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SUBORDINATION FOR THE SUM OF TWO RANDOM MATRICES

BY V. KARGIN

University of Cambridge

This paper is about the relation of random matrix theory and the subor-
dination phenomenon in complex analysis. We find that the resolvent of the
sum of two random matrices is approximately subordinated to the resolvents
of the original matrices. We estimate the error terms in this relation and in the
subordination relation for the traces of the resolvents. This allows us to prove
a local limit law for eigenvalues and a delocalization result for eigenvectors
of the sum of two random matrices. In addition, we use subordination to de-
termine the limit of the largest eigenvalue for the rank-one deformations of
unitary-invariant random matrices.

1. Introduction.

1.1. Subordination. Much of the modern approach to random matrices is
based on the analysis of how the resolvent of a matrix A, that is, the function
GA(z) = (A − zI)−1, behaves when A is modified by a random perturbation
(see [23], e.g.). In this paper, we investigate what happens with the resolvent if
an independent rotationally invariant random matrix B is added to A. We find that
the resolvent of the sum A+B is (approximately) subordinated to the resolvent of
the original matrix A.

The concept of subordination comes from the complex analysis. If f (z)

and g(z) are two functions which are analytic in the upper half-plane C
+ :=

{z : Im z > 0}, then f (z) is subordinated to g(z) if there exists an analytic function
ω(z) :C+ → C

+, such that f (z) = g(ω(z)) and Imω(z) ≥ Im z for all z ∈ C
+. In

this definition, f (z) and g(z) can be vector or operator valued functions.
Voiculescu and Biane [12, 44] have discovered that the subordination holds for

the resolvent of the sum of two free operators in a von Neumann algebra. (See also
[6] and [19] for different proofs of these results.) This subordination result can be
formulated as follows (cf. Theorem 3.1 in [12]). Let A be a von Neumann opera-
tor algebra with the normal faithful trace τ :A → C. If two self-adjoint operators
A,B ∈ A are free in the sense of Voiculescu (see [34]), then the following identity
holds:

τ
(
GA+B(z)|A)= GA

(
ωB(z)

)
,(1)
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where τ(·|A) denotes the conditional expectation on the subalgebra generated by
operator A, and ωB(z) is a function analytic in C

+ and such that ImωB(z) ≥ Im z.
In other words, τ(GA+B(z)|A) is subordinated to GA(z).

This subordination result is very useful since it implies results about the smooth-
ness of the spectral distribution of the sum A + B .

Since large independent random matrices are asymptotically free [41, 43], it
is natural to ask whether subordination holds in the context of random matrices.
Some results in this direction have been recently obtained in [18, 33] and [15].
In [18] (which builds on an earlier work in [17]), the authors study the matrix
AN + WN/

√
N , where AN and WN are N -by-N Hermitian matrices, AN is de-

terministic and WN is Wigner. It is assumed that the eigenvalue distribution of
AN weakly converges to a measure ν as N → ∞ and that the largest r eigenval-
ues of AN (“spikes”) are fixed and are outside of the support of ν. The authors
are interested in the behavior of r largest eigenvalues of AN + WN/

√
N and this

question leads them to the study of the subordination for the trace of the resolvent
of AN + WN/

√
N .

In further developments, in [33] and in [15], the setup of [18] is generalized
for perturbations of the block random matrices and sample covariance matrices,
respectively.

We are interested in a somewhat different setup. Let Ã and B̃ be two N -by-N
diagonal matrices with real entries. Define the random matrices A := V ÃV ∗ and
B := UB̃U∗ where U and V are two N -by-N random independent uniformly
distributed unitary matrices, and define H := A + B . Note that the distribution of
eigenvalues of H is the same as that of Ã+UB̃U∗, however, it will be convenient
to treat A and B symmetrically. The resolvent of H is defined as GH(z) := (H −
zI)−1 and the Stieltjes transform of H is defined as the normalized trace of the
resolvent:

mH(z) := 1

N
Tr
(
GH(z)

)
.

The resolvents and the Stieltjes transforms of matrices A and B are defined simi-
larly.

Is it true that GH(z) is subordinated to GA(z) and GB(z) for sufficiently
large N?

First, we need to define a candidate subordination function. Let

ωB(z) := z − EfB(z)

EmH(z)
and ωA(z) := z − EfA(z)

EmH(z)
,(2)

where

fB(z) := N−1 Tr
(
BGH(z)

)
and fA(z) := N−1 Tr

(
AGH(z)

)
.

We claim ωA(z) and ωB(z) are “almost” subordination functions.
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THEOREM 1.1. Assume that η := Im z ∈ (0,1) and |Re z| ≤ K(A,B) :=
max{‖A‖,‖B‖}. Then for all N 
 η−5,

min
{
Im
(
ωA(z)

)
, Im

(
ωB(z)

)}≥ η − c

Nη7 ,

with c > 0 that depends only on K(A,B).

In other words, for all sufficiently large N , the excess of the imaginary parts
of functions ωA(z) and ωB(z) over Im z is almost nonnegative. The proof of this
theorem is postponed to the next section.

Now we are able to formulate the main result.
[We use the following notation. The average of a random variable X over

U is denoted by EU(X) := E(X|V ) and the average over V is denoted by
EV (X) := E(X|U). The unconditional expectation value is denoted by E(X). Sim-
ilar notation will be used for conditional probabilities and variances. For example,
VarV (X) = EV ((X −EV X)2). The notation x � y and x = O(y) mean that there
exists a constant C > 0 such that ‖x‖ ≤ Cy. The constants in these inequalities
may depend on K(A,B) := max{‖A‖,‖B‖}. The norm ‖ · ‖ is the usual uniform
norm on matrices.]

THEOREM 1.2. Assume that η := Im z ∈ (0,1) and |Re z| ≤ K(A,B) :=
max{‖A‖,‖B‖}. Suppose that N 
 η−7. Then we have:

(i)

EUGH(z) − GA

(
ωB(z)

)= O

(
1

Nη6

)
,(3)

(ii)

EmH(z) − mA

(
ωB(z)

)= O

(
1

N2η6

)
,

(iii)

PU

{∣∣(GH(z)
)
ij − (GA

(
ωB(z)

))
ij

∣∣≥ δ
}≤ exp

(−cδ2N3/7),
for all N ≥ N0, where N0 can depend on K(A,B) and on δ.

Estimates similar to estimates in parts (i) and (iii) hold for the conditional ex-
pectations with respect to V . The expectation in part (ii) is unconditional since
EmH(z) = EUmH(z) = EV mH(z) (by an application of Lemma B.2 in the Ap-
pendix). An estimate similar to the estimate in part (ii) holds for EmH(z) −
mB(ωA(z)).

It is easy to check (see Lemma B.1) that if the basis is chosen in such a way that
A is diagonal then the matrix EUGH(z) is also diagonal. Hence, parts (i) and (iii)
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of the theorem essentially say that if A is diagonal then GH(z) is approximately
diagonal and its diagonal entries satisfy the formula(

GH(z)
)
ii ≈ 1

Aii − ωB(z)
.

Part (ii) says that taking the trace of the resolvent makes the error in the approx-
imate formula even smaller, O(N−2η−6) instead of O(N−1η−6).

It is interesting to compare this result with the results in [18]. Let H = A +
W/

√
N where W is the N -by-N Wigner matrix with i.i.d. Gaussian entries of

variance σ 2. Let mH(z) := N−1
ETrGH(z). (Note that E has a slightly different

meaning here. It is the expectation taken with respect to the randomness in the
Wigner matrix.) It was proved in [18] that for all z ∈ C

+,

mH(z) = mA

(
z + σ 2mH(z)

)+ O
(
N−2),(4)

with the constant in the O-term that depends on z. In addition, if W is a non-
Gaussian Wigner matrix, then the same formula is proved in [18] with an additional
term on the right of the form L(z)/N .

Formula (4) gives a subordination result with the subordination function ωB =
z + σ 2mH(z). Our Theorem 1.2 holds for a more general matrix model and gives
estimates for resolvents as well as for the Stieltjes transforms. These estimates
give the explicit dependence of the error term on z unlike formula (4). These ad-
vantages are crucial for the applications to the local distribution of eigenvalues and
delocalization of eigenvectors.

Now we turn to these applications.

1.2. Delocalization. Delocalization of eigenvectors generally refers to the sit-
uation when all individual coordinates of a normalized eigenvector vα in a specific
basis are not greater than N−κ/2 with a high probability. Because of normaliza-
tion, the eigenvector is forced to be spread over at least Nκ coordinates and it is
customary to say that the delocalization length of eigenvectors is at least Nκ .

