ FC2

b(H), integrat-
ing by parts we obtain

1

2

∫
H

〈Du,Dϕ〉dν = −
∫
H

(
Ku(x)

)
ϕ(x)ν(dx),(3.4)

for all ϕ ∈ FC1
b(H). Here Ku ∈ L2(H, ν) since it consists of the sum of a finite

number of addenda, each of them in L2(H, ν). Hence, u ∈ D(K) and Ku =Ku.

To study the domain of K it is convenient to introduce a family of approximat-
ing problems, with U replaced by its Moreau–Yosida approximations Uα defined
in (2.9). Since DUα is Lipschitz continuous, in the next section we consider the
case of functions U with Lipschitz gradient.

3.2. The case of Lipschitz continuous DU . Here we assume that U :H �→ R

is a differentiable convex function bounded from below and with Lipschitz contin-
uous gradient. Since DU is Lipschitz, it has at most linear growth, and U has at
most quadratic growth. Therefore, it satisfies Hypothesis 2.1.

The aim of this section is to show that for every f ∈ L2(H, ν) the weak solution
to (1.1) belongs to W 2,2(H, ν) ∩ W

1,2
−1/2(H, ν) and the estimate

λ

∫
H

|Du|2 dν + 1

2

∫
H

Tr
[(

D2u
)2]

dν +
∫
H

∥∥Q−1/2Du
∥∥2

dν

(3.5)
+

∫
H

〈
D2UDu,Du

〉
dν ≤ 4

∫
H

f 2 dν

holds.
Note that U /∈ W 2,2(H,μ) in general. The term 〈D2UDu,Du〉 in the last in-

tegral is meant as follows: since H is separable, and μ is nondegenerate, by [21],
Theorem 6, DU :H �→ H is Gateaux differentiable ν almost everywhere. The
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Gateaux second order derivatives DhkU are bounded by a constant independent
of h, k, since DU is Lipschitz continuous so that the Lipschitz constant of each
DkU is bounded by a constant independent of k. Since u ∈ W

1,2
−1/2(H, ν) the dou-

ble series
∑

h,k DhkUDhuDku is well defined and belongs to L1(H, ν). Indeed,∣∣∣∣∣
∞∑

h,k=1

DhkUDhuDku

∣∣∣∣∣ ≤ C

( ∞∑
k=1

|Dku|
)2

= C

( ∞∑
k=1

λ
−1/2
k |Dku|λ1/2

k

)2

≤ C
∥∥Q−1/2Du

∥∥2 TrQ.

Moreover, we shall show that the weak solution is also a strong solution in the
Friedrichs sense.

DEFINITION 3.3. A function u ∈ L2(H, ν) is called strong solution (in the
Friedrichs sense) to (1.1) if there is a sequence (un) of FC2

b(H) functions that
converge to u in L2(H, ν) and such that λun −Kun → f in L2(H, ν).

In fact, we begin with the strong solution. The procedure is the following: we
show that the operator K :FC3

b(H) �→ L2(H, ν) is dissipative, so that it is closable.
Then we show that (λ − K)(FC3

b(H)) is dense in L2(H, ν) for every λ > 0. This
implies that the closure K of K generates a contraction semigroup in L2(H, ν),
and FC3

b(H) is a core, that is, it is dense in D(K) endowed with the graph norm.
In particular, for every f ∈ L2(H, ν) and λ > 0, equation (1.1) has a unique so-
lution u ∈ D(K), which is a strong solution by definition. Then we show that
D(K) ⊂ W 2,2(H, ν) and that (3.5) holds. Eventually, we prove that the strong
solution coincides with the weak solution.

3.2.1. K :FC3
b(H) �→ L2(H, ν) is dissipative. This is just a simple conse-

quence of the integration formula (3.4), taking u = ϕ ∈ FC3
b(H).

3.2.2. (λI −K)(FC3
b(H)) is dense in L2(H, ν). We shall approach every ele-

ment f ∈ FC∞
b (H) by functions g of the type g = λv−Kv, first with v ∈ FC2

b(H)

and then with v ∈ FC3
b(H). This will be done using existence and regularity re-

sults for differential equations in finite dimensions. Since FC∞
b (H) is dense in

L2(H, ν), our aim will be achieved.
We recall that Pn is the orthogonal projection on the linear span of e1, . . . , en.

We identify Pn(H) with R
n, by the obvious isomorphism R

n �→ Pn(H), ξ �→∑n
k=1 ξkek . The induced Gaussian measure in R

n is just N0,Qn where Qn =
diag(λ1, . . . , λn).

For any function v :H �→ R we identify v ◦ Pn with the function vn :Rn �→ R,
vn(ξ) := v(

∑n
k=1 ξkek). In particular, we identify U ◦ Pn :H �→ R with the func-

tion Un :Rn �→ R, Un(ξ) := U(
∑n

k=1 ξkek). Un is convex, and DUn is Lipschitz
continuous, and hence Un belongs to W 2,∞(Rn, dξ) ⊂ W 2,∞(Rn,N0,Qn).
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For λ > 0 let us consider the problem

λvn −Lvn + 〈DUn,Dvn〉 = fn,(3.6)

where the Ornstein–Uhlenbeck operator L in R
n is defined by

Lϕ(ξ) = 1

2

n∑
k=1

(
Dkkϕ(ξ) − λ−1

k ξkDkϕ(ξ)
)
, ξ ∈ R

n.

Since DUn is Lipschitz continuous, (3.6) has a unique solution vn ∈ ⋃
α∈(0,1)

C2+α
b (Rn). A reference is [20], Theorem 1. In fact [20], Theorem 1, deals

with large λ’s, but a standard application of the maximum principle (e.g., [20],
Lemma 2.4) and of the Schauder estimates of [20], Theorem 1, show that (3.6) is
uniquely solvable in C2+θ

b (Rn) for each λ > 0. Moreover, an estimate for the first
order derivatives of vn, ∥∥|Dvn|

∥∥∞ ≤ 1

λ

∥∥|Dfn|
∥∥∞,(3.7)

follows from the well-known probabilistic representation formula for vn,

vn(ξ) =
∫ ∞

0
e−λt

E
(
f
(
Xn(t, ξ)

))
dt, ξ ∈ R

n,(3.8)

Xn(t, ξ) being the solution to the stochastic ode in R
n{

dXn(t, ξ) = −1
2Q−1

n Xn(t, ξ) dt − DUn

(
Xn(t, ξ)

)
dt + dWn(t),

Xn(0, ξ) = ξ,

where Wn(t) = PnW(t) is a standard Brownian motion in R
n. Indeed, (3.7) follows

taking into account that

d
(
Xn(t, x) − Xn(t, y)

) = −1
2

(
Q−1

n

(
Xn(t, x) − Xn(t, y)

)
dt

− (
DUn

(
Xn(t, x)

) − DUn

(
Xn(t, y)

)))
dt

so that Xn(·, x) − Xn(·, y) is almost surely differentiable, and taking the scalar
product by Xn(t, x)−Xn(t, y) we get d

dt
‖Xn(t, x)−Xn(t, y)‖2 ≤ 0, by the mono-

tonicity of DUn. This implies ‖Xn(t, x) − Xn(t, y)‖ ≤ ‖x − y‖ and consequently
|vε

n(x) − vε
n(y)| ≤ ‖fn‖Lip‖x − y‖/λ.

Going back to infinite dimensions, we set

Vn(x) := vn(x1, . . . , xn), x ∈ H.(3.9)

Then Vn ∈ FC2
b(H), and

λVn −KVn = f ◦ Pn + 〈
DU − D(U ◦ Pn),DVn

〉
,(3.10)

where f ◦ Pn = f for n large enough, since f is cylindrical. The right-hand side
converges to f as n → ∞ since estimate (3.7) implies∣∣〈DU(x)−D(U ◦Pn)(x),DV ε

n (x)
〉∣∣ ≤ 1

λ
sup
y∈H

∥∥Df (y)
∥∥∥∥DU(x)−D(U ◦Pn)(x)

∥∥,
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which goes to 0 pointwise, since DU is continuous, and in L2(H, ν) by the domi-
nated convergence theorem, since∥∥D(U ◦ Pn)(x)

∥∥ ≤ [DU ]Lip‖Pnx‖ + ∥∥DU(0)
∥∥ ≤ [DU ]Lip‖x‖ + ∥∥DU(0)

∥∥,
for each n ∈N. Therefore, λVn −KVn converges to f in L2(H, ν), which implies
that (λI −K)(FC2

b(H)) is dense in L2(H, ν).
This will be used later, in the proof of Proposition 3.8; however, it is not enough

for our aims. This is because the formula, (3.20), which is the starting point of all
our optimal estimates, is obtained differentiating λu −Ku for a cylindrical u, and
we need that u has third order derivatives. So, we shall approximate using FC3

b

functions instead of only FC2
b functions.

To be able to use regularity theorems for elliptic equations in R
n that yield C3

solutions, we need regular coefficients, so we approach Un in a standard way by
convolution with smooth mollifiers. Precisely, we fix once and for all a function
θ ∈ C∞

c (Rn) with support contained in the ball B(0,1) of center 0 and radius 1,
such that

∫
Rn θ(ξ) dξ = 1, and for ε > 0 we set

Uε
n(ξ) =

∫
Rn

Un(ξ − εy)θ(y) dy, ξ ∈ R
n.

Then Uε
n is smooth and convex, and DUε

n is Lipschitz continuous. Moreover,

∣∣DUn(ξ) − DUε
n(ξ)

∣∣ = ∣∣∣∣∣
∫
Rn

(
DUn(ξ) − DUn(ξ − εy)

)
θ(y) dy

∣∣∣∣∣
≤ ε[DUn]Lip

∫
Rn

|y|θ(y) dy(3.11)

≤ ε[DUn]Lip ≤ ε[DU ]Lip, ξ ∈ R
n.

For λ > 0 and ε > 0 let us consider the problem

λvε
n −Lvε

n + 〈
DUε

n,Dvε
n

〉 = fn.(3.12)

As before, since DUε
n are Lipschitz continuous, (3.12) has a unique solution vε

n ∈⋃
α∈(0,1) C2+α

b (Rn), again by [20], Theorem 1. The functions vε
n are represented

by

vε
n(x) =

∫ ∞
0

e−λt
E
(
fn

(
Xε(t, x)

))
dt,(3.13)

where Xε(t, x) is the solution to the stochastic ode{
dXε(t, x) = −1

2Q−1
n Xε(t, x) dt − DUε

n

(
Xε(t, x)

)
dt + dWn(t),

Xε(0, x) = x,
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and Wn(t) is a standard Brownian motion in R
n. The representation formula (3.13)

yields the sup norm estimates ∥∥vε
n

∥∥∞ ≤ 1

λ
‖fn‖∞,(3.14)

∥∥∣∣Dvε
n

∣∣∥∥∞ ≤ 1

λ

∥∥|Dfn|
∥∥∞.(3.15)

Equation (3.14) is immediate, while (3.15) follows arguing as in the proof of (3.7),
since DUε

n is monotonic as well.
We want to show that vε

n ∈ C3
b(Rn). Since DUε

n is smooth, then vε
n belongs to

C∞(Rn) by local elliptic regularity, and we need only to prove that its third order
derivatives are bounded. To this end we differentiate both sides of (3.12) with
respect to xi , getting

λDiv
ε
n −LDiv

ε
n + 1

λi

Div
ε
n + 〈

DUε
n,D

(
Div

ε
n

)〉 = Difn − 〈
D

(
DiU

ε
n

)
,Dvε

n

〉
.

The right-hand side is Hölder continuous and bounded. Applying once again the
Schauder theorem [20], Theorem 1, we obtain Div

ε
n ∈ C2+α

b (Rn) for each α ∈
(0,1). In particular, vε

n ∈ C3
b(Rn).

Let us go back to infinite dimensions and set

V ε
n (x) := vε

n(x1, . . . , xn), Uε
n(x) = Uε

n(x1, . . . , xn), x ∈ H.(3.16)

Then V ε
n ∈ FC3

b(H) and

λV ε
n −KV ε

n = f ◦ Pn + 〈
DU − DUε

n,DVn

〉
.(3.17)

Concerning the right-hand side, taking into account (3.15) and (3.11), we get∣∣〈DU(x) − DUε
n(x),DV ε

n (x)
〉∣∣

≤ 1

λ
sup
y∈H

∥∥Df (y)
∥∥(∥∥DU(x) − D(U ◦ Pn)(x)

∥∥
+ ∥∥D(U ◦ Pn)(x) − DUε

n(x)
∥∥)

≤ 1

λ
sup
y∈H

∥∥Df (y)
∥∥(∥∥DU(x) − D(U ◦ Pn)(x)

∥∥ + ε[DU ]Lip(X)

)
so that∥∥〈DU − DUε

n,DV ε
n

〉∥∥2
L2(H,ν)

≤
(

1

λ
sup
y∈H

∥∥Df (y)
∥∥)2

2
(∫

H

∥∥DU − D(U ◦ Pn)
∥∥2

dν + (
ε[DU ]Lip(X)

)2
)
,

where the first integral
∫
H ‖DU − D(U ◦ Pn)‖2 dν vanishes as n → ∞, as we

already remarked. Therefore, ‖〈DU − DUε
n,DV ε

n 〉‖L2(H,ν) is as small as we wish
provided we take n large and ε small, and the same holds for λV ε

n −KV ε
n − f .

