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MULTIPLE POINTS OF THE BROWNIAN SHEET
IN CRITICAL DIMENSIONS

BY ROBERT C. DALANG' AND CARL MUELLER?
Ecole Polytechnique Fédérale de Lausanne and University of Rochester

It is well known that an N-parameter d-dimensional Brownian sheet has
no k-multiple points when (k — 1)d > 2k N, and does have such points when
(k—1)d < 2kN. We complete the study of the existence of k-multiple points
by showing that in the critical cases where (k — 1)d = 2k N, there are a.s. no
k-multiple points.

1. Introduction and main theorems. Letd and N be positive integers, and
let B=(B',..., Bd) denote an N-parameter Brownian sheet with values in RY,
that is, B is a centered R?-valued Gaussian random field with continuous sam-
ple paths, defined on a probability space (2, F, P), with parameter set Rﬁ and
covariances

N
Cov(B'(s), B/ (t)) =& ; [ [ (se A o),
=1

where §; j =1 if i = j and §; ; = 0 otherwise, s, t € Rﬁ, s =(s1,...,5n) and
t=(t1,...,tn).

The Brownian sheet is perhaps the most studied extension to multiparameter
Gaussian processes of classical Brownian motion, to which it reduces when N = 1.
Khoshnevisan devotes a chapter to this process in his book [6]. The CIME Summer
School lectures [1] contain a presentation of the history of the study of this ran-
dom field, and its connections to statistics, Markov properties, level sets, stochastic
partial differential equations, potential theory and Malliavin calculus.

Here, we are interested in a fundamental sample path property of this random
field, namely multiple points, or self-intersections. For w € €2 and integers k > 2,
a point x € R? is a k-multiple point of t — B(t, w) if there exist distinct parame-
ters t', ..., t* €10, oo[Y such that B(t', w) = --- = B(t", w) = x. We denote the
(random, possibly empty) set of all k-multiple points of t — B(t, ®) by My (w).
Note that My41(w) C My (w).
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Typically, for d small and N large, the set of k-multiple points is a.s. nonempty,
while for d large and N small, My is empty a.s. See [2] for the history of this
problem in the case of Brownian motion (N = 1).

When N > 1 and k > 2, it was shown in [5] that k-multiple points exist if
(k — 1)d < 2kN and do not exist if (k — 1)d > 2kN. The critical case k =2 and
d = 4N was handled in [2], where it was shown, via quantitative estimates on the
conditional distribution of a pinned Brownian sheet and a decoupling method, that
there are no double points in the critical case. It is also shown in [2] that there are
no k-multiple points that arise from ordered configurations of distinct parameters,
such as t! < ... < t*, where “<” denotes the componentwise (partial) order.

In this paper, we solve the remaining critical cases, where N > 1, k > 2 and
(k — 1)d = 2k N, without any constraints on the parameters t!, ..., t*. The main
result of this paper is the following statement concerning the absence of k-multiple
points in these critical cases.

THEOREM 1.1. Fix N> 1landk>2.If N, d and k are such that (k — 1)d =
2kN, then an N-parameter d-dimensional Brownian sheet has no k-multiple
points, that is, P{My # @} =0.

The proof of this theorem relies on known results for hitting probabilities of the
Brownian sheet, due to Khoshnevisan and Shi [7], on results for intersections of k
independent Brownian sheets, due to Peres [10], and a decoupling idea. While [2]
used quantitative estimates to obtain their decoupling, we will achieve our decou-
pling here by using Girsanov’s theorem. Our decoupling result is the following.

Let TN/‘ denote the set of parameters (tl, e, tk) with t' €10, oo[" such that no
two t' and t/ (i # j) share a common coordinate:

TE={(t",....t) € (10, 00[¥) 11} 1], foralle=1,...,N
and 1 <i < j <k}

[here, t! = (t{, e tliv)’ so in our notation, the coordinates té of t' inherit the su-
perscript].