The question about delocalization of eigenvectors frequently occurs in physics.
For example, a famous open problem is to show that for d ≥ 3 the eigenvectors of
random Schrödinger operators on Z

d are completely delocalized for small disor-
der. Recently, there was some progress on delocalization of eigenvectors in sim-
pler models, for instance, in the case of random Wigner matrices and in the case
of random band matrices. In the former case, the complete delocalization has been
established recently (see [20] for a review) and the method is similar to the method
that is used in this paper. In the case of band matrices, it is expected that complete
delocalization holds for matrices with the band width W greater than

√
N . What

was actually shown in this case is that the delocalization length is greater than
W 1+d/6 ([21], and an improvement was recently achieved in [22]). The method
is based on quantum diffusion and different from the method that is used in this
paper.
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In our model, we say that the eigenvectors ν
(N)
a of a sequence of matrices HN =

AN + UBNU∗ are delocalized at length Nκ in the interval I , if there exists δ > 0
such that

P
{∣∣v(N)

a (i)
∣∣2 > N−κ logN

}≤ exp
(−N−δ),

for all sufficiently large N , all i ∈ {1, . . . ,N} and all ν
(N)
a such that the correspond-

ing eigenvalues are in the interval I .
Let μAN

be the empirical measure of eigenvalues of AN , that is, μAN
:=

N−1∑N
k=1 δλk

, where λk are eigenvalues of μAN
. Define μBN

similarly. We are
going to prove that the eigenvalues of HN are delocalized at a certain scale if μAN

and μBN
are close enough to a couple of measures that satisfy a regularity condi-

tions.
As a measure of closeness between probability measures μ and ν, we use the

Lévy distance

dL(μ, ν) = sup
x

inf
{
s ≥ 0 :Fν(x − s) − s ≤ Fμ(x) ≤ Fν(x + s) + s

}
,

where Fμ(t) and Fν(t) are the cumulative distribution functions of μ and ν. Note
that μ(N) → μ in distribution if and only if dL(μ(N),μ) → 0. (See Theorem III.1.2
on page 314 and Exercise III.1.4 on page 316 in [40].)

THEOREM 1.3. Assume that (i) a pair of probability measures (μα,μβ)

is smooth in a closed interval I , and (ii) for a sequence of AN and BN ,
max{‖AN‖,‖BN‖} ≤ K for all N . Then there exists s > 0 such that if

max
{
dL(μAN

,μα), dL(μBN
,μβ)

}≤ s(5)

for N large enough, then eigenvectors of HN = AN + UBNU∗ are delocalized at
scale N1/7 in the interval I .

Note that we do not require the measures μAN
and μBN

to converge to μα

and μβ . It is enough that they are sufficiently close to μα and μβ for all large N .
The reason for this is that this weaker condition is enough to ensure that the sub-
ordination functions of the pair (μAN

,μBN
) are separated from zero in the region

η ≥ N−1/7. On the other hand, if μAN
and μBN

do converge to μα and μβ , then
condition (5) is automatically satisfied. This is perhaps the most important case in
applications.

We still need to explain what is meant by the smoothness of a pair (μα,μβ). Let
μα and μβ be two probability measures with bounded support, and let mα(z) :=∫
(t − z)−1μα(dt) and mβ(z) := ∫

(t − z)−1μβ(dt). The system of equations

m(z) = mα

(
ωβ(z)

)
,

m(z) = mβ

(
ωα(z)

)
and(6)

z − 1

m(z)
= ωα(z) + ωβ(z)
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has a unique solution (m(z),ωα(z),ωβ(z)) in the class of functions that are ana-
lytic in C

+ = {z : Im z > 0} and that have the following expansions at infinity:

m(z) = −z−1 + O
(
z−2),

(7)
ωα(z) = z + O(1) and ωβ(z) = z + O(1).

The function m(z), which we denote as mμα�μβ (z), is the Stieltjes transform of
a probability measure which is called the free convolution of measures μα and
μβ and denoted μα � μβ . The functions ωα(z) and ωβ(z) are the subordination
functions for the free convolution.

By Theorem 3.3 in [5], the limits ωj(x) = limη↓0 Imωj(x + iη) exist for j =
α,β , and we make the following definition. A pair of probability measures on the
real line (μα,μβ) is said to be smooth at x ∈ R if the following two conditions
hold:

(A) Imωj(x) > 0 for j = α,β , and
(B)

kμ(x) := 1

m′
μα

(ωβ(x))
+ 1

m′
μβ

(ωα(x))
− (ωα(x) + ωβ(x) − x

)2 �= 0.(8)

We say that the pair (μα,μβ) is smooth in interval I ⊂ R if ωα(z) and ωβ(z)

are continuous in a rectangle {z = x + iη|x ∈ I,0 ≤ η ≤ ε} where ε is a positive
constant, and if the pair (μα,μβ) is smooth at every point of I .

The proof of Theorem 1.3 is based on part (iii) of Theorem 1.2 which imply
that Im(GH)kk(λa + iη) ≤ Im(GA(ωB(λa + iη)))kk + δ. Then the assumption of
smoothness leads (after some work) to the conclusion that the quantity on the
right is bounded for all k and all N 
 η−1/7 with high probability. Therefore,
the components of the eigenvector corresponding to λa can be estimated by using
the bound on the resolvent∣∣va(k)

∣∣2 ≤ η ImGkk(λa + iη) ≤ Cη ≤ CN−1/7 logN.(9)

To get the last inequality, η is chosen as N−1/7 logN so that Theorem 1.2 is appli-
cable. The details are postponed to Section 3.

Let us add some comments about the assumption of smoothness. Condition (B)
is technical and holds for a generic point x ∈ R. It ensures that the solution of the
system (6) at x is stable with respect to a small perturbation in the system. Con-
dition (A) is essential and closely related to regularity properties of the measure
μα �μβ at x. Here are some cases when it holds:

(i) If μα = μβ = μ, and μ� μ is absolutely continuous with positive density
at x, then (A) is satisfied at the point x. In particular, if μ is an arbitrary measure
that does not have an atom with the mass greater than 1/2, then condition (A) is
satisfied at every point inside the support of μ�μ.



SUBORDINATION FOR THE SUM OF TWO RANDOM MATRICES 2125

(ii) If one of the probability measures has the semicircle distribution with the

density fsc(x) = 1
2π

√
(4 − x2)+, the density of μsc � μ is positive at x, and

|mμsc�μ(x)| �= 1, then condition (A) is satisfied. (For a more detailed discussion
of these examples, the reader can see Propositions 1.4 and 1.5 in [29].)

In fact, smoothness is likely to be a typical situation for pairs (μα,μβ). This is
because the free convolution operation has very strong smoothing properties. Even
if we start with two discrete measures μα and μβ , the free convolution μα �μβ is
absolutely continuous provided that the masses of an atom of μα and an atom of
μβ do not add up to more than 1.

How does one find pairs which are not smooth? A pair of measures (μα,μβ) is
not smooth at a point where the density of μα � μβ vanishes, in particular at the
boundary of the support of μα �μβ . One other example occurs when both μα and
μβ have an atom, and the sum of the atoms’ masses is greater than 1. In this case,
the free convolution μα �μβ also has an atom and, therefore, the pair (μα,μβ) is
not smooth at the location of this atom.

The result in Theorem 1.3 is certainly not optimal. The true localization length
is probably of order N under assumptions of the theorem, that is, eigenvectors are
likely to be completely delocalized.

1.3. Local limit for eigenvalue distribution. Another consequence of Theo-
rem 1.2 is the convergence of the eigenvalue counting measure on the local scale.

Let Nη∗(x) be the number of eigenvalues of HN in the interval I ∗ = [x−η∗, x+
η∗]. What can be said about Nη∗(x)/(2η∗N) when N → ∞? If η∗ is fixed, then it
is known [43] and [41] that the limit approaches μα � μβ(I ∗)/(2η∗). Local limit
theorems address the question of what happens if η∗ is not fixed but approaches 0
when N → ∞.

THEOREM 1.4. Assume that (i) max{dL(μAN
,μα), dL(μBN

,μβ)} → 0,
(ii) the pair of probability measures (μα,μβ) is smooth on interval I and
(iii) max{‖AN‖,‖BN‖} ≤ K for all N . Let ρμα�μβ denote the density of μα �μβ ,
and let η∗ = cN−1/7 logN . Then, for every x ∈ I ,

Nη∗(x)

2η∗N
→ ρμα�μβ (x)

in probability.

The theorem improves the local limit law in [28], where it was found that
it holds for the window size η∗ ∼ (logN)−1/2. The optimal result is probably
η∗ ∼ N−1+ε with arbitrarily small positive ε, similar to the case of classical Gaus-
sian ensembles and the case of Wigner/sample covariance matrices. The proof of
Theorem 1.4 will be given in Section 4.
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1.4. Largest eigenvalues of finite rank deformations of unitarily-invariant ma-
trices. The largest eigenvalues of finite-rank deformations of Wigner matrices
have been recently received much attention and studied in [15, 17, 18, 24, 30–
33, 36, 38, 39] and [37]. This study is closely connected to the study of spiked
population models in [2–4, 14] and [13].