Summarizing, we have proved the following proposition.
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PROPOSITION 3.4. The closure K of the operator K :FC3
b(H) �→ L2(H, ν)

is m-dissipative, so that it generates a strongly continuous contraction semigroup
in L2(H, ν). In particular, for every λ > 0 and f ∈ L2(H, ν) problem (1.1) has
a unique strong solution u, that is: there is a sequence (un) ⊂ FC3

b(H) such that
un → u and λun −Kun → f in L2(H, ν).

3.2.3. W 2,2(H, ν) regularity of the strong solution and other estimates. To
prove our estimates it is sufficient to consider functions u ∈ FC3

b(H), which is
dense in the domain of K. So, we fix u ∈ FC3

b(H), λ > 0, and we set

λu −Ku = f.

Estimates on u and on Du in terms of f are elementary. They are obtained multi-
plying both sides by u and taking into account (3.2).

LEMMA 3.5. We have∫
H

(
λu2 + 1

2
‖Du‖2

)
dν =

∫
H

uf dν,

and therefore ∫
H

u2 dν ≤ 1

λ2

∫
H

f 2 dν(3.18)

and ∫
H

‖Du‖2 dν ≤ 2

λ

∫
H

f 2 dν.(3.19)

Estimates on the second order derivatives are less obvious. They are a conse-
quence of the following proposition.

PROPOSITION 3.6. For each u ∈ FC3
b(H) we have

λ

∫
H

‖Du‖2 dν + 1

2

∫
H

Tr
[(

D2u
)2]

dν + 1

2

∫
H

∥∥Q−1/2Du
∥∥2

dν

(3.20)
+

∫
H

〈
D2UDu,Du

〉
dν =

∫
H

〈Du,Df 〉dν = 2
∫
H

(λu − f )f dν.

PROOF. As in Section 3.2.2, we differentiate the equality λu − Ku = f with
respect to xi , then we multiply by Diu and sum up. We obtain

λ‖Du‖2 −
∞∑
i=1

(KDiu)Diu +
∞∑
i=1

(Diu)2

2λi

+
∞∑

i,j=1

DijUDiuDju = 〈Df,Du〉,

where the series are in fact finite sums. Integrating on H and taking (3.1) into
account, (3.20) follows. �
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As a corollary of Lemma 3.5 and Proposition 3.6 we obtain estimates on the
strong solution to (1.1).

PROPOSITION 3.7. Let λ > 0, f ∈ L2(H, ν), and let u be the strong solution

to (1.1). Then u ∈ W 2,2(H, ν) ∩ W
1,2
−1/2(H, ν), and

λ

∫
H

‖Du‖2 dν + 1

2

∫
H

Tr
[(

D2u
)2]

dν + 1

2

∫
H

∥∥Q−1/2Du
∥∥2

dν

(3.21)
+

∫
H

〈
D2UDu,Du

〉
dν ≤ 4

∫
H

f 2 dν.

In addition, if f ∈ FC∞
b (H), then u is ν-essentially bounded, and we have

ess sup
x∈H

∣∣u(x)
∣∣ ≤ 1

λ
sup
x∈H

∣∣f (x)
∣∣.(3.22)

PROOF. Let uj ∈ FC3
b(H) approach u in D(K). By estimate (3.19), Duj →

Du in L2(H, ν;H). By Proposition 3.6, equality (3.20) holds, with uj replacing u,
and fj := λuj −Kuj replacing f . Then

λ

∫
H

‖Duj‖2 dν + 1

2

∫
H

Tr
[(

D2uj

)2]
dν + 1

2

∫
H

∥∥Q−1/2Duj

∥∥2
dν

+
∫
H

〈
D2UDuj ,Duj

〉
dν ≤ 2

∫
H

(λuj − fj )fj dν ≤ 4‖fj‖2
L2(H,ν)

,

while by (3.18) we have λ‖uj‖L2(H,ν) ≤ ‖fj‖L2(H,ν). Since fj → f in L2(H, ν)

as j → ∞, (uj ) is a Cauchy sequence in W 2,2(H, ν) and in W
1,2
−1/2(H, ν). So, u

belongs to such spaces, and letting j → ∞ estimate (3.21) follows.
To prove the last statement, for f ∈ FC∞

b (H) we approach u by the functions
used in the proof of Proposition 3.4. Then (3.22) follows from (3.14), taking into
account that for a suitable sequence (jk), (ujk

) converges to u, ν-a.e. �

3.2.4. Weak = strong. For λ > 0 and f ∈ L2(H, ν), let u be the strong so-
lution to (1.1) given by Proposition 3.4. Let un ∈ FC3

b(H) be such that un → u

and fn := λun −Kun → f in L2(H, ν). As we remarked in the proof of Proposi-
tion 3.7, un → u in W 1,2(H, ν).

Fix ϕ ∈ FC1
b(H). Multiplying both sides of λun − Kun = fn by ϕ, integrating

over H and recalling (3.2), we obtain

λ

∫
H

unϕ dν + 1

2

∫
H

〈Dun,Dϕ〉dν =
∫
H

fnϕ dν.

Letting n → ∞ yields that u is the weak solution to (1.1). So, weak and strong
solutions to (1.1) do coincide.
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As a consequence of coincidence of strong and weak solutions we obtain a
probabilistic representation formula for the weak solution to (1.1). Let W(t) be
any H -valued cylindrical Wiener process defined in a probability space (�,F,P).
A construction of such a process may be found, for example, in [13], Section 4.3.
For each x ∈ H consider the stochastic differential equation

dX = (
AX − DU(X)

)
dt + dW(t), X(0) = x.(3.23)

We recall that a mild solution to (3.23) is a Ft adapted, H -continuous process that
satisfies

X(t) = etAx −
∫ t

0
e(t−s)ADU

(
X(s)

)
ds +

∫ t

0
e(t−s)A dW(s), t ≥ 0,

where Ft is the natural filtration of W(t). Existence and uniqueness of a mild solu-
tion to (3.23) follow, for example, from [14], Theorem 5.5.8; see also Remark 5.5.7
of [14].

PROPOSITION 3.8. For λ > 0 and f ∈ Cb(H), let u be the weak solution
to (1.1). Then

u =
∫ +∞

0
e−λt

Ef
(
X(t, ·))dt.(3.24)

PROOF. As a first step, let f ∈ FC∞
b (H), let Vn be the functions de-

fined in (3.9) and set fn := λVn − KVn. In Section 3.2.2 we have shown that
limn→∞ fn = f in L2(H, ν). Therefore, u = R(λ,K)f = limn→∞ R(λ,K)fn =
limn→∞ Vn. On the other hand, we have Vn(x) = vn(x1, . . . , xn), where the func-
tions vn solve (3.6). This implies that Vn satisfies

Vn(x) =
∫ +∞

0
e−λt

Ef
(
Xn(t, x)

)
dt, x ∈ H,(3.25)

where Xn is the mild solution to

dXn = (
AXn − D(U ◦ Pn)(Xn)

)
dt + dW(t), Xn(0) = Pnx,(3.26)

and for every t > 0, x ∈ X we have limn→∞ Xn(t, x) = X(t, x), a.s. Letting
n → ∞ in (3.25), the left-hand side goes to u in L2(H, ν). The right-hand
side converges to

∫ +∞
0 e−λt

Ef (X(t, x)) dt pointwise and in L2(H, ν) by the
dominated convergence theorem. Indeed, for each x ∈ H and t > 0 we have
limn→∞ f (Xn(t, x)) = f (X(t, x)) a.s., and |f (Xn(t, x))| ≤ ‖f ‖∞. Therefore, the
statement holds if f ∈ FC∞

b (H).
If f ∈ Cb(H), it is possible to approach it, pointwise and in L2(H, ν), by a

sequence (fn) of functions belonging to FC∞
b (H). For instance, one can take

approximations by convolution of f ◦ Pn. Then, un := R(λ,K)fn satisfy (3.24)
with f replaced by fn and converge to u = R(λ,K)f in L2(H, ν). The right-hand
sides converge to

∫ +∞
0 e−λt

Ef (X(t, ·)) dt in L2(H, ν), again by the dominated
convergence theorem, and the statement follows. �
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3.3. The general case. Here we apply the results of Section 3.2 to prove our
main result.

THEOREM 3.9. Under Hypothesis 2.1, for every λ > 0 and f ∈ L2(H, ν), the
weak solution u to (1.1) belongs to W 2,2(H, ν) ∩ W

1,2
−1/2(H, ν), and it satisfies∫

H
u2 dν ≤ 1

λ2

∫
H

f 2 dν,

(3.27) ∫
H

‖Du‖2 dν ≤ 2

λ

∫
H

f 2 dν,

1

2

∫
H

Tr
[(

D2u
)2]

dν +
∫
H

∥∥Q−1/2Du
∥∥2

dν ≤ 4
∫
H

f 2 dν.(3.28)

PROOF. Let Uα be the Moreau–Yosida approximations of U , defined in (2.9).
Since DUα is Lipschitz continuous, we may use the results of Sections 3.2.3
and 3.2.4 for problem

λuα −Luα + 〈DUα,Duα〉 = f.(3.29)

Let Zα = ∫
H e−2Uα(x)μ(dx) and να := e−2Uαμ/Zα . Fix any f ∈ FC∞

b (H), λ > 0,
and let uα be the strong solution to (3.29) in the space L2(H, να). By Lemma 3.5,∫

H
u2

αe−2Uα dμ ≤ 1

λ2

∫
H

f 2e−2Uα dμ,

(3.30) ∫
H

‖Duα‖2e−2Uα dμ ≤ 2

λ

∫
H

f 2e−2Uα dμ,

and by Proposition 3.7,

1

2

∫
H

Tr
[(

D2uα

)2]
e−2Uα dμ + 1

2

∫
H

∥∥Q−1/2Duα

∥∥2
e−2Uα dμ

(3.31)
+

∫
H

〈
D2UαDuα,Duα

〉
e−2Uα dμ ≤ 4

∫
H

f 2e−2Uα dμ.

The right-hand sides of (3.30) and (3.31) are bounded by a constant independent
of α, since Uα ≥ infU so that∫

H
f 2e−2Uα dμ ≤ ‖f ‖2∞e−2 infU .(3.32)

Since Uα ≤ U , then e−2U ≤ e−2Uα , and it follows that uα ∈ W 2,2(H, ν) and
their W 2,2(H, ν) norms are bounded by a constant independent of α. A sequence
(uαn), with limn→∞ αn = 0, converges weakly in W 2,2(H, ν) and in W

1,2
−1/2(H, ν)

to a limit function denoted by u. Letting n → ∞ yields that u satisfies (3.27)
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and (3.28). Our aim is to show that u coincides with the weak solution to (1.1). For
every n we have

λ

∫
H

uαnϕe−2Uαn dμ + 1

2

∫
H

〈Duαn,Dϕ〉e−2Uαn dμ =
∫
H

f ϕe−2Uαn dμ,

ϕ ∈ FC1
b(H).

Letting n → ∞, the right-hand side converges to
∫
H f ϕe−2U dμ. Let us split the

left-hand side as∫
H

(
λuαnϕ + 1

2
〈Duαn,Dϕ〉

)
e−2Uαn dμ

=
∫
H

(
λuαnϕ + 1

2
〈Duαn,Dϕ〉

)
e−2U dμ

+
∫
H

(
λuαnϕ + 1

2
〈Duαn,Dϕ〉

)(
1 − e−2U+2Uαn

)
e−2Uαn dμ.

The first integral converges to
∫
H (λuϕ + 1

2〈Du,Dϕ〉)e−2U dμ. We claim that the
second integral too vanishes as n → ∞. Indeed, by the Hölder inequality with
respect to the measure e−2Uαn dμ, its modulus is bounded by(∫

H

(
λuαnϕ + 1

2
〈Duαn,Dϕ〉

)2

e−2Uαn dμ

)1/2

×
(∫

H

(
1 − e−2U+2Uαn

)2
e−2Uαn dμ

)1/2

≤ ‖ϕ‖C1
b (H)

(
‖λuαn‖L2(H,e−2Uαn μ) + 1

2

∥∥‖Duαn‖
∥∥
L2(H,e−2Uαn μ)

)

×
(∫

H

(
1 − e−2U+2Uαn

)2
e−2Uαn dμ

)1/2

.