THEOREM 1.2. Let A C R? be a Borel set. For all k € {2,3,...}, we have

PAME, ... . tYeTh:Bt)=-..=B(t")eA}>0
if and only if
P, .. ) eTE Wit = =W (t) e A} > 0,
where Wy, ..., Wy are independent N -parameter Brownian sheets with values

in RY,
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The proof of this theorem uses an explicit formula for the conditional expecta-
tion f?(t) of B(t) given the values of the sheet in a product of N — 1 complements
of intervals and a single interval (see Lemma 3.3), together with the fact that Gir-
sanov’s theorem can be used to show that the law of the process B(t) — f}(t) is
mutually absolutely continuous with respect to the law of B (see Lemma 3.6).

In order to deal with the possibility of a k-multiple point arising from parameters

t!, ..., t* that share a common coordinate, define
.. ki j
HE G, 0 ={(th ..., ) € (10, 0o[M) i1l =1]}.
That is, HX; (i, j; €) is the set of (t!,..., t*) for which t' and t/ share their ¢th
coordinate.

Our next theorem states that in the critical case (k — 1)d = 2k N, there are (with
probability one) no k-multiple points arising from parameters in H’,‘v @i, j; 0.

THEOREM 1.3. Suppose (k—1)d =2kN,1 <i < j<kandl1 <{<N.Then
P, ...t eHK G, j; 0:B(tY) =--- = B(t")} =o0.

This theorem is proved by using a covering argument. It requires checking that
certain finite-dimensional distributions of increments of the Brownian sheet have
a uniformly bounded density, provided the increments are taken at points that are
at least 6 units apart (§ > 0); see Lemma 2.4. This uses an explicit formula for the
conditional expectation B(1) of B(t) given the values of the sheet in a product of
N complements of intervals (see Lemma 2.1).

The paper is structured as follows. First, in Section 2, assuming Theorems 1.2
and 1.3, we easily deduce Theorem 1.1 from the results of Khoshnevisan and
Shi [7] and Peres [10]. Then we prove Theorem 1.3 via an argument based on
Hausdorff dimension, as just mentioned. Finally, in Section 3, we show how to use
Girsanov’s theorem in order to prove Theorem 1.2.

2. Proof of Theorems 1.1 and 1.3. We first prove Theorem 1.1, assuming
Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.1. Clearly,

P{M # o}
<PAH,.... ") eTt:B(t)=---=B(t))
k-1 k N
+>03 S e, . ) el G ;0 B(t) = = B(tY)}.
i=1 j=i+1¢=1

By Theorem 1.3, the second term vanishes, and by Theorem 1.2, the first term
vanishes if and only if

(2.1) P, ... ) eTiwit) = =W (th)} =0,
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where Wi, ..., W are independent N-parameter Brownian sheets with values
inRY. According to [7], for all sets of the form R = ]‘[?’: 1 [s?, sl}] 10, oo[V, there
is a finite constant C > 1 such that for all nonrandom Borel sets A C R? contained
in a fixed compact subset of R?,

C~'Capy_,y(A) < P{3te R:W'(t) € A} < CCap,_,y(A),
where Cap(-) denotes Bessel-Riesz capacity. We recall that Cap(A) is defined
as follows. Let P(K) denote the collection of all probability measures that are
supported by the Borel set K € R, and define the A-dimensional capacity of A
by

. -1
Capy(4) = nt W]

K CA is compact

where inf @ := 00, and Ig () is the B-dimensional energy of u, defined as follows
for all u € P(RY) and B € R:

15w i= [ [ st = Mnu.

In this formula, the function kg :R? — R U {oo} is defined by

llxlI =5, if >0,
kp(x) = log (Ix7"),  if =0,
1, if B <0,

where, as usual, 1/0 := o0 and log, (z) := 1V log(z) for all z > 0.

Since d —2N > 0 because (k—1)d = 2k N, it follows from [10], Corollary 15.4,
that (2.1) will hold provided Capy;_»n) (RY) = 0. According to [6], Appendix C,
Corollary 2.3.1, this is indeed the case since k(d —2N) = d, because we are in the
critical dimension where (k — 1)d =2kN. [

Before proving Theorem 1.3, we need some preliminary lemmas. For U C RY,
we set F(U) =0c(B(t),te U).