The idea that the subordination identities are useful in the context of matrix
deformations has first appeared in the work of Capitaine, Donati-Martin, Feral and
Fevrier (see [18] and [15]). We will use this idea to give a different proof for a
result of Benaych-Georges and Nadakuditi in [10]. They considered the largest
eigenvalue of HN = AN +UNBNU∗

N , where AN is a finite rank Hermitian matrix,
and found a formula for the limits of the largest eigenvalues. (See also [8, 9] and
[11] for further developments.)

Theorem 1.2 allows us to obtain a different proof of Benaych-Georges and
Nadakuditi’s result. While their method is based on analysing the zeros of de-
terminants of certain matrix-valued functions, our method uses the singularities of
the resolvent traces. In particular, we use the description that Theorem 1.2 gives
for the resolvent behavior in the upper half-plane.

We consider the simplest case when matrix AN has rank one. The ideas of the
proof can be applied similarly in the case when AN is a finite-rank matrix with the
rank fixed and N approaching infinity.

Let ρμ(θ) be the largest real solution of the equation θmμ(x) + 1 = 0, and let
λ1(X) denote the largest eigenvalue of Hermitian matrix X.

THEOREM 1.5. Let HN = AN + UNBNU∗
N where AN is a rank-one Hermi-

tian matrix with the eigenvalue θ0 > 0, and BN is a Hermitian matrix with the
empirical eigenvalue distribution μBN

. Let λ1(BN) → L in probability. Assume
that matrices BN are uniformly bounded almost surely and that μBN

weakly con-
verges to a probability measure μ. Then

λ
(HN)
1 →

{
ρμ(θ0), if ρμ(θ0) > L,

L, otherwise,

where convergence is in probability.

The proof of Theorem 1.5 is based on the subordination-like formula, which we
will prove in Proposition 5.1:

EmHN
(z) = mBN

(z) + 1

N

m′
BN

(z)

mBN
(z)

(
1

θmBN
(z) + 1

− 1
)

+ Oη

(
1

N2

)
,(10)

where Oη(N
−2) denotes a function f (z) such that N2|f (z)| ≤ C(Im z)−k for

some k > 0 and C > 0. This formula explicitly shows the correction term to the
Stieltjes transform mBN

(z) that results from adding matrix AN . In particular, this
correction term has an additional pole to the right of L if and only if a zero of
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θmBN
(z)+1 is located to the right of L. This implies (after some additional work)

that ρμ(θ0) is the only possible limit point for the largest eigenvalue of HN .
After the preprint of this paper has appeared, the method of subordination func-

tions was used in [7] to generalize the results [10]. The main innovation in [7] is
that the matrix AN is no longer required to be finite rank. It is only required that it
has sufficiently large fixed eigenvalues (“spikes”).

Two standard examples in the deformation theory are Gaussian–Hermitian ma-
trices and Gaussian–Wishart matrices as BN . In these examples, Theorem 1.5
gives the results in agreement with available in the literature [3] and [17], with
ρH (θ) = θ + σ 2/θ and ρW(θ) = θ + λθ/(θ − 1).

Another example, which seems to be new, is provided by random projection
matrices.

EXAMPLE. Consider matrices BN = UNPNU∗
N where PN is a projection ma-

trix of rank pN . If pN/N → p > 0 as N → ∞, then the empirical eigenvalue
distribution of BN converges to the Bernoulli distribution μb = pδ1 + qδ0, where
q = 1 − p. One computes that

ρ(θ) = θ

2
+ 1

2

(
1 +

√
(1 + θ)2 − 4qθ

)
,

and this is the limit of the largest eigenvalue for the matrices AN + BN when
N → ∞. This formula for the limit of the largest eigenvalue is valid for all θ0 > 0.

In the context of this example, an interesting phenomenon is uncovered by nu-
merical evidence, which is not explained by Theorem 1.5. Namely, adding a rank
one projection AN with eigenvalue θ results in a creation of two “new” eigenval-
ues. (See Figure 1 for a numerical example with the size of the matrices fixed at

FIG. 1. New eigenvalues of the rank one perturbation of the projection matrix model with p = 1/4.
Circles are eigenvalues outside of [0,1], diamonds are eigenvalues inside [0,1]. The solid line is
ρ(θ), the dashed line is its conjugate.
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N = 100.) One new eigenvalue is given by ρ(θ), and another one by the other
solution of the equation θm(x) + 1 = 0:

ρ(θ) = θ

2
+ 1

2

(
1 −

√
(1 + θ)2 − 4qθ

)
.

1.5. Brief overview. In this paper, we consider the resolvent of the matrix H =
A+B , where A := V ÃV ∗ and B := UB̃U∗, Ã and B̃ are two N -by-N Hermitian
diagonal matrices, and U and V are two N -by-N random independent uniformly
distributed unitary matrices.

We have showed that there exist two functions ωA(z) and ωB(z) that depend
only on the sets of eigenvalues of A and B and have the following properties:

(i) ωA(z) and ωB(z) are analytic in C
+;

(ii) if Im z 
 N−1/5, then

min
{
ImωA(z), ImωB(z)

}≥ Im z − c

N(Im z)7 .

Moreover, if μA = μB , then min{ImωA(z), ImωB(z)} ≥ Im z for all z ∈ C
+;

(iii) if Im z 
 N−1/7, then

EUGH(z) − GA

(
ωB(z)

)= O

(
1

Nη6

)
and

EmH(z) − mA

(
ωB(z)

)= O

(
1

N2η6

)
,

and similar estimates hold for EV GH(z)−GB(ωA(z)) and EmH(z)−mB(ωA(z)).
This can be thought of as a subordination property for the resolvent of the sum

A + B with respect to resolvents of A and B .
We have used the subordination property to show that the localization length of

eigenvectors is greater than Nκ , where κ = 1/7. The probable actual localization
length is O(N).

Next, we have showed that a local limit law holds for the empirical eigenvalue
measure μHN

with the window length N−1/7. This result improves over the result
in [28]. However, it is still far from the probable optimal result with the window
length N−1+ε .

Finally, by using our results about subordination we studied the rank-one defor-
mations of unitarily-invariant random matrices, and derived explicit formulas for
the limit of their largest eigenvalues.

The rest of the paper is organized as follows. Section 2 is devoted to the proof of
Theorems 1.1 and 1.2 regarding the subordination. Section 3 is about delocaliza-
tion of eigenvectors (Theorem 1.3). Section 4 proves Theorem 1.4 about the local
law for eigenvalues. Section 5 proves Theorem 1.5 about rank-one deformations
of unitarily-invariant ensembles. And three appendices contain various auxiliar re-
sults.



SUBORDINATION FOR THE SUM OF TWO RANDOM MATRICES 2129

2. Approximate subordination. Before we start the proof of Theorems 1.1
and 1.2, note that the definitions imply the following useful identity:

ωA(z) + ωB(z) = z − 1

EmH(z)
.(11)

Indeed,

ωA(z) + ωB(z) = 2z − E[fA(z) + fB(z)]
EmH(z)

and

fA(z) + fB(z) = N−1 Tr
(
(A + B)(A + B − zI)−1)

= 1 + zN−1 Tr
(
(A + B − zI)−1)

= 1 + zmH(z),

which implies (11).
Now we start proving Theorem 1.1. First, write

EUGH(z) = GA

(
ωB(z)

)+ RA(z).(12)

The error term in subordination formula (12) can be written as follows:

RA(z) := 1

EmH

(A − zI)GA

(
ωB(z)

)
EU�A,(13)

where

�A := −(mH −EmH)GH − GA(fB −EfB)GH .

In order to derive formulae (12) and (13), one starts by calculating dGt/dt where
Gt = (A+eiXtBe−iXt )−1 and X is an Hermitian matrix. Since B has a rotationally
invariant distribution, hence EU(dGt/dt) = 0, and one can find by using differ-
ent generator matrices X that this implies that EU(GH ⊗ BGH) = EU(GHB ⊗
GH). After taking the trace over the first component of the tensor product,
one gets EU(mHBGH) = EU(fBGH). This can be rewritten as EU(mHGH) =
GAEU(mHI −fBGH). Next, one writes EU(mHGH) = E(mH )EU(GH)+e1 and
EU(fBGH) = E(fB)EU(GH) + e2, where e1 and e2 are error terms. After substi-
tuting these expressions, one can manipulate the previous identity so that EU(GH)

is on the left-hand side and everything else is on the right-hand side. The resulting
expression is equivalent to (12) with the error term given by (13). See Appendix A
for a more complete derivation, and [35] or proof of Theorem 7 in [28] for details.

