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FEYNMAN–KAC REPRESENTATION FOR
HAMILTON–JACOBI–BELLMAN IPDE

BY IDRIS KHARROUBI AND HUYÊN PHAM

Université Paris Dauphine, and Université Paris 7 Diderot and CREST-ENSAE

We aim to provide a Feynman–Kac type representation for Hamilton–
Jacobi–Bellman equation, in terms of forward backward stochastic differen-
tial equation (FBSDE) with a simulatable forward process. For this purpose,
we introduce a class of BSDE where the jumps component of the solution
is subject to a partial nonpositive constraint. Existence and approximation of
a unique minimal solution is proved by a penalization method under mild
assumptions. We then show how minimal solution to this BSDE class pro-
vides a new probabilistic representation for nonlinear integro-partial differen-
tial equations (IPDEs) of Hamilton–Jacobi–Bellman (HJB) type, when con-
sidering a regime switching forward SDE in a Markovian framework, and
importantly we do not make any ellipticity condition. Moreover, we state a
dual formula of this BSDE minimal solution involving equivalent change of
probability measures. This gives in particular an original representation for
value functions of stochastic control problems including controlled diffusion
coefficient.

1. Introduction. The classical Feynman–Kac theorem states that the solution
to the linear parabolic partial differential equation (PDE) of second order:

∂v

∂t
+ b(x).Dxv + 1

2
tr

(
σσ ᵀ(x)D2

xv
) + f (x) = 0, (t, x) ∈ [0, T ) ×R

d,

v(T , x) = g(x), x ∈ R
d,

may be probabilistically represented under some general conditions as (see, e.g.,
[11]):

v(t, x) = E

[∫ T

t
f

(
Xt,x

s

)
ds + g

(
X

t,x
T

)]
,(1.1)

where Xt,x is the solution to the stochastic differential equation (SDE) driven
by a d-dimensional Brownian motion W on a filtered probability space (�,F,

(Ft )t ,P):

dXs = b(Xs) ds + σ(Xs) dWs,
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starting from x ∈ R
d at t ∈ [0, T ]. By considering the process Yt = v(t,Xt),

and from Itô’s formula (when v is smooth) or in general from martingale rep-
resentation theorem w.r.t. the Brownian motion W , the Feynman–Kac formula
(1.1) is formulated equivalently in terms of (linear) backward stochastic equa-
tion

Yt = g(XT ) +
∫ T

t
f (Xs) ds −

∫ T

t
Zs dWs, t ≤ T ,

with Z an adapted process, which is identified to: Zt = σ ᵀ(Xt)Dxv(t,Xt) when v

is smooth.
Let us now consider the Hamilton–Jacobi–Bellman (HJB) equation in the

form:

∂v

∂t
+ sup

a∈A

[
b(x, a).Dxv + 1

2
tr

(
σσ ᵀ(x, a)D2

xv
) + f (x, a)

]

= 0, on [0, T ) ×R
d,(1.2)

v(T , x) = g(x), x ∈R
d,

where A is a subset of Rq . It is well known (see, e.g., [23]) that such nonlinear
PDE is the dynamic programming equation associated to the stochastic control
problem with value function defined by

v(t, x) := sup
α

E

[∫ T

t
f

(
Xt,x,α

s , αs

)
ds + g

(
X

t,x,α
T

)]
,(1.3)

where Xt,x,α is the solution to the controlled diffusion

dXα
s = b

(
Xα

s ,αs

)
ds + σ

(
Xα

s ,αs

)
dWs,

starting from x at t , and given a predictable control process α valued in A.
Our main goal is to provide a probabilistic representation for the nonlinear HJB

equation using backward stochastic differential equations (BSDEs), namely the
so-called nonlinear Feynman–Kac formula, which involves a simulatable forward
process. One can then hope to use such representation for deriving a probabilistic
numerical scheme for the solution to HJB equation, hence the stochastic control
problem. Such issues have attracted a lot of interest and generated an important
literature over the recent years. Actually, there is a crucial distinction between the
case where the diffusion coefficient is controlled or not.

Consider first the case where σ(x) does not depend on a ∈ A, and assume that
σσ ᵀ(x) is of full rank. Denoting by θ(x, a) = σ ᵀ(x)(σσ ᵀ(x))−1b(x, a) a solution
to σ(x)θ(x, a) = b(x, a), we notice that the HJB equation reduces into a semilin-
ear PDE:

∂v

∂t
+ 1

2
tr

(
σσ ᵀ(x)D2

xv
) + F(x,σ ᵀDxv) = 0,(1.4)



FEYNMAN–KAC REPRESENTATION FOR HJB EQUATION 1825

where F(x, z) = supa∈A[f (x, a) + θ(x, a).z] is the θ -Fenchel–Legendre trans-
form of f . In this case, we know from the seminal works by Pardoux and Peng
[18, 19], that the (viscosity) solution v to the semilinear PDE (1.4) is connected to
the BSDE

Yt = g
(
X0

T

) +
∫ T

t
F

(
X0

s ,Zs

)
ds −

∫ T

t
Zs dWs, t ≤ T ,(1.5)

through the relation Yt = v(t,X0
t ), with a forward diffusion process

dX0
s = σ

(
X0

s

)
dWs.

This probabilistic representation leads to a probabilistic numerical scheme for the
resolution to (1.4) by discretization and simulation of the BSDE (1.5); see [4].
Alternatively, when the function F(x, z) is of polynomial type on z, the semilinear
PDE (1.4) can be numerically solved by a forward Monte–Carlo scheme relying on
marked branching diffusion, as recently pointed out in [13]. Moreover, as showed
in [9], the solution to the BSDE (1.5) admits a dual representation in terms of
equivalent change of probability measures as

Yt = ess sup
α

E
P

α
[∫ T

t
f

(
X0

s , αs

)
ds + g

(
X0

T

)∣∣∣Ft

]
,(1.6)

where for a control α, Pα is the equivalent probability measure to P under which

dX0
s = b

(
X0

s , αs

)
ds + σ

(
X0

s

)
dWα

s ,

with Wα a P
α-Brownian motion by Girsanov’s theorem. In other words, the pro-

cess X0 has the same dynamics under Pα than the controlled process Xα under P,
and the representation (1.6) can be viewed as a weak formulation (see [8]) of the
stochastic control problem (1.3) in the case of uncontrolled diffusion coefficient.

The general case with controlled diffusion coefficient σ(x, a) associated to fully
nonlinear PDE is challenging and led to recent theoretical advances. Consider the
motivating example from uncertain volatility model in finance formulated here in
dimension 1 for simplicity of notation:

dXα
s = αs dWs,

where the control process α is valued in A = [a, ā] with 0 ≤ a ≤ ā < ∞, and
define the value function of the stochastic control problem

v(t, x) := sup
α

E
[
g
(
X

t,x,α
T

)]
, (t, x) ∈ [0, T ] ×R.

The associated HJB equation takes the form

∂v

∂t
+ G

(
D2

xv
) = 0, (t, x) ∈ [0, T ) ×R, v(T , x) = g(x), x ∈ R,(1.7)
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where G(M) = 1
2 supa∈A[a2M] = ā2M+−a2M−. The unique (viscosity) solution

to (1.7) is represented in terms of the so-called G-Brownian motion B , and G-
expectation EG, concepts introduced in [21]:

v(t, x) = EG

[
g(x + BT −t )

]
.

Moreover, G-expectation is closely related to second-order BSDE studied in [26],
namely the process Yt = v(t,Bt ) satisfies a 2BSDE, which is formulated under
a nondominated family of singular probability measures given by the law of Xα

under P. This gives a nice theory and representation for nonlinear PDE, but it re-
quires a nondegeneracy assumption on the diffusion coefficient, and does not cover
general HJB equation (i.e., control both on drift and diffusion arising for instance
in portfolio optimization). On the other hand, it is not clear how to simulate G-
Brownian motion.

We provide here an alternative BSDE representation including general HJB
equation, formulated under a single probability measure (thus avoiding nondomi-
nated singular measures), and under which the forward process can be simulated.
The idea, used in [16] for quasi-variational inequalities arising in impulse control
problems, is the following. We introduce a Poisson random measure μA(dt, da)

on R+ × A with finite intensity measure λA(da) dt associated to the marked point
process (τi, ζi)i , independent of W , and consider the pure jump process (It )t equal
to the mark ζi valued in A between two jump times τi and τi+1. We next consider
the forward regime switching diffusion process

dXs = b(Xs, Is) ds + σ(Xs, Is) dWs,

and observe that the (uncontrolled) pair process (X, I) is Markov. Let us then
consider the BSDE with jumps w.r.t. the Brownian–Poisson filtration F= F

W,μA :

Yt = g(XT ) +
∫ T

t
f (Xs, Is) ds −

∫ T

t
Zs dWs

(1.8)

−
∫ T

t

∫
A

Us(a)μ̃A(ds, da),

where μ̃A is the compensated measure of μA. This linear BSDE is the Feynman–
Kac formula for the linear integro-partial differential equation (IPDE):

∂v

∂t
+ b(x, a).Dxv + 1

2
tr

(
σσ ᵀ(x, a)D2

xv
)

(1.9)

+
∫
A

(
v
(
t, x, a′) − v(t, x, a)

)
λA

(
da′) + f (x, a) = 0,

(t, x, a) ∈ [0, T ) ×R
d × A,

v(T , x, a) = g(x), (x, a) ∈R
d × A,(1.10)
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through the relation: Yt = v(t,Xt , It ). Now, in order to pass from the above linear
IPDE with the additional auxiliary variable a ∈ A to the nonlinear HJB PDE (1.2),
we constrain the jump component to the BSDE (1.8) to be nonpositive, that is,

Ut(a) ≤ 0, ∀(t, a).(1.11)

Then, since Ut(a) represents the jump of Yt = v(t,Xt , It ) induced by a jump of
the random measure μ, that is of I , and assuming that v is continuous, the con-
straint (1.11) means that Ut(a) = v(t,Xt , a) − v(t,Xt , It−) ≤ 0 for all (t, a). This
formally implies that v(t, x) should not depend on a ∈ A. Once we get the nonde-
pendence of v in a, equation (1.9) becomes a PDE on [0, T )×R

d with a parameter
a ∈ A. By taking the supremum over a ∈ A in (1.9), we then obtain the nonlinear
HJB equation (1.2).

Inspired by the above discussion, we now introduce the following general class
of BSDE with partially nonpositive jumps, which is a non-Markovian extension of
(1.8)–(1.11):

Yt = ξ +
∫ T

t
F (s,ω,Ys,Zs,Us) ds + KT − Kt

(1.12)

−
∫ T

t
Zs dWs −

∫ T

t

∫
E

Us(e)μ̃(ds, de), 0 ≤ t ≤ T , a.s.

with

Ut(e) ≤ 0, dP⊗ dt ⊗ λ(de) a.e. on � × [0, T ] × A.(1.13)

Here, μ is a Poisson random measure on R+ ×E with intensity measure λ(de) dt ,
A a subset of E, ξ an FT measurable random variable, and F a generator func-
tion. The solution to this BSDE is a quadruple (Y,Z,U,K) where, besides the
usual component (Y,Z,U), the fourth component K is a predictable nondecreas-
ing process, which makes the A-constraint (1.13) feasible. We thus look at the
minimal solution (Y,Z,U,K) in the sense that for any other solution (Ȳ, Z̄, Ū, K̄)

to (1.12)–(1.13), we must have Y ≤ Ȳ .
We use a penalization method for constructing an approximating sequence

(Y n,Zn,Un,Kn)n of BSDEs with jumps, and prove that it converges to the min-
imal solution that we are looking for. The proof relies on comparison results, uni-
form estimates and monotonic convergence theorem for BSDEs with jumps. No-
tice that compared to [16], we do not assume that the intensity measure λ of μ is
finite on the whole set E, but only on the subset A on which the jump constraint
is imposed. Moreover in [16], the process I does not influence directly the coeffi-
cients of the process X, which is Markov in itself. In contrast, in this paper, we need
to enlarge the state variables by considering the additional state variable I , which
makes Markov the forward regime switching jump-diffusion process (X, I). Our
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main result is then to relate the minimal solution to the BSDE with A-nonpositive
jumps to a fully nonlinear IPDE of HJB type

∂v

∂t
+ sup

a∈A

[
b(x, a).Dxv(t, x) + 1

2
tr

(
σσ ᵀ(x, a)D2

xv(t, x)
)

+
∫
E\A

[
v
(
t, x + β(x, a, e)

) − v(t, x)

− β(x, a, e).Dxv(t, x)
]
λ(de)

+ f
(
x, a, v, σ ᵀ(x, a)Dxv

)] = 0,

on [0, T ) ×R
d .

This equation clearly extends HJB equation (1.2) by incorporating integral terms,
and with a function f depending on v, Dxv (actually, we may also allow f to de-
pend on integral terms). By the Markov property of the forward regime switching
jump-diffusion process, we easily see that the minimal solution to the BSDE with
A-nonpositive jumps is a deterministic function v of (t, x, a). The main task is to
derive the key property that v does not actually depend on a, as a consequence of
the A-nonpositive constrained jumps. This issue is a novelty with respect to the
framework of [16] where there is a positive cost at each change of the regime I ,
while in the current paper, the cost is identically degenerate to zero. The proof re-
lies on sharp arguments from viscosity solutions, inf-convolution and semiconcave
approximation, as we do not know a priori any continuity results on v.