LEMMA 2.1. Fort = 1,...,N,ﬁx0<s2 <sl},andset
N N
R= l_[[s?, sel] and S = l_[]s?, sé[c.
=1 =1

Let J denote the set of functions from {1, ..., N} into {0, 1}. Then for t € R, set
0 1
B fe =S¢ S¢ — e M (N)
e Bo=2( T 5=5)( TT 5=5)s6Wst™)
ved Ney-i(1p °t T3 Neey-iqop S T 0

(we use the convention that a product over an empty set of indices is equal to 1).
Then B(t) = E(B(t) | F(S)).
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REMARK 2.2. The set of corners (extreme points) of R is
(D y(N )
C={(s"", sy )iy €T

so the sum over y in (2.2) involves B evaluated at each corner of R.

PROOF OF LEMMA 2.1.  Since the components of B are independent, we may
and will assume in this proof that d = 1. In this case, since we are working with
Gaussian random variables, it suffices to prove that for each s € S,

(2.3) E(B(t)B(s)) = E(B(t)B(s)).

The right-hand side of (2.3) is equal to ]_[2]: 1(te A s¢), so we compute the left-hand
side of (2.3). Clearly,

EBose) =Y (] tﬁ_s%)( I sf_tﬁ)ﬁ( 1O Aso)

vedJ “tey—1({1}) Sg — 8¢ tey—1({0)h Sg =S¢/ p=1
0 1
e — 8¢ 0 Sg — e
—1_[|:SZ/\S5 — 0—|—(S[/\Sg) — |
Sp — 9y Sp — S

Therefore, (2.3) will be proved if we show that for each £ € {1, ..., N},

0

tpr — 5 — I
(2.4) te Asg = (s¢ Ase) s + (5§ A se) f 3
Sp — S Sg — S

There are two cases to distinguish.
Case 1. s < s?. In this case, sf A sy = sy for k € {0, 1} and #; A s¢ = s¢, Since
s? <t < Sz}’ so the right-hand side of (2.4) is equal to

tg—sg Sé—te

St 0+SZ 1 0 =S¢
S) — 8 §) — 8§
14 14 14 14

which is also the left-hand side of (2.4).
Case 2. sy > sl}. In this case, séf ASp = séf for k € {0, 1} and #; A s¢ = t¢, so the
right-hand side of (2.4) is equal to

0 1
t
sfl 0 Se 1 o0~
Sg — Sy Sg — 8¢

and which is also the left-hand side of (2.4).
This completes the proof of Lemma 2.1. [
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REMARK 2.3. We note that the right-hand side of (2.2) is in fact a convex
combination of the values of B at the corners of R, since each coefficient is non-
negative and

(1 s (e

yed Mey-1(1p 5t T 57 Mey-1op St T 5

:1:[[”—3@ tf)]zl.

SE — Sy

LEMMA 2.4. Fix§ > 0 (small), K € N (positive and large), and k € N, k > 2.

(a) Thereis C > 0 such that for all t', ..., tc such that |t —t/|| > 8, foralli #
jwithi,je{l,...,k},and K zté >, forallt=1,...,Nandi€e{l,..., k},
the random vector (B(tY), ..., B(t)) has a Jjoint probability density function that
is bounded by C.

(b) For the same choices of th, ...tk the (Rd)k_l—valued random vector
(B(t") — B(t?), B(t*) — B(t), ..., B(t"™!) — B(t"))

has a bounded probability density function (with bound depending only on §, K
and k, as well as d and N).

PROOF. Since the B!, ..., B are independent Brownian sheets, we may and
will assume in this proof that d = 1.
We first deduce (b) from (a). Let

Y = (B(t") = B(t),..., B(t:™!) — B(t"), B(t")).
Then Y is obtained from (B(t), ..., B(tX)) by applying an invertible linear trans-

formation from (R? )k into (R? )k. Therefore, by (a), Y has a bounded joint
probability density function. It follows that the probability density function of
(B(tY— B(t?), ..., B(t*1)— B(tX)), whichis a marginal density of Y, is bounded
by the same constant. This proves (b).