We can also rewrite formula (12) as follows:

EUGH = GA

(
ωB(z)

)(
I + 1

EmH

(A − zI)EU�A

)
.
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Hence,

(EUGH)−1 =
(
I + 1

EmH

(A − zI)EU�A

)−1(
A − ωB(z)I

)
and

ωB(z)I = −(EUGH)−1 + A
(14)

+
[(

I + 1

EmH

(A − zI)EU�A

)−1

− I

](
A − ωB(z)I

)
.

Let us consider the first two terms in this expression. Later, we are going to show
that the third term is small.

Define

�B(z,A) := −(EUGH(z)
)−1 + A.

The matrix function �B(z,A) has a property which is similar to the subordination
property.

LEMMA 2.1. Let λ(z) be an eigenvalue of �B(z,A). Then Imλ(z) ≥ Im z.

PROOF. Let z = x+iη and η > 0. Then every matrix (H −x−iη)−1 is normal
and its eigenvalues are on the border of a disc Dη with the center at i/(2η) and the
radius equal to 1/(2η). Hence, by Lemma B.3 in Appendix B, the eigenvalues of
EU(H −x− iη)−1 belong to the disc Dη. It follows that eigenvalues of −[EU(H −
x − iη)−1]−1 are in Hη = {w : Imw ≥ η}.

If we take the basis in which A is diagonal, then (EUGH(z))−1 = [EU(H −x −
iη)−1]−1 is diagonal by Lemma B.1 in Appendix B. Since A is Hermitian, there-
fore its eigenvalues are real. Hence, the imaginary parts of eigenvalues of �B(z,A)

coincide with imaginary parts of eigenvalues of −[EU(H − x − iη)−1]−1, and we
arrive at the claim of the lemma. �

Now we are going to estimate the size of the third term in the right-hand side
in (14). First, we estimate the size of EU�A. We use concentration inequalities.

LEMMA 2.2. Assume that η := Im z ∈ (0,1) and |Re z| ≤ K(A,B). Then

EU�A(z) = O

(
1

η4N

)
.

PROOF. Since‖GH‖ ≤ 1/η, hence by using Lemma C.1 in Appendix C, we
obtain

P
{∥∥(mH(z) −EmH(z)

)
GH

∥∥≥ δ/η
}≤ exp

[
−c

δ2η4

‖B‖2 N2
]
,

P
{∥∥GA

(
fB(z) −EfB(z)

)
GH

∥∥≥ δ/η2}≤ exp
[
−c

δ2η4

‖B‖2 N2
]
.
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Set ε = δ/η and ε = δ/η2 in the first and the second inequalities, respectively, and
use the triangle inequality for norms in order to obtain that

P
{∥∥�A(z)

∥∥≥ ε
}≤ exp

[
−cε2N2

‖B‖2 min
{
η6, η8}]

≤ exp
[−cε2η8N2].

Next, note that ‖EU�A‖ ≤ EU‖�A‖ by the convexity of norm, and EU‖�A‖ can
be estimated by using the equality EX = ∫∞

0 (1 −FX(t)) dt , valid for every posi-
tive random variable X and its cumulative distribution function FX(t). In our case,
we obtain

EU‖�A‖ ≤
∫ ∞

0
exp
[−ct2η8N2]dt = c′

Nη4 . �

Next, Lemma C.2 in Appendix C says that (EmH(z))−1 ≤ c/η. Hence,
Lemma 2.2 implies that ∥∥∥∥ 1

EmH

(A − z)E�A

∥∥∥∥≤ c

η5N
,(15)

where c > 0 depends only on K and R.
It is easy to prove that if ‖X‖ ≤ ε < 1/2, then ‖(I + X)−1 − I‖ ≤ 2ε. In partic-

ular, for all N 
 η−5, we have∥∥∥∥(I + 1

EmH

(A − z)E�A

)−1

− I

∥∥∥∥≤ c

η5N
.

Next, note that by definition ωB(z) = z −EfB(z)/EmH(z). From Lemma C.2,
|(EmH(z))−1| < c/η. In addition,∣∣EfB(z)

∣∣= ∣∣∣∣E 1

N
Tr
(
B

1

H − z

)∣∣∣∣≤ ‖B‖E
(∥∥∥∥ 1

H − z

∥∥∥∥)≤ c
1

η
.

Hence, |ωB(z) − z| ≤ c/η2. It follows that∥∥∥∥((I + 1

EmH

(A − z)E�A

)−1

− I

)(
A − ωB(z)

)∥∥∥∥≤ c

Nη7 .(16)

LEMMA 2.3. Let � be a diagonal matrix and R be an arbitrary matrix. Then
for every eigenvalue λ̂i of � + R, there exists an eigenvalue λi of � such that
|̂λi − λi | ≤ ‖R‖.

(See Theorem 6.3.2 on page 365 in [26].)
Formulae (14) and (16), and Lemmas 2.1 and 2.3 imply that

Im
(
ωB(z)

)≥ Im z − c

N(Im z)7 .
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This completes the proof of Theorem 1.1.

PROOF OF THEOREM 1.2. Since N 
 1/η7, Theorem 1.1 implies that
Im(ωB(z)) ≥ η/2. Hence, ‖GA(ωB(z))‖ ≤ c/η. Since

RA(z) = GA

(
ωB(z)

) 1

EmH

(A − z)EU�A,

we can use (15) in order to obtain

∥∥RA(z)
∥∥≤ ∥∥GA

(
ωB(z)

)∥∥∥∥∥∥ 1

EmH

(A − z)EU�A

∥∥∥∥≤ c

Nη6 ,

which yields the first point of Theorem 1.2.
In order to estimate the error term in the second part of the theorem, we note

that by definition of RA it is enough to show that

E
1

N
Tr
[
(A − z)GA

(
ωB(z)

)
�A

]= O

(
1

η6N2

)
.

By using the definition of �A, we can write the modulus of the expression on
the left-hand side as follows:∣∣E(mH −EmH)(ϕ −Eϕ) +E(fB −EfB)(ψ −Eψ)

∣∣,
where

ϕ := 1

N
Tr
[
(A − z)GA

(
ωB(z)

)
GH(z)

]
and

ψ := 1

N
Tr
[
(A − z)GA

(
ωB(z)

)
GA(z)GH(z)

]
.

By the Cauchy–Schwarz inequality, we estimate this from above by√
Var(mH )Var(ϕ) +

√
Var(fB)Var(ψ).(17)

By applying Lemma C.1 from Appendix C and the estimate ‖GA(ωB)‖ ≤
c/η in order to bound the variances, we find that for sufficiently large N ,
Var(mH ) = O(η−4N−2), Var(ϕ) = O(η−6N−2), Var(fB) = O(η−4N−2) and
Var(ψ) = O(η−8N−2). Hence, the expression in (17) is smaller than c/(η6N2),
provided that z is in the region where ωB(z) increases the imaginary part. This
completes the proof of the second part of the theorem.

The third part of Theorem 1.2 immediately follows from the first part and
Lemma C.1 in Appendix C if we take η 
 N−1/7.



SUBORDINATION FOR THE SUM OF TWO RANDOM MATRICES 2133

Indeed, if Im z = η 
 N−1/7 
 N−1/6, then the first part of Theorem 1.2 im-
plies that |(EUGH(z))ij − (GA(ωB(z)))ij | ≤ δ/2 for all sufficiently large N . For
these N , we have

PU

{∣∣(GH(z)
)
ij − (GA

(
ωB(z)

))
ij

∣∣≥ δ
}

≤ PU

{∣∣(GH(z)
)
ij − (EUGH(z)

)
ij

∣∣≥ δ/2
}

≤ exp
(
−cδ2η4

‖B‖2 N

)
≤ exp

(−cδ2N3/7). �

3. Delocalization. The essential part of the proof is to show that ωAN
and

ωBN
are close to ωα and ωβ , respectively. Namely, let

r(z) := max
{∣∣rA(z)

∣∣, ∣∣rB(z)
∣∣}(18)

and

s(A,B) := max
{
dL(μA,μα), dL(μB,μβ)

}
.(19)

PROPOSITION 3.1. Assume that a pair of probability measures (μα,μβ) is
smooth in a closed interval I . Then for some positive r , s and η, if r(z) ≤ r ,
s(A,B) ≤ s, Re z ∈ I and Im z ∈ (0, η], then

max
(∣∣ωα(z) − ωA(z)

∣∣, ∣∣ωβ(z) − ωB(z)
∣∣)= O(r + s),

where the constant in the O-term may depend on the pair (μα,μβ) and on
max{‖A‖,‖B‖}.

Let us postpone the proof and show how this result implies Theorem 1.3.