In the case where the generator function F or f does not depend on y, z,u,
which corresponds to the stochastic control framework, we provide a dual repre-
sentation of the minimal solution to the BSDE by means of a family of equiva-
lent change of probability measures in the spirit of (1.6). This gives in particular
an original representation for value functions of stochastic control problems, and
unifies the weak formulation for both uncontrolled and controlled diffusion coef-
ficient.

We conclude this introduction by pointing out that our results are stated without
any ellipticity assumption on the diffusion coefficient, and includes the case of
control affecting independently drift and diffusion, in contrast with the theory of
second-order BSDE. Moreover, our probabilistic BSDE representation leads to a
new numerical scheme for HJB equation, based on the simulation of the forward
process (X, I) and empirical regression methods, hence taking advantage of the
high dimensional properties of Monte–Carlo method. Convergence analysis for
the discrete time approximation of the BSDE with nonpositive jumps is studied
in [14], while numerous numerical tests illustrate the efficiency of the method in
[15].

The rest of the paper is organized as follows. In Section 2, we give a detailed for-
mulation of BSDE with partially nonpositive jumps. We develop the penalization
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approach for studying the existence and the approximation of a unique minimal
solution to our BSDE class, and give a dual representation of the minimal BSDE
solution in the stochastic control case. We show in Section 3 how the minimal
BSDE solution is related by means of viscosity solutions to the nonlinear IPDE of
HJB type. Finally, we conclude in Section 4 by indicating extensions to our paper,
and discussing probabilistic numerical scheme for the resolution of HJB equations.

2. BSDE with partially nonpositive jumps.

2.1. Formulation and assumptions. Let (�,F,P) be a complete probability
space on which are defined a d-dimensional Brownian motion W = (Wt)t≥0, and
an independent integer valued Poisson random measure μ on R+ × E, where E is
a Borelian subset of Rq , endowed with its Borel σ -field B(E). We assume that the
random measure μ has the intensity measure λ(de) dt for some σ -finite measure
λ on (E,B(E)) satisfying ∫

E

(
1 ∧ |e|2)

λ(de) < ∞.

We set μ̃(dt, de) = μ(dt, de) − λ(de) dt , the compensated martingale measure
associated to μ, and denote by F = (Ft )t≥0 the completion of the natural filtration
generated by W and μ.

We fix a finite time duration T < ∞ and we denote by P the σ -algebra of F-
predictable subsets of � × [0, T ]. Let us introduce some additional notations. We
denote by:

• S2 the set of real-valued càdlàg adapted processes Y = (Yt )0≤t≤T such that
‖Y‖S2 := (E[sup0≤t≤T |Yt |2])1/2 < ∞.

• Lp(0,T), p ≥ 1, the set of real-valued adapted processes (φt )0≤t≤T such that
E[∫ T

0 |φt |p dt] < ∞.
• Lp(W), p ≥ 1, the set of R

d -valued P-measurable processes Z = (Zt )0≤t≤T

such that ‖Z‖Lp(W) := (E[∫ T
0 |Zt |p dt])1/p < ∞.

• Lp(μ̃), p ≥ 1, the set of P ⊗ B(E)-measurable maps U :� × [0, T ] × E → R

such that ‖U‖Lp(μ̃) := (E[∫ T
0 (

∫
E |Ut(e)|2λ(de))p/2 dt])1/p < ∞.

• L2(λ) is the set of B(E)-measurable maps u :E → R such that |u|L2(λ) :=
(
∫
E |u(e)|2λ(de))1/2 < ∞.

• K2 the closed subset of S2 consisting of nondecreasing processes K =
(Kt)0≤t≤T with K0 = 0.

We are then given three objects:

1. A terminal condition ξ , which is an FT -measurable random variable.
2. A generator function F :� × [0, T ] × R × R

d × L2(λ) → R, which is a P ⊗
B(R) ⊗B(Rd) ⊗B(L2(λ))-measurable map.

3. A Borelian subset A of E such that λ(A) < ∞.
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We shall impose the following assumption on these objects:

(H0)

(i) The random variable ξ and the generator function F satisfy the square inte-
grability condition

E
[|ξ |2] +E

[∫ T

0

∣∣F(t,0,0,0)
∣∣2 dt

]
< ∞.

(ii) The generator function F satisfies the uniform Lipschitz condition: there ex-
ists a constant CF such that∣∣F(t, y, z, u) − F

(
t, y′, z′, u′)∣∣ ≤ CF

(∣∣y − y′∣∣ + ∣∣z − z′∣∣ + ∣∣u − u′∣∣
L2(λ)

)
,

for all t ∈ [0, T ], y, y ′ ∈ R, z, z′ ∈R
d and u,u′ ∈ L2(λ).

(iii) The generator function F satisfies the monotonicity condition

F(t, y, z, u) − F
(
t, y, z, u′) ≤

∫
E

γ
(
t, e, y, z, u,u′)(u(e) − u′(e)

)
λ(de),

for all t ∈ [0, T ], z ∈ R
d , y ∈ R and u,u′ ∈ L2(λ), where γ : [0, T ]×�×E ×

R×R
d ×L2(λ)×L2(λ) →R is a P ⊗B(E)⊗B(R)⊗B(Rd)⊗B(L2(λ))⊗

B(L2(λ))-measurable map satisfying: C1(1 ∧ |e|) ≤ γ (t, e, y, z, u,u′) ≤
C2(1 ∧ |e|), for all e ∈ E, with two constants −1 < C1 ≤ 0 ≤ C2.

Let us now introduce our class of backward stochastic differential equations
(BSDEs) with partially nonpositive jumps written in the form

Yt = ξ +
∫ T

t
F (s, Ys,Zs,Us) ds + KT − Kt

(2.1)

−
∫ T

t
Zs dWs −

∫ T

t

∫
E

Us(e)μ̃(ds, de), 0 ≤ t ≤ T , a.s.

with

Ut(e) ≤ 0, dP⊗ dt ⊗ λ(de) a.e. on � × [0, T ] × A.(2.2)

DEFINITION 2.1. A minimal solution to the BSDE with terminal data/gener-
ator (ξ,F ) and A-nonpositive jumps is a quadruple of processes (Y,Z,U,K) ∈
S2 ×L2(W)×L2(μ̃)×K2 satisfying (2.1)–(2.2) such that for any other quadruple
(Ȳ, Z̄, Ū, K̄) ∈ S2 × L2(W) × L2(μ̃) × K2 satisfying (2.1)–(2.2), we have

Yt ≤ Ȳt , 0 ≤ t ≤ T , a.s.

REMARK 2.1. Notice that when it exists, there is a unique minimal solution.
Indeed, by definition, we clearly have uniqueness of the component Y . The unique-
ness of Z follows by identifying the Brownian parts and the finite variation parts,
and then the uniqueness of (U,K) is obtained by identifying the predictable parts
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and by recalling that the jumps of μ are inaccessible. By misuse of language, we
say sometimes that Y [instead of the quadruple (Y,Z,U,K)] is the minimal solu-
tion to (2.1)–(2.2).

In order to ensure that the problem of getting a minimal solution is well posed,
we shall need to assume:

(H1) There exists a quadruple (Ȳ, Z̄, K̄, Ū ) ∈ S2 × L2(W) × L2(μ̃) × K2 sat-
isfying (2.1)–(2.2).

We shall see later in Lemma 3.1 how such a condition is satisfied in a Markovian
framework.

2.2. Existence and approximation by penalization. In this paragraph, we
prove the existence of a minimal solution to (2.1)–(2.2), based on approximation
via penalization. For each n ∈ N, we introduce the penalized BSDE with jumps

Yn
t = ξ +

∫ T

t
F

(
s, Y n

s ,Zn
s ,Un

s

)
ds + Kn

T − Kn
t

(2.3)

−
∫ T

t
Zn

s dWs −
∫ T

t

∫
E

Un
s (e)μ̃(ds, de), 0 ≤ t ≤ T ,

where Kn is the nondecreasing process in K2 defined by

Kn
t = n

∫ t

0

∫
A

[
Un

s (e)
]+

λ(de) ds, 0 ≤ t ≤ T .

Here, [u]+ = max(u,0) denotes the positive part of u. Notice that this penalized
BSDE can be rewritten as

Yn
t = ξ +

∫ T

t
Fn

(
s, Y n

s ,Zn
s ,Un

s

)
ds −

∫ T

t
Zn

s dWs

−
∫ T

t

∫
E

Un
s (e)μ̃(ds, de), 0 ≤ t ≤ T ,

where the generator Fn is defined by

Fn(t, y, z, u) = F(t, y, z, u) + n

∫
A

[
u(e)

]+
λ(de),

for all (t, y, z, u) ∈ [0, T ]×R×R
d ×L2(λ). Under (H0)(ii)–(iii) and since λ(A) <

∞, we see that Fn is Lipschitz continuous w.r.t. (y, z, u) for all n ∈ N. Therefore,
we obtain from Lemma 2.4 in [27], that under (H0), BSDE (2.3) admits a unique
solution (Y n,Zn,Un) ∈ S2 × L2(W) × L2(μ̃) for any n ∈ N.

LEMMA 2.1. Let Assumption (H0) hold. The sequence (Y n)n is nondecreas-
ing, that is, Yn

t ≤ Yn+1
t for all t ∈ [0, T ] and all n ∈ N.
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PROOF. Fix n ∈ N, and observe that

Fn(t, e, y, z, u) ≤ Fn+1(t, e, y, z, u),

for all (t, e, y, z, u) ∈ [0, T ] × E × R × R
d × L2(λ). Under Assumption (H0),

we can apply the comparison Theorem 2.5 in [25], which shows that Yn
t ≤ Yn+1

t ,
0 ≤ t ≤ T , a.s. �

The next result shows that the sequence (Y n)n is upper-bounded by any solution
to the constrained BSDE.

LEMMA 2.2. Let Assumption (H0) hold. For any quadruple (Ȳ, Z̄, Ū, K̄) ∈
S2 × L2(W) × L2(μ̃) × K2 satisfying (2.1)–(2.2), we have

Yn
t ≤ Ȳt , 0 ≤ t ≤ T ,n ∈N.(2.4)

PROOF. Fix n ∈ N, and consider a quadruple (Ȳ, Z̄, Ū, K̄) ∈ S2 × L2(W) ×
L2(μ̃) × K2 solution to (2.1)–(2.2). Then, Ū clearly satisfies

∫ t
0

∫
A[Ūs(e)]+ ×

λ(de) ds = 0 for all t ∈ [0, T ], and so (Ȳ, Z̄, Ū, K̄) is a supersolution to the pe-
nalized BSDE (2.3), that is,

Ȳt = ξ +
∫ T

t
Fn(s, Ȳs, Z̄s, Ūs) ds + K̄T − K̄t

−
∫ T

t
Z̄s dWs −

∫ T

t

∫
E

Ūs(e)μ̃(ds, de), 0 ≤ t ≤ T .

By a slight adaptation of the comparison Theorem 2.5 in [25] under (H0), we
obtain the required inequality: Yn

t ≤ Ȳt , 0 ≤ t ≤ T . �

We now establish a priori uniform estimates on the sequence (Y n,Zn,Un,

Kn)n.

LEMMA 2.3. Under (H0) and (H1), there exists some constant C depending
only on T and the monotonicity condition of F in (H0)(iii) such that∥∥Yn

∥∥2
S2 + ∥∥Zn

∥∥2
L2(W) + ∥∥Un

∥∥2
L2(μ̃) + ∥∥Kn

∥∥2
S2

≤ C

(
E|ξ |2 +E

[∫ T

0

∣∣F(t,0,0,0)
∣∣2 dt

]
+E

[
sup

0≤t≤T

|Ȳt |2
])

,(2.5)

∀n ∈ N.

PROOF. In what follows, we shall denote by C > 0 a generic positive constant
depending only on T , and the linear growth condition of F in (H0)(ii), which may
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vary from line to line. By applying Itô’s formula to |Yn
t |2, and observing that Kn

is continuous and �Yn
t = ∫

E Un
t (e)μ({t}, de), we have

E|ξ |2 = E
∣∣Yn

t

∣∣2 − 2E
∫ T

t
Y n

s F
(
s, Y n

s ,Zn
s ,Un

s

)
ds

− 2E
∫ T

t
Y n

s dKn
s +E

∫ T

t

∣∣Zn
s

∣∣2 ds

+E

∫ T

t

∫
E

{∣∣Yn
s− + Un

s (e)
∣∣2 − ∣∣Yn

s−
∣∣2 − 2Yn

s−Un
s (e)

}
μ(de, ds)

= E
∣∣Yn

t

∣∣2 +E

∫ T

t

∣∣Zn
s

∣∣2 ds +E

∫ T

t

∫
E

∣∣Un
s (e)

∣∣2λ(de) ds

− 2E
∫ T

t
Y n

s F
(
s, Y n

s ,Zn
s ,Un

s

)
ds − 2E

∫ T

t
Y n

s dKn
s , 0 ≤ t ≤ T .