We now prove (a). Set

8
n :inf{n eN:2™" < —},
3N
and consider a dyadic grid in ]R_IX with edges of length 27". We let G5 ¢ denote
the set of such grid points with all coordinates < K. ‘
By constructipn, each closed box ir_1 this grid contains at most one of the t', and
we denote by R' the box containing t'. Suppose that

l N
R = 1_[[ éo’sz 1] andset S’ = H]SQ,O’Sé,l[c‘
=1 P
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Because of our choice of 7, the set C' of corners of R’ is distinct from C/ when
i #j.
Define
Y = E(B(t)|F(SY), i=1,... .k

Then B(t') — Y’ is orthogonal to Y?, and for j # i, since Y/ is a linear combination
of values of B at elements of S’ (because C/ NC' = @), B(t') — Y' is orthogonal
to Y/. Letting ¥ = (v',...,Y" and Z = (B(tY) — Y, ..., B(t") — Y*), we see
that the Gaussian vectors Y and Z are independent, and

(B(t),...,B(t) =Y + Z.

Using properties of convolution, we see that it suffices to show that the joint
probability density function of Y is bounded [uniformly over the (t!, ..., t5)].

Since Y is a Gaussian random vector, let M be its variance—covariance matrix.
It suffices to show that

(2.5) detM > c >0,

where ¢ depends only on §, K and k, as well as d and N.

Consider the random vector (B(r), r € G5 ). Observe that this random vector
can be obtained by applying an invertible linear transformation, from R(Z"K "
into itself (recall that d = 1), to the random vector (W (R), R a box in the grid),
which has i.i.d. components, each with variance (2*”)N > (. Therefore, (B(r),r €
G5, k) has a bounded density, where the bound depends only on § and K (and d
and N). This implies that (B(t),t € C',i =1, ..., k) has a joint probability density
function that is bounded, since it is a marginal density of (B(r),r € G5 k).

Let M be the variance—covariance matrix of the Gaussian random vector
(B(t), te clii=1,..., k). Then by the above, there is ¢ > 0 such that detM > C.
In particular, there is co > 0 such that

ATMA>colr>  forall » e RE2Y.

Note that ¢ depends only on (8, K, k,d, N).
Let 1 € R*. Then
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where the a; ; are the coefficients obtained in formula (2.2) of Lemma 2.1. Ac-
cording to Remark 2.3, } i jccia;j =1 and a; ; > 0, therefore, there is a > 0
such that Y jcci a? ;j > a. We conclude that

k
w'Mp > coay ui,

i=1

and this implies that det M > ¢{ > 0, where c| depends only on (8, K, k,d, N). In
turn, this proves (2.5) and completes the proof of (a) in Lemma 2.4. [J

PROOF OF THEOREM 1.3. It suffices to prove the theorem in the case where
i =1, j=2and £ = 1. Therefore, we write ”H’,‘v instead of 7—[’1‘\,(1, 2;1).
For § > 0, set

HE @) ={(t" ... ) eH i =6 | —t/] =,
foralli # j,6=1,....,N,i,je{l,... . k}}.

Since HX, = U2, H]fv(,ll), it suffices to prove that for fixed § > 0,
P, ...t e K ®:B(t")=---=B(t")} =0.

Consider the random field indexed by (]O0, oo[M)* with values in (]Rd)k_l de-
fined by

X(t', ..., &= (B(t") = B(t?), B(®) — B(t)),..., Bt*™!) — B(t")).

B(t')=---=B(t") <= Xx(t',....t"h=0,

so parameters which give rise to a k-multiple point of B are k-tuples at which X
hits 0 (€ (R4)* ™). Therefore, it will suffice to show that

(2.6) P, .. ) eHKN ®):x(t,.... ) =0} =0.

Let D(K) = ’HI;\,(S) N ([0, K]N)k. Since Hll‘\, is a vector space of dimension
kN — 1, there is C > 0 such that for all large n > 1, we can cover D(K) by
C (22”)](1\/_1 dyadic boxes in (RM)F with edges of length 2721 Let D, be the
set of boxes in such a covering, and for D € D,, let t,,(D) be the corner of D for
which all coordinates are smallest possible.

For (tl,...,tk) e D, let Pt ..., tk)(Zl,...,Zk_l) be the value of the joint
probability density function of X' ...t at (z1,...,zk1) € (Rd)k_l. By
Lemma 2.4, there is C < 400 such that

2.7) Pt @1, zk—1) = C.
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Let B(0, n2~") denote the ball in (R?)* ™" centered at 0 with radius 72" By (2.7),

(2.8) P{X(t',...,t) € B(0,n27")} < C(n2)"* V.