Recalling (3.32), (3.30) implies now that

‖λuαn‖L2(H,e−2Uαn μ) + 1
2

∥∥‖Duαn‖
∥∥
L2(H,e−2Uαn μ)

is bounded by a constant independent of n. Moreover
∫
H(1 − e−2U+2Uαn )2 ×

e−2Uαn dμ vanishes as n → ∞ by the dominated convergence theorem, and the
claim is proved.

Therefore, u satisfies (3.3) for every ϕ ∈ FC1
b(H), and hence it is the weak

solution to (1.1).
If f ∈ L2(H, ν), there is a sequence of FC∞

b (H) functions that converge to
f in L2(H, ν). The sequence (R(λ,K)fk) of the weak solutions to (1.1) with f

replaced by fk converge to the weak solution u = R(λ,K)f of (1.1), and it is
a Cauchy sequence in W 2,2(H, ν) and in W

1,2
−1/2(H, ν) by estimate (3.28). Then

u ∈ W 2,2(H, ν) ∩ W
1,2
−1/2(H, ν), and it satisfies (3.28) too. �
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3.4. Another maximal estimate. Under further assumptions we may recover
the full estimate on Du that holds in the case that DU is Lipschitz continuous. In
fact, we shall show below that∫

H

〈
D2UDu,Du

〉
dν ≤ 4

∫
H

f 2 dν,(3.33)

in the case where U ∈ C2(H), while in Section 4.2 it will be proved in a specific
example with U /∈ C2(H). Here and in the following, we denote by C2(H) the
space of the twice Fréchet differentiable functions from H to R, with continuous
second order derivative.

We need a preliminary result.

LEMMA 3.10. Under Hypothesis 2.1, for each f ∈ Cb(H) there is αn → 0
such that uαn → u in W 1,2(H, ν) as n → ∞.

PROOF. We already know that there exists a sequence (uαn) weakly conver-
gent to u in W 1,2(H, ν). So, it is enough to show that

lim sup
n→∞

|uαn |W 1,2(H,ν) ≤ |u|W 1,2(H,ν)(3.34)

for some equivalent norm | · |W 1,2(H,ν) in W 1,2(H, ν).
By Lemma 3.5 we have∫

H

(
λ|uαn |2 + 1

2
‖Duαn‖2

)
e−2Uαn dμ =

∫
H

f uαne
−2Uαn dμ.

We claim that the right-hand side converges to Z
∫
H f udν as n → ∞. In fact we

have∫
H

f uαne
−2Uαn dμ =

∫
H

f uαne
−2U dμ +

∫
H

f uαn

(
1 − e2Uαn−2U )

e−2Uαn dμ,

where the first addendum tends to Z
∫
H f udν, and the second one is estimated by∣∣∣∣∫

H
f uαn

(
1 − e2Uαn−2U )

e−2Uαn dμ

∣∣∣∣
≤ ‖f ‖∞‖uαn‖L2(H,e−2Uαn μ)

∫
H

(
1 − e2Uαn−2U )2

e−2Uαn dμ,

which vanishes as n → ∞ because ‖uαn‖L2(H,e−2Uαn μ) is bounded and

lim
n→∞

∫
H

(
1 − e2Uαn−2U )2

e−2Uαn dμ = 0

by the dominated convergence theorem.
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Therefore we have

lim sup
n→∞

∫
H

(
λu2

αn
+ 1

2
‖Duαn‖2

)
e−2U dμ

≤ lim sup
n→∞

∫
H

(
λ|uαn |2 + 1

2
‖Duαn‖2

)
e−2Uαn dμ = Z

∫
H

f udν.

Moreover ∫
H

f udν =
∫
H

(
λu2 + 1

2
‖Du‖2

)
dν,

so that

lim sup
n→∞

∫
H

(
λ|uαn |2 + 1

2
‖Duαn‖2

)
dν ≤

∫
H

(
λu2 + 1

2
‖Du‖2

)
dν,

and (3.34) follows. �

Now we can prove estimate (3.33).

THEOREM 3.11. Let U be a C2 function satisfying Hypothesis 2.1.
Then (3.33) is fulfilled for all f ∈ L2(H, ν).

PROOF. Since Cb(H) is dense in L2(H, ν) it is sufficient to prove (3.33)
when f ∈ Cb(H). In this case, let αn → 0 be such that uαn → u in W 1,2(H, ν)

(Lemma 3.10). Then Duαn → Du in L2(H, ν;H) and so [possibly replacing (αn)

by a subsequence] Duαn(x) → Du(x) for almost all x. Using Lemma 2.11, for
these x we have

lim
n→∞

〈
D2Uαn(x)Duαn(x),Duαn(x)

〉
e−2Uαn(x) = 〈

D2U(x)Du(x),Du(x)
〉
e−2U(x),

and by Fatou’s lemma,∫
H

〈
D2U(x)Du(x),D(x)

〉
dν

=
∫
H

〈
D2U(x)Du(x),D(x)

〉
e−2U(x) dμ

≤ lim inf
n→∞

∫
H

〈
D2Uαn(x)Duαn(x),Duαn(x)

〉
e−2Uαn(x) dμ

≤ 4 lim inf
n→∞

∫
H

f 2e−2Uαn dμ = 4
∫
H

f 2 dν. �

4. Perturbations. The regularity results and estimates of Section 3 open the
way to new results for nonsymmetric Kolmogorov operators, by perturbation. Here
we consider the operator K1 in the space L2(H, ν) defined by

D(K1) = D(K), K1v := Kv + 〈
B(x),Dv(x)

〉
(4.1)
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with a (possibly) nongradient field B :H �→ H .
We shall give two perturbation results, the first one in the general case (Sec-

tion 4.1) and the second one in the case where the weak solution to (1.1) satis-
fies (3.33) (Section 4.2). In both cases we shall use the next proposition and a part
of its proof.

PROPOSITION 4.1. Let A be a self-adjoint dissipative operator in L2(H, ν),
and let B :D(A) �→ L2(H, ν) be a linear operator such that

‖Bv‖2
L2(H,ν)

≤ a‖Av‖2
L2(H,ν)

+ b‖v‖2
L2(H,ν)

, v ∈ D(A),(4.2)

for some a < 1/(
√

2 + 1)2 and b > 0. Then the operator

A1 :D(A) �→ L2(H, ν), A1v = Av +Bv

generates an analytic semigroup in L2(H, ν).

PROOF. Let us denote by X = L2(H, ν;C) the complexification of L2(H, ν)

and by A the complexification of A, A(u + iv) = Au + iAv. Then the spectrum
of A is contained in (−∞,0], and we have ‖λR(λ,A)‖L(X ) ≤ 1/ cos(θ/2) for λ ∈
C \ (−∞,0], with θ = argλ. Hence, for Reλ > 0 we have ‖λR(λ,A)‖L(X ) ≤ √

2.
A standard general perturbation result for analytic semigroups in Banach spaces

states that if the generator A of an analytic semigroup in a complex Banach space
X satisfies ‖λR(λ,A)‖L(X ) ≤ M for Reλ > ω, then for any linear perturbation
B :D(A) �→ X that satisfies

‖Bv‖X ≤ c1‖Av‖X + c2‖v‖X , v ∈ D(A),

with c1 < 1/(M +1) and c2 ∈ R, the sum A+B :D(A) �→ X generates an analytic
semigroup in X . We write down a proof, which will be used later.

For Reλ > ω the resolvent equation λu − (A + B)u = f is equivalent (set-
ting λu − Au = v) to the fixed point problem v = T v, with T :X �→ X , T v =
BR(λ,A)v + f . We have

‖T v‖ ≤ c1
∥∥AR(λ,A)v

∥∥ + c2
∥∥R(λ,A)v

∥∥
≤ c1(M + 1)‖v‖ + c2M

|λ| ‖v‖, v ∈X .

Fix ω0 > ω such that C := c1(M + 1) + c2M/ω0 < 1. Then for every λ in the
halfplane Reλ ≥ ω0 T is a contraction with constant C, the equation v = T v has
a unique solution v ∈ X and ‖v‖ ≤ ‖f ‖/(1 − C), and the resolvent equation λu −
A1u = f has a unique solution u = R(λ,A)v with ‖u‖ ≤ M‖f ‖/|λ|(1 − C), and
the statement follows.

In our case we can take ω = 0 and M = √
2. Assumption (4.2) implies

that ‖Bv‖X ≤ √
a‖Av‖X + √

b‖v‖X , for every v ∈ D(A), so we require a <

1/(
√

2 + 1)2. Once we know that A + B generates an analytic semigroup T (t)

in L2(H, ν;C), it is sufficient to remark that the restriction of T (t) to L2(H, ν)

preserves L2(H, ν), and it is an analytic semigroup in L2(H, ν). �
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4.1. First perturbation.

PROPOSITION 4.2. Let U satisfy Hypothesis 2.1. Let B :H �→ H be μ-measu-
rable (hence, ν-measurable) and such that there exist c1 ∈ (0,1/2(

√
2 + 1)),

c2 > 0 such that for a.e. x ∈ H we have∣∣〈B(x), y
〉∣∣ ≤ c1

∥∥Q−1/2y
∥∥ + c2‖y‖, y ∈ Q1/2(H).(4.3)

Then the operator K1 defined in (4.1) generates an analytic semigroup in
L2(H, ν). In particular, there exist λ0 ≥ 0, C > 0 such that for every λ > λ0
and for every f ∈ L2(H, ν) the equation λv − K1v = f has a unique solution
v ∈ D(K), and

‖v‖D(K) ≤ C‖f ‖L2(H,ν).

PROOF. In view of Proposition 4.1, it is sufficient to show that the operator B
defined in D(K) by

Bu(x) = 〈
B(x),Du(x)

〉
, x ∈ H,

satisfies estimate

‖Bv‖2
L2(H,ν)

≤ a‖Kv‖2
L2(H,ν)

+ b‖v‖2
L2(H,ν)

, v ∈ D(K),(4.4)

for some a < (
√

2 + 1)−2. We note that for every u ∈ D(K) we have∫
H

‖Du‖2 dν ≤ 4λ

∫
H

u2 dν + 4

λ

∫
H

(Ku)2 dν ∀λ > 0,(4.5) ∫
H

∥∥Q−1/2Du
∥∥2

dν ≤ 4
∫
H

(Ku)2 dν.(4.6)

Estimate (4.5) follows from (3.27), taking f = λu − Ku. Estimate (4.6) follows
from (3.28) taking again f = λu − Ku, and letting λ → 0. Using (4.5) and (4.6),
for each ε ∈ (0,1) and λ > 0 we get∫

H
〈B,Du〉2 dν ≤

∫
H

(
c1

∥∥Q−1/2Du
∥∥ + c2‖Du‖)2

dν

≤ c2
1(1 + ε)

∫
H

∥∥Q−1/2Du
∥∥2

dν + c2
2

(
1 + 1

ε

)∫
H

‖Du‖2 dν

≤ 4c2
1(1 + ε)

∫
H

(Ku)2 dν

+ c2
2

(
1 + 1

ε

)(
4λ

∫
H

u2 dν + 4

λ

∫
H

(Ku)2 dν

)
.

Since 4c2
1 < 1/(

√
2 + 1)2, there is ε > 0 such that 4c2

1(1 + ε) < 1/(
√

2 + 1)2.
Fixed such ε, choose λ big enough, such that a := 4c2

1(1 + ε) + 4c2
2(1 + 1/ε)/λ <

1/(
√

2 + 1)2. With these choices estimate (4.4) is satisfied with a < 1/(
√

2 + 1)2,
and the statement follows from Proposition 4.1. �
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REMARK 4.3. The assumptions of Proposition 4.2 are satisfied if x �→
QαB(x) ∈ L∞(H, ν;H) for some α < 1/2. Indeed, in this case for y ∈ Q1/2(H)

and a.e. x ∈ H , we have∣∣〈B(x), y
〉∣∣ = ∣∣〈QαB(x),Q−αy

〉∣∣ ≤ ∥∥QαB(·)∥∥∞
(
ε
∥∥Q−1/2y

∥∥ + c(ε)‖y‖),
x ∈ H,ε > 0,

and choosing ε small enough, (4.3) is satisfied with c1 < 1/2(
√

2 − 1).
In the case that x �→ Q1/2B(x) ∈ L∞(H, ν;H) we need some restriction in

order that the assumptions of Proposition 4.2 be satisfied. For instance, they are
satisfied if B = B1 + B2, with B1 ∈ L∞(H, ν;H) and Q1/2B2 ∈ L∞(H, ν;H),
‖Q1/2B2‖∞ ≤ c1 < 1/2(

√
2 + 1).