From (H0)(iii), the inequality Yn
t ≤ Ȳt by Lemma 2.2 under (H1), and the inequal-

ity 2ab ≤ 1
α
a2 + αb2 for any constant α > 0, we have

E
∣∣Yn

t

∣∣2 +E

∫ T

t

∣∣Zn
s

∣∣2 ds +E

∫ T

t

∫
E

∣∣Un
s (e)

∣∣2λ(de) ds

≤ E|ξ |2 + CE

∫ T

t

∣∣Yn
s

∣∣(∣∣F(s,0,0,0)
∣∣ + ∣∣Yn

s

∣∣ + ∣∣Zn
s

∣∣ + ∣∣Un
s

∣∣
L2(λ)

)
ds

+ 1

α
E

[
sup

s∈[0,T ]
|Ȳs |2

]
+ αE

∣∣Kn
T − Kn

t

∣∣2.
Using again the inequality ab ≤ a2

2 + b2

2 , and (H0)(i), we get

E
∣∣Yn

t

∣∣2 + 1

2
E

∫ T

t

∣∣Zn
s

∣∣2 ds + 1

2
E

∫ T

t

∫
E

∣∣Un
s (e)

∣∣2λ(de) ds

≤ CE

∫ T

t

∣∣Yn
s

∣∣2 ds +E|ξ |2 + 1

2
E

∫ T

0

∣∣F(s,0,0,0)
∣∣2 ds(2.6)

+ 1

α
E

[
sup

t∈[0,T ]
|Ȳt |2

]
+ αE

∣∣Kn
T − Kn

t

∣∣2.
Now, from the relation (2.3), we have

Kn
T − Kn

t = Yn
t − ξ −

∫ T

t
F

(
s, Y n

s ,Zn
s ,Un

s

)
ds

+
∫ T

t
Zn

s dWs +
∫ T

t

∫
E

Un
s (e)μ̃(ds, de).
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Thus, there exists some positive constant C1 depending only on the linear growth
condition of F in (H0)(ii) such that

E
∣∣Kn

T − Kn
t

∣∣2
≤ C1

(
E|ξ |2 +E

∫ T

0

∣∣F(s,0,0,0)
∣∣2 ds +E

∣∣Yn
t

∣∣2(2.7)

+E

∫ T

t

(∣∣Yn
s

∣∣2 + ∣∣Zn
s

∣∣2 + ∣∣Un
s

∣∣2
L2(λ)

)
ds

)
, 0 ≤ t ≤ T .

Hence, by choosing α > 0 s.t. C1α ≤ 1
4 , and plugging into (2.6), we get

3

4
E

∣∣Yn
t

∣∣2 + 1

4
E

∫ T

t

∣∣Zn
s

∣∣2 ds + 1

4
E

∫ T

t

∫
E

∣∣Un
s (e)

∣∣2λ(de) ds

≤ CE

∫ T

t

∣∣Yn
s

∣∣2 ds + 5

4
E|ξ |2 + 1

4
E

∫ T

0

∣∣F(s,0,0,0)
∣∣2 ds

+ 1

α
E

[
sup

s∈[0,T ]
|Ȳs |2

]
, 0 ≤ t ≤ T .

Thus application of Gronwall’s lemma to t �→ E|Yn
t |2 yields

sup
0≤t≤T

E
∣∣Yn

t

∣∣2 +E

∫ T

0

∣∣Zn
t

∣∣2 dt +E

∫ T

0

∫
E

∣∣Un
t (e)

∣∣2λ(de) dt

(2.8)

≤ C

(
E|ξ |2 +E

∫ T

0

∣∣F(t,0,0,0)
∣∣2 dt +E

[
sup

t∈[0,T ]
|Ȳt |2

])
,

which gives the required uniform estimates (2.5) for (Zn,Un)n and also (Kn)n by
(2.7). Finally, by writing from (2.3) that

sup
0≤t≤T

∣∣Yn
t

∣∣ ≤ |ξ | +
∫ T

0

∣∣F (
t, Y n

t ,Zn
t ,Un

t

)∣∣dt + Kn
T

+ sup
0≤t≤T

∣∣∣∣
∫ t

0
Zn

s dWs

∣∣∣∣ + sup
0≤t≤T

∣∣∣∣
∫ t

0

∫
E

Un
s (e)μ̃(ds, de)

∣∣∣∣,
we obtain the required uniform estimate (2.5) for (Y n)n by the Burkholder–Davis–
Gundy inequality, linear growth condition in (H0)(ii), and the uniform estimates
for (Zn,Un,Kn)n. �

We can now state the main result of this paragraph.

THEOREM 2.1. Under (H0) and (H1), there exists a unique minimal solution
(Y,Z,U,K) ∈ S2 × L2(W)× L2(μ̃)× K2 with K predictable, to (2.1)–(2.2). Y is
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the increasing limit of (Y n)n and also in L2(0,T), Kt is the weak limit of (Kn
t )n

in L2(�,Ft ,P) for all t ∈ [0, T ], and for any p ∈ [1,2),∥∥Zn − Z
∥∥

Lp(W) + ∥∥Un − U
∥∥

Lp(μ̃) −→ 0,

as n goes to infinity.

PROOF. By the Lemmata 2.1 and 2.2, (Y n)n converges increasingly to some
adapted process Y , satisfying: ‖Y‖S2 < ∞ by the uniform estimate for (Y n)n
in Lemma 2.3 and Fatou’s lemma. Moreover, by dominated convergence theo-
rem, the convergence of (Y n)n to Y also holds in L2(0,T). Next, by the uni-
form estimates for (Zn,Un,Kn)n in Lemma 2.3, we can apply the monotonic
convergence Theorem 3.1 in [10], which extends to the jump case the mono-
tonic convergence theorem of Peng [20] for BSDE. This provides the existence
of (Z,U) ∈ L2(W)× L2(μ̃), and K predictable, nondecreasing with E[K2

T ] < ∞,
such that the sequence (Zn,Un,Kn)n converges in the sense of Theorem 2.1 to
(Z,U,K) satisfying

Yt = ξ +
∫ T

t
F (s, Ys,Zs,Us) ds + KT − Kt

−
∫ T

t
Zs dWs −

∫ T

t

∫
E

Us(e)μ̃(ds, de), 0 ≤ t ≤ T .

Thus, the process Y is the difference of a càdlàg process and the nondecreasing
process K , and by Lemma 2.2 in [20], this implies that Y and K are also càdlàg,
hence respectively in S2 and K2. Moreover, from the strong convergence in L1(μ̃)

of (Un)n to U and since λ(A) < ∞, we have

E

∫ T

0

∫
A

[
Un

s (e)
]+

λ(de) ds −→ E

∫ T

0

∫
A

[
Us(e)

]+
λ(de) ds,

as n goes to infinity. Since Kn
T = n

∫ T
0

∫
A[Un

s (e)]+λ(de) ds is bounded in
L2(�,FT,P), this implies

E

∫ T

0

∫
A

[
Us(e)

]+
λ(de) ds = 0,

which means that the A-nonpositive constraint (2.2) is satisfied. Hence, (Y,Z,

K,U) is a solution to the constrained BSDE (2.1)–(2.2), and by Lemma 2.2, Y =
limYn is the minimal solution. Finally, the uniqueness of the solution (Y,Z,U,K)

is given by Remark 2.1. �

2.3. Dual representation. In this subsection, we consider the case where the
generator function F(t,ω) does not depend on y, z,u. Our main goal is to provide
a dual representation of the minimal solution to the BSDE with A-nonpositive
jumps in terms of a family of equivalent probability measures.



1836 I. KHARROUBI AND H. PHAM

Let V be the set of P ⊗B(E)-measurable processes valued in (0,∞), and con-
sider for any ν ∈ V , the Doléans–Dade exponential local martingale

Lν
t := E

(∫ ·
0

∫
E

(
νs(e) − 1

)
μ̃(ds, de)

)
t

= exp
(∫ t

0

∫
E

lnνs(e)μ(ds, de) −
∫ t

0

∫
E

(
νs(e) − 1

)
λ(de) ds

)
,(2.9)

0 ≤ t ≤ T .

When Lν is a true martingale, that is, E[Lν
T ] = 1, it defines a probability measure

P
ν equivalent to P on (�,FT ) with Radon–Nikodym density

dPν

dP

∣∣∣∣
Ft

= Lν
t , 0 ≤ t ≤ T ,(2.10)

and we denote by E
ν the expectation operator under Pν . Notice that W remains

a Brownian motion under P
ν , and the effect of the probability measure P

ν , by
Girsanov’s theorem, is to change the compensator λ(de) dt of μ under P to
νt (e)λ(de) dt under Pν . We denote by μ̃ν(dt, de) = μ(dt, de)− νt (e)λ(de) dt the
compensated martingale measure of μ under Pν . We then introduce the subset VA

of V by

VA = {
ν ∈ V, valued in [1,∞) and essentially bounded :

νt (e) = 1, e ∈ E \ A,dP⊗ dt ⊗ λ(de) a.e.
}
,

and the subset Vn
A as the elements of ν ∈ VA essentially bounded by n + 1, for

n ∈ N.

LEMMA 2.4. For any ν ∈ VA, Lν is a uniformly integrable martingale, and
Lν

T is square integrable.

PROOF. Several sufficient criteria for Lν to be a uniformly integrable martin-
gale are known. We refer, for example, to the recent paper [24], which shows that
if

Sν
T := exp

(∫ T

0

∫
E

∣∣νt (e) − 1
∣∣2λ(de) dt

)

is integrable, then Lν is uniformly integrable. By definition of VA, we see that for
ν ∈ VA,

Sν
T = exp

(∫ T

0

∫
A

∣∣νt (e) − 1
∣∣2λ(de) dt

)
,

which is essentially bounded since ν is essentially bounded and λ(A) < ∞.
Moreover, from the explicit form (2.9) of Lν , we have |Lν

T |2 = Lν2

T Sν
T , and so

E|Lν
T |2 ≤ ‖Sν

T ‖∞. �
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We can then associate to each ν ∈ VA the probability measure Pν through (2.10).
We first provide a dual representation of the penalized BSDEs in terms of such P

ν .
To this end, we need the following lemma.

LEMMA 2.5. Let φ ∈ L2(W) and ψ ∈ L2(μ̃). Then for every ν ∈ VA, the
processes

∫ ·
0 φt dWt and

∫ ·
0
∫
E ψt(e)μ̃

ν(dt, de) are P
ν-martingales.

PROOF. Fix φ ∈ L2(W) and ν ∈ VA and denote by Mφ the process
∫ ·

0 φt dWt .
Since W remains a P

ν-Brownian motion, we know that Mφ is a P
ν-local mar-

tingale. From the Burkholder–Davis–Gundy and Cauchy–Schwarz inequalites, we
have

E
ν
[

sup
t∈[0,T ]

∣∣Mφ
t

∣∣] ≤ CE
ν[√〈

Mφ
〉
T

] = CE

[
Lν

T

√∫ T

0
|φt |2 dt

]

≤ C

√
E

[∣∣Lν
T

∣∣2]√
E

[∫ T

0
|φt |2 dt

]
< ∞,

since Lν
T is square integrable by Lemma 2.4, and φ ∈ L2(W). This implies that

Mφ is P
ν-uniformly integrable, and hence a true P

ν -martingale. The proof for∫ ·
0
∫
E φt(e)μ̃

ν(dt, de) follows exactly the same lines and is therefore omitted. �

PROPOSITION 2.1. For all n ∈ N, the solution to the penalized BSDE (2.3) is
explicitly represented as

Yn
t = ess sup

ν∈Vn
A

E
ν

[
ξ +

∫ T

t
F (s) ds

∣∣∣Ft

]
, 0 ≤ t ≤ T .(2.11)

PROOF. Fix n ∈N. For any ν ∈ Vn
A, and by introducing the compensated mar-

tingale measure μ̃ν(dt, de) = μ̃(dt, de) − (νt (e) − 1)λ(de) dt under Pν , we see
that the solution (Y n,Zn,Un) to the BSDE (2.3) satisfies

Yn
t = ξ +

∫ T

t

[
F(s) +

∫
A

(
n
[
Un

s (e)
]+ − (

νs(e) − 1
)
Un

s (e)
)
λ(de)

]
ds

−
∫ T

t

∫
E\A

(
νs(e) − 1

)
Un

s (e)λ(de) ds(2.12)

−
∫ T

t
Zn

s dWs −
∫ T

t

∫
E

Un
s (e)μ̃ν(ds, de).

By the definition of VA, we have∫ T

t

∫
E\A

(
νs(e) − 1

)
Un

s (e)λ(de) ds = 0, 0 ≤ t ≤ T , a.s.
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By taking expectation in (2.12) under Pν (∼ P), we then get from Lemma 2.5

Yn
t = E

ν

[
ξ +

∫ T

t

(
F(s)

(2.13)

+
∫
A

(
n
[
Un

s (e)
]+ − (

νs(e) − 1
)
Un

s (e)
)
λ(de)

)
ds

∣∣∣Ft

]
.

Now, observe that for any ν ∈ Vn
A, hence valued in [1, n + 1], we have

n
[
Un

t (e)
]+ − (

νt (e) − 1
)
Un

t (e) ≥ 0, dP⊗ dt ⊗ λ(de) a.e.

which yields by (2.13)

Yn
t ≥ ess sup

ν∈Vn
A

E
ν

[
ξ +

∫ T

t
F (s) ds

∣∣∣Ft

]
.(2.14)

On the other hand, let us consider the process ν∗ ∈ Vn
A defined by

ν∗
t (e) = 1e∈E\A + (

1Ut (e)≤0 + (n + 1)1Ut (e)>0
)
1e∈A, 0 ≤ t ≤ T , e ∈ E.

By construction, we clearly have

n
[
Un

t (e)
]+ − (

ν∗
t (e) − 1

)
Un

t (e) = 0, ∀0 ≤ t ≤ T , e ∈ A,

and thus for this choice of ν = ν∗ in (2.13),

Yn
t = E

ν∗
[
ξ +

∫ T

t
F (s) ds

∣∣∣Ft

]
.

