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POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES BY
DECOMPOSITION OF THE ENERGY LANDSCAPE

BY GEORG MENZ AND ANDRÉ SCHLICHTING1

Stanford University and University of Bonn

We consider a diffusion on a potential landscape which is given by a
smooth Hamiltonian H :Rn → R in the regime of low temperature ε. We
proof the Eyring–Kramers formula for the optimal constant in the Poincaré
(PI) and logarithmic Sobolev inequality (LSI) for the associated generator
L = ε� − ∇H · ∇ of the diffusion. The proof is based on a refinement of the
two-scale approach introduced by Grunewald et al. [Ann. Inst. Henri Poincaré
Probab. Stat. 45 (2009) 302–351] and of the mean-difference estimate intro-
duced by Chafaï and Malrieu [Ann. Inst. Henri Poincaré Probab. Stat. 46
(2010) 72–96]. The Eyring–Kramers formula follows as a simple corollary
from two main ingredients: The first one shows that the PI and LSI con-
stant of the diffusion restricted to metastable regions corresponding to the
local minima scales well in ε. This mimics the fast convergence of the diffu-
sion to metastable states. The second ingredient is the estimation of a mean-
difference by a weighted transport distance. It contains the main contribution
to the PI and LSI constant, resulting from exponentially long waiting times
of jumps between metastable states of the diffusion.

1. Introduction. Let us consider a diffusion on a potential landscape which
is given by a sufficiently smooth Hamiltonian function H :Rn → R. We are inter-
ested in the regime of low temperature ε > 0. The generator of the diffusion has
the following form:

L := ε� − ∇H · ∇.(1.1)

The associated Dirichlet form is given for a test function f ∈ H 1(μ) by

E(f ) :=
∫

(−Lf )f dμ = ε

∫
|∇f |2 dμ.

The corresponding diffusion ξt satisfies the stochastic differential equation

dξt = −∇H(ξt )dt + √
2ε dBt,(1.2)

where Bt is the Brownian motion on Rn. Equation (1.2) is also called over-damped
Langevin equation (cf., e.g., [32]). Under some growth assumption on H , there
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exists an equilibrium measure of the according stochastic process, which is called
Gibbs measure and is given by

μ(dx) = 1

Zμ

exp
(
−H(x)

ε

)
dx with Zμ =

∫
exp

(
−H(x)

ε

)
dx.(1.3)

The evolution (1.2) of the stochastic process ξt can be translated into an evolution
of the density of the process ξt . Namely, under the assumption that the law of the
initial state ξ0 is absolutely continuous w.r.t. the Gibbs measure μ, the density ftμ

of the process ξt satisfies the Fokker–Planck equation (cf., e.g., [37] or [44])

∂tft = Lft = ε�ft − ∇H · ∇ft .

We are particularly interested in the case where H has several local minima. Then
for small ε, the process shows metastable behavior in the sense that there exists a
separation of scales: On the fast scale, the process converges quickly to a neigh-
borhood of a local minimum. On the slow scale, the process stays nearby a local
minimum for an exponentially long waiting time after which it eventually jumps
to another local minimum.

This behavior was first described in the context of chemical reactions. The ex-
ponential waiting time follows the Arrhenius’ law [1] meaning that the mean exit
time from one local minimum of H to another one is exponentially large in the
energy barrier between them. By now, the Arrhenius law is well understood even
for nonreversible systems by the Freidlin–Wentzell theory [19], which is based on
large deviations.

A refinement of the Arrhenius law is the Eyring–Kramers formula which ad-
ditionally considers pre-exponential factors. The Eyring–Kramers formula for the
Poincaré inequality (PI) goes back to Eyring [18] and Kramers [30]. Both argue
that also in high-dimensional problems of chemical reactions most reactions are
nearby a single trajectory called reaction pathway. Evaluating the Hamiltonian
along this reaction coordinate gives the classical picture of a double well potential
(cf. Figure 1) in one dimension with an energy barrier separating the two local
minima for which explicit calculations are feasible.