4.2. Second perturbation. In the case that U ∈ C2(H) we have also esti-
mate (3.33), which is useful when〈

D2U(x)y, y
〉 ≥ C(x)‖y‖2, x, y ∈ H,(4.7)

and the function C(x) is unbounded from above [if C is bounded from above,
(3.33) does not add much information to (3.27)].

PROPOSITION 4.4. Let U ∈ C2(H) satisfy Hypothesis 2.1. Assume moreover
that (4.7) holds for some unbounded C(x) and that for every λ > 0 and f ∈
L2(H, ν) the weak solution u to (1.1) satisfies (3.33). Moreover, let B :H �→ H be
μ-measurable and such that there exist c1, c2, c3 > 0 with c2

1 +c2
2 < 1/8(

√
2+1)2,

and for a.e. x ∈ H , we have∣∣〈B(x), y
〉∣∣ ≤ c1

∥∥Q−1/2y
∥∥ + c2

√
C(x)‖y‖ + c3‖y‖, y ∈ Q1/2(H).(4.8)

Then the operator K1 defined in (4.1) generates an analytic semigroup in
L2(H, ν). In particular, there exist λ0 ≥ 0, C > 0 such that for every λ > λ0
and for every f ∈ L2(H, ν) the equation λv − K1v = f has a unique solution
v ∈ D(K), and

‖v‖D(K) ≤ C‖f ‖L2(H,ν).

PROOF. We argue as in the proof of Proposition 4.2. Here, besides estimates
(4.5) and (4.6), we also use∫

H

〈
D2UDu,Du

〉
dν ≤ 4

∫
H

(Ku)2 dν, u ∈ D(K),(4.9)

which follows from (3.33) taking f = λu − Ku and letting λ → 0. By (4.8) for
each u ∈ D(K) we have∫

H
〈B,Du〉2 dν ≤

∫
H

(
c1

∥∥Q−1/2Du
∥∥ + c2

√
C(x)‖Du‖ + c3‖Du‖)2

dν.
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Using the inequalities (a +b + c)2 ≤ a2(2 + ε)+b2(2 + ε)+ c2(1 + 2/ε) for each
ε ∈ (0,1), and∫

H
C(x)‖Du‖2 dν ≤

∫
H

〈
D2UDu,Du

〉
dν ≤ 4

∫
H

(Ku)2 dν

that follows from (4.7) and (4.9), we obtain, recalling (4.5) and (4.6),∫
H

〈B,Du〉2 dν

≤ c2
1(2 + ε)

∫
H

∥∥Q−1/2Du
∥∥2

dν + c2
2(2 + ε)

∫
H

C(x)‖Du‖2 dν

+ c2
3

(
1 + 2

ε

)∫
H

‖Du‖2 dν

≤ 4
(
c2

1 + c2
2
)
(2 + ε)

∫
H

(Ku)2 dν

+ c2
3

(
1 + 2

ε

)(
4λ

∫
H

u2 dν + 4

λ

∫
H

(Ku)2 dν

)
.

As in the proof of Proposition 4.2, we may choose ε small and then λ large, in
such a way that for every u ∈ D(K), we have

∫
H 〈B,Du〉2 dν ≤ a

∫
H (Ku)2 dν +

b
∫
H u2 dν with a < 1/(

√
2 + 1)2, and the statement follows from Proposition 4.1.

�

REMARK 4.5. Assumption (4.8) is satisfied if B = B1 + B2, where x �→
QαB1(x) ∈ L∞(H, ν;H) for some α ∈ [1/2) and there are b < 1/2(2 + √

2),
c > 0 such that ‖B2(x)‖ ≤ bC(x) + c for almost every x ∈ H .

Theorem 3.11 allows to use Proposition 4.4 when U ∈ C2(H). In some specific
examples the result of Proposition 4.4 holds when U is not C2, but belongs to a
suitable Sobolev space. See Section 5.2.

We emphasize that the domain of the perturbed operator K1 coincides with
D(K). Therefore, under the assumptions of Proposition 4.2 for every u ∈ D(K1)

we have

u ∈ W 2,2(H, ν),

∫
H

∥∥A−1/2Du
∥∥2

dν < ∞,

and if the assumptions of Proposition 4.4 hold, then for every u ∈ D(K1) we have
also ∫

H

〈
D2UDu,Du

〉
dν < ∞.

An important feature of the semigroup generated by K1 is positivity preserving.
If B ≡ 0, that is K1 = K , Lemma 2.7 implies that K satisfies the Beurling–Deny
conditions that yield positivity preserving (e.g., [6], Sections 1.3, 1.4).
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PROPOSITION 4.6. Let the assumptions of Proposition 4.2 or of Proposi-
tion 4.4 hold, and let λ0 be given by Proposition 4.2 or 4.4. Then for every λ > λ0
and f ∈ L2(H, ν) such that f (x) ≥ 0 a.e., R(λ,K1)f (x) ≥ 0 a.e.

PROOF. Let us introduce the approximations

Bn(x) := nR(n,A)B(x)1{x∈H : ‖B(x)‖≤n}, n ∈ N, x ∈ H,

that are μ-measurable and bounded in H .
If the assumptions of Proposition 4.2 hold, then each Bn satisfies (4.2) with the

same constants a, b of B . Indeed, since ‖nR(n,A)‖L(H) ≤ 1, then for every x ∈ H

and y ∈ Q1/2(H) we have∣∣〈Bn(x), y
〉∣∣ = ∣∣〈B(x), nR(n,A)y

〉∣∣1{x∈H : ‖B(x)‖≤n}
≤ a

∥∥Q−1/2nR(n,A)y
∥∥ + b

∥∥nR(n,A)y
∥∥

= a
∥∥nR(n,A)Q−1/2y

∥∥ + b
∥∥nR(n,A)y

∥∥ ≤ a
∥∥Q−1/2y

∥∥ + b‖y‖.
Similarly, if the assumptions of Proposition 4.4 hold, then Bn satisfies (4.8) with
the same constants c1, c2, c3 as B . Moreover Bn converges to B ν-a.e., since

Bn(x) − B(x) = nR(n,A)B(x) − B(x) if
∥∥B(x)

∥∥ ≤ n.

For each f ∈ L2(H, ν) we may approach R(λ,K1)f by the solutions un ∈
D(K) of problems

λun − Kun − 〈
Bn(x),Dun

〉 = f(4.10)

that still exist for λ > λ0 since the functions Bn satisfy the assumptions of Propo-
sition 4.1 (or, of Proposition 4.4) with the same constants as B . By the proof of
Propositions 4.2 and 4.4, un is obtained as R(λ,K)(I − Tn)

−1 where

Tnv = 〈
Bn(·),DR(λ,K)v

〉
, v ∈ L2(H, ν),

and (I − Tn)
−1 exists because T is a contraction. We may use the principle of

contractions depending on a parameter since

‖Tnv − T v‖2
L2(H,ν)

≤
∫
H

∣∣〈B − Bn,DR(λ,K)v
〉∣∣2 dν

that vanishes as n → ∞ by the dominated convergence theorem. Indeed, for ν-
almost every x we have limn→∞ Bn(x) = B(x) and∣∣〈Bn(x),DR(λ,K)v(x)

〉∣∣ ≤ a
∥∥Q−1/2DR(λ,K)v(x)

∥∥ + b
∥∥DR(λ,K)v(x)

∥∥,
if the assumptions of Proposition 4.2 hold, and∣∣〈Bn(x),DR(λ,K)v(x)

〉∣∣ ≤ c1
∥∥Q−1/2DR(λ,K)v(x)

∥∥
+ c2

√
C(x)

∥∥DR(λ,K)v(x)
∥∥

+ c3
∥∥DR(λ,K)v(x)

∥∥,
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if the assumptions of Proposition 4.4 hold. In both cases, the right-hand sides be-
long to L2(H, ν).

It follows that for λ > λ0 we have limn→∞ un = R(λ,K1)f , in L2(H, ν). To
finish the proof we show that if f ≥ 0 ν-a.e., then un ≥ 0 ν-a.e. This will yield the
statement.

Let us multiply both sides of (4.10) by u−
n , that belongs to W 1,2(H, ν) by

Lemma 2.7, and integrate over H . We get

λ

∫
H

unu
−
n dν + 1

2

∫
H

〈
Dun,Du−

n

〉
dν −

∫
H

〈Bn,Dun〉u−
n dν =

∫
H

f u−
n dν,

and recalling that unu
−
n = −(u−

n )2, 〈Dun,Du−
n 〉 = −‖Du−

n ‖2 by Lemma 2.7, we
obtain

−λ

∫
H

(
u−

n

)2
dν − 1

2

∫
H

∥∥Du−
n

∥∥2
dν −

∫
H

〈Bn,Dun〉u−
n dν ≥ 0.

Now we estimate∣∣∣∣∣
∫
H

〈Bn,Dun〉u−
n dν

∣∣∣∣∣ =
∣∣∣∣∣
∫
{un≤0}

〈Bn,Dun〉u−
n dν

∣∣∣∣∣
=

∣∣∣∣∣
∫
H

〈
Bn,Du−

n

〉
u−

n dν

∣∣∣∣∣
≤ ‖Bn‖∞

(∫
H

∥∥Du−
n

∥∥2
dν

)1/2(∫
H

(
u−

n

)2
dν

)1/2

≤ 1

2

∫
H

∥∥Du−
n

∥∥2
dν + 2‖Bn‖∞

∫
H

(
u−

n

)2
dν.

If λ > Cn := 2‖Bn‖∞, we get

−(λ − Cn)
∥∥u−

n

∥∥2
L2(H,ν) ≥ 0

which implies u−
n ≡ 0, namely un ≥ 0 a.e. So, the resolvent of Kn := K +〈Bn,D·〉

preserves positivity for λ large, possibly depending on n. Since Kn generates a C0
semigroup, its resolvent preserves positivity for every λ bigger than the type of the
semigroup, in particular for every λ > λ0. Then, R(λ,K1) preserves positivity for
λ > λ0. �

Now we discuss the existence of an invariant measure ζ(dx) = ρ(x)ν(dx) for
the semigroup generated by K1 in L2(H, ν). An important step is the following
proposition.

PROPOSITION 4.7. Let the assumptions of Proposition 4.2 or of Proposi-
tion 4.4 hold. Let in addition Hypothesis 2.8 hold. Then the kernel of K∗

1 [the
adjoint of K1 in L2(H, ν)] contains a nonnegative function ρ �≡ 0.
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PROOF. The function 1 identically equal to 1 belongs to the domain of K1,
and K11 = 0. Then for any λ > λ0, 1 is an eigenvector of R(λ,K1) with eigen-
value 1/λ. Since D(K1) = D(K) is compactly embedded in L2(H, ν) by Propo-
sition 2.10, then R(λ,K1) is a compact operator, and 1/λ is an eigenvalue of
R(λ,K1)

∗ = R(λ,K∗
1 ) too. Hence, 0 is an eigenvalue of K∗

1 , so that the kernel of
K∗

1 contains nonzero elements. Note that since R(λ,K1) preserves positivity for
large λ, then R(λ,K∗

1 ) too preserves positivity for large λ, hence the semigroup
etK∗

1 generated by K∗
1 preserves positivity for every t > 0.

Let us check that the kernel of K∗
1 is a lattice, that is, if ϕ ∈ KerK∗

1 , then |ϕ| ∈
KerK∗

1 . Assume that ϕ ∈ KerK∗
1 . Then ϕ = etK∗

1 ϕ for every t > 0, and since etK∗
1

preserves positivity, then∣∣ϕ(x)
∣∣ = ∣∣etK∗

1 ϕ(x)
∣∣ ≤ (

etK∗
1 |ϕ|)(x), ν-a.e. x ∈ H.

We claim that for every t > 0,∣∣ϕ(x)
∣∣ = etK∗

1
(|ϕ|)(x), ν-a.e. x ∈ H.(4.11)

Assume by contradiction that there are t > 0 and a Borel subset I ⊂ H such that
ν(I ) > 0 and |ϕ(x)| < etK∗

1 (|ϕ|)(x) for x ∈ I . Then we have∫
H

∣∣ϕ(x)
∣∣ν(dx) <

∫
H

(
etK∗

1 |ϕ|)(x)ν(dx).

On the other hand, since 1 ∈ KerK1, then etK∗
1 1 = 1. Hence∫

H
etK∗

1 |ϕ|dν = 〈
etK∗

1 |ϕ|,1〉L2(H,ν) = 〈|ϕ|, etK11
〉
L2(H,ν) =

∫
H

|ϕ|dν,

which is a contradiction. Then (4.11) holds and it yields |ϕ| ∈ KerK∗
1 . �

A realization of K1 in L2(H,ρν) is m-dissipative, as the next proposition
shows.