PROOF OF THEOREM 1.3. Let N be the size of matrices A and B and assume
that N is sufficiently large so that max{dL(μA,μα), dL(μB,μβ)} ≤ s < s. By def-
inition, rA(z) = EmH(z) − mA(ωB(z)), hence the second part of Theorem 1.2
says that if N 
 η−7, then |rA(z)| = O( 1

N2η6 ). A similar bound holds for |rB(z)|.
Hence, we can take r = O( 1

N2η6 ) in Proposition 3.1 and conclude that

ωβ(x + iη) − ωB(x + iη) = O

(
1

N2η6 + s

)
.(20)

Hence, if s is sufficiently small, then ImωB(z) ≥ c > 0 for all z with
Re z ∈ I and cN−2/6 ≤ Im z ≤ η. It follows that [GA(ωB(z))]kk is bounded, say,
|[GA(ωB(z))]kk| < C. By using the third part of Theorem 1.2, we find that

P
{∣∣[GH(z)

]
kk

∣∣≥ C + δ
}≤ exp

(−cδ2N3/7).
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Now let {va}Na=1 denote an orthonormal basis of eigenvectors of H and let λa be
the corresponding eigenvalues. Let va(j) denote the j th component of vector va

in the standard basis. Since

GH(z) =
N∑

a=1

|va〉〈va|
λa − z

,

hence

ImGkk(x + iη) =
N∑

a=1

η|va(k)|2
(λa − x)2 + η2 .

Let us set x = λa for a particular value of a, then

ImGkk(λa + iη) ≥ |va(k)|2
η

,

and, therefore,∣∣va(k)
∣∣2 ≤ η ImGkk(λa + iη) ≤ Cη ≤ CN−1/7 logN.(21) �

Before starting the proof of Proposition 3.1, let us exclude m(z) from the free
probability system (6):

mα

(
ωβ(z)

)+ 1

ωα(z) + ωβ(z) − z
= 0,

(22)

mβ

(
ωα(z)

)+ 1

ωα(z) + ωβ(z) − z
= 0.

A similar system can be written in the matrix case for ωA(z) and ωB(z):

mA

(
ωB(z)

)+ 1

ωA(z) + ωB(z) − z
= −rA(z),

(23)

mB

(
ωA(z)

)+ 1

ωA(z) + ωB(z) − z
= −rB(z),

where rA(z) := N−1 Tr(RA(z)) = N−1 Tr(ERA(z)), rB(z) := N−1 Tr(RB(z)) =
N−1 Tr(ERB(z)). Here, RA(z) is defined in (12), and RB(z) := EV GH(z) −
GB(ωA(z)).

The proof of Proposition 3.1 is done by an application of the Kantorovich–
Newton method that allows us to study how the perturbation of the system for ωα

and ωβ affects the solution. The role of Theorem 1.2 in the proof is to ensure that
the size of the perturbation is small.

Let us briefly recall the Newton–Kantorovich method of successive approxima-
tions [27]. The method is quite general and works for perturbabions of maps acting
on Banach spaces. We will use it for the maps defined on pairs of functions w1(z),
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w2(z) which are holomorphic in a compact domain �. However, since the maps
can be considered for every z separately, we will essentially consider them as maps
from C

2 to C
2 with the norm ‖(w1,w2)‖ = (|w1|2 + |w2|2)1/2.

The general setup is as follows. Let F(w) = 0 be a nonlinear functional equation
where F is a nonlinear operator that sends elements of a Banach space W to itself.
Let F be twice differentiable, and assume that in a neighborhood of a point w0 the
operator F ′(w) has an inverse [F ′(w)]−1 ∈ L(W) where L(W) denotes the space
of bounded linear operators from W to W . Consider the iterations

wn+1 = wn − [F ′(wn)
]−1

F(wn).

The Kantorovich theorem (i) gives the sufficient conditions for the convergence
of this process to a solution w∗ of equation F(w) = 0, (ii) estimates the speed
of convergence, and (iii) estimates the distance of the solution w∗ from the initial
point w0. We give the statement of the theorem omitting the claim about the speed
of convergence, which is not important for us.

THEOREM 3.2 (Kantorovich). Suppose that the following conditions hold:

(i) for an initial approximation w0, the operator F ′(w0) possesses an inverse
operator �0 = [F ′(w0)]−1 whose norm has the following estimate: ‖�0‖ ≤ C0,

(ii) ‖�0F(w0)‖ ≤ δ0,
(iii) the second derivative F ′′(w) is bounded in the domain determined by in-

equality (24) below, namely, ‖F ′′(w)‖ ≤ M ,
(iv) the constants C0, δ0,M satisfy the relation h0 = C0δ0M ≤ 1/2.
Then equation F(w) = 0 has a solution w∗, which lies in a neighborhood of w0

determined by the inequality

‖w − w0‖ ≤ 1 − √
1 − 2h0

h0
δ0,(24)

and the successive approximations wn of the Newton method converge to w∗.

PROOF OF PROPOSITION 3.1. We want to prove that the solutions of sys-
tems (22) and (23) are close to each other in a certain region of C+.

Write system (23) as F(w) = 0, where

F :
(

w1

w2

)
→
(

(w1 + w2 − z)−1 + mA(w2) + rA(z)

(w1 + w2 − z)−1 + mB(w1) + rB(z)

)
.

Theorem 3.2 requires estimating three norms, ‖�0‖, ‖�0F(w0)‖ and ‖F ′′(w)‖.
We start by estimating the norm ‖F(w0)‖ with w0 = (ωα(z),ωβ(z)). We have

∥∥F(w0)
∥∥=

∥∥∥∥∥
(

mA

(
ωβ(z)

)− mα

(
ωβ(z)

)+ rA(z)

mB

(
ωα(z)

)− mβ

(
ωα(z)

)+ rB(z)

)∥∥∥∥∥.
By assumption, ‖(rA(z), rB(z))‖ ≤ r . To complete the estimate, we also need a

lemma.
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LEMMA 3.3. Let m1(z) and m2(z) denote the Stieltjes transforms of measures
μ1 and μ2, respectively. Let dL(μ1,μ2) = s and z = x + iη, where η > 0. Then:

(a) |m1(z) − m2(z)| < csη−1 max{1, η−1} where c > 0 is a numeric constant,
and

(b) | dr

dzr (m1(z) − m2(z))| < crsη
−1−r max{1, η−1} where c > 0 are numeric

constants.

This lemma was proved as Lemma 2.2 in [29].
By assumption of smoothness on the closed inteval I , we know that Imωα(x)

and Imωβ(x) are uniformly bounded away from zero on I . Moreover, since ωα(z)

and ωβ(z) are continuous in a rectangle Rε := {z = x + iη|x ∈ I,0 ≤ η ≤ ε} (again
by assumption of smoothness in the interval I ), hence Imωα(z) and Imωβ(z) are
uniformly bounded away from zero on this rectangle provided that ε is sufficiently
small. We will use this fact repeatedly below.

In particular, together with Lemma 3.3 this implies that∥∥∥∥∥
(

mA

(
ωβ(z)

)− mα

(
ωβ(z)

)
mB

(
ωα(z)

)− mβ

(
ωα(z)

))∥∥∥∥∥≤ cs

on Rε .
Hence, ‖F(w0)‖ is bounded by O(r + s) uniformly for every point z ∈ Rε .
The next step is to estimate the norm of the inverse derivative. We compute

F ′ =
( −(w1 + w2 − z)−2 −(w1 + w2 − z)−2 + m′

A(w2)

−(w1 + w2 − z)−2 + m′
B(w1) −(w1 + w2 − z)−2

)
.

The determinant of this matrix is[
m′

A(w2) + m′
B(w1)

]
(w1 + w2 − z)−2 − m′

A(w2)m
′
B(w1).

Recall that condition (B) in the assumption of smoothness requires that

kμ(x) := 1

m′
μα

(ωβ(x))
+ 1

m′
μβ

(ωα(x))
− (ωα(x) + ωβ(x) − x

)2 �= 0.(25)

By continuity of ωα(z), ωβ(z) and (ωα(z) + ωβ(z) − z)−2 in the rectangle Rε , we
have ∣∣∣∣m′

μα
(ωβ(z)) + m′

μβ
(ωα(z))

(ωα(z) + ωβ(z) − z)2 − m′
μα

(
ωβ(z)

)
m′

μβ

(
ωα(z)

)∣∣∣∣≥ c > 0,(26)

everywhere in Rε , provided that ε is chosen sufficiently small.
By using Lemma 3.3, we conclude that the determinant∣∣[m′

A(w2) + m′
B(w1)

]
(w1 + w2 − z)−2 − m′

A(w2)m
′
B(w1)

∣∣≥ c > 0,

where w1 = ωα(z), w2 = ωβ(z) and z ∈ Rε .
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It follows (with some additional help from Lemma 3.3), that the entries of the
matrix [F ′]−1 are bounded at (ωα,ωβ) if Im z is sufficiently small [so that Im(w1 +
w2 − z) is bounded away from zero]. By compactness of Rε and continuity of
entries of the matrix [F ′]−1, this shows that the operator norm of [F ′]−1 is bounded
at (ωα,ωβ) uniformly for z ∈ Rε .