However, a rigorous proof of the Eyring–Kramers formula for the multidimen-
sional case was open for a long time. For a special case, where all the minima
of the potential as well as all the lowest saddle points in-between have the same
energy, Sugiura [45] defined an exponentially rescaled Markov chain on the set
of minima in such a way that the preexponential factors become the transitions
rates between the metastable regions of the rescaled process. For the generic case,
where the local minima and saddles have different energies, the group of Bovier et
al. [9, 10] obtained first-order asymptotics that are sharp in the parameter ε. They
also clarified the close connection between mean exit times, capacities and the ex-
ponentially small eigenvalues of the operator L given by (1.1). The main tool of
[9, 10] is potential theory. The small eigenvalues are related to the mean exit times
of appropriate subsets of the state space. Further, the mean exit times are given
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FIG. 1. General double-well potential H on R.

by Newtonian capacities which can explicitly be calculated in the regime of low
temperature ε.

Shortly after, Helffer, Klein and Nier [23–25] also deduced the Eyring–Kramers
formula using the connection of the spectral gap estimate of the Fokker–Planck
operator L given by (1.1) to the one of the Witten Laplacian. This approach makes
it possible to get quantitative results with the help of semiclassical analysis. They
deduced sharp asymptotics of the exponentially small eigenvalues of L and gave
an explicit expansion in ε to theoretically any order. An overview on the Eyring–
Kramers formula can be found in the review article of Berglund [6].

In this work, we provide a new proof of the Eyring–Kramers formula for the first
eigenvalue of the operator L, that is, its spectral gap. The advantage of this new
approach is that it extends to the logarithmic Sobolev inequality (LSI), which was
not investigated before. The LSI was introduced by [21] and is stronger than the
PI. Therefore, the LSI is usually harder to deduce than the PI due to its nonlinear
structure.

By deducing the Eyring–Kramers formula for the LSI, we encounter a surpris-
ing effect: In the generic situation of having two local minima with different en-
ergies, the Eyring–Kramers formula for the LSI differs from the Eyring–Kramers
formula for the PI by a term of inverse order in ε. However, in the symmetric situa-
tion of having local minima with the same energy, the Eyring–Kramers formula for
the LSI coincides with the corresponding formula for the PI (cf. Corollary 2.18).

We conclude the Introduction with an overview of the article:

In Section 1.1, we introduce PI and LSI.
In Section 1.2, we discuss the setting and the assumptions on the Hamiltonian H .
In Section 2, we outline the new approach and state the main results of this work.
In Section 3 and Section 4, we proof the main ingredients of our new approach.
Namely, in Section 3, we deduce a local PI and a local LSI with optimal scaling
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in ε, whereas in Section 4 we estimate a mean-difference by using a weighted
transport distance.
In the Appendices, we provide for the convenience of the reader some basic but
nonstandard facts that are used in our arguments.

1.1. Poincaré and logarithmic Sobolev inequality.

DEFINITION 1.1 [PI(�) and LSI(α)]. Let X be an Euclidean space. A Borel
probability measure μ on X satisfies the Poincaré inequality with constant � > 0,
if for all test functions f ∈ H 1(μ)

varμ(f ) :=
∫ (

f −
∫

f dμ

)2

dμ ≤ 1

�

∫
|∇f |2 dμ.(PI(�))

In a similar way, the probability measure μ satisfies the logarithmic Sobolev in-
equality with constant α > 0, if for all test function f :X → R+ with I (f μ|μ) <

∞ holds

Entμ(f ) :=
∫

f log
f∫
f dμ

dμ ≤ 1

α

∫ |∇f |2
2f

dμ =: I (f μ|μ),(LSI(α))

where I (f μ|μ) is called Fisher information. The gradient ∇ is determined by the
Euclidean structure of X. Test functions are those functions for which the gradient
exists and the right-hand side in PI(�) and LSI(α) is well defined.