Together with (2.14), this proves the required representation of Yn. �

REMARK 2.2. Arguments in the proof of Proposition 2.1 show that relation
(2.11) holds for general generator function F depending on (y, z, u), that is,

Yn
t = ess sup

ν∈Vn
A

E
ν

[
ξ +

∫ T

t
F

(
s, Y n

s ,Zn
s ,Un

s

)
ds

∣∣∣Ft

]
,

which is in this case an implicit relation for Yn. Moreover, the essential supremum
in this dual representation is attained for some ν∗, which takes extreme values 1 or
n + 1 depending on the sign of Un, that is, of bang-bang form.

Let us then focus on the limiting behavior of the above dual representation for
Yn when n goes to infinity.

THEOREM 2.2. Under (H1), the minimal solution to (2.1)–(2.2) is explicitly
represented as

Yt = ess sup
ν∈VA

E
ν

[
ξ +

∫ T

t
F (s) ds

∣∣∣Ft

]
, 0 ≤ t ≤ T .(2.15)
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PROOF. Let (Y,Z,U,K) be the minimal solution to (2.1)–(2.2). Let us de-
note by Ỹ the process defined in the right-hand side of (2.15). Since Vn

A ⊂ VA, it is
clear from the representation (2.11) that Yn

t ≤ Ỹt , for all n. Recalling from Theo-
rem 2.1 that Y is the pointwise limit of Yn, we deduce that Yt = limn→∞ Yn

t ≤ Ỹt ,
0 ≤ t ≤ T .

Conversely, for any ν ∈ VA, let us consider the compensated martingale mea-
sure μ̃ν(dt, de) = μ̃(dt, de) − (νt (e) − 1)λ(de) dt under P

ν , and observe that
(Y,Z,U,K) satisfies

Yt = ξ +
∫ T

t

[
F(s) −

∫
A

(
νs(e) − 1

)
Us(e)λ(de)

]
ds + KT − Kt

−
∫ T

t

∫
E\A

(
νs(e) − 1

)
Us(e)λ(de) ds(2.16)

−
∫ T

t
Zs dWs −

∫ T

t

∫
E

Us(e)μ̃
ν(ds, de).

By the definition of ν ∈ VA, we have
∫ T
t

∫
E\A(νs(e)− 1)Us(e)λ(de) ds = 0. Thus,

by taking expectation in (2.16) under Pν from Lemma 2.5, and recalling that K is
nondecreasing, we have

Yt ≥ E
ν

[
ξ +

∫ T

t

(
F(s) −

∫
A

(
νs(e) − 1

)
Us(e)λ(de)

)
ds

∣∣∣Ft

]

≥ E
ν

[
ξ +

∫ T

t
F (s) ds

∣∣∣Ft

]
,

since ν is valued in [1,∞), and U satisfies the nonpositive constraint (2.2). Since
ν is arbitrary in VA, this proves the inequality Yt ≥ Ỹt , and finally the required
relation Y = Ỹ . �

3. Nonlinear IPDE and Feynman–Kac formula. In this section, we shall
show how minimal solutions to our BSDE class with partially nonpositive jumps
provides actually a new probabilistic representation (or the Feynman–Kac for-
mula) to fully nonlinear integro-partial differential equation (IPDE) of Hamilton–
Jacobi–Bellman (HJB) type, when dealing with a suitable Markovian framework.

3.1. The Markovian framework. We are given a compact set A of Rq , and a
Borelian subset L ⊂ R

l \ {0}, equipped with respective Borel σ -fields B(A) and
B(L). We assume that:

(HA) The interior set
◦

A of A is connex, and A = Adh(
◦

A), the closure of its
interior.

We consider the case where E = L∪A and we may assume w.l.o.g. that L∩A =
∅ by identifying A and L, respectively, with the sets A × {0} and {0} × L in
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R
q ×R

l . We consider two independent Poisson random measures ϑ and π defined
respectively on R+ × L and R+ × A. We suppose that ϑ and π have respective
intensity measures λϑ(d�) dt and λπ(da) dt where λϑ and λπ are two σ -finite
measures with respective supports L and A, and satisfying∫

L

(
1 ∧ |�|2)

λϑ(d�) < ∞ and
∫
A

λπ(da) < ∞,

and we denote by ϑ̃(dt, d�) = ϑ(dt, d�)−λϑ(d�) dt and π̃(dt, da) = π(dt, da)−
λπ(da) dt the compensated martingale measures of ϑ and π , respectively. We also
assume that:

(Hλπ )

(i) The measure λπ supports the whole set
◦

A: for any a ∈ ◦
A and any open neigh-

borhood O of a in R
q we have λπ(O ∩ ◦

A) > 0.
(ii) The boundary of A: ∂A = A \ ◦

A, is negligible w.r.t. λπ , that is, λπ(∂A) = 0.

In this context, by taking a random measure μ on R+ × E in the form, μ =
ϑ +π , we notice that it remains a Poisson random measure with intensity measure
λ(de) dt given by∫

E
ϕ(e)λ(de) =

∫
L

ϕ(�)λϑ(d�) +
∫
A

ϕ(a)λπ(da),

for any measurable function ϕ from E to R, and we have the following identifica-
tions:

L2(μ̃) = L2(ϑ̃) × L2(π̃), L2(λ) = L2(λϑ ) × L2(λπ ),(3.1)

where:

• L2(ϑ̃) is the set of P ⊗ B(L)-measurable maps U :� × [0, T ] × L → R such
that

‖U‖L2(ϑ̃)
:=

(
E

[∫ T

0

∫
L

∣∣Ut(�)
∣∣2λϑ(d�) dt

])1/2

< ∞.

• L2(π̃) is the set of P ⊗ B(A)-measurable maps R :� × [0, T ] × A → R such
that

‖R‖L2(π̃) :=
(
E

[∫ T

0

∫
A

∣∣Rt(a)
∣∣2λπ(da) dt

])1/2

< ∞.

• L2(λϑ ) is the set of B(L)-measurable maps u :L → R such that

|u|L2(λϑ ) :=
(∫

L

∣∣u(�)
∣∣2λϑ(d�)

)1/2

< ∞.
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• L2(λπ ) is the set of B(A)-measurable maps r :A → R such that

|r|L2(λπ ) :=
(∫

A

∣∣r(a)
∣∣2λπ(da)

)1/2

< ∞.

Given some measurable functions b :Rd ×R
q → R

d , σ :Rd ×R
q → R

d×d and
β :Rd ×R

q ×L → R
d , we introduce the forward Markov regime-switching jump-

diffusion process (X, I) governed by

dXs = b(Xs, Is) ds + σ(Xs, Is) dWs +
∫
L

β(Xs−, Is−, �)ϑ̃(ds, d�),(3.2)

dIs =
∫
A
(a − Is−)π(ds, da).(3.3)

In other words, I is the pure jump process valued in A associated to the Poisson
random measure π , which changes the coefficients of jump-diffusion process X.
We make the usual assumptions on the forward jump-diffusion coefficients:

(HFC)

(i) There exists a constant C such that∣∣b(x, a) − b
(
x′, a′)∣∣ + ∣∣σ(x, a) − σ

(
x′, a′)∣∣ ≤ C

(∣∣x − x′∣∣ + ∣∣a − a′∣∣),
for all x, x′ ∈ R

d and a, a′ ∈ R
q .

(ii) There exists a constant C such that∣∣β(x, a, �)
∣∣ ≤ C

(
1 + |x|)(1 ∧ |�|),∣∣β(x, a, �) − β

(
x′, a′, �

)∣∣ ≤ C
(∣∣x − x′∣∣ + ∣∣a − a′∣∣)(1 ∧ |�|),

for all x, x′ ∈ R
d , a, a′ ∈ R

q and � ∈ L.

REMARK 3.1. We do not make any ellipticity assumption on σ . In particu-
lar, some lines and columns of σ may be equal to zero, and so there is no loss of
generality by considering that the dimension of X and W are equal. We can also
make the coefficients b,σ and β depend on time with the following standard pro-
cedure: we introduce the time variable as a state component �t = t , and consider
the forward Markov system:

dXs = b(Xs,�s, Is) ds + σ(Xs,�s, Is) dWs +
∫
L

β(Xs−,�s−, Is−, �)ϑ̃(ds, d�),

d�s = ds,

dIs =
∫
A
(a − Is−)π(ds, da),

which is of the form given above, but with an enlarged state (X,�, I) (with de-
generate noise), and with the resulting assumptions on b(x, θ, a), σ(x, θ, a) and
β(x, θ, a, �).
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Under these conditions, existence and uniqueness of a solution (Xt,x,a
s ,

I t,a
s )t≤s≤T to (3.2)–(3.3) starting from (x, a) ∈ R

d × R
q at time s = t ∈ [0, T ],

is well known, and we have the standard estimate: for all p ≥ 2, there exists some
positive constant Cp s.t.

E

[
sup

t≤s≤T

∣∣Xt,x,a
s

∣∣p + ∣∣I t,a
s

∣∣p]
≤ Cp

(
1 + |x|p + |a|p)

,(3.4)

for all (t, x, a) ∈ [0, T ] ×R
d ×R

q .
In this Markovian framework, the terminal data and generator of our class of

BSDE are given by two continuous functions g :Rd ×R
q →R and f :Rd ×R

q ×
R×R

d × L2(λϑ ) →R. We make the following assumptions on the BSDE coeffi-
cients:

(HBC1)

(i) The functions g and f (·,0,0,0) satisfy a polynomial growth condition:

sup
x∈Rd ,a∈Rq

|g(x, a)| + |f (x, a,0,0,0)|
1 + |x|m + |a|m < ∞,

for some m ≥ 0.
(ii) There exists some constant C s.t.∣∣f (x, a, y, z, u) − f

(
x′, a′, y′, z′, u′)∣∣

≤ C
(∣∣x − x′∣∣ + ∣∣a − a′∣∣ + ∣∣y − y′∣∣ + ∣∣z − z′∣∣ + ∣∣u − u′∣∣

L2(λϑ )

)
,

for all x, x′ ∈ R
d , y, y′ ∈ R, z, z′ ∈ R

d , a, a′ ∈R
q and u,u′ ∈ L2(λϑ ).

(HBC2) The generator function f satisfies the monotonicity condition:

f (x, a, y, z, u) − f
(
x, a, y, z, u′)

≤
∫
L

γ
(
x, a, �, y, z, u,u′)(u(�) − u′(�)

)
λϑ(d�),

for all x ∈R
d , a ∈ R

q , z ∈ R
d , y ∈R and u,u′ ∈ L2(λϑ ), where γ :Rd ×E ×R×

R
d × L2(λϑ )× L2(λϑ ) →R is a B(Rd)⊗B(E)⊗B(R)⊗B(Rd)⊗B(L2(λϑ ))⊗

B(L2(λϑ ))-measurable map satisfying: C1(1 ∧ |�|) ≤ γ (x, a, �, y, z, u,u′) ≤
C2(1 ∧ |�|), for � ∈ L, with two constants −1 < C1 ≤ 0 ≤ C2.

Let us also consider an assumption on the dependence of f w.r.t. the jump
component used in [2], and stronger than (HBC2).

(HBC2′) The generator function f is of the form

f (x, a, y, z, u) = h

(
x, a, y, z,

∫
L

u(�)δ(x, �)λϑ(d�)

)

for (x, a, y, z, u) ∈ R
d ×R

q ×R×R
d × L2(λ), where:
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• δ is a measurable function on R
d × L satisfying:

0 ≤ δ(x, �) ≤ C
(
1 ∧ |�|),∣∣δ(x, �) − δ

(
x′, �

)∣∣ ≤ C
∣∣x − x′∣∣(1 ∧ |�|2)

, x, x′ ∈ R
d, � ∈ L,

for some positive constant C.
• h is a continuous function on R

d × R
q × R × R

d × R such that ρ �→
h(x, a, y, z, ρ) is nondecreasing for all (x, a, y, z) ∈ R

d × R
q × R × R

d , and
satisfying for some positive constant C:∣∣h(x, a, y, z, ρ) − h

(
x, a, y, z, ρ ′)∣∣ ≤ C

∣∣ρ − ρ′∣∣, ρ, ρ′ ∈R,

for all (x, a, y, z) ∈ R
d ×R

q ×R×R
d .

Now with the identification (3.1), the BSDE problem (2.1)–(2.2) takes the fol-
lowing form: find the minimal solution (Y,Z,U,R,K) ∈ S2 × L2(W) × L2(ϑ̃) ×
L2(π̃) × K2 to

Yt = g(XT , IT ) +
∫ T

t
f (Xs, Is, Ys,Zs,Us) ds + KT − Kt

(3.5)

−
∫ T

t
Zs.dWs −

∫ T

t

∫
L

Us(�)ϑ̃(ds, d�) −
∫ T

t

∫
A

Rs(a)π̃(ds, da),

with

Rt(a) ≤ 0, dP⊗ dt ⊗ λπ(da) a.e.(3.6)

The main goal of this paper is to relate the BSDE (3.5) with A-nonpositive
jumps (3.6) to the following nonlinear IPDE of HJB type:

−∂w

∂t
− sup

a∈A

[
Law + f

(·, a,w,σ ᵀ(·, a)Dxw,Maw
)] = 0,(3.7)

on [0, T ) ×R
d,

w(T , x) = sup
a∈A

g(x, a), x ∈ R
d,(3.8)

where

Law(t, x) = b(x, a).Dxw(t, x) + 1

2
tr

(
σσ ᵀ(x, a)D2

xw(t, x)
)

+
∫
L

[
w

(
t, x + β(x, a, �)

) − w(t, x)

− β(x, a, �).Dxw(t, x)
]
λϑ(d�),

Maw(t, x) = (
w

(
t, x + β(x, a, �)

) − w(t, x)
)
�∈L,

for (t, x, a) ∈ [0, T ] ×R
d ×R

q .
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Notice that under (HBC1), (HBC2) and (3.4) [which follows from (HFC)], and
with the identification (3.1), the generator F(t,ω, y, z, u, r) = f (Xt(ω), It (ω), y,

z, u) and the terminal condition ξ = g(XT , IT ) satisfy clearly Assumption (H0).
Let us now show that Assumption (H1) is satisfied. More precisely, we have the
following result.