PROPOSITION 4.8. Under the assumptions of Proposition 4.7, let ρ be a non-
negative function belonging to KerK∗

1 \ {0}. Then the operator

D := {
u ∈ D(K1) ∩ L2(H,ρν) :K1u ∈ L2(H,ρν)

} �→ L2(H,ρν), u �→ K1u

is dissipative in L2(H,ρν) and the range of λI −K1 :D �→ L2(H,ρν) is dense in
L2(H,ρν) for λ > 0. Then its closure K̃1 generates a contraction semigroup T̃1(t)

in L2(H,ρν), and the measure ρν is invariant for T̃1(t).

PROOF. As a first step we prove dissipativity, through estimates on R(λ,K1).
We remark that Lemma 2.2 holds for the measure ρν as well, with the same

proof. In particular, Cb(H) is dense in L1(H,ρν).
Let λ > λ0 and let f ∈ Cb(H). Set u = R(λ,K1)f . We recall that, since

ρ ∈ D(K∗
1 ) and K∗

1 ρ = 0, then for every u ∈ D(K1) we have
∫
H K1uρ dν =
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H uK∗

1 ρ dν = 0. So, multiplying both sides of λu−K1u = f by ρ and integrating
we obtain ∫

H
λuρ dν =

∫
H

fρ dν.

If f has nonnegative values ν-a.e., by Proposition 4.6 u has nonnegative values
ν-a.e., and the above equality implies

‖u‖L1(H,ρν) ≤ 1

λ
‖f ‖L1(H,ρν).(4.12)

In general, we split f as f = f + − f −. Since u = R(λ,K1)f
+ − R(λ,K1)f

− =
u+ −u−, (4.12) follows for every f ∈ Cb(H). Since Cb(H) is dense in L1(H,ρν),
the resolvent R(λ,K1) may be extended to a bounded operator [still denoted by
R(λ,K1)] to L1(H,ρν), and∥∥R(λ,K1)f

∥∥
L1(H,ρν) ≤ 1

λ
‖f ‖L1(H,ρν), f ∈ L1(H,ρν).(4.13)

Let now f ∈ L∞(H,ρν). f is in fact an equivalence class of functions, that
contains a Borel bounded element. Indeed, for each element ϕ ∈ f , setting f̃ (x) =
ϕ(x) if |ϕ(x)| ≤ ‖f ‖L∞(H,ρν), f̃ (x) = 0 if |ϕ(x)| > ‖f ‖L∞(H,ρν), the function f̃

is Borel and bounded, and ‖f ‖L∞(H,ρν) = supx∈H |f̃ (x)|.
Let us go back to the resolvent equation, λu − K1u = f̃ . Since f̃ is Borel and

bounded, it can be seen as an element of L∞(H, ν), identifying it with its equiva-
lence class.1 Moreover, ‖f̃ ‖L∞(H,ν) = supx∈H |f̃ (x)| = ‖f̃ ‖L∞(H,ρν).

Since sup |f̃ | − f̃ (x) ≥ 0 for every x, still by Proposition 4.6 we have
R(λ,K1)(sup |f̃ | − f̃ ) = sup |f̃ |/λ − u ≥ 0, ν-a.e. Similarly, since f̃ (x) +
sup |f̃ | ≥ 0 for every x, then u + sup |f̃ |/λ ≥ 0, ν-a.e. So, we get an L∞ esti-
mate, ‖u‖L∞(H,ν) ≤ sup |f̃ |/λ. Hence∥∥R(λ,K1)f

∥∥
L∞(H,ρν) ≤ ∥∥R(λ,K1)f̃

∥∥
L∞(H,ν) ≤ 1

λ
‖f ‖L∞(H,ρν),

(4.14)
f ∈ L∞(H,ρν).

By interpolation, R(λ,K1) may be extended to L2(H,ρν) [and, in fact, to all
spaces Lp(H,ρν)], in such a way that the norm of the extension does not exceed
1/λ. In particular, ∥∥R(λ,K1)f

∥∥
L2(H,ρν) ≤ 1

λ
‖f ‖L2(H,ρν),

(4.15)
f ∈ L2(H,ρν) ∩ L2(H, ν).

1Note that ρ may vanish on some set with positive measure, so that f does not belong necessarily
to L∞(H,ν), and even it does, its L∞(H,ν) norm may be bigger than its L∞(H,ρν) norm.
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Let now u ∈ D. For λ > λ0 estimate (4.15) gives

λ‖u‖L2(H,ρν) ≤ ‖λu − K1u‖L2(H,ρν)

and squaring the norms of both sides, we obtain

〈u,K1u〉L2(H,ρν) ≤ 1

2λ
‖K1u‖2

L2(H,ρν)
.

Letting λ → ∞ yields 〈u,K1u〉L2(H,ρν) ≤ 0, namely the restriction of K1 to D is
dissipative in L2(H,ρν).

We remark that D is dense in L2(H,ρν) since it contains FC∞
b (H) which is

dense by the extension of Lemma 2.2 to L2(H,ρν). Moreover (λI − K1)(D) is
dense for λ > ω0, since it contains FC∞

b (H). Indeed, if f ∈ FC∞
b (H), then u =

R(λ,K1)f belongs to D and λu − K1u = f .
Let us denote by K̃1 :D(K̃1) �→ L2(H,ρν) the closure of K1 :D �→ L2(H,ρν).

By the Lumer–Phillips theorem, K̃1 generates a strongly continuous contraction
semigroup in L2(H,ρν), and D is a core for K̃1. So, for every ϕ ∈ D(K̃1) there is
a sequence of functions ϕn ∈ D such that ϕn → ϕ and K1ϕn → K̃1ϕ in L2(H,ρν).
For every n we have ∫

H
K1ϕnρ dν =

∫
H

ϕnK
∗
1 ρ dν = 0

and letting n → ∞ we obtain
∫
H K̃1ϕρ dν = 0. This proves the last statement. �

5. Kolmogorov equations of stochastic reaction–diffusion equations. Let
H = L2((0,1), dξ), and let A be the realization of the second order deriva-
tive with Dirichlet boundary condition, that is, D(A) = W 2,2((0, π), dξ) ∩
W

1,2
0 ((0, π), dξ), Ax = x′′.
We consider the Gaussian measure μ in H with mean 0 and covariance

Q := −1
2A−1. A canonical orthonormal basis of H consists of the functions

ek(ξ) := √
2 sin(kπξ), k ∈ N, that are eigenfunctions of Q with eigenvalues

λk := 1/(2k2π2).
Let � :R �→R be any convex lowerly bounded function, with (at most) polyno-

mial growth at infinity, say∣∣�(t)
∣∣ ≤ C

(
1 + |t |p1

)
, t ∈ R,(5.1)

for some C > 0, p1 ≥ 2. We set

U(x) =
⎧⎪⎨⎪⎩

∫ 1

0
�

(
x(ξ)

)
dξ, x ∈ Lp1(0,1),

+∞, x /∈ Lp1(0,1).

(5.2)

Section 5.1 is devoted to check that U satisfies Hypotheses 2.1 and 2.8, so that we
can apply Theorem 3.9 to obtain regularity results for the solution u to (1.1). Then
in Section 5.2 we show that under an additional assumption u fulfills (3.33) too.
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5.1. Checking Hypotheses 2.1 and 2.8. We first note that U is finite μ-a.e.,
thanks to the next lemma. Its statement should be well known; however, we write
down a simple proof for the reader’s convenience.

LEMMA 5.1. For every p ≥ 2 we have∫
H

∫ 1

0

∣∣x(ξ)
∣∣p dξ dμ < ∞,(5.3)

and hence μ(Lp(0,1)) = 1. Moreover, x �→ ‖x‖Lp(0,1) ∈ Lq(H,μ) for every
q ≥ 1.

PROOF. Let Pn be the orthogonal projection on the subspace spanned by
e1, . . . , en. For every ξ ∈ (0,1) and m < n ∈ N, the function x �→ Pnx(ξ) −
Pmx(ξ) is a Gaussian random variable N0,

∑n
k=m+1 λkek(ξ)2 . Then, for p ≥ 1,∫

H

∣∣Pnx(ξ) − Pmx(ξ)
∣∣p dμ =

∫
R

|η|pN0,
∑n

k=m+1 λkek(ξ)2(dη)

= cp

(
n∑

k=m+1

λkek(ξ)2

)p/2

≤ c̃p

(
n∑

k=m+1

λk

)p/2

,

with c̃p = 2p/2cp , so that∫
H

∫ 1

0

∣∣Pnx(ξ) − Pmx(ξ)
∣∣p dξ dμ =

∫ 1

0

∫
H

∣∣Pnx(ξ) − Pmx(ξ)
∣∣p dμdξ

≤ c̃p

(
n∑

k=m+1

λk

)p/2

.

This implies that the sequence (x, ξ) �→ Pnx(ξ) converges in Lp(H × (0,1),μ ×
dξ) to a limit function u that belongs to Lp(H × (0,1),μ×dξ) for every p. Let us
show that u(x, ξ) = x(ξ) taking p = 2: indeed,

∫ 1
0 |Pnx(ξ) − x(ξ)|2 dξ vanishes

for every x ∈ H as n → ∞, and it is bounded by ‖x‖2 which belongs to L1(H,μ),
so that by the dominated convergence theorem,

∫
H

∫ 1
0 |Pnx(ξ) − x(ξ)|2 dξ dμ

vanishes as n → ∞. Then u(x, ξ) = x(ξ), and (5.3) follows. It implies that
μ(Lp(H,μ)) = 1 for every p ≥ 2 and that x �→ ‖x‖Lp(0,1) ∈ Lp(H,μ). For q > p

and x ∈ Lq(0,1), the Hölder inequality yields ‖x‖Lp(0,1) ≤ ‖x‖Lq(0,1) so that
x �→ ‖x‖Lp(0,1) ∈ Lq(H,μ). �

The function U defined by (5.2) is convex and bounded from below because �

is. Using the Fatou lemma, it is easily seen to be lowerly semicontinuous. By as-
sumption (5.1) and Lemma 5.1, U ∈ Lp(H,μ) for every p ≥ 1, and the measures
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μ and ν = e−2Uμ/
∫
H e−2U dμ are equivalent. For U belong to some Sobolev

space it is sufficient that also �′ has at most polynomial growth, as the next propo-
sition shows.

PROPOSITION 5.2. Let � :R �→ R be any C1 convex lowerly bounded func-
tion such that ∣∣�′(t)

∣∣ ≤ C
(
1 + |t |p2

)
, t ∈R,(5.4)

for some C > 0, p2 ≥ 1. Then the function U defined in (5.2) belongs to
W

1,p
0 (H,μ) for every p ≥ 1, and DU(x) = �′ ◦ x for a.e. x ∈ H [namely, for

each x ∈ L2p2(0,1)].

PROOF. By (5.4), � satisfies (5.1) with p1 = p2 +1, so that U ∈ Lp(H,μ) for

every p by Lemma 5.1. To prove that U ∈ W
1,p
0 (H,μ) we shall approach U by its

Moreau–Yosida approximations Uα defined in (2.9). Each Uα is continuously dif-

ferentiable and DUα is Lipschitz continuous, hence Uα ∈ W
1,p
0 (H,μ) for every p.

This can be easily proved arguing as in the case p = 2 of [8], Proposition 10.11.
Since Uα(x) converges monotonically to U(x) at each x such that U(x) < ∞,

by Lemma 5.1 Uα converges to U , μ-a.e. Since

infU ≤ Uα(x) ≤ U(x)

≤ C

(
1 +

∫ 1

0

∣∣x(ξ)
∣∣p1 dξ

)

≤ C

(
1 +

(∫ 1

0

∣∣x(ξ)
∣∣p1p dξ

)1/p)
,

by Lemma 5.1 and the dominated convergence theorem, Uα → U in Lp(H,μ).
Let x ∈ L2p2(0,1). Then the subdifferential ∂U(x) is not empty. Indeed, since

� is convex, for each y ∈ H we have

U(y) − U(x) =
∫ π

0

[
�

(
x(ξ)

) − �
(
y(ξ)

)]
dξ

(5.5)
≥

∫ π

0
�′(x(ξ)

)(
x(ξ) − y(ξ)

)
dξ,

which implies that the function �′ ◦ x ∈ H belongs to ∂U(x). In fact, �′ ◦ x ∈
H is the unique element of ∂U(x); see, for example, [2], Proposition 2.5. By
Lemma 5.1, x �→ ‖�′ ◦ x‖ ∈ Lp(H,μ), and again by the dominated conver-
gence theorem

∫
H ‖DUα(x) − �′ ◦ x‖p dμ → 0 as α → 0, which shows that

U ∈ W
1,p
0 (H,μ) and DU(x) = �′ ◦ x, μ-a.e. �

If the assumptions of Proposition 5.2 hold, then U satisfies Hypotheses
2.1 and 2.8, and consequently the results of Theorem 3.9 and of Propositions 4.7
and 4.8 hold.
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5.2. Further estimates of Du. We are going to show that for every λ > 0 and
f ∈ L2(H, ν), the solution of (1.1) satisfies estimate (3.33) as well, under reason-
able additional assumptions on �. We use the following preliminary result.