REMARK 1.2 [Relation between PI(�) and LSI(α)]. Rothaus [41] observed
that LSI(α) implies PI(α). This can be seen by setting f = 1 + ηg for η small and
observing that

Entμ
(
f 2)= 2η2 varμ(g) + O

(
η3) as well as

∫
|∇f |2 dμ = η2

∫
|∇g|2 dμ.

Hence, if μ satisfies LSI(α) then μ satisfies PI(α), which always implies α ≤ �.

1.2. Setting and assumptions. This article uses almost the same setting as
found in [9, 10]. Before stating the precise assumptions on the Hamiltonian H ,
we introduce the notion of a Morse function.

DEFINITION 1.3 (Morse function). A smooth function H :Rn →R is a Morse
function, if the Hessian ∇2H of H is nondegenerated on the set of critical points.
More precisely, for some 1 ≤ CH < ∞ holds

∀x ∈ S := {
x ∈ Rn :∇H = 0

}
:
|ξ |2
CH

≤ 〈ξ,∇2H(x)ξ
〉≤ CH |ξ |2.(1.4)

We make the following growth assumption on the Hamiltonian H sufficient to
ensure the existence of PI and LSI. Hereby, we have to assume stronger properties
for H if we want to proof the LSI.
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ASSUMPTION 1.4 (PI). H ∈ C3(Rn,R) is a nonnegative Morse function,
such that for some constants CH > 0 and KH ≥ 0 holds

lim inf|x|→∞ |∇H | ≥ CH,(A1PI)

lim inf|x|→∞
(|∇H |2 − �H

)≥ −KH.(A2PI)

ASSUMPTION 1.5 (LSI). H ∈ C3(Rn,R) is a nonnegative Morse function,
such that for some constants CH > 0 and KH ≥ 0 holds

lim inf|x|→∞
|∇H(x)|2 − �H(x)

|x|2 ≥ CH,(A1LSI)

inf
x

∇2H(x) ≥ −KH.(A2LSI)

REMARK 1.6 (Discussion of assumptions). The Assumption 1.4 yields the
following consequences for the Hamiltonian H :

• The condition (A1PI) and H(x) ≥ 0 ensures that e−H is integrable and can be
normalized to a probability measure on Rn (see Lemma 3.14). Hence, the Gibbs
measure μ given by (1.3) is well defined.

• The Morse Assumption (1.4) together with the growth condition (A1PI) ensures
that the set S of critical points is discrete and finite. In particular, it follows that
the set of local minima M = {m1, . . . ,mM} is also finite, that is, M := #M <

∞.
• The Lyapunov-type condition (A2PI) allows to recover the Poincaré constant of

the full Gibbs measure μ from the Poincaré constant of the Gibbs measure μU

restricted to some bounded domain U (cf. Section 3). Because Gibbs measures
with finite support and smooth Hamiltonian always satisfy a Poincaré inequality
with some unspecified constant, we get that the Gibbs measure μ also satisfies a
Poincaré inequality. Equivalently, this means that there exists a spectral gap for
the operator L given by (1.1).

Similarly the Assumption 1.5 has the following consequences for the Hamiltonian
H :

• One difference between the Assumptions 1.4 and 1.5 is that (A1PI) yields lin-
ear growth at infinity for H , whereas a combination of condition (A1LSI) and
(A2LSI) yields quadratic growth; that is,

lim inf|x|→∞
|∇H(x)|

|x| ≥ CH .(A0LSI)

Note that quadratic growth at infinity is a necessary condition to obtain LSI(α)

with α > 0 (cf. [42], Theorem 3.1.21).
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• In addition, (A1LSI) and (A2LSI) imply (A1PI) and (A2PI), which is only an
indication that LSI(α) is stronger than PI(�) in the sense of Remark 1.2.

• The condition (A1LSI) is again a Lyapunov type condition. To enforce it to a
LSI, additionally the condition (A2LSI) has to be assumed (cf. Section 3).