By a similar argument, an application of Lemma 3.3 shows that the operator
norm of F ′′ is bounded for all (w1,w2) in a fixed neighborhood of (ωα,ωβ), and
the bound is uniform on Rε . For example, we can compute

∂2F1

(∂w2)2 = 2(w1 + w2 − z)−3 + m′′
A(w2),

and this is uniformly bounded in a certain neighborhood of w1 = ωα(z), w2 =
ωβ(z) if z ∈ Rε and ε is sufficiently small. The crucial fact here is that the imag-
inary parts of ωα(z) and ωβ(z) are uniformly bounded away from zero for all
z ∈ Rε .

This shows that conditions (i) and (iii) of the Kantorovich theorem are sat-
isfied with some C0 and M0. Since ‖�0F(x0)‖ ≤ C0‖F(x0)‖, we define δ0 :=
C0‖F(x0)‖ and note that δ0 = O(r + s). By appropriate choice of r and s, one can
make sure that h0 = C0δ0M0 < 1/2 and, therefore, that conditions (ii) and (iv) are
satisfied. Moreover, one can make sure that h0 is arbitrarily small, and therefore
that the neighborhood in the conclusion of the Kantorovich theorem has the form
‖x − x0‖ ≤ δ0 = O(r + s).

It follows by the Newton–Kantorovich theorem that there exists a solution of
the equation F(w) = 0 which satisfies the inequalities∣∣w1(z) − ωα(z)

∣∣= O(r + s) and
∣∣w2(z) − ωβ(z)

∣∣= O(r + s).

The functions ωA(z) and ωB(z) defined by (2) satisfy equation F(w) = 0, and one
can show that for every fixed z they approach ωα(z) and ωβ(z) as N → ∞. Hence,
for sufficiently small r and s the solution of F(w) = 0 found by the Newton–
Kantorovich method coincide with the pair (ωA(z),ωB(z)) and we can conclude
that ∣∣ωA(z) − ωα(z)

∣∣= O(r + s) and
∣∣ωB(z) − ωβ(z)

∣∣= O(r + s).

This completes the proof of Proposition 3.1 and Theorem 1.3. �

4. Local law for eigenvalues. Let η∗ = Mη and Iη∗ = [x −η∗ + iη, x +η∗ +
iη]. Recall that

s(A,B) := max
{
dL(μA,μα), dL(μB,μβ)

}
.

PROPOSITION 4.1. Assume that a pair of probability measures (μα,μβ) is
smooth in a closed interval I . Assume that s(A,B) ≤ s where s is a positive con-
stant. Let η = N−1/7 logN . Then for some positive c and c1, and for every ε > 0,

P

{
sup
z∈Iη∗

∣∣mH(z) − mμα�μβ (z)
∣∣> ε + cs(A,B)

}
≤ exp

(−c1(logN)2)(27)
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for all sufficiently large N .

PROOF. Proposition 4.1 is proved by combining Lemmas 4.2 and 4.3 below.

LEMMA 4.2. Assume that a pair of probability measures (μα,μβ) is smooth
in a closed interval I . Let r and s be as defined in (18) and (19), respectively. Then
for all sufficiently small r , s and η,∣∣EmH(x + iη) − mμα�μβ (x + iη)

∣∣< O(r + s).

Indeed, since EmH = (ωA +ωB − z)−1 and mμα�μβ = (ωα +ωβ − z)−1, there-
fore,

EmH − mμα�μβ = ωα + ωβ − ωA − ωB

(ωA + ωB − z)(ωα + ωβ − z)
.

The denominator is bounded away from zero for small η by Proposition 3.1
[Imωα(x) and Imωβ(x) are bounded away from 0 by the assumption of Propo-
sition 3.1, and ωA and ωB are close to ωα and ωβ , respectively, by its conclusion].
The numerator can be estimated by Proposition 3.1 as O(r + s).

In [28], the following result was proved (as Corollary 6).

LEMMA 4.3. For some positive c and c1 which can depend on M , and for all
δ > 0,

P

{
sup
z∈Iη∗

∣∣mH(z) −EmH(z)
∣∣> δ

}
≤ exp

(
−cδ2η4

‖B‖2 N2
)
,

provided that N ≥ c1(
√− log(ηδ))/(η2δ).

Let us take δ = c logN/(Nη2) in Lemma 4.3. Then N ≥ c1(
√− log(ηδ))/(η2δ)

provided that η ≥ N−1 logN . In particular, if η = N−1/7 logN , then Lemma 4.3
implies that

P

{
sup
z∈Iη∗

∣∣mH(z) −EmH(z)
∣∣> 1

N5/7 logN

}
≤ exp

(−c(logN)2).
In addition, the second part of Theorem 1.2 and the definition of r imply that if

η 
 N−1/7, then for every ε > 0 and all sufficiently large N , we have |r(z)| < ε.
Hence, Lemma 4.2 implies that if η 
 N−1/7, then∣∣EmH(z) − mμα�μβ (z)

∣∣< ε + cs(A,B)

for all sufficiently large N . Together, these statements imply the claim of Proposi-
tion 4.1. �
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PROOF OF THEOREM 1.4. The proof is similar to the proof of Corollary 4.2
in [23]. Let η = cN−1/7, and c is sufficiently large, and let η∗ = Mη. Let

R(λ) := 1

π

∫ x+η∗

x−η∗
η

(x − λ)2 + η2 dx

= 1

π

(
arctan

(
x − λ

η
+ M

)
− arctan

(
x − λ

η
− M

))
.

Then R = 1I∗ +T1 +T2 +T3, where 1I∗ is the indicator function of the interval
I ∗ = [x − η∗, x + η∗] and functions T1, T2 and T3 satisfy the following properties:

|T1| ≤ c/
√

M, supp(T1) ⊂ I1 = [
x − 2η∗, x + 2η∗],

|T2| ≤ 1, supp(T2) ⊂ J1 ∪ J2,

where J1 and J2 are intervals of length
√

Mη with midpoints at x −η∗ and x +η∗,
respectively, and

|T3| ≤ Cηη∗

(λ − x)2 + (η∗)2 , supp(T3) ∈ I c
1 .

Note that

Nη∗(x)

2η∗N
= 1

2η∗
∫

1I∗(λ)μHN
(dλ)

= 1

2η∗
∫

R(λ)μHN
(dλ) − 1

2η∗
∫

(T1 + T2 + T3)μHN
(dλ).

The last integral can be estimated as follows:

1

2η∗
∫

|T1 + T2 + T3|μHN
(dλ) ≤ c√

M

NI1

2η∗N
+ NJ1 +NJ2

2η∗N
+ Cη

η∗ ρη∗(x),

where NI denote the number of eigenvalues of HN in interval I , and

ρη∗(x) := 1

π
ImmHN

(
x + iη∗)= 1

π

∫
η∗

(x − λ)2 + (η∗)2 μHN
(dλ).

Hence, by using the inequality Nη(x) ≤ CNηρη(x), one obtains

1

2η∗
∫

|T1 + T2 + T3|μHN
(dλ)

(28)
≤ c√

M

(
ρ2η∗(x) + ρ√

Mη

(
x − η∗)+ ρ√

Mη

(
x + η∗)+ ρη∗(x)

)
.

By the second path of Theorem 1.2, EmHN
(x + iη∗) − mAN

(ωB(x + iη∗)) =
O( 1

N2η6 ) = o(1). In addition, the assumption of smoothness and formula (20) im-

ply that mAN
(ωB(x + iη∗)) is bounded for every x in the interval I . Hence, the

integral in (28) is bounded by O(M−1/2).
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The main term can be written as
1

2η∗
∫
I∗

1

π
Immμα�μβ (x + iη) dx

+ 1

2η∗
∫
I∗

1

π
Im
(
mHN

(x + iη) − mμα�μβ (x + iη)
)
dx.

The first part converges to ρμα�μβ (x) because the assumption that (μα,μβ) is
smooth at x implies that μα �μβ has an analytic density in a neighborhood of x.
For the second term, we can use the estimate in Proposition 4.1. The assumption
that s(AN,BN) = max{dL(μAN

,μα), dL(μBN
,μβ)} → 0 implies that this term

converges to 0 in probability as N → ∞. �

5. Subordination and spikes. The proof of Theorem 1.5 is based on the fol-
lowing result.

PROPOSITION 5.1. Let H = A + UBU∗ where A is a rank-one N -by-N
Hermitian matrix with the nonzero eigenvalue θ , and B is an N -by-N Hermitian
matrix with the empirical eigenvalue distribution μB . Then the expected Stieltjes
transform of H satisfies the following equation for every z ∈C

+:

EmH(z) = mB(z) + 1

N

m′
B(z)

mB(z)

(
1

θmB(z) + 1
− 1

)
+ Oη

(
1

N2

)
.(29)

Here Oη(N
−2) denotes a function f (z) such that N2|f (z)| ≤ C(Im z)−k for

some k > 0 and C > 0.