In order to prove (2.6), it suffices to prove (2.6) with H],‘\, (8) replaced by D(K).
So, we compute

P, ..., ) e D(K): X(t', ..., ) =0)
P, ..., e DEK): X(t', ..., ) e B(0,27")}

IA

< P, ... ) eD:X(t,....t5) e B(0,27")}
DeD,

< > P({X((D) € BO,n27"))

U {supl[ X (&) = X (ta(D)) | = (n — 12"}).
teD
We now use (2.8) to bound this by

22N =Dl 7V 4 sup Plsup X () = X (ta(D)) | = 0 — 127"}
DeD, teD
It follows from the scaling property of the Brownian sheet ([12], Chapter 1) that

the supremum over D € D, is no greater than that achieved by the box D* =
[K —272" K]k and we will show below that

(2.9)  lim 2>*N —1>P{ sup | X (t) — X (t.(D%))| = (n — 1)2—"] =0,
n—+0o0o teD*

. . . 1) yr—ndk—1)—2kN+2 . .
so it remains to examine the term n?*—1(2-"m) =1 *2_ Since we are in the

critical case, 2k N = (k — 1)d, so the exponent of 27" is equal to 2 and, therefore,

nd(k—l)(z—n)d(k—l)—ZkN+2 — pdk=Do=2n _
as n — +o00. This will prove (2.8) and complete the proof of Theorem 1.3 once
we establish (2.9), to which we now turn.

We can write D* = D x --- x Dy, where each D; is a box in RV with edges
of length 272", and we can write 1, (D*) = (t,{ (D), ..., t,’f(Dk)). Clearly,

’

k
[X @ =X (@(D*)] < 22\}3(“) — B(5,(Dy))]

so it suffices to prove that for each i € {1, ..., k} and n sufficiently large, there are
constants C < oo and ¢ > 0 such that

: : — 127" :
(2.10) P{ sup | B(t') — B(t: (D) | = u} <Ce D2
tieDi 2k
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. In order to simplify the notation, we assume that D; =[1,1 + 2_2”]N , SO
ty(D;) =(1,...,1), and we write t' = (¢, ..., ty). We use the decomposition of
the Brownian sheet presented in [4], proof of Theorem (1.1), to write

m=11<li<--<lyu <N

where the Wz( m)

dependent. There are 2"V — 1 terms in this decomposition, so, using the scaling
property of the Brownian sheet, we see that

. . — D2
P{ sup |B(t") — B(#, (D)) | = w1277 2k) }
tieD;

¢, are m-parameter Brownian sheets and all are mutually in-

.....

N - m—1)n
(n — 1)2¢
< Z Z P{ sup WX") (t) > —2k2 ~ }

m=11<l;<--<l,<N te[0, 11"

Using [9], Lemma 1.2, we see that the largest probability in this sum is obtained
when m = 1, and in this case it is bounded by 4N P{Z > c(n — 1)}, where Z is a
standard normal random variable and ¢ =2~N-! / k. Therefore,

. . _1 2—}'1
P{ sup | B(t') — B(t,(D))| > (n—D27"

} < N!SNe—cz(n—l)z/Z’
tiEDi 2k

which proves (2.10) and completes the proof of Theorem 1.3. [J

3. Proof of Theorem 1.2. The main ingredient in the proof of Theorem 1.2 is
the following result.

THEOREM 3.1. Let Wy, ..., Wi be independent Brownian sheets. Fix M > 0
and let Ry denote the set of k-tuples of boxes (Ry, ..., Ry), where each box R;
is contained in [M~', M ]N and for each coordinate axis, the projections of the R;
onto this coordinate axis are pairwise disjoint. Then, for all (Ry, ..., Rx) € Ry,
the random vectors

(Blgy»---, Blg,) and (Wilr,,..., Wlr)

[with values in (C(Ry, R?) x --- x C(Rg, RY))] have mutually absolutely contin-
uous probability distributions.