To keep the presentation feasible and clear, we additionally assume a nonde-
generacy assumption, even if it is not really needed for the proof of the Eyring–
Kramers formula. The saddle height Ĥ (mi,mj ) between two local minima mi,mj

is defined by

Ĥ (mi,mj ) := inf
{

max
s∈[0,1]H

(
γ (s)

)
:γ ∈ C

([0,1],Rn), γ (0) = mi, γ (1) = mj

}
.

ASSUMPTION 1.7 (Nondegeneracy). There exists δ > 0 such that:

(i) The saddle height between two local minima mi,mj is attained at a unique
critical point si,j ∈ S of index one, that is, it holds H(si,j ) = Ĥ (mi,mj ) and if
{λ1, . . . , λn} denote the eigenvalues of ∇2H(si,j ), then it holds λ1 < 0 and λi > 0
for i = 2, . . . , n. The point si,j is called communicating saddle between the minima
mi and mj .

(ii) The set of local minima M = {m1, . . . ,mM} is ordered such that m1 is a
global minimum and for all i ∈ {3, . . . ,M} yields

H(s1,2) − H(m2) ≥ H(s1,i ) − H(mi) + δ.

REMARK 1.8. The fact, that si,j is indeed a critical point is explained in [29],
Proposition 6.2.1. Since H is a Morse function after Assumption 1.4 the critical
point si,j is nondegenerate. Moreover, an indirect perturbation argument implies
that si,j is a saddle point of index one, which shows that except for uniqueness,
Assumption 1.7(i) is already implied by Assumption 1.4. This fact is known as
Murrell–Laidler theorem in the chemical literature [47].

2. Outline of the new approach and main results. In this section, we
present the new approach to the Eyring–Kramers formula and formulate the main
results of this article. Because the strategy is the same for the PI and LSI, we
consider both cases simultaneously. The approach uses ideas of the two-scale ap-
proach for LSI [22, 33, 39] and the method by [14] to deduce PI and LSI estimates
for mixtures of measures. However, the heuristics outlined in the Introduction pro-
vide a good orientation for our proceeding. Remember that we have a splitting into
two time-scales:

• the fast scale describes the fast relaxation to a local minima of H and
• the slow scale describes the exponentially long transitions between local equi-

librium states.

Motivated by these two time scales, we specify in Section 2.1 a splitting of the
measure μ into local measures living on a metastable regions around the local
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minima of H . This splitting is lifted from the level of the measure to the level of
the variance and entropy. In this way, we obtain local variances and entropies,
which heuristically should correspond to the fast relaxation, and coarse-grained
variances and entropies, which should correspond to the exponentially long tran-
sitions.

Now, we handle each contribution separately. The local variances and entropies
are estimated by local PI (cf. Theorem 2.9) and local LSI, respectively (cf. Theo-
rem 2.10). The heuristics suggest that this contribution should be of higher order
because this step only relies on the fast scale.

Before we estimate the coarse-grained variances and entropies, we bring them
in the form of mean-differences. This is automatically the case for the variances.
However, for the coarse-grained entropies one has to apply a new weighted discrete
LSI (cf. Section 2.2), which causes the difference between the PI and LSI in the
Eyring–Kramers formula. The main contribution to the Eyring–Kramers formula
(cf. Corollary 2.15 and Corollary 2.17) results from the estimation of the mean-
difference, which is stated in Theorem 2.12.

At this point, let us shortly summarize the main results of this article:

• We provide good estimates for the local variances and entropies (cf. Sec-
tion 2.3.1) and

• We provide sharp estimates for the mean-differences (cf. Section 2.3.2).
• From these main ingredients, the Eyring–Kramers formulas follow as simple

corollaries (cf. Section 2.3.3).

We close this chapter with a discussion on the optimality of the Eyring–Kramers
formula for the LSI in one dimension (cf. Section 2.4).

Notational remark: Almost all of the following definitions and quantities will
depend on ε, for lucidity this dependence is not expressed in the notation. The
arguments and main results hold for ε > 0 fixed and small.