LEMMA 3.1. Let Assumptions (HFC), (HBC1) hold. Then, for any initial con-
dition (t, x, a) ∈ [0, T ] ×R

d ×R
q , there exists a solution {(Ȳ t,x,a

s , Z̄t,x,a
s , Ū t,x,a

s ,

R̄t,x,a
s , K̄t,x,a

s ), t ≤ s ≤ T } to the BSDE (3.5)–(3.6) when (X, I) = {(Xt,x,a
s , I t,a

s ),
t ≤ s ≤ T }, with Ȳ t,x,a

s = v̄(s,Xt,x,a
s ) for some deterministic function v̄ on

[0, T ] ×R
d satisfying a polynomial growth condition: for some p ≥ 2,

sup
(t,x)∈[0,T ]×Rd

|v̄(t, x)|
1 + |x|p < ∞.(3.9)

PROOF. Under (HBC1) and since A is compact, we observe that there exists
some m ≥ 0 such that

Cf,g := sup
x∈Rd ,a∈A

|g(x, a)| + |f (x, a, y, z, u)|
1 + |x|m + |y| + |z| + |u|L2(λϑ )

< ∞.(3.10)

Let us then consider the smooth function v̄(t, x) = C̄eρ(T −t)(1 + |x|p) for some
positive constants C̄ and ρ to be determined later, and with p = max(2,m). We
claim that for C̄ and ρ large enough, the function v̄ is a classical supersolution
to (3.7)–(3.8). Indeed, observe first that from the growth condition on g in (3.10),
there exists C̄ > 0 s.t. ĝ(x) := supa∈A g(x, a) ≤ C̄(1 + |x|p) for all x ∈ R

d . For
such C̄, we then have: v̄(T , ·) ≥ ĝ. On the other hand, we see after straightforward
calculation that there exists a positive constant C depending only on C̄, Cf,g , and
the linear growth condition in x on b, σ , β by (HFC) (recall that A is compact),
such that

−∂v̄

∂t
− sup

a∈A

[
Lav̄ + f

(·, a, v̄, σ ᵀ(·, a)Dxv̄,Mav̄
)] ≥ (ρ − C)v̄

≥ 0,

by choosing ρ ≥ C. Let us now define the quintuple (Ȳ, Z̄, Ū, R̄, K̄) by

Ȳt = v̄(t,Xt ) for t < T , ȲT = g(XT , IT ),

Z̄t = σ ᵀ(Xt−, It−)Dxv̄(t,Xt−), t ≤ T ,

Ūt = MIt− v̄(t,Xt−), R̄t = 0, t ≤ T ,

K̄t =
∫ t

0

[
−∂v̄

∂t
(s,Xs) −LIs v̄(s,Xs) − f (Xs, Is, Z̄s, Ūs)

]
ds, t < T ,

K̄T = K̄T − + v̄(T ,XT ) − g(XT , IT ).
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From the supersolution property of v̄ to (3.7)–(3.8), the process K̄ is nondecreas-
ing. Moreover, from the polynomial growth condition on v̄, linear growth condi-
tion on b, σ , growth condition (3.10) on f , g and the estimate (3.4), we see that
(Ȳ, Z̄, Ū, R̄, K̄) lies in S2 × L2(W) × L2(ϑ̃) × L2(π̃) × K2. Finally, by applying
Itô’s formula to v̄(t,Xt ), we conclude that (Ȳ, Z̄, Ū, R̄, K̄) is solution a to (3.5),
and the constraint (3.6) is trivially satisfied. �

Under (HFC), (HBC1) and (HBC2), we then get from Theorem 2.1 the existence
of a unique minimal solution {(Y t,x,a

s ,Zt,x,a
s ,U t,x,a

s ,Rt,x,a
s ,Kt,x,a

s ), t ≤ s ≤ T } to
(3.5)–(3.6) when (X, I) = {(Xt,x,a

s , I t,a
s ), t ≤ s ≤ T }. Moreover, as we shall see

in the next paragraph, this minimal solution is written in this Markovian context
as: Y t,x,a

s = v(s,Xt,x,a
s , I t,x,a

s ) where v is the deterministic function defined on
[0, T ] ×R

d ×R
q →R by

v(t, x, a) := Y
t,x,a
t , (t, x, a) ∈ [0, T ] ×R

d ×R
q.(3.11)

We aim at proving that the function v defined by (3.11) does not depend actually
on its argument a, and is a solution in a sense to be precise to the parabolic IPDE
(3.7)–(3.8). Notice that we do not have a priori any smoothness or even continuity
properties on v.

To this end, we first recall the definition of (discontinuous) viscosity solutions to
(3.7)–(3.8). For a locally bounded function w on [0, T ) ×R

d , we define its lower
semicontinuous (l.s.c. for short) envelope w∗, and upper semicontinuous (u.s.c. for
short) envelope w∗ by

w∗(t, x) = lim inf
(t ′,x′)→(t,x)

t ′<T

w
(
t ′, x′) and w∗(t, x) = lim sup

(t ′,x′)→(t,x)

t ′<T

w
(
t ′, x′),

for all (t, x) ∈ [0, T ] ×R
d .

DEFINITION 3.1 [Viscosity solutions to (3.7)–(3.8)].

(i) A function w, l.s.c. (resp., u.s.c.) on [0, T ] × R
d , is called a viscosity su-

persolution (resp., subsolution) to (3.7)–(3.8) if

w(T ,x) ≥ (resp., ≤) sup
a∈A

g(x, a),

for any x ∈R
d , and(

−∂ϕ

∂t
− sup

a∈A

[
Laϕ + f

(·, a,w,σ ᵀ(·, a)Dxϕ,Maϕ
)])

(t, x) ≥ (resp., ≤) 0,

for any (t, x) ∈ [0, T ) ×R
d and any ϕ ∈ C1,2([0, T ] ×R

d) such that

(w − ϕ)(t, x) = min
[0,T ]×Rd

(w − ϕ)
[
resp. max

[0,T ]×Rd
(w − ϕ)

]
.



1846 I. KHARROUBI AND H. PHAM

(ii) A locally bounded function w on [0, T ) ×R
d is called a viscosity solution

to (3.7)–(3.8) if w∗ is a viscosity supersolution and w∗ is a viscosity subsolution
to (3.7)–(3.8).

We can now state the main result of this paper.

THEOREM 3.1. Assume that conditions (HA), (Hλπ ), (HFC), (HBC1) and
(HBC2) hold. The function v in (3.11) does not depend on the variable a on
[0, T ) ×R× ◦

A, that is,

v(t, x, a) = v
(
t, x, a′), ∀a, a′ ∈ ◦

A,

for all (t, x) ∈ [0, T ) ×R
d . Let us then define by misuse of notation the function v

on [0, T ) ×R
d by

v(t, x) = v(t, x, a), (t, x) ∈ [0, T ) ×R
d,(3.12)

for any a ∈ ◦
A. Then v is a viscosity solution to (3.7) and a viscosity subsolution to

(3.8). Moreover, if (HBC2′) holds, v is a viscosity supersolution to (3.8).

REMARK 3.2. 1. Once we have a uniqueness result for the fully nonlinear
IPDE (3.7)–(3.8), Theorem 3.1 provides a Feynman–Kac representation of this
unique solution by means of the minimal solution to the BSDE (3.5)–(3.6). This
suggests consequently an original probabilistic numerical approximation of the
nonlinear IPDE (3.7)–(3.8) by discretization and simulation of the minimal solu-
tion to the BSDE (3.5)–(3.6). This issue, especially the treatment of the nonpositive
jump constraint, has been recently investigated in [14] and [15], where the authors
analyze the convergence rate of the approximation scheme, and illustrate their re-
sults with several numerical tests arising for instance in the super-replication of
options in uncertain volatilities and correlations models. We mention here that a
nice feature of our scheme is the fact that the forward process (X, I) can be easily
simulated: indeed, notice that the jump times of I follow a Poisson distribution
of parameter λ̄π := ∫

A λπ(da), and so the pure jump process I is perfectly sim-
ulatable once we know how to simulate the distribution λπ(da)/λ̄π of the jump
marks. Then we can use a standard Euler scheme for simulating the component
X. Our scheme does not suffer the curse of dimensionality encountered in finite
difference methods or controlled Markov chains, and takes advantage of the high
dimensional properties of Monte–Carlo methods.

2. We do not address here comparison principles (and so uniqueness results) for
the general parabolic nonlinear IPDE (3.7)–(3.8). In the case where the generator
function f (x, a) does not depend on (y, z, u) (see Remark 3.3 below), comparison
principle is proved in [22], and the result can be extended by same arguments when
f (x, a, y, z) depends also on y, z under the Lipschitz condition (HBC1)(ii). When
f also depends on u, comparison principle is proved by [2] in the semilinear IPDE
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case, that is, when A is reduced to a singleton, under condition (HBC2′). We also
mention recent results on comparison principles for IPDE in [3] and references
therein.

REMARK 3.3 (Stochastic control problem). 1. Let us now consider the partic-
ular and important case where the generator f (x, a) does not depend on (y, z, u).
We then observe that the nonlinear IPDE (3.7) is the Hamilton–Jacobi–Bellman
(HJB) equation associated to the following stochastic control problem: let us in-
troduce the controlled jump-diffusion process:

dXα
s = b

(
Xα

s ,αs

)
ds + σ

(
Xα

s ,αs

)
dWs +

∫
L

β
(
Xα

s−, αs, �
)
ϑ̃(ds, d�),(3.13)

where W is a Brownian motion independent of a random measure ϑ on a filtered
probability space (�,F,F0,P), the control α lies in AF0 , the set of F0-predictable
process valued in A, and define the value function for the control problem

w(t, x) := sup
α∈A

F0

E

[∫ T

t
f

(
Xt,x,α

s , αs

)
ds + g

(
X

t,x,α
T , αT

)]
,

(t, x) ∈ [0, T ] ×R
d,

where {Xt,x,α
s , t ≤ s ≤ T } denotes the solution to (3.13) starting from x at s = t ,

given a control α ∈ AF0 . It is well known (see, e.g., [22] or [17]) that the value
function w is characterized as the unique viscosity solution to the dynamic pro-
gramming HJB equation (3.7)–(3.8) and, therefore, by Theorem 3.1, w = v. In
other words, we have provided a representation of fully nonlinear stochastic con-
trol problem, including especially control in the diffusion term, possibly degener-
ate, in terms of minimal solution to the BSDE (3.5)–(3.6).

2. Combining the BSDE representation of Theorem 3.1 together with the dual
representation in Theorem 2.2, we obtain an original representation for the value
function of stochastic control problem

sup
α∈A

F0

E

[∫ T

0
f

(
Xα

t ,αt

)
dt + g

(
Xα

T ,αT

)]

= sup
ν∈VA

E
ν

[∫ T

0
f (Xt , It ) dt + g(XT , IT )

]
.

The right-hand side in the above relation may be viewed as a weak formulation
of the stochastic control problem. Indeed, it is well known that when there is only
control on the drift, the value function may be represented in terms of control
on change of equivalent probability measures via Girsanov’s theorem for Brown-
ian motion. Such representation is called weak formulation for stochastic control
problem; see [8]. In the general case, when there is control on the diffusion coeffi-
cient, such “Brownian” Girsanov’s transformation cannot be applied, and the idea
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here is to introduce an exogenous process I valued in the control set A, indepen-
dent of W and ϑ governing the controlled state process Xα , and then to control the
change of equivalent probability measures through a Girsanov’s transformation on
this auxiliary process.

3. Non-Markovian extension. An interesting issue is to extend our BSDE repre-
sentation of stochastic control problem to a non-Markovian context, that is, when
the coefficients b, σ and β of the controlled process are path-dependent. In this
case, we know from the recent works by Ekren, Touzi and Zhang [7] that the
value function to the path-dependent stochastic control is a viscosity solution to a
path-dependent fully nonlinear HJB equation. One possible approach for getting a
BSDE representation to path-dependent stochastic control, would be to prove that
our minimal solution to the BSDE with nonpositive jumps is a viscosity solution
to the path-dependent fully nonlinear HJB equation, and then to conclude with
a uniqueness result for path-dependent nonlinear PDE. However, to the best of
our knowledge, there is not yet such comparison result for viscosity supersolution
and subsolution of path-dependent nonlinear PDEs. Instead, we recently proved
in [12] by purely probabilistic arguments that the minimal solution to the BSDE
with nonpositive jumps is equal to the value function of a path-dependent stochas-
tic control problem, and our approach circumvents the delicate issue of dynamic
programming principle and viscosity solution in the non-Markovian context. Our
result is also obtained without assuming that σ is nondegenerate, in contrast with
[7] (see their Assumption 4.7).

The rest of this paper is devoted to the proof of Theorem 3.1.