REMARK 3.2. Using the results of Walsh [11] on propagation of singularities
in the Brownian sheet, it is easy to see that the conclusion of Theorem 3.1 does not
remain valid without the assumption that the projections of the R; onto each axis
are pairwise disjoint.
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Before proving Theorem 3.1, we show that it readily implies Theorem 1.2.
PROOF OF THEOREM ]1\’.2. Let A C R? be a Borel set. Fix M > 0 and set
TEM) =TENIM~', M]". Then T = US_, T (M). Therefore,
(3.1) PlAL, ... ) eTh:B({tY=-- =B(t")eA}=0
is equivalent to
vMeN* PRt .. ) eTEM):B(t)=---=B(t")c A} =0,
and this in turn is equivalent to
VM e N* V(Ry,...,R) € Ry
(3.2)
P, ... ) eR x--- xR:B(t)=-.-=B(t") e A} =0.
Similarly, the property
(3.3) PR, ... ) eTE W)= =W () ea)=0
is equivalent to
VM e N*V(Ry,...,Ry) € Ry :
(3.4)
P, ... ) eR x - x Re:Wi(t') = =W (") e A} =0.
According to Theorem 3.1, properties (3.2) and (3.4) are equivalent and, therefore,
(3.1) and (3.3) are also equivalent. This proves Theorem 1.2. [J

For Theorem 3.1, we will need a variant of Lemma 2.1.

LEMMA 3.3. Forﬁ:l,...,N,ﬁxO<s?<sl} and set

N—1

Rzﬁ[sg,sz] and 5= (TTE11) < D051

=1
Let Jn denote the set of functions from {1, ..., N — 1} into {0, 1} and set
1 2 N-1
CN={(S%/(),S;(),...,SI)<]( ),SR,):)/GJN}.
Forte R, set
~ ty — S? Sel — Iy
B(t):Z 1_[ I _ 40 1_[ I _ 40
YeIN eey=l(1p Ot TEL7 “eey—ioy Tt e

y(1) y(N=1) 0
X B(s{" ', ....s50 .Sy)-

Then B(t) = E(B(t) | F(S)).
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REMARK 3.4. Cy is the set of corners of R with the smallest of the two pos-
sible Nth coordinates, and Sy is in the “past” of R if we define the “past” using
the (partial) order s <p tif and only if sy < ty.

PROOF OF LEMMA 3.3. Since the components of B are independent, we may
and will assume in this proof that d = 1. In this case, as in the proof of Lemma 2.1,
it suffices to prove that for each s € S,

(3.5) E(By(t)B(s) = E(B(t)B(s)).

The right-hand side of (3.5) is equal to sy ]_[év:_]l (t¢ A s¢), so we compute the
left-hand side of (3.5). Clearly,

50 -
E(é(t)B(s)):sNZ[ M = SZOM I sf—tf)](sg“)me)

yedn “eey—1qiy 50 TS50 A ey 1 g0y Se T S¢

N—1 0 1
te — S S, — g
1
—sv [] [(sZ ns) L0 +(sgw)%}
=1 S@ _SZ SZ _SE
so (3.5) will be proved if we check that foreach £ € {1,..., N — 1},
0 1
tr — 8 s, — 1
1 ¢ [ 0 ¢
tg/\S(=(S€ /\S() ] 0+(SZ—S() 0 0

But this is simply equality (2.4), and the proof of Lemma 3.3 is complete. [J

We will need the following form of Girsanov’s theorem for the Brownian sheet,
which is essentially the version given in [8], Proposition 1.6. Fix M > 0. Define
the one-parameter filtration G = (G, u € [0, M]) by

(3.6)  Gu=0{B{t,....tn—1,0):(t1,....tn—1) e RY ™ v [0, u])

(the filtration is completed and made right-continuous). Let (Z(s),s € Rﬁ_l X
[0, M) be a (jointly measurable) R?-valued random field that is adapted to G, that
is, for all s € Rﬁ_l x [0, M1, Z(s) is Gy, -measurable. Suppose that

(3.7) E(/N ] |Z(s) ||2ds) < +00.
RY =1 x[0,M]
For u € [0, M], define

1 2
L,=ex / Z(S)-dB(s) — = Z(s ds>,
o =exp o 2O B =5 [ 17

where “-” denotes the Euclidean inner product and, for each component, the
stochastic integral [ Zi(s)dB!(s) is defined in the sense of [12], with the Nth
coordinate playing the role of the time variable and the other coordinates playing
the role of the spatial variables.
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THEOREM 3.5 (Cameron-Martin-Girsanov). If (Z(s),s € RY ™' x [0, M]) is
such that (Ly, u € [0, M]) is a martingale with respect to the filtration G, then the
process (B(t),te Rﬁ_l x [0, M) defined by