PROOF OF PROPOSITION 5.1. Note that

mA(z) = −1

z
+ 1

N

(
1

θ − z
+ 1

z

)
.

From Theorem 1.2, we know that the following system holds for EmH(z), ωA(z),
ωB(z):

EmH(z) = − 1

ωB(z)
+ 1

N

(
1

θ − ωB(z)
+ 1

ωB(z)

)
+ Oη

(
N−2),

EmH(z) = mB

(
ωA(z)

)+ Oη

(
N−2) and(30)

z = ωA(z) + ωB(z) + 1

EmH(z)
.

This system can be considered as a perturbation of the system

mH(z) + 1

ωB(z)
= 0,

mH (z) − mB

(
ωA(z)

)= 0 and(31)

ωA(z) + ωB(z) + 1

mH(z)
= z.
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The solution of the unperturbed system is mH(z) = mB(z), ωA(z) = z and
ωB(z) = −1/mB(z). We compute the derivative of the unperturbed system (31)
with respect to (mH ,ωA,ωB) at the solution and find

J =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 − 1

ω2
B(z)

1 −m′
B

(
ωA(z)

)
0

− 1

m2
H(z)

1 1

⎞⎟⎟⎟⎟⎟⎟⎠
(32)

=

⎛⎜⎜⎜⎜⎝
1 0 −m2

B(z)

1 −m′
B(z) 0

− 1

m2
B(z)

1 1

⎞⎟⎟⎟⎟⎠ .

From (30), the perturbation of the system is(
1

N

(
1

θ − ωB(z)
+ 1

ωB(z)

)
+ Oη

(
N−2),Oη

(
N−2),0

)
.

Note that

1

N

(
1

θ − ωB(z)
+ 1

ωB(z)

)
= mB(z)

N

(
1

θmB(z) + 1
− 1

)
.

Hence, the linearized system is

J

⎛⎜⎝
�mH

�ωA

�ωB

⎞⎟⎠=

⎛⎜⎜⎜⎝
mB(z)

N

(
1

θmB(z) + 1
− 1

)
+ Oη

(
N−2)

Oη

(
N−2)
0

⎞⎟⎟⎟⎠ ,

where �mH , �ωA and �ωB denote the first-order changes in the solution caused
by perturbation. By using this linearization and the formula (32) for the deriva-
tive J , we can easily compute the linear approximation for the solution of the
perturbed system. In particular,

EmH(z) = mB(z) + 1

N

m′
B(z)

mB(z)

(
1

θmB(z) + 1
− 1

)
+ Oη

(
1

N2

)
.

The contribution of the higher order terms is Oη(N
−2). �

PROOF OF THEOREM 1.5. Proof of this theorem is similar to the proof of
Theorem 2.1 in [17] and for this reason we will be concise. Let us start with the
case when ρμ(θ0) > L. Then the first step is to show that for large N there are
no eigenvalues of HN in Sε := (L + ε,ρμ(θ0) − ε) ∪ (ρμ(θ0) + ε,∞). In order
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to do this, we note that for all sufficiently large N , the first correction term in
formula (29),

LN(z) := m′
BN

mBN

(
1

θmBN
+ 1

− 1
)
,

is the Stieltjes transform of a distribution �BN
with a compact support which must

be outside of Sε . Verification of this fact can be done as in the proof of Proposi-
tion 4.5 in [17].

Next, one can use the Stieltjes inversion formula, which holds for distributions
by the results of Tillmann in [42]. Applying it to formula (29), one finds that for
every ϕ ∈ C∞

c (R),

E
[
N−1 Tr

(
ϕ(HN)

)]
=
∫

ϕ dμBN
+ 1

N
�BN

(ϕ) − 1

π
lim

η→0+ Im
∫
R

ϕ(x)f (x + iη) dx,

where f (x) denotes the error term in (29), f (x) = Oη(N
−2). The last term is

O(N−2) (see Section 6 in [25] or the Appendix in [16]) and, therefore, we find
that

E
[
N−1 Tr

(
ϕ(HN)

)]= ∫
ϕ dμBN

+ 1

N
�BN

(ϕ) + O
(
N−2).

In particular, if the support of ϕ is in Sε , then the first and the second terms are
zero and E[N−1 Tr(ϕ(HN))] = O(N−2). If in addition ϕ is nonnegative, then by
the Markov inequality

P

[
N−1 Tr

(
ϕ(HN)

)
>

1

2N

]
<

E[N−1 Tr(ϕ(HN))]
2N

= O

(
1

N

)
.

By using a sequence of functions ϕ that approximate the indicator function of Sε ,
it follows that

P[there is an eigenvalue of HN in Sε] <
c

N
.

The next step is to show that for sufficiently large N , there is exactly one eigen-
value to the right of ρμ(θ0) − ε. This can be done similarly to the corresponding
result (Theorem 4.5) in [17]. Namely, note that ρμ(θ) is an increasing function for
θ > θ0 − ε. [This follows from the fact that mμ(x) is a decreasing function for
x > L.] Hence, we can find an interval [α,β] in (θ0 − ε, θ0) that will map to an
interval [a, b] in (L,ρμ(θ0)), with a := ρμ(α) and b := ρμ(β). The claim is that
if λ1(HN) and λ2(HN) are the largest and the second largest eigenvalues of HN ,
then

P
[
λ2(HN) < a and λ1(HN) > b

]→ 1

as N → ∞.
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From interlacing inequalities for matrices, we immediately obtain that
λ2(HN) < a for sufficiently large N . In order to prove that λ1(HN) > b, we con-
sider matrix cAN + BN . By using Weyl’s inequalities and the uniform bound on
norms of BN we obtain that the largest eigenvalue λ1(cAN + BN) ≥ cθ − δ for
some positive δ. On the other hand ρμ(cβ) ∼ cβ for large c. We conclude that

λ1(cAN + BN) > ρμ(cβ)

for a sufficiently large c. In addition, Weyl’s inequalities imply that λ1(c1AN +
BN) − λ1(c2AN + BN) ≤ |c1 − c2|θ0. Hence, if c changes slowly, then the first
eigenvalue of cAN + BN changes slowly. By what we proved above, there are no
eigenvalues of cAN + BN in the interval (L + ε,ρμ(cθ0) − ε) with large proba-
bility. Since ρμ(cθ0) is an increasing function of c for c ≥ 1, hence the length of
this interval is always ≥ ρμ(θ0) − L − 2ε > ε′ > 0. By changing c along a finite
sequence c = c1 > c2 > · · · > cl = 1 with |ci − ci+1| ≤ ε′/θ0, we can ensure that
λ1(ciAN + BN) > ρμ(ciβ) for all i with large probability. Hence, as N grows,
the probability that λ1(HN) ≥ ρμ(β) > ρμ(θ)− ε approaches 1. Together with the
fact that with high probability the interval (L + ε,ρμ(θ) − ε) ∪ (ρμ(θ) + ε,∞)

contains no eigenvalues, this implies that λ1 converges in probability to ρμ(θ) as
N → ∞.

Next, consider the case when ρμ(θ0) ≤ L. Then we conclude (by the argument
at the start of the proof) that for every fixed ε > 0 there are no eigenvalues of HN in
Sε := (L + ε,∞) with high probability for large N . On the other hand, by Weyl’s
inequalities λ1(HN) ≥ λ1(BN). Since λ1(BN) → L in probability, we conclude
that λ1(HN) → L in probability. �

APPENDIX A: A DERIVATION OF FORMULA (13)

Let G(z) ≡ GH(z) = (A + B − z)−1, where B = UB̃U∗ and U is a uniformly
distributed unitary matrix. Let Bt = eiXtBe−iXt where X is Hermitian and let
Gt = (A + Bt − z)−1. Then EU(dGt/dt) = 0 for every Hermitian matrix X. Let
us for clarity omit the subscript U in the expectations below and treat A as fixed.
It is easy to compute that ∂Guv/∂Bxy = −GuxGyv and that dBt/dt = i[X,B]. By
using the chain rule, we calculate dGt/dt and infer that

E
(
(GH)ua(BGH)bv

)= E
(
(GHB)ua(GH)bv

)
.

Setting u = a and summing over all a gives the identity

E(mHBGH) = E(fBGH).

It follows that

E(mHGH) = E(mHGA − mHGABGH)

= E(mHGA − GAfBGH),
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where we used the identity GH(z) = GA(z) − GA(z)BGH(z) in the first line.
This can be written in the following equivalent form:

EmHEGH = (EmH)GA − (EfB)GAEGH

−E
[
(mH −EmH)GH

]− GAE
[
(fB −EfB)GH

]
= (EmH)GA − (EfB)GAEGH +E�A,

where

�A = −(mH −EmH)GH − GA(fB −EfB)GH .