3.2. Viscosity property of the penalized BSDE. Let us consider the Markov
penalized BSDE associated to (3.5)–(3.6)

Yn
t = g(XT , IT ) +

∫ T

t
f

(
Xs, Is, Y

n
s ,Zn

s ,Un
s

)
ds

+ n

∫ T

t

∫
A

[
Rn

s (a)
]+

λπ(da) ds −
∫ T

t
Zn

s .dWs(3.14)

−
∫ T

t

∫
L

Un
s (�)ϑ̃(ds, d�) −

∫ T

t

∫
A

Rn
s (a)π̃(ds, da),

and denote by {(Y n,t,x,a
s ,Zn,t,x,a

s ,Un,t,x,a
s ,Rn,t,x,a

s ), t ≤ s ≤ T } the unique solu-
tion to (3.14) when (X, I) = {(Xt,x,a

s , I t,a
s ), t ≤ s ≤ T } for any initial condition

(t, x, a) ∈ [0, T ]×R
d ×R

q . From the Markov property of the jump-diffusion pro-
cess (X, I), we recall from [2] that Yn,t,x,a

s = vn(s,X
t,x,a
s , I t,a

s ), t ≤ s ≤ T , where
vn is the deterministic function defined on [0, T ] ×R

d ×R
q by

vn(t, x, a) := Y
n,t,x,a
t , (t, x, a) ∈ [0, T ] ×R

d ×R
q.(3.15)
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From the convergence result (Theorem 2.1) of the penalized solution, we deduce
that the minimal solution of the constrained BSDE is actually in the form Y t,x,a

s =
v(s,Xt,x,a

s , I t,a
s ), t ≤ s ≤ T , with a deterministic function v defined in (3.11).

Moreover, from the uniform estimate (2.5) and Lemma 3.1, there exists some
positive constant C s.t. for all n,

∣∣vn(t, x, a)
∣∣2 ≤ C

(
E

∣∣g(
X

t,x,a
T , I

t,a
T

)∣∣2 +E

[∫ T

t

∣∣f (
Xt,x,a

s , I t,a
s ,0,0,0

)∣∣2 ds

]

+E

[
sup

t≤s≤T

∣∣v̄(
s,Xt,x,a

s

)∣∣2])
,

for all (t, x, a) ∈ [0, T ] × R
d × R

q . From the polynomial growth condition in
(HBC1)(i) for g and f , (3.9) for v̄, and the estimate (3.4) for (X, I), we obtain that
vn, and thus also v by passing to the limit, satisfy a polynomial growth condition:
there exists some positive constant Cv and some p ≥ 2, such that for all n∣∣vn(t, x, a)

∣∣ + ∣∣v(t, x, a)
∣∣ ≤ Cv

(
1 + |x|p + |a|p)

,
(3.16)

∀(t, x, a) ∈ [0, T ] ×R
d ×R

q.

We now consider the parabolic semilinear penalized IPDE for any n

−∂vn

∂t
(t, x, a) −Lavn(t, x, a) − f

(
x, a, vn, σ

ᵀ(x, a)Dxvn,Mavn

)
(3.17)

−
∫
A

[
vn

(
t, x, a′) − vn(t, x, a)

]
λπ

(
da′)

− n

∫
A

[
vn

(
t, x, a′) − vn(t, x, a)

]+
λπ

(
da′) = 0,

on [0, T ) ×R
d ×R

q,

vn(T , ·, ·) = g, on R
d ×R

q.(3.18)

From Theorem 3.4 in Barles et al. [2], we have the well-known property that
the penalized BSDE with jumps (2.3) provides a viscosity solution to the penal-
ized IPDE (3.17)–(3.18). Actually, the relation in their paper is obtained under
(HBC2′), which allows the authors to get comparison theorem for BSDE, but such
comparison theorem also holds under the weaker condition (HBC2) as shown in
[25], and we then get the following result.

PROPOSITION 3.1. Let Assumptions (HFC), (HBC1) and (HBC2) hold. The
function vn in (3.15) is a continuous viscosity solution to (3.17)–(3.18), that is, it
is continuous on [0, T ] × R

d × R
q , a viscosity supersolution (resp., subsolution)

to (3.18),

vn(T , x, a) ≥ (resp., ≤) g(x, a),
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for any (x, a) ∈ R
d × R

q , and a viscosity supersolution (resp., subsolution) to
(3.17),

−∂ϕ

∂t
(t, x, a) −Laϕ(t, x, a)(3.19)

− f
(
x, a, vn(t, x, a), σ ᵀ(x, a)Dxϕ(t, x, a),Maϕ(t, x, a)

)
−

∫
A

[
ϕ

(
t, x, a′) − ϕ(t, x, a)

]
λπ

(
da′)

− n

∫
A

[
ϕ

(
t, x, a′) − ϕ(t, x, a)

]+
λπ

(
da′) ≥ (resp., ≤) 0,

for any (t, x, a) ∈ [0, T ) × R
d × R

q and any ϕ ∈ C1,2([0, T ] × (Rd × R
q)) such

that

(vn − ϕ)(t, x, a) = min
[0,T ]×Rd×Rq

(vn − ϕ)

(3.20) [
resp., max

[0,T ]×Rd×Rq
(vn − ϕ)

]
.

In contrast to local PDEs with no integro-differential terms, we cannot restrict
in general the global minimum (resp., maximum) condition on the test functions
for the definition of viscosity supersolution (resp., subsolution) to local minimum
(resp., maximum) condition. In our IPDE case, the nonlocal terms appearing in
(3.17) involve the values w.r.t. the variable a only on the set A. Therefore, we are
able to restrict the global extremum condition on the test functions to extremum
on [0, T ] × R

d × A. More precisely, we have the following equivalent definition
of viscosity solutions, which will be used later.

LEMMA 3.2. Assume that (Hλπ ), (HFC), and (HBC1) hold. In the defini-
tion of vn being a viscosity supersolution (resp., subsolution) to (3.17) at a point
(t, x, a) ∈ [0, T ) ×R

d × ◦
A, we can replace condition (3.20) by

0 = (vn − ϕ)(t, x, a) = min
[0,T ]×Rd× ◦

A

(vn − ϕ)
[
resp., max

[0,T ]×Rd× ◦
A

(vn − ϕ)
]
,

and suppose that the test function ϕ is in C1,2,0([0, T ] ×R
d ×R

q).

PROOF. We treat only the supersolution case as the subsolution case is proved
by same arguments, and proceed in two steps.
Step 1. Fix (t, x, a) ∈ [0, T )×R

d ×R
q , and let us show that the viscosity superso-

lution inequality (3.19) also holds for any test function ϕ in C1,2,0([0, T ] ×R
d ×

R
q) s.t.

(vn − ϕ)(t, x, a) = min
[0,T ]×Rd×Rq

(vn − ϕ).(3.21)
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We may assume w.l.o.g. that the minimum for such test function ϕ is zero, and let
us define for r > 0 the function ϕr by

ϕr(t ′, x′, a′) = ϕ
(
t ′, x′, a′)(1 − �

( |x′|2 + |a′|2
r2

))

− Cv�

( |x′|2 + |a′|2
r2

)(
1 + ∣∣x′∣∣p + ∣∣a′∣∣p)

,

where Cv > 0 and p ≥ 2 are the constant and degree appearing in the polynomial
growth condition (3.16) for vn, � :R+ → [0,1] is a function in C∞(R+) such that
�|[0,1] ≡ 0 and �|[2,+∞) ≡ 1. Notice that ϕr ∈ C1,2,0([0, T ] ×R

d ×R
q),

(
ϕr,Dxϕ

r,D2
xϕ

r) −→ (
ϕ,Dxϕ,D2

xϕ
)

as r → ∞(3.22)

locally uniformly on [0, T ] × R
d × R

q , and that there exists a constant Cr > 0
such that ∣∣ϕr(t ′, x′, a′)∣∣ ≤ Cr

(
1 + ∣∣x′∣∣p + ∣∣a′∣∣p)

(3.23)

for all (t ′, x′, a′) ∈ [0, T ] ×R
q ×R

d . Since � is valued in [0,1], we deduce from
the polynomial growth condition (3.16) satisfied by vn and (3.21) that ϕr ≤ vn

on [0, T ] × R
d × R

q for all r > 0. Moreover, we have ϕr(t, x, a) = ϕ(t, x, a)

[= vn(t, x, a)] for r large enough. Therefore, we get
(
vn − ϕr)(t, x, a) = min

[0,T ]×Rd×Rq

(
vn − ϕr),(3.24)

for r large enough, and we may assume w.l.o.g. that this minimum is strict. Let
(ϕr

k)k be a sequence of function in C1,2([0, T ] × (Rd ×R
q)) satisfying (3.23) and

such that
(
ϕr

k,Dxϕ
r
k,D

2
xϕ

r
k

) −→ (
ϕr,Dxϕ

r,D2
xϕ

r) as k → ∞,(3.25)

locally uniformly on [0, T ] × R
d × R

q . From the growth conditions (3.16) and
(3.23) on the continuous functions vn and ϕr

k , we can assume w.l.o.g. [up to an
usual negative perturbation of the function ϕk

r for large (x′, a′)], that there exists a
bounded sequence (tk, xk, ak)k in [0, T ] ×R

d ×R
q such that

(
vn − ϕr

k

)
(tk, xk, ak) = min

[0,T ]×Rd×Rq

(
vn − ϕr

k

)
.(3.26)

The sequence (tk, xk, ak)k converges up to a subsequence, and thus, by (3.24),
(3.25) and (3.26), we have

(tk, xk, ak) → (t, x, a), as k → ∞.(3.27)
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Now, from the viscosity supersolution property of vn at (tk, xk, ak) with the test
function ϕr

k , we have

−∂ϕr
k

∂t
(tk, xk, ak) −Lakϕr

k(tk, xk, ak)

− f
(
xk, ak, vn(tk, xk, ak), σ

ᵀ(xk, ak)Dxϕ
r
k(tk, xk, ak),Makϕr

k(tk, xk, ak)
)

−
∫
A

[
ϕr

k

(
tk, xk, a

′) − ϕr
k(tk, xk, ak)

]
λπ

(
da′)

− n

∫
A

[
ϕr

k

(
tk, xk, a

′) − ϕr
k(tk, xk, ak)

]+
λπ

(
da′) ≥ 0.

Sending k and r to infinity, and using (3.22), (3.25) and (3.27), we obtain the
viscosity supersolution inequality at (t, x, a) with the test function ϕ.
Step 2. Fix (t, x, a) ∈ [0, T )×R

d × ◦
A, and let ϕ be a test function in C1,2([0, T ]×

(Rd ×R
q)) such that

0 = (vn − ϕ)(t, x, a) = min
[0,T ]×Rd× ◦

A

(vn − ϕ).(3.28)

By the same arguments as in (3.23), we can assume w.l.o.g. that ϕ satisfies the
polynomial growth condition∣∣ϕ(

t ′, x′, a′)∣∣ ≤ C
(
1 + ∣∣x′∣∣p + ∣∣a′∣∣p)

,
(
t ′, x′, a′) ∈ [0, T ] ×R

d ×R
q,

for some positive constant C. Together with (3.16), and since A is compact, we
have

(vn − ϕ)
(
t ′, x′, a′) ≥ −C

(
1 + ∣∣x′∣∣p + ∣∣dA

(
a′)∣∣p)

,(3.29)

for all (t ′, x′, a′) ∈ [0, T ] × R
d × R

q , where dA(a′) is the distance from a′ to A.
Fix ε > 0 and define the function ϕε ∈ C1,2,0([0, T ] ×R

d ×R
q) by

ϕε

(
t ′, x′, a′) = ϕ

(
t ′, x′, a′) − �

(
dAε(a

′)
ε

)
C

(
1 + ∣∣x′∣∣p + ∣∣dA

(
a′)∣∣p)

for all (t ′, x′, a′) ∈ [0, T ] ×R
d ×R

q , where

Aε = {
a′ ∈ A :d∂A

(
a′) ≥ ε

}
,(3.30)

and � :R+ → [0,1] is a function in C∞(R+) such that �|[0,1/2] ≡ 0 and
�|[1,+∞) ≡ 1. Notice that(

ϕε,Dxϕε,D
2
xϕε

) −→ (
ϕ,Dxϕ,D2

xϕ
)

as ε → 0,(3.31)

locally uniformly on [0, T ] ×R
d × ◦

A. We notice from (3.29) and the definition of
ϕε that ϕε ≤ vn on [0, T ]×R

d ×Ac
ε . Moreover, since ϕε ≤ ϕ on [0, T ]×R

d ×R
q ,

ϕε = ϕ on [0, T ] ×R
d × ◦

Aε and a ∈ ◦
A, we get by (3.28) for ε small enough

0 = (vn − ϕε)(t, x, a) = min
[0,T ]×Rd×Rq

(vn − ϕε).
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From Step 1, we then have

−∂ϕε

∂t
(t, x, a) −Laϕε(t, x, a)

− f
(
x, a, vn(t, x, a), σ ᵀ(x, a)Dxϕε(t, x, a),Maϕε(t, x, a)

)
−

∫
A

[
ϕε

(
t, x, a′) − ϕε(t, x, a)

]
λπ

(
da′)

− n

∫
A

[
ϕε

(
t, x, a′) − ϕε(t, x, a)

]+
λπ

(
da′) ≥ 0.