2.1. Partition of the state space. The inspiration to partition the state space
comes from the work [28] for discrete Markov chains. In order to get sharp results,
the partition of the state space Rn cannot be arbitrarily but has to satisfy certain
conditions.

DEFINITION 2.1 (Admissible partition). The family PM = {�i}Mi=1 with �i

open and connected is called an admissible partition for μ if the following condi-
tions hold:

(i) For each local minimum mi ∈ M exists �i ∈ PM with mi ∈ �i for i =
1, . . . ,M .

(ii) {�i}Mi=1 is a partition of Rn up to sets of Lebesgue measure zero, which is
denoted by Rn =⊎M

i=1 �i .
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(iii) The partition sum of each element �i of PM is approximately Gaussian,
that is, for i = 1, . . . ,M

μ(�i)Zμ = (2πε)n/2√
det∇2H(mi)

exp
(
−H(mi)

ε

)(
1 + O

(√
ε| log ε|3/2)).(2.1)

REMARK 2.2. A canonical way to obtain an admissible partition for μ would
be to associate to every local minimum mi ∈ M for i = 1, . . . ,M its basin of
attraction �i w.r.t. H defined by

�i :=
{
y ∈ Rn : lim

t→∞yt = mi, ẏt = −∇H(yt ), y0 = y
}
.

Unfortunately, this choice would lead to technical difficulties later on. We get rid
of these technical problems by choosing the partition �i in a slightly different way.
For details, we refer the reader to Section 3.

Using an admissible partition of the state space, one can decompose the Gibbs
measure μ into a mixture of local Gibbs measures μi .

DEFINITION 2.3 (Mixture representation of μ). Let PM = {�i}Mi=1 be an ad-
missible partition for μ. The local Gibbs measures μi are defined as the restriction
of μ to �i

μi(dx) := 1

ZiZμ

1�i
(x) exp

(
−H(x)

ε

)
dx where Zi := μ(�i).(2.2)

The marginal measure μ̄ is given by a sum of Dirac measures

μ̄ := Z1δ1 + · · · + ZMδM.

Then the mixture representation of μ w.r.t. PM has the form

μ := Z1μ1 + · · · + ZMμM.(2.3)

As was shown in [14], Section 4.1, the decomposition of μ yields a decompo-
sition of the variance varμ(f ) and entropy Entμ(f ).

LEMMA 2.4 (Splitting of variance and entropy for partition). For a mixture
representation (2.3) of μ holds for all f :Rn →R

varμ(f ) =
M∑
i=1

Zi varμi
(f ) +

M∑
i=1

∑
j>i

ZiZj

(
Eμi

(f ) −Eμj
(f )

)2
,(2.4)

Entμ(f ) =
M∑
i=1

Zi Entμi
(f ) + Entμ̄(f̄ ).(2.5)

We call the terms varμi
(f ) and Entμi

(f ) local variance and local entropy. The
term (Eμi

(f ) − Eμj
(f ))2 is called mean-difference. The term Entμ̄(f̄ ) is called
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coarse-grained entropy and is given by

Entμ̄(f̄ ) :=
M∑
i=1

Zif̄i log
f̄i∑M

j=1 Zj f̄j

,(2.6)

where f̄i := Eμi
(f ).

We skip the proof of Lemma 2.4 because it only consists of a straightforward
substitution of the mixture representation (2.3). The formula (2.4) for estimating
the variance varμ(f ) is already in its final form. For the relative entropy Entμ(f ),
we still have to do some work. The aim is to get an estimate that only involves the
local terms like varμ(f ) and Entμi

(f ) and a mean difference (Eμi
(f )−Eμj

(f ))2.
This is achieved in the next subsection [cf. Corollary 2.8 and (2.13)].

2.2. Discrete logarithmic Sobolev type inequalities. Starting with the identity
(2.5), we have to estimate the coarse-grained entropy Entμ̄(f̄ ). We expect that the
main contribution comes from this term. If H has only two minima, we can use
the following discrete LSI for a Bernoulli random variable, which was given by
Higuchi and Yoshida [26] and Diaconis and Saloff-Coste [15], Theorem A.2, at
the same time.