PROPOSITION 5.3. Let g ∈ C2(R) be such that∣∣g′′(t)
∣∣ ≤ C

(
1 + |t |m)

, t ∈ R(5.6)

for some C > 0, m ≥ 1. Then the function F(x) := g◦x belongs to W
1,q
1/2 (H,μ;H)

for all q > 1. If in addition gα :R �→ R are C2 functions fulfilling (5.6) with con-
stant C independent of α > 0 and gα , g′

α pointwise converge to g, g′, respectively,

as α → 0+, then Fα(x) := gα ◦ x converges to F in W
1,q
1/2 (H,μ;H) as α → 0+

for all q > 1.

PROOF. As first step we show that for each x ∈ L2m(0,1) (hence, μ-a.e.), F is
differentiable in any direction h ∈ Q1/2(H) = H 1

0 (0,1) and that ∂F (x)
∂h

= g′ ◦ x ·h.
We have in fact for all h ∈ H 1

0 (0,1), ξ ∈ (0,1) and all 0 < |t | ≤ 1,∣∣∣∣g(x + th)(ξ) − g(x(ξ))

t
− g′(x(ξ)

)
h(ξ)

∣∣∣∣
=

∣∣∣∣∫ 1

0

[
g′(x(ξ) + tσh(ξ)

) − g′(x(ξ)
)]

h(ξ) dσ

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ 1

0
g′′(x(ξ) + tσηh(ξ)

)
tσh(ξ)2 dη dσ

∣∣∣∣
≤ t‖h‖2∞C

(
1 + 2m−1|(∣∣x(ξ)

∣∣m + ‖h‖m∞
))

.

Now, taking the square and integrating over (0,1), yields∥∥∥∥F(x + th) − F(x)

t
− g′ ◦ x · h

∥∥∥∥
H

≤ tC(h)
(
1 + ‖x‖m

L2m

)
.

This implies that for each x ∈ L2m(0,1), F is differentiable at x in any direction
h ∈ H 1

0 (0,1) and that

∂F (x)

∂h
= g′ ◦ x · h.

Let us notice that F , ∂F/∂h belong to Lq(H,μ;H) for every q ≥ 1. Indeed, (5.6)
implies that |g(t)| ≤ M(1 + |t |m+2), |g′(t)| ≤ M(1 + |t |m+1) for every t ∈ R and
for some M > 0, so that |F(x(ξ))| ≤ M(1 +|x(ξ)|m+2), |∂F (x)/∂h(ξ)| ≤ M(1 +
|x(ξ)|m+1)‖h‖∞ and then∥∥F(x)

∥∥2
H ≤

∫ 1

0
M2(1 + ∣∣x(ξ)

∣∣m+2)2
dξ,

∥∥∥∥∂F (x)

∂h
(x)

∥∥∥∥2

H

≤ ‖h‖2∞
∫ 1

0
M2(1 + ∣∣x(ξ)

∣∣m+1)2
dξ,
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and the right-hand sides belong to Lq(H,μ) for every q . It follows from [3], Sec-
tion 5.2, that F belongs to Gq,1(H,μ;H) [i.e., F belongs to Lq(H,μ;H), it is
weakly differentiable in all directions of the Cameron–Martin space H 1

0 (0,1) and
any weak derivative ∂F (x)

∂h
with h ∈ H 1

0 (0,1) can be expressed as �(x)h, where
� ∈ Lq(H,μ;L(H 1

0 (0,1),H)) is such that ∂F (x)/∂h = �(x)(h)]. To show that

F ∈ W
1,q
1/2 (H,μ;H) we have still to check that ([3], Proposition 5.4.6, Corol-

lary 5.4.7)

∫
H

( ∑
h,k∈N

λhλk

〈
∂F (x)/∂eh, ek

〉2)q/2

dμ < ∞.

This is because a canonical orthonormal basis of H 1
0 (0,1) is just the set

{√λkek :k ∈ N}. Recalling that ‖ek‖∞ = √
2 for every k, we get

∣∣〈∂F (x)/∂eh, ek

〉∣∣ = ∣∣∣∣∫ 1

0
g′(x(ξ)

)
eh(ξ)ek(ξ) dξ

∣∣∣∣
≤ 2M

∫ 1

0

(
1 + ∣∣x(ξ)

∣∣m+1)
dξ

= 2M
(
1 + ‖x‖m+1

Lm+1

)
for each h, k ∈ N, which implies

∫
H

( ∑
h,k∈N

λhλk

〈
∂F (x)/∂eh, ek

〉2)q/2

dμ ≤ 2M

∫
H

(TrQ)q‖x‖q(m+1)

Lm+1 dμ < ∞,

so that F ∈ W
1,q
1/2 (H,μ;H).

Now we can show that Fα → F as α → 0. In fact, since (5.6) is fulfilled with
constant independent of α, there is M1 > 0 independent of α such that∣∣gα(t)

∣∣ ≤ M1
(
1 + |t |m+2), ∣∣g′

α(t)
∣∣ ≤ M1

(
1 + |t |m+1), t ∈ R.

Concerning the convergence of gα ◦ x to g ◦ x in Lq(H,μ;H) we have

∫
H

‖gα ◦ x − g ◦ x‖q
H dμ =

∫
H

(∫ 1

0

∣∣gα

(
x(ξ)

) − g
(
x(ξ)

)∣∣2 dξ

)q/2

dμ

≤
∫
H

∫ 1

0

∣∣gα

(
x(ξ)

) − g
(
x(ξ)

)∣∣q dξ dμ,

and the last integral goes to 0 as α → 0 by the dominated convergence theorem.
Therefore Fα(x) = gα ◦ x converges to F in Lq(H,μ;H). Concerning the con-
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vergence in W
1,q
1/2 (H,μ;H) we have∫

H

( ∑
h,k∈N

λhλk

〈
∂(gα ◦ x)/∂eh − ∂(g ◦ x)/∂eh, ek

〉2)q/2

dμ

=
∫
H

( ∑
h,k∈N

λhλk

(∫ 1

0

(
g′

α

(
x(ξ)

) − g′(x(ξ)
))

eh(ξ)ek(ξ) dξ

)2)q/2

dμ

≤ Cq

∫
H

( ∑
h,k∈N

λhλk

∫ 1

0

∣∣g′
α

(
x(ξ)

) − g′(x(ξ)
)∣∣2 dξ

)q/2

dμ

≤ Cq(TrQ)q
∫
H

∫ 1

0

∣∣g′
α

(
x(ξ)

) − g′(x(ξ)
)∣∣q dξ dμ,

and the last integral vanishes as α → 0 again by the dominated convergence theo-
rem. �

We shall use Proposition 5.3 to prove that the Moreau–Yosida approximations
Uα converge to U in W

2,q
1/2 (H,μ) for every q [for the moment, we only know

convergence in W 1,q(H,μ)].

PROPOSITION 5.4. Let � :R �→ R be any C3 convex lowerly bounded func-
tion such that ∣∣�′′′(t)

∣∣ ≤ C
(
1 + |t |m)

, t ∈ R,(5.7)

for some C, m > 0. Then U ∈ W
2,q
1/2 (H,μ) for all q > 1, and we have

lim
α→0

Uα = U in W
2,q
1/2 (H,μ) ∀q > 1.

PROOF. Let us apply Proposition 5.3 to F(x) = DU(x) = g ◦ x with g = �′.
Since g′′ has polynomial growth, F ∈ W

2,q
1/2 (H,μ;H) for all q , so that U ∈

W
2,q
1/2 (H,μ) for all q . Moreover DUα(x) = D0U(yα), where yα is the solution

of

yα + αD0U(yα) = x,

that is

yα + α�′(yα) = x.

Therefore

yα(ξ) = (
I + α�′)−1(

x(ξ)
)
, 0 < ξ < 1,

and so

DUα(x) = �′ ◦ (
I + α�′)−1 ◦ x.
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Setting gα(t) = �′ ◦(I +α�′)−1(t), we see that gα converges pointwise to g = �′,
and

g′
α = �′′ ◦ (I + α�′)−1

(1 + α�′′ ◦ (I + α�′)−1)

converges pointwise to g′ = �′′.
Moreover we notice that there exists M > 0, independent of α ∈ (0,1) such

that |(I + α�′)−1(t)| ≤ M + |t | for all t ∈ R. (5.7) implies that �′ and �′′
have polynomial growth as well; in particular |�′(t)| ≤ c1(1 + |t |m+2), so that
|gα(t)| ≤ c1(1 + (M + |t |)m+2). A similar estimate with m + 1 instead of m + 2
holds also for |g′

α(t)|. By the second part of Proposition 5.3, DUα converges to

DU in W
1,q
1/2 (H,μ;H) as α → 0, thereby Uα converges to U in W

2,q
1/2 (H,μ). �

As a final step, we can show that the solution to (1.1) satisfies (3.33) under the
assumptions of Proposition 5.4.

PROPOSITION 5.5. Let U be defined by (5.2) with � :R �→ R convex,
bounded from below, of class C3 and satisfying (5.7). Then for every λ > 0 and
f ∈ L2(H, ν) the weak solution u of (1.1) satisfies (3.33).

PROOF. It is sufficient to prove the statement for f ∈ Cb(H), which is dense
in L2(H, ν). By Lemma 3.10 there is a sequence (αn) → 0 such that uαn → u

in W 1,2(H, ν). Then Duαn → Du in L2(H, ν;H) so that (up to a subsequence)
Duαn(x) → Du(x) for almost all x. By Proposition 5.4, Uαn converges to U in
W

2,2
1/2(H,μ), thereby for all fixed h, k ∈N we have DhkUαn → DhkU in L2(H,μ).

Let us fix N ∈ N. Possibly choosing a further subsequence, we have DhkUαn →
DhkU pointwise a.e. for all h, k ≤ N . Therefore for μ-a.e. x ∈ H we have

lim
n→∞

N∑
h,k=1

DhkUαn(x)Dhuαn(x)Dkuαn(x)e−2Uαn(x)

=
N∑

h,k=1

DhkU(x)Dhu(x)Dk(x)e−2U(x)

and by Fatou’s lemma,∫
H

N∑
h,k=1

DhkU(x)Dhu(x)Dku(x) dν

=
∫
H

N∑
h,k=1

DhkU(x)Dhu(x)Dku(x)e−2U(x) dμ
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≤ lim inf
n→∞

∫
H

N∑
h,k=1

DhkUαn(x)Dhuαn(x)Dkuαn(x)e−2Uαn(x) dμ

≤ 4 lim inf
n→∞

∫
H

f 2e−2Uαn dμ = 4
∫
H

f 2 dν.

Now by Theorem 3.9 we know that x �→ ‖Du(x)‖H 1
0 (0,1) = ‖Q−1/2Du(x)‖H/

√
2

∈ L2(H,μ), therefore for almost any x ∈ H , Du(x) ∈ H 1
0 (0,1), whereas by

Proposition 5.4 it follows that x �→ ∑∞
h,k=1 λhλk(DhkU(x))2 belongs to L1(H,μ),

that is x �→ ‖D2U(x)‖L2(H
1
0 (0,1)) ∈ L2(H,μ). Therefore for almost x ∈ H ,

D2U(x) ∈ L2(H
1
0 (0,1)). It follows that for almost any x ∈ H the sequence∑N

h,k=1 DhkU(x)Dku(x)Dku(x) converges to
∑∞

h,k=1 DhkU(x)Dku(x)Dku(x).
Using once again Fatou’s lemma we can conclude that∫

H

∞∑
h,k=1

DhkU(x)Dhu(x)Dku(x) dν

=
∫
H

lim
N→∞

N∑
h,k=1

DhkU(x)Dhu(x)Dku(x) dν

≤ lim inf
N→∞

∫
H

N∑
h,k=1

DhkU(x)Dhu(x)Dku(x) dν ≤ 4
∫
H

f 2 dν.
�

Then we can apply all the results of Sections 3 and 4. In particular, we have the
following theorem.

THEOREM 5.6. Let � :R �→ R be any convex C1 lowerly bounded func-
tion satisfying (5.4), and let U be defined by (5.2). Then for every λ > 0 and
f ∈ L2(H, ν) the weak solution u to (1.1) belongs to W 2,2(H, ν) ∩ W

1,2
−1/2(H, ν),

and it satisfies (3.27), (3.28). If in addition � is C3 and satisfies (5.7), then u

satisfies (3.33) as well.