By sending ε to zero with (3.31), and using a ∈ ◦
A with (Hλπ )(ii), we get the

required viscosity subsolution inequality at (t, x, a) for the test function ϕ. �

3.3. The nondependence of the function v in the variable a. In this subsec-
tion, we aim to prove that the function v(t, x, a) does not depend on a. From
the relation defining the Markov BSDE (3.5), and since for the minimal solu-
tion (Y t,x,a,Zt,x,a,Ut,x,a,Rt,x,a,Kt,x,a) to (3.5)–(3.6), the process Kt,x,a is pre-
dictable, we observe that the A-jump component Rt,x,a is expressed in terms of
Y t,x,a = v(·,Xt,x,a, I t,x,a) as

Rt,x,a
s

(
a′) = v

(
s,X

t,x,a
s− , a′) − v

(
s,X

t,x,a
s− , I

t,x,a
s−

)
, t ≤ s ≤ T ,a′ ∈ A,

for all (t, x, a) ∈ [0, T ] × R
d × R

q . From the A-nonpositive constraint (3.6), this
yields

E

[∫ t+h

t

∫
A

[
v
(
s,Xt,x,a

s , a′) − v
(
s,Xt,x,a

s , I t,x,a
s

)]+
λπ

(
da′)ds

]
= 0,

for any h > 0. If we knew a priori that the function v was continuous on [0, T ) ×
R

d × A, we could obtain by sending h to zero in the above equality divided by h

(and by dominated convergence theorem), and from the mean-value theorem∫
A

[
v
(
t, x, a′) − v(t, x, a)

]+
λπ

(
da′) = 0.

Under condition (Hλπ )(i), this would prove that v(t, x, a) ≥ v(t, x, a′) for any
a, a′ ∈ A, and thus the function v would not depend on a in A.

Unfortunately, we are not able to prove directly the continuity of v from its
very definition (3.11), and instead, we shall rely on viscosity solutions approach to
derive the nondependence of v(t, x, a) in a ∈ ◦

A. To this end, let us introduce the
following first-order PDE:

−∣∣Dav(t, x, a)
∣∣ = 0, (t, x, a) ∈ [0, T ) ×R

d × ◦
A.(3.32)

LEMMA 3.3. Let assumptions (Hλπ ), (HFC), (HBC1) and (HBC2) hold. The
function v is a viscosity supersolution to (3.32): for any (t, x, a) ∈ [0, T ) × R

d ×
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◦
A and any function ϕ ∈ C1,2([0, T ] × (Rd × R

q)) such that (v − ϕ)(t, x, a) =
min[0,T ]×Rd×Rq (v − ϕ), we have

−∣∣Daϕ(t, x, a)
∣∣ ≥ 0, that is Daϕ(t, x, a) = 0.

PROOF. We know that v is the pointwise limit of the nondecreasing sequence
of functions (vn). By continuity of vn, the function v is l.s.c. and we have (see,
e.g., [1], page 91)

v = v∗ = lim inf
n→∞ ∗vn,(3.33)

where

lim inf
n→∞ ∗vn(t, x, a) := lim inf

n→∞
(t ′,x′,a′)→(t,x,a)

t ′<T

vn

(
t ′, x′, a′),

(t, x, a) ∈ [0, T ] ×R
d ×R

q .

Let (t, x, a) ∈ [0, T ) ×R
d × ◦

A, and ϕ ∈ C1,2([0, T ] × (Rd ×R
q)), such that (v −

ϕ)(t, x, a) = min[0,T ]×Rd×Rq (v − ϕ). We may assume w.l.o.g. that this minimum
is strict:

(v − ϕ)(t, x, a) = strict min
[0,T ]×Rd×Rq

(v − ϕ).(3.34)

Up to a suitable negative perturbation of ϕ for large (x, a), we can assume w.l.o.g.
that there exists a bounded sequence (tn, xn, an)n in [0, T ] ×R

d ×R
q such that

(vn − ϕ)(tn, xn, an) = min
[0,T ]×Rd×Rq

(vn − ϕ).(3.35)

From (3.33), (3.34) and (3.35), we then have, up to a subsequence(
tn, xn, an, vn(tn, xn, an)

) −→ (
t, x, a, v(t, x, a)

)
as n → ∞.(3.36)

Now, from the viscosity supersolution property of vn at (tn, xn, an) with the test
function ϕ, we have by (3.35),

−∂ϕ

∂t
(tn, xn, an) −Lanϕ(tn, xn, an)

− f
(
xn, an, vn(tn, xn, an), σ

ᵀ(xn, an)Dxϕ(tn, xn, an),Manϕ(tn, xn, an)
)

−
∫
A

[
ϕ

(
tn, xn, a

′) − ϕ(tn, xn, an)
]
λπ

(
da′)

− n

∫
A

[
ϕ

(
tn, xn, a

′) − ϕ(tn, xn, an)
]+

λπ

(
da′) ≥ 0,
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which implies∫
A

[
ϕ

(
tn, xn, a

′) − ϕ(tn, xn, an)
]+

λπ

(
da′)

≤ 1

n

[
−∂ϕ

∂t
(tn, xn, an) −Lanϕ(tn, xn, an)

− f
(
xn, an, vn(tn, xn, an), σ

ᵀ(xn, an)Dxϕ(tn, xn, an),

Manϕ(tn, xn, an)
)

−
∫
A

[
ϕ

(
tn, xn, a

′) − ϕ(tn, xn, an)
]
λπ

(
da′)].

Sending n to infinity, we get from (3.36), the continuity of coefficients b,σ,β and
f , and the dominated convergence theorem∫

A

[
ϕ

(
t, x, a′) − ϕ(t, x, a)

]+
λπ

(
da′) = 0.

Under (Hλπ ), this means that ϕ(t, x, a) = maxa′∈A ϕ(t, x, a′). Since a ∈ ◦
A, we

deduce that Daϕ(t, x, a) = 0. �

We notice that the PDE (3.32) involves only differential terms in the variable a.
Therefore, we can freeze the terms (t, x) ∈ [0, T ) ×R

d in the PDE (3.32), that is,
we can take test functions not depending on the variables (t, x) in the definition of
the viscosity solution, as shown in the following lemma.

LEMMA 3.4. Let assumptions (Hλπ ), (HFC), (HBC1) and (HBC2) hold. For
any (t, x) ∈ [0, T ) ×R

d , the function v(t, x, ·) is a viscosity supersolution to

−∣∣Dav(t, x, a)
∣∣ = 0, a ∈ ◦

A,

that is, for any a ∈ ◦
A and any function ϕ ∈ C2(Rq) such that (v(t, x, ·) − ϕ)(a) =

minRq (v(t, x, ·) − ϕ), we have: −|Daϕ(a)| ≥ 0 (and so = 0).

PROOF. Fix (t, x) ∈ [0, T ) ×R
d , a ∈ ◦

A and ϕ ∈ C2(Rq) such that(
v(t, x, ·) − ϕ

)
(a) = min

Rq

(
v(t, x, ·) − ϕ

)
.(3.37)

As usual, we may assume w.l.o.g. that this minimum is strict and that ϕ satisfies the
growth condition supa′∈Rq

|ϕ(a′)|
1+|a′|p < ∞. Let us then define for n ≥ 1, the function

ϕn ∈ C1,2([0, T ] × (Rd ×R
q)) by

ϕn(
t ′, x′, a′) = ϕ

(
a′) − n

(∣∣t ′ − t
∣∣2 + ∣∣x′ − x

∣∣2p) − ∣∣a′ − a
∣∣2p
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for all (t ′, x′, a′) ∈ [0, T ]×R
d ×R

q . From the growth condition (3.16) on the l.s.c.
function v, and the growth condition on the continuous function ϕ, one can find
for any n ≥ 1 an element (tn, xn, an) of [0, T ] ×R

d ×R
q such that(

v − ϕn)
(tn, xn, an) = min

[0,T ]×Rd×Rq

(
v − ϕn)

.

In particular, we have

v(t, x, a) − ϕ(a) = (
v − ϕn)

(t, x, a) ≥ (
v − ϕn)

(tn, xn, an)

= v(tn, xn, an) − ϕ(an)

+ n
(|tn − t |2 + |xn − x|2p) + |an − a|2p(3.38)

≥ v(tn, xn, an) − v(t, x, an) + v(t, x, a) − ϕ(a)

+ n
(|tn − t |2 + |xn − x|2p) + |an − a|2p

by (3.37), which implies from the growth condition (3.16) on v

n
(|tn − t |2 + |xn − x|2p) + |an − a|2p ≤ C

(
1 + |xn − x|p + |an − a|p)

.

Therefore, the sequences {n(|tn− t |2 +|xn−x|2p)}n and (|a−an|2p)n are bounded
and (up to a subsequence) we have: (tn, xn, an) −→ (t, x, a∞) as n goes to infinity,
for some a∞ ∈ R

q . Actually, since v(t, x, a) − ϕ(a) ≥ v(tn, xn, an) − ϕ(an) by
(3.38), we obtain by sending n to infinity and since the minimum in (3.37) is strict,
that a∞ = a, and so

(tn, xn, an) −→ (t, x, a) as n → ∞.

On the other hand, from Lemma 3.3 applied to (tn, xn, an) with the test function
ϕn, we have

0 = Daϕ
n(tn, xn, an) = Daϕ(an) − 2p(an − a)|an − a|2p−1,

for all n ≥ 1. Sending n to infinity we get the required result: Daϕ(a) = 0. �

We are now able to state the main result of this subsection.

PROPOSITION 3.2. Let assumptions (HA), (Hλπ ), (HFC), (HBC1) and
(HBC2) hold. The function v does not depend on the variable a on [0, T )×R

d × ◦
A:

v(t, x, a) = v
(
t, x, a′), a, a′ ∈ ◦

A,

for any (t, x) ∈ [0, T ) ×R
d .

PROOF. We proceed in four steps.
Step 1. Approximation by inf-convolution. We introduce the family of functions
(un)n defined by

un(t, x, a) = inf
a′∈A

[
v
(
t, x, a′) + n

∣∣a − a′∣∣2p]
, (t, x, a) ∈ [0, T ] ×R

d × A.
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It is clear that the sequence (un)n is nondecreasing and upper-bounded by v.
Moreover, since v is l.s.c., we have the pointwise convergence of un to v on
[0, T ] × R

d × A. Indeed, fix some (t, x, a) ∈ [0, T ] × R
d × A. Since v is l.s.c.,

there exists a sequence (an)n valued in A such that

un(t, x, a) = v(t, x, an) + n|a − an|2p,

for all n ≥ 1. Since A is compact, the sequence (an) converges, up to a subse-
quence, to some a∞ ∈ A. Moreover, since un is upper-bounded by v and v is l.s.c.,
we see that a∞ = a and

un(t, x, a) −→ v(t, x, a) as n → ∞.(3.39)

Step 2. A test function for un seen as a test function for v. For r, δ > 0 let us define
the integer N(r, δ) by

N(r, δ) = min
{
n ∈ N :n ≥ 2Cv(1 + 22p−5 + rp + 2p−1 maxa∈A |a|p)

(δ/2)2p
+ Cv

}
,

where Cv is the constant in the growth condition (3.16), and define the set
◦

Aδ by
◦

Aδ =
{
a ∈ A :d(a, ∂A) := min

a′∈∂A

∣∣a − a′∣∣ > δ
}
.

Fix (t, x) ∈ [0, T ) × R
d . We now prove that for any δ > 0, n ≥ N(|x|, δ), a ∈ ◦

Aδ

and ϕ ∈ C2(Rq) such that

0 = (
un(t, x, ·) − ϕ

)
(a) = min

Rq

(
un(t, x, ·) − ϕ

)
,(3.40)

there exists an ∈ ◦
A and ψ ∈ C2(Rq) such that

0 = (
v(t, x, ·) − ψ

)
(an) = min

Rq

(
v(t, x, ·) − ψ

)
,(3.41)

and

Daψ(an) = Daϕ(a).(3.42)

To this end, we proceed in two substeps.
Substep 2.1. We prove that for any δ > 0, (t, x, a) ∈ [0, T ) × R

d × ◦
Aδ , and any

n ≥ N(|x|, δ)
arg min

a′∈A

{
v
(
t, x, a′) + n

∣∣a′ − a
∣∣2p} ⊂ ◦

A.

Fix (t, x, a) ∈ [0, T ) ×R
d × ◦

Aδ and let an ∈ A such that

v(t, x, an) + n|an − a|2p = min
a′∈A

[
v
(
t, x, a′) + n

∣∣a′ − a
∣∣2p]

.

Then we have

v(t, x, an) + n|an − a|2p ≤ v(t, x, a),
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and by (3.16), this gives

−Cv

(
1 + |x|p + 2p−1 max

a∈A
|a|p + 2p−1|an − a|p

)
+ n|an − a|2p

≤ Cv

(
1 + |x|p + |a|p)

.

Then using the inequality 2αβ ≤ α2 +β2 to the product 2αβ = 2p−1|an − a|p , we
get

(n − Cv)|an − a|2p ≤ 2Cv

(
1 + 22p−5 + |x|p + 2p−1 max

a∈A
|a|p

)
.

For n ≥ N(|x|, δ), we get from the definition of N(r, δ)

|an − a| ≤ δ

2
,

which shows that an ∈ ◦
A since a ∈ ◦

Aδ .
Substep 2.2. Fix δ > 0, (t, x, a) ∈ [0, T ) × R

d × ◦
Aδ , and ϕ ∈ C2(Rq) satisfying

(3.40). Let us then choose an ∈ arg min{v(t, x, a′) + n|a′ − a|2p :a′ ∈ A}, and de-
fine ψ ∈ C2(Rq) by

ψ
(
a′) = ϕ

(
a + a′ − an

) − n|an − a|2p, a′ ∈ R
q.

It is clear that ψ satisfies (3.42). Moreover, we have by (3.40) and the inf-
convolution definition of un

ψ
(
a′) ≤ un

(
t, x, a + a′ − an

) − n|an − a|2p ≤ v
(
t, x, a′), a′ ∈ R

q.