B(zl,...,tN):B(tl,...,tN)—/ Z(s1,...,sn)dsy -+ dsy
[0,71]1%x---x[0,2n]

is an R%-valued Brownian sheet under the probability measure Q, where Q is
defined by

do
— = Ly.
ap M
We now fix k > 2 and consider k£ boxes Ry, ..., R as in the statement of Theo-
rem 3.1:
N
0 .1 .
Rj=TTls5e 5] j=1,...k,
=1
where, for £ =1, ..., N, the intervals
0 1 0 1 0 1
[SI,Z’ Sl,e]v [Sz,e’ Sz,e]’ s [sk,év Sk,E]

are pairwise disjoint (i.e., the projection of the R; onto each coordinate axis are
pairwise disjoint). Without loss of generality, we assume that

1 0 :
S/—l,N<sJ,N’ ]:2,...,N
(i.e., the projections of the R; onto the Nth-coordinate axis are in increasing or-
der).
Let

N—1
R= (n [S/(c),ea 5/%,@]) 2 [Sli—l,N’ Sll,N]’

(=1

N—1
S = (H ]Sl(c),ﬁ’sli,f[ ) x [0, S/Ll,N]-

=1
Notice that Ry C Rand for j=1,...,k—1, R; CS.

LEMMA 3.6. Let M be as in Theorem 3.1. There is a process (ét, te [0, M1Y)
with law mutually equivalent to the law of (Bt,t € [0, M 1Y) such that
Bty=Bwt) forte[0, M1V x[0,5_, v]
and
B(t)=B(t) — E(B(t) | F(S))  forte Ry.

In particular, éle and (B|R,, ..., B|r,_,) are independent.
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_PROOF.  We apply Lemma 3.3 to the sets R and S, yielding the process
(B(t),t € R), such that B(t) = E(B(t) | 7(S)), t € Rg. In particular, if we set

(3.8) By=B@t) forte[0, M1V x[0,5i_, ],
(3.9) B(t)y=B(t)— B(t)  forte Ry,
then é|Rk and (B|R,, ..., Blg,_,) are independent, since B is a Gaussian process.

The main point of this lemma is to establish, after extending the definition of é(t)
to t € [0, M]V, that the law of (é(t), te [0, MV ) is mutually equivalent to the
law of (B(t), t € [0, M]V).

For this, we will use Girsanov’s theorem (Theorem 3.5), by constructing a pro-
cess (Z(s)) satisfying the assumption of Theorem 3.5 and such that

B(t)—/ Z(s1,...,5n)ds1---dsy,
[0,t1]x---x[0,2n]

(3.10)
te RV-1 x [0, M],

agrees with é(t) on [0, MV~ x [0, s,l_l’N] and on Rj. Using the formula

in (3.10) to dAeﬁne é(t) for all t e RN-1 x [0, M], this immediately implies that
the laws of (B(t), t € [0, M]V) and (B(t), t € [0, M]V) are mutually equivalent.
We note that for t = (#1,...,ty) € R,

B(t) :B(tls vtN—l’tN) :B(tla "'stN—lsslifl’N)a

so B(t) does not depend explicitly on the Nth-coordinate of 7.
We now construct Z(s). Let

N—1
U- (H o. sz,z]) I

=1
We set

(3.11) Z(s)=0 fors ¢ U,
and we define Z(s) for s € U as follows. For t € U U R, define
pe®=s), v, £=1,...,N—1,

pn(b) =s,1_1’N, and p(t) = (p1(t), ..., py(t)). Now let

1 N—-1 0
- — |B(p)), ifte U,
(.12 F= sl(c),N _SI:—I,N gl;[l S/?,g (p(®)

0, otherwise,

so that F(t) is an R?-valued multilinear interpolation of B (p(t)) with the process
which vanishes on the coordinate hyperplanes 1 to N — 1, and on the hyperplane
RN-1 % {s,l_LN}. In particular, fort e U,

(3.13) Ft)=0 ifty=0o0r - orty_j =0o0rty =s0_y y
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and

1
IN—S,_ ~
G4 FM) =LY B, avonsiy)  ifteR.

Sk,N T Sk—1,N
We note that t — F(t) is piecewise C*°, and we set
aN

Z(S],...,SN)ZmF(S],...,SN).