LEMMA 2.5 (Optimal logarithmic Sobolev inequality for Bernoulli measures).
A Bernoulli measure μp on X = {0,1}, that is, a mixture of two Dirac measures
μp = pδ0 + qδ1 with p + q = 1 satisfies the discrete logarithmic Sobolev inequal-
ity

Entμp

(
f 2)≤ pq

�(p,q)

(
f (0) − f (1)

)2(2.7)

with optimal constant given by the logarithmic mean (cf. Appendix A)

�(p,q) := p − q

logp − logq
for p 
= q and �(p,p) := lim

q→p
�(p,q) = p.

We want to handle the general case with more than two minima. Therefore, we
want to generalize Lemma 2.5 to discrete measures with a state space with more
than two elements. An application of the modified LSI for finite Markov chains
of Diaconis and Saloff-Coste [15], Theorem A.1, would not lead to an optimal
results (cf. [43], Section 2.3). Even for a generic Markov chain on the 3-point
space, the optimal logarithmic Sobolev constant is unknown. In this work, we use
the following direct generalization of Lemma 2.5.

LEMMA 2.6 (Weighted logarithmic Sobolev inequality). For m ∈ N let μm =∑m
i=1 Ziδi be a discrete probability measure and assume that mini Zi > 0. Then

for a function f : {1, . . . ,m} → R+
0 holds the weighted logarithmic Sobolev in-
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equality

Entμm

(
f 2)≤ m−1∑

i=1

m∑
j=i+1

ZiZj

�(Zi,Zj )
(fi − fj )

2.(2.8)

PROOF. We conclude by induction and find that for m = 2 the estimate (2.8)
just becomes (2.7), which shows the base case. For the inductive step, let us as-
sume that (2.8) holds for m ≥ 2. Then the entropy Entμm+1(f

2) can be rewritten as
follows:

Entμm+1

(
f 2)= (1 − Zm+1)Entμ̃m

(
f 2)+ Entν(f̃ ),

where the probability measure μ̃m lives on {1, . . . ,m} and is given by

μ̃m :=
m∑

i=1

Zi

1 − Zm+1
δi .

Further, ν is the Bernoulli measure given by ν := (1 − Zm+1)δ0 + Zm+1δ1 and the
function f̃ : {0,1} → R is given with values

f̃0 :=
m∑

i=1

Zif
2
i

1 − Zm+1
and f̃1 := f 2

m+1.

Now, we apply the inductive hypothesis to Entμ̃m
(f 2) and arrive at

(1 − Zm+1)Entμ̃m

(
f 2) ≤ (1 − Zm+1)

m∑
i=1

∑
j>i

ZiZj

(1 − Zm+1)2

1 − Zm+1

�(Zi,Zj )
(fi − fj )

2

=
m∑

i=1

∑
j>i

ZiZj

�(Zi,Zj )
(fi − fj )

2,

where we used �(·, ·) being homogeneous of degree one in both arguments (cf.
Appendix A), that is, �(λa,λb) = λ�(a, b) for λ,a, b > 0. We can apply the
inductive base to the second entropy Entν(f̃ ), which is nothing else but the discrete
LSI for the two-point space (2.7)

Entν(f̃ ) ≤ Zm+1(1 − Zm+1)

�(Zm+1,1 − Zm+1)

(√
f̃0 −

√
f̃1
)2

.(2.9)

The last step is to apply the Jensen inequality to recover the square differences
(fi − fm+1)

2 from

(√
f̃0 −

√
f̃1
)2 =

m∑
i=1

Zif
2
i

1 − Zm+1
− 2

√√√√ m∑
i=1

Zif
2
i

1 − Zm+1︸ ︷︷ ︸
≥∑m

i=1
Zifi

1−Zm+1

fm+1 + f 2
m+1

≤
m∑

i=1

Zi

1 − Zm+1
(fi − fm+1)

2.
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We obtain in combination with (2.9) the following estimate:

Entν(f̃ ) ≤ Zm+1

�(Zm+1,1 − Zm+1)

m∑
i=1

Zi(fi − fm+1)
2.