With our choice of U , the stochastic differential equation (1.2) in H reads as

dX = (
AX − �′(X)

)
dt + dW(t), X(0) = x,(5.8)

and hence it is a reaction–diffusion SPDE, whose Kolmogorov operator is just K.
As in Section 3.2.4, W(t) is any H -valued cylindrical Wiener process defined in
a probability space (�,F,P). The connection between (5.8) and (1.1) is stated in
the next proposition. The definition of mild solution to (5.8) is the same as in the
case of Lipschitz continuous DU .



2152 G. DA PRATO AND A. LUNARDI

PROPOSITION 5.7. Let � :R �→R be a convex lowerly bounded function sat-
isfying (5.4) for some p2 ≥ 1. Then for every x ∈ L2p2(0,1) (hence, for μ-a.e.
x ∈ H ) problem (5.8) has a unique mild solution X. For every f ∈ Cb(H) we have

u(x) =
∫ ∞

0
e−λt

E
(
f
(
X(t, x)

))
dt,(5.9)

μ-a.e. x ∈ H , where u is the weak solution to (1.1).

PROOF. Existence of a unique mild solution to (5.8) follows from [14],
Theorem 5.5.8, that deals with Cauchy problems such as dX = (AX+F(X))dt +
dW(t), X(0) = x. In our case, F(x) = −DU(x) = −�′(x) satisfies the as-
sumptions of [14], Theorem 5.5.8, with K = L2p2(0,1). In particular, Hypoth-
esis 5.5 is satisfied, since in [7], Proposition 4.3, it is proved that (t, ξ) �→∫ t

0 e(t−s)A dW(s)(ξ) is a.s. continuous.
The mild solution is obtained as the limit of mild solutions to approximating

problems,

dXα = (
AXα − DUα(X)

)
dt + dW(t), X(0) = x,

as α → 0, where DUα are the Yosida approximations of DU , and for each T > 0
we have limα→0 sup0≤t≤T ‖Xα(t) − X(t)‖ = 0, P-a.e. By Proposition 3.8, for ev-
ery λ > 0,

R(λ,Kα)f =
∫ ∞

0
e−λt

E
(
f
(
Xα(t, ·)))dt.(5.10)

We recall that R(λ,Kα)f = uα is the weak solution to (3.29), and that a sequence
uαn with αn → 0 converges to u in L2(H,μ) as n → ∞, by Lemma 3.10. More-
over,

∫ ∞
0 e−λt

E(f (Xαn(t, ·))) dt goes to
∫ ∞

0 e−λt
E(f (X(t, x)) dt pointwise μ-a.e.

and also in L2(H,μ), by the dominated convergence theorem. Taking α = αn

in (5.10) and letting n → ∞ formula (5.9) follows. �

Concerning perturbed equations,

dX = (
AX − �′(X) + B(X)

)
dt + dW(t),(5.11)

we do not know about existence of invariant measures except in the case of
bounded perturbations of Ornstein–Uhlenbeck equations. See [14], Chapter 8.
If B is a bounded Borel function, Proposition 4.8 yields that the corresponding
Kolmogorov semigroup etK1 has an invariant measure ν. The verification of for-
mula (5.9) where now X(t, x) is the mild solution to (5.11) and u = R(λ,K1) is
not obvious. In fact, even existence of a mild solution is not obvious. It could be
done through the Girsanov transform, but the argument is quite delicate and we
hope to be able to treat the subject in a future paper.

6. Kolmogorov equations of stochastic Cahn–Hilliard-type problems. In
Section 5 we have seen that the superposition x �→ �′ ◦ x may be seen as the
gradient of a suitable function U in the space L2(0,1). This is no longer true for
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operators of the type x �→ d
dξ

(�′ ◦ x) or x �→ d2

dξ2 (�′ ◦ x). However they may be
still interpreted as gradients, with suitable choices of the space H .

Here we set V := {x ∈ H 1(0,1) :
∫ 1

0 x(ξ) dξ = 0}, with scalar product 〈x, y〉V =∫ 1
0 x′(ξ)y′(ξ) dξ , and we choose H to be the dual space of V , endowed with the

dual norm. We consider the spaces L̃p(0,1) := {x ∈ Lp(0,1) :
∫ 1

0 x(ξ) dξ = 0} as
subspaces of H , identifying any x ∈ Lp(0,1) with zero mean value with the ele-
ment y �→ ∫ 1

0 x(ξ)y(ξ) dξ of H .
The standard extension B of the negative second order derivative on V with

values in H is defined by

Bx(y) =
∫ 1

0
x′(ξ)y′(ξ) dξ, y ∈ V.

If x ∈ V ∩ H 2(0,1) and x′(0) = x′(1) = 0, then Bx(y) = − ∫ 1
0 x′′(ξ)y(ξ) dξ so

that, with the above identification, B is an extension of (minus) the second or-
der derivative with Neumann boundary condition. The operator B is an isometry
between V and H , since ‖Bx‖H = supy �=0〈x, y〉V /‖y‖V = ‖x‖V . Moreover, if
z ∈ L̃2(0,1) and x ∈ V , then 〈z,Bx〉H = 〈z, x〉L2(0,1).

Let ek(ξ) := √
2 cos(kπξ). Then {ek :k ∈ N} is an orthonormal basis of

L̃2(0,1), Bek = k2π2ek , and setting fk = kπek , the set {fk :k ∈ N} is an orthonor-
mal basis of H . We recall that Pn is the orthogonal projection on the subspace
spanned by the first n elements of the basis,

Pnx =
n∑

k=1

〈x,fk〉Hfk.

REMARK 6.1. Note that the restriction of Pn to L̃2(0,1) is the orthogonal
projection in L̃2(0,1) on the subspace spanned by e1, . . . , en. Indeed, for every
x ∈ L̃2(0,1) and k ∈ N we have

〈x,fk〉Hfk = 〈
x,B−1fk

〉
L2fk =

〈
x,

ek

kπ

〉
L2

kπek = 〈x, ek〉L2ek.

Here we set A = −B2 and, as usual, we denote by μ the Gaussian measure on H

with zero mean and covariance Q = −A−1/2. Note that the eigenvalues of Q are
now λk := 1/2π4k4, and B = √

2Q1/2.
We consider a function � :R �→R satisfying the following assumptions.

HYPOTHESIS 6.2. � :R �→ R is a C1 convex lowerly bounded function, sat-
isfying (5.4) and

lim
r→±∞

�(r)

|r| = +∞.(6.1)
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Setting p1 = p2 + 1, we define U as in Section 5.1, by

U(x) =
⎧⎪⎨⎪⎩

∫ 1

0
�

(
x(ξ)

)
dξ, x ∈ L̃p1(0,1),

+∞, x /∈ L̃p1(0,1).

(6.2)

U is obviously convex and bounded from below, moreover by [2], Proposition 2.8,
it is lower semicontinuous. To be more precise, in [2] the space H is the dual space
of H 1

0 (0,1), but the argument goes as well in our case. The subdifferential of U is
not empty at each x ∈ L̃1(0,1) such that �′ ◦ x ∈ V and it consists of the unique
element D0U(x) = B(�′ ◦ x).

We shall see that U ∈ W
1,2
1/2(H,μ), while U /∈ W

1,2
0 (H,μ). For the proof, in-

stead of approaching U by its Moreau–Yosida approximations, we shall approach
it by the sequence U ◦ Pn; namely we set

Un(x) =
∫ 1

0
�

(
Pnx(ξ)

)
dξ, x ∈ H.

By (5.4), � satisfies (5.1), and we have U(x) ≤ C(1 + ‖x‖p1
Lp1 (0,1)

), Un(x) ≤
C(1 + ‖Pnx‖p1

Lp1 (0,1)
). So, the starting point of our analysis is the study of the

functions x �→ ‖x‖Lp(0,1), x �→ ‖Pnx‖Lp(0,1) for p ≥ 2.

PROPOSITION 6.3. For each p ≥ 1 there is Cp > 0 such that

∫
H

∫ 1

0

∣∣Pnx(ξ)
∣∣p dξ dμ ≤ Cp

(
n∑

k=1

1

k2π2

)p/2

, n ∈ N,(6.3)

∫
H

∫ 1

0

∣∣Pnx(ξ) − Pmx(ξ)
∣∣p dξ dμ ≤ Cp

(
n∑

k=m+1

1

k2π2

)p/2

,

(6.4)
m < n ∈ N.

PROOF. First of all note that for every x ∈ H , Pnx is a smooth function. More-
over for every ξ ∈ (0,1) and m < n ∈ N, the function x �→ Pnx(ξ) − Pmx(ξ) is a
Gaussian random variable N0,

∑n
k=m+1(1/(π4k4))fk(ξ)2 . Then, for p ≥ 1,∫

H

∣∣Pnx(ξ) − Pmx(ξ)
∣∣p dμ

=
∫
R

|η|pN0,
∑n

k=m+1(1/(π4k4))fk(ξ)2(dη)

= cp

(
n∑

k=m+1

1

k2π2 ek(ξ)2

)p/2

≤ 2p/2cp

(
n∑

k=m+1

1

k2π2

)p/2

,
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so that∫
H

∫ 1

0

∣∣Pnx(ξ) − Pmx(ξ)
∣∣p dξ dμ

=
∫ 1

0

∫
H

∣∣Pnx(ξ) − Pmx(ξ)
∣∣p dμdξ ≤ 2p/2cp

(
n∑

k=m+1

1

k2π2

)p/2

;

that is, (6.4) holds. The proof of (6.3) is the same. �

Proposition 6.3 has several consequences.

COROLLARY 6.4. μ(L̃p(0,1)) = 1, and the sequence of functions (x, ξ) �→
Pnx(ξ) converges to (x, ξ) �→ x(ξ) in Lp(H × (0,1),μ × dξ), for every p ≥ 1.

PROOF. It is sufficient to prove that the statement holds for p = 2. Indeed,
estimate (6.4) implies that the sequence (x, ξ) �→ Pnx(ξ) converges in Lp(H ×
(0,1),μ × dξ) for every p to a limit function, that we identify with the function
(x, ξ) �→ x(ξ) taking p = 2. Once we know that

∫
H

∫ 1
0 |x(ξ)|p dξ dμ < ∞, then

μ(L̃p(0,1)) is obviously 1.
So, fix p = 2. Since∫ 1

0

∣∣Pnx(ξ)
∣∣2 dξ

=
∫ 1

0

n∑
h,k=1

〈x,fk〉H 〈x,fh〉Hfk(ξ)fh(ξ) dξ

=
∫ 1

0

n∑
k=1

〈x,fk〉2
Hfk(ξ)2 dξ,

then for every x ∈ H the sequence
∫ 1

0 |Pnx(ξ)|2 dξ is increasing, it converges to
‖x‖2

L2 if x ∈ L̃2(0,1), and to +∞ if x /∈ L̃2(0,1) by Remark 6.1. By monotone
convergence and (6.3) with p = 2 the limit function belongs to L1(H,μ), and this
implies μ(L̃2(0,1)) = 1. Consequently, the function (x, ξ) �→ x(ξ) is defined a.e.
in H × (0,1). Moreover,∫

L̃2(0,1)

∫ 1

0

∣∣Pnx(ξ) − x(ξ)
∣∣2 dξ dμ

=
∫
L̃2(0,1)

lim
m→∞

∫ 1

0

∣∣Pnx(ξ) − Pmx(ξ)
∣∣2 dξ dμ

≤ lim inf
m→∞

∫
L̃2(0,1)

∫ 1

0

∣∣Pnx(ξ) − Pmx(ξ)
∣∣2 dξ dμ.
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For each ε > 0 there is nε ∈ N such that for n, m ≥ nε we have
∫
L̃2(0,1)

∫ 1
0 |Pnx(ξ)−

Pmx(ξ)|2 dξ dμ ≤ ε. Then for n ≥ nε we get
∫
L̃2(0,1)

∫ 1
0 |Pnx(ξ)− x(ξ)|2 dξ dμ ≤

ε, and the statement follows. �

PROPOSITION 6.5. Under Hypothesis 6.2, U ∈ W
1,p
1/2 (H,μ) and

limn→∞ Un = U in Lp(H,μ), for every p ≥ 1. Moreover, DkU(x) =∫ 1
0 �′(x(ξ))fk(ξ) dξ for a.e. x ∈ H .

PROOF. As a first step, we remark that the sequence of functions x �→
‖Pnx‖p

Lp(0,1) is bounded in Ls(H,μ) for every s ≥ 1. Indeed, using the Hölder
inequality we get∫ 1

0

∣∣Pnx(ξ)
∣∣p dξ ≤

(∫ 1

0

∣∣Pnx(ξ)
∣∣ps

dξ

)1/s

, s ≥ 1,

and the right-hand side belongs to Ls(H,μ) with norm independent of n, by esti-
mate (6.3).