It is clear that Z(s) is a linear combination of the random variables B(s,{ (11), e,
s,{’(f\y__ll), s,i_l’ ) that come from Lemma 3.3. Explicit formulas can be given, for

instance, letting B denote the white noise associated to B,

N-—1 1 1

1
=1 Sk e ~ Sk —Sk—1,N

x B([s 1osia] < x [sy—rosev—1] ¥ [0.s¢_1v])  ifseR,

but we will not need them. We note, however, that (Z(s)) is adapted to the filtration
(Gy) defined in (3.6).
Fort=(t1,...,ty) € RV, let

B(t) = B(t) —/ Z(s1,...,sn)dsy - dsy.
[0,11]%x---x[0,tn]

Then (3.8) is clearly satisfied by (3.11), and (3.9) is satisfied since for t € Ry,
by (3.13) and (3.14),

/ Z(S1,...,5N)ds1---dsy
[0,71]x---x[0,2n]

n N-1 SEN aN
= dsl---/ dstl/ dsy——F(s1,...,5N)
0 0 s

b 05 dsy
0 1
Sk,N T Sk—1,N 5
= ﬁB(n, ...,l‘N—l’sli—l,N)
Sk,N T Sk—1,N
= B(p(v))
= B(t).

In order to complete the proof, it remains to check that the assumption of The-
orem 3.5 is satisfied, and, in particular, that the process

! 2
L, =ex f Z(s)- dB(s) — = Z(s ds], uel0,M],
] R R CRE Y N 0, M)
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is a martingale. Since Z vanishes on RV \ U, it suffices, according to the extension
of Novikov’s criterion presented in [3], Chapter 3.5, Corollary 5.14, to check that
for n sufficiently large and t; = s,l_l Nt %(s,(()’N — 511—1 N»i=0,...,n,

1 sl. sly _ t;
E[exp(ifo“ dsvo [M sy | dsNHZ(s)uzﬂ < 400,
L1

But this follows from the fact that the integral is bounded by

¢ ) ((N=1)
— sup |(B (Slgl liN 1 Sk— ))”
n jegy
for some constant C that depends only on Rj_; and Ry, and this random variable
has a finite exponential moment if » is sufficiently large. The proof of Lemma 3.6

is complete. [

PROOF OF THEOREM 3.1. We proceed by induction on k. For k = 1, there is
nothing to prove. So, assume that k > 2 and that we have proved the statement for
k—1.

We consider the two independent Brownian sheets B and Wy. We apply
Lemma 3.6 to both of these processes, producing processes B and Wy such that,
in particular:

(1) Blg, = BlR,.--.. Blre, = Blr,_,:

(2) B|g, and (B|R,, ..., B|g,_,) are independent;

(3) Bljo,pv and I§|[O? M~ have mutually equivalent probability laws;
4) Wkl R, and Wi |g, have mutually equivalent probability laws;

(5) Blg, and Wi|g, have the same probability law.

We write L(B|g,,...,B|g,) for the probability law of the random vector
(BIR,,---, Blr,), and use “~” to indicate mutually equivalent probability laws.
Then, by (3) and (1),
L(BIRy-- Blr) ~ L(Blrys - Blr,_y» Blry)
= ‘C(BlRls ey Ble,p éle)~

By (2) and (5), and since B and Wy are independent,
L(BIR,s--, Blre_» Blr) = L(BIR,. ... Blr._,» Wilr,)-

Let Wy, ..., Wr_1 be independent Brownian sheets independent of Wy and B.
Since B and Wj are independent, we can use the induction hypothesis to see that

LBIRys--s Blre1» WIRD) ~ LWilRys - s Wartl Ry Wil Re)-
By (4) and the independence of (Wy, ..., Wix_1) and Wy, we conclude that
LVIR s WemtlRe 1 WilR) ~ LOWiIRy s -+ Wit Re1> Wil R,
and this proves Theorem 3.1. [
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