This expression can be further rewritten (after we multiply it by A − z and rear-
range terms) as

EmH

(
A −

(
z − EfB

EmH

))
EGH = EmH + (A − z)E�A.

Let z′ := z −EfB/EmH . Then

EmHEGH = GA

(
z′)

EmH + (A − z)GA

(
z′)

E�A.

Divide the resulting expression by EmH . Then we obtain

EGH(z) = GA

(
z′)+ 1

EmH

(
(A − z)GA

(
z′)

E�A

)
= GA

(
z′)+ RA.

APPENDIX B: SOME HELPFUL LEMMAS ABOUT
EXPECTED RESOLVENT

The following result is from [7].

LEMMA B.1. Suppose that U is a uniformly distributed random unitary ma-
trix. Then E[(A + UBU∗)−1] belongs to the algebra generated by the matrix A.
In particular, if A is diagonal, then E[(A + UBU∗)−1] is diagonal.

PROOF. If V is an arbitrary unitary matrix that commutes with A, then

VE
[(

A + UBU∗)−1]
V ∗ = E

[(
V AV ∗ + V UB(V U)∗

)−1]
= E

[(
A + UBU∗)−1]

.

Hence, E[(A + UBU∗)−1] commutes with V . Since von Neumann algebras are
generated by their unitaries, we conclude that E[(A + UBU∗)−1] belongs to the
bicommutant of A. By the basic theorem about von Neumann algebras, this bi-
commutant coincides with the algebra generated by A. �

Similarly, one can prove the following result.
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LEMMA B.2. Suppose that U is a uniformly distributed random unitary ma-
trix. Then

E
[
UBU∗]= (

1

N
Tr(B)

)
IN .

LEMMA B.3. Let Aj , j = 1, . . . ,m, be a family of normal (finite-dimensional)
operators. Suppose that the eigenvalues of all Aj are contained in a closed disc
D ⊂ C, and let H =∑

pjAj be a convex combination of Aj . Then all eigenvalues
of H are contained in D.

PROOF. By subtracting a multiple of the identity operator from all Aj , we can
reduce the problem to the case when disc D has its center at 0. Assume that this
is indeed the case. Let R be the radius of D. Since the operators are normal, their
norms are equal to the maximum of the absolute values of eigenvalues. Hence,
‖Aj‖ ≤ R. Hence, ‖H‖ ≤ ∑

pj‖Aj‖ ≤ R. It follows that all eigenvalues of H

have absolute value ≤ R. �

APPENDIX C: ESTIMATES OF THE RESOLVENT ENTRIES, THE
STIELTJES TRANSFORM AND RELATED QUANTITIES

In this section, we assume that G(z) = (A+UBU∗ − z)−1, where A and B are
N -by-N Hermitian matrices and U is a random Haar-distributed unitary matrix.

LEMMA C.1. Let z = E + iη where η > 0. Then, for a numeric c > 0 and
every δ > 0:

(i)

P
{∣∣Gij (z) −EGij (z)

∣∣> δ
}≤ exp

(
−cδ2η4

‖B‖2 N

)
and

(33)

Var
(
Gij (z)

)≤ ‖B‖2

cη4N
;

(ii) Let h := N−1 Tr(FG), where F does not depend on U . Then

P
{∣∣h(z) −Eh(z)

∣∣> δ
}≤ exp

(
− cδ2η4

‖F‖2‖B‖2 N2
)

and

(34)

Var
(
h(z)

)≤ ‖F‖2‖B‖2

cη4N2 .

REMARK. By applying the second part of the lemma to h = I , A − z and
(A − z)−1, we can compute probabilities of deviations and variances for m(z) :=
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N−1 TrG(z), fB(z) := N−1 Tr(BG(z)) = 1 − N−1 Tr((A − z)G(z)) and hA(z) =
N−1 Tr((A − z)−1G(z)), respectively. In particular,

P
{∣∣m(z) −Em(z)

∣∣> δ
}≤ exp

(
−cδ2η4

‖B‖2 N2
)

and

(35)

Var
(
m(z)

)≤ ‖B‖2

cη4N2 ;

P
{∣∣fB(z) −EfB(z)

∣∣> δ
}≤ exp

[
− cδ2η4

‖A − z‖2‖B‖2 N2
]

and

(36)

Var
(
fB(z)

)≤ ‖A − z‖2‖B‖2

cη4N2 ;

P
{∣∣hA(z) −EhA(z)

∣∣> δ
}≤ exp

[
−cδ2η6

‖B‖2 N2
]

and

(37)

Var
(
hA(z)

)≤ ‖B‖2

cη6N2 .

PROOF OF LEMMA C.1. (i) In a small neighborhood of identity matrix, all
unitary matrices can be written as U = eiX where X is Hermitian. Then GH can
be thought of as a function of X and we can compute its derivative as follows [let
B̃ denote UBU∗, B(X) = eiXB̃e−iX and GH(z,X) = (A + B(X) − z)−1]:∣∣dXGH(z,X)

∣∣= ∣∣∣∣∑
x,y

∂GH(z)

∂B̃xy

dXBxy(X)

∣∣∣∣
=
∣∣∣∣∑
x,y

∂GH(z)

∂B̃xy

[X, B̃]xy

∣∣∣∣
=
∣∣∣∣∑
x,y

[
∂GH(z)

∂B̃xy

, B̃

]
Xxy

∣∣∣∣,
where we used the fact that dXB(X)|X=0 = [X, B̃] ≡ XB̃ − B̃X.

We compute

∂Gij

∂B̃xy

= −GixGyj .

Therefore,∥∥∥∥ ∂Gij

∂B̃xy

∥∥∥∥
2
=
√∑

x,y

|Gxi |2|Gyj |2 =
√

‖Gei‖2‖Gej‖2 ≤ ‖G‖2 ≤ 1

η2 ,

where ‖M‖2 := Tr(M∗M) is the Frobenius norm of matrix M .
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If ‖X‖2 = 1, then it follows that∣∣dXGij (z,X)
∣∣≤ ∥∥∥∥[∂Gij (z)

∂B̃xy

, B̃

]∥∥∥∥
2

≤ 2
∥∥∥∥∂Gij (z)

∂B̃xy

∥∥∥∥
2
‖B‖

≤ 2‖B‖
η2 .

In the second line, we used the fact that ‖AB‖2 ≤ ‖A‖2‖B‖. (See Exercise 20 on
page 313 in Section 5.6 of [26].)

Next, we note that the Ricci’s curvature of SU(N) is (N/2)I with re-
spect to the metric induced by ‖ · ‖2 norm on X. By Gromov’s theorem, if
g : (SU(N),‖ds‖2) → R is an L-Lipschitz function and if Eg = 0, then P {|g| >

δ} ≤ exp(−cNδ2/L2) for every δ > 0 and some numeric c > 0. For details of the
argument, the reader can consult Section 4.4.2 in [1], especially Theorem 4.4.7.
We apply this theorem to a complex-valued function but the proof is the same
except for some minor changes.

For variance, we note that for every positive random variable X, it is true that
EX = ∫∞

0 (1 − FX(t)) dt , where FX(t) is cumulative distribution function of X.
We can apply this to the random variables (Im(Gij − EGij ))

2 and (Re(Gij −
EGij ))

2, and find that the expectation of both expression is smaller than ‖B‖2

cη4N
.

Hence,

Var
(
Gij (z)

)≡ E
(
(Gij −EGij )(Gij −EGij )

)≤ ‖B‖2

cη4N

with a possibly different constant.
(ii) The proof is similar and boils down to showing that if h(z,X) :=

N−1 Tr(FGH(z,X)) and if ‖X‖2 = 1, then∣∣dXhA(z,X)
∣∣= ∣∣∣∣ 1

N

∑
x,y

([GFG, B̃])yxXxy

∣∣∣∣
≤ 2√

N
‖GFG‖‖B‖

≤ 2‖F‖‖B‖
η2

√
N

. �

LEMMA C.2. Assume that max{‖A‖,‖B‖} ≤ K , Im z = η > 0 and |z| ≤ R.
We have (EmH(z))−1 ≤ c′/η, where c′ depends only on K and R.

PROOF. We have

ImE

[
1

N
TrGH(x + iη)

]
= E

[
η

N
Tr
[(

(H − xIN)2 + η2IN

)−1]]
.
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Since all eigenvalues of (H − xIN)2 + η2IN are ≤ ((K + R)2 + R2), hence all
eigenvalues of ((H − xIN)2 + η2IN)−1 are ≥((K + R)2 + R2)−1 and, therefore,

E

[
η

N
Tr
[
(H − xIN)2 + η2IN

]−1
]

≥ cη,

which implies the claim of the lemma. �
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