We already remarked that |Un(x)| ≤ ∫ 1
0 C(1+|Pnx(ξ)|)p1 dξ with p1 = p2 +1,

so that Un is bounded in Lp(H,μ) by a constant independent of n, for every p ≥ 1.
Let us prove that Un → U in Lp(H,μ). Using (5.4) and the Hölder inequality we
get∣∣Un(x) − U(x)

∣∣p ≤
(∫ 1

0

∣∣�(
Pnx(ξ)

) − �
(
x(ξ)

)∣∣dξ

)p

≤ Cp

(∫ 1

0

(
1 + ∣∣x(ξ)

∣∣ + ∣∣Pnx(ξ)
∣∣)p2

∣∣Pnx(ξ) − x(ξ)
∣∣dξ

)p

≤ Cp

(∫ 1

0

(
1 + ∣∣x(ξ)

∣∣ + ∣∣Pnx(ξ)
∣∣)2p2p dξ

)1/2

×
(∫ 1

0

∣∣Pnx(ξ) − x(ξ)
∣∣2p

dξ

)1/2

.

Since x �→ ‖1 + |x| + |Pnx|‖L2p2p(0,1) is bounded in L2p2p(H,μ) by a constant

independent of n, and ‖Pnx − x‖L2p(0,1) vanishes in L2p(H,μ) as n → ∞, by the
Hölder inequality the right-hand side vanishes in L1(H,μ) as n → ∞. Hence, U

in Lp(H,μ) and Un → U in Lp(H,μ) as n → ∞.
To prove that U ∈ W

1,p
1/2 (H,μ) it is enough to show that the sequence Un is

bounded in W
1,p
1/2 (H,μ) (e.g., [3], Lemma 5.4.4). We already know that it is

bounded in Lp(H,μ). Moreover each Un is continuously differentiable, since
it is the composition of x �→ Pnx which is smooth from H to C([0,1]), and
y �→ ∫ 1

0 �(y(ξ)) dξ which is continuously differentiable from C([0,1]) to R, and

DkUn(x) =
∫ 1

0
�′(Pnx(ξ)

)
fk(ξ) dξ, k ≤ n,(6.5)
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while DkUn(x) = 0 for k > n. Using again assumption (5.4) and the Hölder in-
equality, we get

∣∣DkUn(x)
∣∣ = ∣∣∣∣∫ 1

0
�′(Pnx(ξ)

)
fk(ξ) dξ

∣∣∣∣ ≤ C

∫ 1

0

(
1 + ∣∣Pnx(ξ)

∣∣)p2
∣∣fk(ξ)

∣∣dξ

≤ C

λ
1/4
k

∥∥1 + |Pnx|∥∥p2

L2p2 (0,1)
,

for k ≤ n. Then

∥∥Q1/2DUn(x)
∥∥2 =

n∑
k=1

λk

∣∣DkUn(x)
∣∣2 ≤ C2

∞∑
k=1

λ
1/2
k

∥∥1 + |Pnx|∥∥2p2

L2p2 (0,1)
.

By the first part of the proof we know that x �→ ‖Pnx‖2p2

L2p2 (0,1)
belongs to

L1(H,μ) with norm bounded by a constant independent of n. Since
∑∞

k=1 λ
1/2
k <

∞, then Un is bounded in W 1,p(H,μ) so that U ∈ W 1,p(H,μ).
Now we show that for every k ∈ N, a subsequence of DkUn converges to∫ 1

0 �′(x(ξ))fk(ξ) dξ in L2(H,μ). Then the equality DkU(x) = ∫ 1
0 �′(x(ξ)) ×

fk(ξ) dξ μ-a.e. follows using the integration by parts formula (2.1).
We have ∫

H

∣∣∣∣DkUn(x) −
∫ 1

0
�′(x(ξ)

)
fk(ξ) dξ

∣∣∣∣2 dμ

≤
∫
H

∫ 1

0

∣∣�′(Pnx(ξ)
) − �′(x(ξ)

)∣∣2fk(ξ)2 dξ dμ.

By Corollary 6.4, the sequence of functions (x, ξ) �→ Pnx(ξ) converges to
x(ξ) in L2(H,μ). Consequently, a subsequence converges μ-almost everywhere,
and since �′ is continuous, along such subsequence (x, ξ) �→ (�′(Pnx(ξ)) −
�′(x(ξ)))fk(ξ) vanishes. Moreover, by assumption (5.4),∣∣�′(Pnx(ξ)

) − �′(x(ξ)
)∣∣2fk(ξ)2 ≤ C2(2 + ∣∣Pnx(ξ)

∣∣p2 + ∣∣x(ξ)
∣∣p2

)‖fk‖2∞

which belongs to L1(H × (0,1),μ × dξ) with norm bounded by a constant in-
dependent of n. The statement follows by the dominated convergence theorem.

�

Then, U satisfies Hypothesis 2.1. So, the results of Theorem 3.9 and of Propo-
sitions 4.2, 4.6 hold.

We recall that the operator Q1/2D in the space L2(H, ν;H) is the closure of
the operator ϕ �→ Q1/2Dϕ defined in a set of smooth functions; see Definition 2.5.
However, we can identify Q1/2DU(x): indeed, recalling that B = Q−1/2/

√
2, we
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obtain

DkU(x) = 〈
�′ ◦ x,fk

〉
L2(0,1) =

〈
�′ ◦ x −

∫ 1

0
�′(x(ξ)

)
dξ,Bfk

〉
H

= λ
−1/2
k√

2

〈
�′ ◦ x −

∫ 1

0
�′(x(ξ)

)
dξ,fk

〉
H

for every x ∈ L̃2p2(0,1), so that

Q1/2DU(x) = 1√
2

∞∑
k=1

〈
�′ ◦ x −

∫ 1

0
�′(x(ξ)

)
dξ,fk

〉
H

fk

= �′ ◦ x − ∫ 1
0 �′(x(ξ)) dξ√

2
.

On the other hand, we already mentioned that if �′ ◦ x ∈ V [i.e., �′ ◦ x ∈ D(B)],
then D0U(x) = B(�′ ◦ x), so that, since Q1/2 = B−1/

√
2, Q1/2D0U(x) =

Q1/2DU(x). For such x we have〈
B
(
�′ ◦ x

)
,Du(x)

〉 = 〈
�′ ◦ x,BDu(x)

〉 = 〈
Q1/2DU(x),Q−1/2Du(x)

〉
= 〈

DU(x),Du(x)
〉
.

Then the stochastic differential equation (1.2) in H reads as

dX(t) =
(
− ∂4

∂ξ4 X − ∂2

∂ξ2 �′(X)

)
dt + dW(t), X(0) = x,(6.6)

and it is a stochastic Cahn–Hilliard equation, whose Kolmogorov operator is K.
It was studied in [16] and in several following papers, in particular in [9], where
existence and uniqueness of weak solutions were proved for polynomial nonlinear-
ities �. Here W(t) is, as usual, any H -valued cylindrical Wiener process defined
in a probability space (�,F,P).

We think that it is possible to relate the weak solution to (6.6) constructed in [9]
to the solution of the Kolmogorov equation by formula (3.24), at least in the model
case �(ξ) = ξ2m with m ∈ N. Indeed, for every x ∈ H the weak solution given
by [9], Theorem 2.1, is obtained through cylindrical approximations Xn(t), solu-
tions to

dXn = (
AnXn + PnB�′(PnX)

)
dt + Pn dW(t), Xn(0) = Pnx,(6.7)

with An = A|Pn(H) ∈ L(Pn(H)); identifying Pn(H) with R
n the Kolmogorov op-

erator Kn associated to (6.7) is

Knϕ = 1

2
�ϕ −

n∑
k=1

(
xk

2λk

+
∫ 1

0
�′

(
n∑

h=1

xhfh(ξ)

)
fk(ξ) dξ

)
Dkϕ.
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Taking into account such explicit expressions, one should be able to follow the pro-
cedure of Proposition 3.8 (that deals with the case of Lipschitz continuous DU ).
However, many details should be fixed, and giving a complete proof goes beyond
the aims of this paper.

Acknowledgement. We thank one of the referees for careful reading of the
manuscript, and for several remarks that helped to improve the paper.
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[16] ELEZOVIĆ, N. and MIKELIĆ, A. (1991). On the stochastic Cahn–Hilliard equation. Nonlinear
Anal. 16 1169–1200. MR1111627

[17] HAUSSMANN, U. G. and PARDOUX, É. (1986). Time reversal of diffusions. Ann. Probab. 14
1188–1205. MR0866342

http://www.ams.org/mathscinet-getitem?mr=1113223
http://www.ams.org/mathscinet-getitem?mr=2582280
http://www.ams.org/mathscinet-getitem?mr=1642391
http://www.ams.org/mathscinet-getitem?mr=0348562
http://www.ams.org/mathscinet-getitem?mr=1339737
http://www.ams.org/mathscinet-getitem?mr=0990239
http://www.ams.org/mathscinet-getitem?mr=2111320
http://www.ams.org/mathscinet-getitem?mr=2244975
http://www.ams.org/mathscinet-getitem?mr=1359472
http://www.ams.org/mathscinet-getitem?mr=1918538
http://www.ams.org/mathscinet-getitem?mr=3127884
http://www.ams.org/mathscinet-getitem?mr=1936019
http://www.ams.org/mathscinet-getitem?mr=1207136
http://www.ams.org/mathscinet-getitem?mr=1417491
http://www.ams.org/mathscinet-getitem?mr=1985790
http://www.ams.org/mathscinet-getitem?mr=1111627
http://www.ams.org/mathscinet-getitem?mr=0866342


2160 G. DA PRATO AND A. LUNARDI

[18] JONA-LASINIO, G. and SÉNÉOR, R. (1991). On a class of stochastic reaction–diffusion equa-
tions in two space dimensions. J. Phys. A 24 4123–4128. MR1126653

[19] LUNARDI, A., METAFUNE, G. and PALLARA, D. (2005). Dirichlet boundary conditions
for elliptic operators with unbounded drift. Proc. Amer. Math. Soc. 133 2625–2635.
MR2146208

[20] LUNARDI, A. and VESPRI, V. (1998). Optimal L∞ and Schauder estimates for elliptic and
parabolic operators with unbounded coefficients. In Reaction Diffusion Systems (Trieste,
1995) (G. Caristi and E. Mitidieri, eds.). Lecture Notes in Pure and Applied Mathematics
194 217–239. Dekker, New York. MR1472521

[21] PHELPS, R. R. (1978). Gaussian null sets and differentiability of Lipschitz map on Banach
spaces. Pacific J. Math. 77 523–531. MR0510938

[22] RÖCKNER, M. (1999). Lp-analysis of finite and infinite-dimensional diffusion operators. In
Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998)
(G. Da Prato, ed.). Lecture Notes in Math. 1715 65–116. Springer, Berlin. MR1731795

[23] SHIGEKAWA, I. (1992). Sobolev spaces over the Wiener space based on an Ornstein–
Uhlenbeck operator. J. Math. Kyoto Univ. 32 731–748. MR1194112

SCUOLA NORMALE SUPERIORE

PIAZZA DEI CAVALIERI, 7
56126 PISA

ITALY

E-MAIL: g.daprato@sns.it

DIPARTIMENTO DI MATEMATICA

UNIVERSITÀ DI PARMA

PARCO AREA DELLE SCIENZE, 53/A
43124 PARMA

ITALY

E-MAIL: alessandra.lunardi@unipr.it

http://www.ams.org/mathscinet-getitem?mr=1126653
http://www.ams.org/mathscinet-getitem?mr=2146208
http://www.ams.org/mathscinet-getitem?mr=1472521
http://www.ams.org/mathscinet-getitem?mr=0510938
http://www.ams.org/mathscinet-getitem?mr=1731795
http://www.ams.org/mathscinet-getitem?mr=1194112
mailto:g.daprato@sns.it
mailto:alessandra.lunardi@unipr.it

	Introduction
	Notation and preliminaries
	Sobolev spaces with respect to µ
	Sobolev spaces with respect to nu
	Positive and negative parts of elements of W1,2(H,nu)
	Functional inequalities and embeddings

	Moreau-Yosida approximations

	Elliptic problems
	Weak solutions
	The case of Lipschitz continuous DU
	K:FC3b(H)->L2(H,nu) is dissipative
	(lambdaI-K)(FC3b(H)) is dense in L2(H,nu)
	W2,2(H,nu) regularity of the strong solution and other estimates
	Weak=strong

	The general case
	Another maximal estimate

	Perturbations
	First perturbation
	Second perturbation

	Kolmogorov equations of stochastic reaction-diffusion equations
	Checking Hypotheses 2.1 and 2.8
	Further estimates of Du

	Kolmogorov equations of stochastic Cahn-Hilliard-type problems
	Acknowledgement
	References
	Author's Addresses