Moreover, since an ∈ ◦
A attains the infimum in the inf-convolution definition of

un(t, x, a), we have

ψ(an) = ϕ(a) − n|an − a|2p = un(t, x, a) − n|an − a|2p = v(t, x, an),

which shows (3.41).
Step 3. The function un does not depend locally on the variable a. From Step 2
and Lemma 3.4, we obtain that for any fixed (t, x) ∈ [0, T ) × R

d , the function
un(t, x, ·) inherits from v(t, x, ·) the viscosity supersolution to

−∣∣Daun(t, x, a)
∣∣ = 0, a ∈ ◦

Aδ,(3.43)

for any δ > 0, n ≥ N(|x|, δ). Let us then show that un(t, x, ·) is locally constant in
the sense that for all a ∈ ◦

Aδ

un(t, x, a) = un

(
t, x, a′), ∀a′ ∈ B(a,η),(3.44)

for all η > 0 such that B(a,η) ⊂ ◦
Aδ . We first notice from the inf-convolution defi-

nition that un(t, x, ·) is semiconcave on
◦

Aδ . From Theorem 2.1.7 in [5], we deduce
that un(t, x, ·) is locally Lipschitz continuous on

◦
Aδ . By Rademacher theorem, this
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implies that un(t, x, ·) is differentiable almost everywhere on
◦

Aδ . Therefore, by
Corollary 2.1(ii) in [1], and the viscosity supersolution property (3.43), we get that
this relation (3.43) holds actually in the classical sense for almost all a′ ∈ ◦

Aδ . In
other words, un(t, x, ·) is a locally Lipschitz continuous function with derivatives
equal to zero almost everywhere on

◦
Aδ . This means that it is locally constant (easy

exercise in analysis left to the reader).
Step 4. From the convergence (3.39) of un to v, and the relation (3.44), we get by
sending n to infinity that for any δ > 0 the function v satisfies: for any (t, x, a) ∈
[0, T ) ×R

d × ◦
Aδ

v(t, x, a) = v
(
t, x, a′)

for all η > 0 such that B(a,η) ⊂ ◦
Aδ and all a′ ∈ B(a,η). Then by sending δ to zero

we obtain that v does not depend on the variable a locally on [0, T ) × R
d × ◦

A.
Since

◦
A is assumed to be convex, we obtain that v does not depend on the variable

a on [0, T ) ×R
d × ◦

A. �

3.4. Viscosity properties of the minimal solution to the BSDE with A-nonposi-
tive jumps. From Proposition 3.2, we can define by misuse of notation the func-
tion v on [0, T ) ×R

d by

v(t, x) = v(t, x, a), (t, x) ∈ [0, T ) ×R
d,(3.45)

for any a ∈ ◦
A. Moreover, by the growth condition (3.16), we have for some p ≥ 2

sup
(t,x)∈[0,T ]×Rd

|v(t, x)|
1 + |x|p < ∞.(3.46)

The aim of this section is to prove that the function v is a viscosity solution to
(3.7)–(3.8).

PROOF OF THE VISCOSITY SUPERSOLUTION PROPERTY TO (3.7). We first
notice from (3.33) and (3.45) that v is l.s.c. and

v(t, x) = v∗(t, x) = lim inf
n→∞ ∗vn(t, x, a)(3.47)

for all (t, x, a) ∈ [0, T ] × R
d × ◦

A. Let (t, x) be a point in [0, T ) × R
d , and ϕ ∈

C1,2([0, T ] ×R
d), such that

(v − ϕ)(t, x) = min
[0,T ]×Rd

(v − ϕ).

We may assume w.l.o.g. that ϕ satisfies sup(t,x)∈[0,T ]×Rd
|ϕ(t,x)|
1+|x|p < ∞. Fix some

a ∈ ◦
A, and define for ε > 0, the test function

ϕε(t ′, x′, a′) = ϕ
(
t ′, x′) − ε

(∣∣t ′ − t
∣∣2 + ∣∣x′ − x

∣∣2p + ∣∣a′ − a
∣∣2p)

,
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for all (t ′, x′, a′) ∈ [0, T ] ×R
d ×R

q . Since ϕε(t, x, a) = ϕ(t, x), and ϕε ≤ ϕ with
equality iff (t ′, x′, a′) = (t, x, a), we then have(

v − ϕε)(t, x, a) = strict min
[0,T ]×Rd×Rq

(
v − ϕε).(3.48)

From the growth conditions on the continuous functions vn and ϕ, there exists a
bounded sequence (tn, xn, an)n (we omit the dependence in ε) in [0, T ]×R

d ×R
q

such that (
vn − ϕε)(tn, xn, an) = min

[0,T ]×Rd×Rq

(
vn − ϕε).(3.49)

From (3.47) and (3.48), we obtain by standard arguments that up to a subsequence(
tn, xn, an, vn(tn, xn, an)

) −→ (
t, x, a, v(t, x)

)
, as n goes to infinity.

Now from the viscosity supersolution property of vn at (tn, xn, an) with the test
function ϕε , we have

−∂ϕε

∂t
(tn, xn, an) −Lanϕε(tn, xn, an)

− f
(
xn, an, vn(tn, xn, an), σ

ᵀ(xn, an)Dxϕ
ε(tn, xn, an),Manϕε(tn, xn, an)

)
−

∫
A

[
ϕε(tn, xn, a

′) − ϕε(tn, xn, an)
]
λπ

(
da′)

− n

∫
A

[
ϕε(tn, xn, a

′) − ϕε(tn, xn, an)
]+

λπ

(
da′) ≥ 0.

Sending n to infinity in the above inequality, we get from the definition of ϕε and
the dominated convergence theorem

−∂ϕε

∂t
(t, x, a) −Laϕε(t, x, a)

− f
(
x, a, v(t, x), σ ᵀ(x, a)Dxϕ

ε(t, x, a),Maϕε(t, x, a)
)

(3.50)

+ ε

∫
A

∣∣a′ − a
∣∣2p

λπ

(
da′) ≥ 0.

Sending ε to zero, and since ϕε(t, x, a) = ϕ(t, x), we get

−∂ϕ

∂t
(t, x) −Laϕ(t, x) − f

(
x, a, v(t, x), σ ᵀ(x, a)Dxϕ(t, x),Maϕ(t, x)

) ≥ 0.

Since a is arbitrarily chosen in
◦

A, we get from (HA) and the continuity of the
coefficients b, σ , γ and f in the variable a

−∂ϕ

∂t
(t, x) − sup

a∈A

[
Laϕ(t, x) + f

(
x, a, v(t, x), σ ᵀ(x, a)Dxϕ(t, x),Maϕ(t, x)

)]
≥ 0,



FEYNMAN–KAC REPRESENTATION FOR HJB EQUATION 1861

which is the viscosity supersolution property. �

PROOF OF THE VISCOSITY SUBSOLUTION PROPERTY TO (3.7). Since v is
the pointwise limit of the nondecreasing sequence of continuous functions (vn),
and recalling (3.45), we have by [1], page 91:

v∗(t, x) = lim sup
n→∞

∗vn(t, x, a)(3.51)

for all (t, x, a) ∈ [0, T ] ×R
d × ◦

A, where

lim sup
n→∞

∗vn(t, x, a) := lim sup
n→∞

(t ′,x′,a′)→(t,x,a)

t ′<T,a′∈ ◦
A

vn

(
t ′, x′, a′).

Fix (t, x) ∈ [0, T ) ×R
d and ϕ ∈ C1,2([0, T ] ×R

d) such that(
v∗ − ϕ

)
(t, x) = max

[0,T ]×Rd

(
v∗ − ϕ

)
.(3.52)

We may assume w.l.o.g. that this maximum is strict and that ϕ satisfies

sup
(t,x)∈[0,T ]×Rd

|ϕ(t, x)|
1 + |x|p < ∞.(3.53)

Fix a ∈ ◦
A and consider a sequence (tn, xn, an)n in [0, T ) ×R

d × ◦
A such that(

tn, xn, an, vn(tn, xn, an)
) −→ (

t, x, a, v∗(t, x)
)

as n → ∞.(3.54)

Let us define for n ≥ 1 the function ϕn ∈ C1,2,0([0, T ] ×R
d ×R

q) by

ϕn

(
t ′, x′, a′) = ϕ

(
t ′, x′) + n

(
dAηn

(a′)
ηn

∧ 1 + ∣∣t ′ − tn
∣∣2 + ∣∣x′ − xn

∣∣2p
)
,

where Aηn is defined by (3.30) for ε = ηn and (ηn)n is a positive sequence con-
verging to 0 s.t. [such sequence exists by (Hλπ )(ii)]

n2λπ(A \ Aηn) −→ 0 as n → ∞.(3.55)

From the growth conditions (3.46) and (3.53) on v and ϕ, we can find a sequence
(t̄n, x̄n, ān) in [0, T ] ×R

d × A such that

(vn − ϕn)(t̄n, x̄n, ān) = max
[0,T ]×Rd×A

(vn − ϕn), n ≥ 1.(3.56)

Using (3.51) and (3.52), we obtain by standard arguments that up to a subsequence

n

(
1

ηn

dAηn
(ān) + |t̄n − tn|p + |x̄n − xn|2p

)
−→ 0 as n → ∞,(3.57)

and

vn(t̄n, x̄n, ān) −→ v∗(t, x) as n → ∞.
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We deduce from (3.57) and (3.54) that, up to a subsequence

(t̄n, x̄n, ān) −→ (t, x, ā), as n → ∞,(3.58)

for some ā ∈ A. Moreover, for n large enough, we have ān ∈ ◦
A. Indeed, sup-

pose that, up to a subsequence, ān ∈ ∂A for n ≥ 1. Then we have 1
ηn

dAηn
(ān) ≥ 1,

which contradicts (3.57). Now, from the viscosity subsolution property of vn at
(t̄n, x̄n, ān) with the test function ϕn satisfying (3.56), Lemma 3.2, and since
ān ∈ ◦

A, we have

−∂ϕn

∂t
(t̄n, x̄n, ān) −Lānϕn(t̄n, x̄n, ān)

− f
(
x̄n, ān, vn(t̄n, x̄n, ān), σ

ᵀ(x̄n, ān)Dxϕ(t̄n, x̄n),Mānϕ(t̄n, x̄n, ān)
)

(3.59)

− (n + 1)n

∫
A

(
dAηn

(a′)
ηn

∧ 1
)
λπ

(
da′) ≤ 0,

for all n ≥ 1. From (3.55), we get

(n + 1)n

∫
A

(
dAηn

(a′)
ηn

∧ 1
)
λπ

(
da′) −→ 0 as n → ∞.(3.60)

Sending n to infinity into (3.59), and using (3.51), (3.58) and (3.60), we get

−∂ϕ

∂t
(t, x) −Lāϕ(t, x) − f

(
x, ā, v∗(t, x), σ ᵀ(x, ā)Dxϕ(t, x),Māϕ(t, x)

) ≤ 0.

Since ā ∈ A, this gives

−∂ϕ

∂t
(t, x) − sup

a∈A

[
Laϕ(t, x) + f

(
x, a, v∗(t, x), σ ᵀ(x, a)Dxϕ(t, x),Maϕ(t, x)

)]
≤ 0,

which is the viscosity subsolution property. �

PROOF OF THE VISCOSITY SUPERSOLUTION PROPERTY TO (3.8). Let
(x, a) ∈ R

d × ◦
A. From (3.47), we can find a sequence (tn, xn, an)n valued in

[0, T ) ×R
d ×R

q such that(
tn, xn, an, vn(tn, xn, an)

) −→ (
T ,x, a, v∗(T , x)

)
as n → ∞.

The sequence of continuous functions (vn)n being nondecreasing and vn(T , ·) = g

we have

v∗(T , x) ≥ lim
n→∞v1(tn, xn, an) = g(x, a).

Since a is arbitrarily chosen in
◦

A, we deduce that v∗(T , x) ≥ sup
a∈ ◦

A
g(x, a) =

supa∈A g(x, a) by (HA) and continuity of g in a. �
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PROOF OF THE VISCOSITY SUBSOLUTION PROPERTY TO (3.8). Let x ∈ R
d .

Then we can find by (3.51) a sequence (tn, xn, an)n in [0, T ) ×R
d × ◦

A such that(
tn, xn, vn(tn, xn, an)

) → (
T ,x, v∗(T , x)

)
, as n → ∞.(3.61)

Define the function h : [0, T ] ×R
d →R by

h(t, x) = √
T − t + sup

a∈A

g(x, a)

for all (t, x) ∈ [0, T ) ×R
d . From (HFC), (HBC1) and (HBC2′), we see that h is a

continuous viscosity supersolution to (3.17)–(3.18), on [T − η,T ] × B̄(x, η) for η

small enough. We can then apply Theorem 3.5 in [2] which gives that

vn ≤ h on [T − η,T ] × B̄(x, η) × A

for all n ≥ 0. By applying the above inequality at (tn, xn, an), and sending n to
infinity, together with (3.61), we get the required result. �

4. Conclusion. We introduced a class of BSDEs with partially nonpositive
jumps and showed how the minimal solution is related to a fully nonlinear IPDE of
HJB type, when considering a Markovian framework with forward regime switch-
ing jump-diffusion process. Such BSDE representation can be extended to cover
also the case of the Hamilton–Jacobi–Bellman–Isaacs equation arising in con-
troller/stopper differential games; see [6]. It is also extended to the non-Markovian
context in [12]. From a numerical application viewpoint, our BSDE representa-
tion leads to original probabilistic approximation scheme for the resolution in high
dimension of fully nonlinear HJB equations, as recently investigated in [14] and
[15]. We believe that this opens new perspectives for dealing with more general
nonlinear equations and control problems, like for instance mean field games or
control of McKean–Vlasov equations.
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useful discussions.
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