To conclude the assertion, we first note that 1 − Zm+1 =∑m
j=1 Zj ≥ Zj for j =

1, . . . ,m. Further, �(a, ·) is monotone increasing for a > 0, that is, ∂b�(a, b) > 0
(cf. Appendix A). Both properties imply that �(Zm+1,1−Zm+1) ≥ �(Zm+1,Zj )

for j = 1, . . . ,m, which finally shows (2.8). �

With the help of Lemma 2.6 we estimate the coarse-grained entropy Entμ̄(f 2)

occurring in the splitting of the entropy (2.5). This generalizes the approach of
[14], Section 4.1, to the case of finite mixtures with more than two components.

LEMMA 2.7 (Estimate of the coarse-grained entropy). The coarse-grained en-
tropy in (2.6) can be estimated by

Entμ̄
(
f 2
)

(2.10)

≤
M∑
i=1

(∑
j 
=i

ZiZj varμi
(f )

�(Zi,Zj )
+∑

j>i

ZiZj

�(Zi,Zj )

(
Eμi

(f ) −Eμj
(f )

)2)
,

where f 2 : {1, . . . ,M} → R is given by f 2
i := Eμi

(f 2).

PROOF. Since μ̄ = Z1δ1 + · · · + ZMδM is finite discrete probability measure,
we can apply Lemma 2.6 to Entμ̄(f 2)

Entμ̄
(
f 2
)≤ m∑

i=1

∑
j>i

ZiZj

�(Zi,Zj )

(√
f 2

i −
√

f 2
j

)2
.(2.11)

The square-root-mean-difference on the right-hand side of (2.11) can be estimated
by using the Jensen inequality(√

Eμi

(
f 2
)−√Eμj

(
f 2
))2 ≤ Eμi

(
f 2)− 2

√
Eμi

(
f 2
)
Eμj

(
f 2
)︸ ︷︷ ︸

≥Eμi
(f )Eμj

(f )

+Eμj

(
f 2)

≤ Eμi

(
f 2)− 2Eμi

(f )Eμj
(f ) +Eμj

(
f 2)(2.12)

= varμi
(f ) + varμj

(f ) + (Eμi
(f ) −Eμj

(f )
)2

.

Now, we can combine (2.11) and (2.12) to arrive at the desired result (2.10). �

A combination of Lemma 2.4 and Lemma 2.7 yields the desired estimate of the
entropy in terms of local variances, local entropies and mean-differences.
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COROLLARY 2.8. Let μ have a mixture representation according to Defini-
tion 2.3, then the entropy of f w.r.t. μ can be estimated by

Entμ
(
f 2)≤ M∑

i=1

Zi Entμi

(
f 2)+ M∑

i=1

∑
j 
=i

ZiZj

�(Zi,Zj )
varμi

(f )

(2.13)

+
M∑
i=1

∑
j>i

ZiZj

�(Zi,Zj )

(
Eμi

(f ) −Eμj
(f )

)2
.

2.3. Main results. The main results of this work are good estimates of the sin-
gle terms on the right-hand side of (2.4) and (2.13). In detail, we need the local
PI and the local LSI provided by Theorem 2.9 and Theorem 2.10. Furthermore,
we need good control of the mean-differences, which will be the content of The-
orem 2.12. Finally, the Eyring–Kramers formulas of Corollary 2.15 and Corol-
lary 2.17 are simple consequences of these representations and estimates.

2.3.1. Local Poincaré and logarithmic Sobolev inequalities. Let us now turn
to the estimation of the local variances and entropies. From the heuristic under-
standing of the process ξt given by (1.2), we expect a good behavior of the local
Poincaré and logarithmic Sobolev constant for the local Gibbs measures μi as it
resembles the fast convergence of ξt to a neighborhood of the next local minimum.
Therefore, the local variances and entropies should not contribute to the leading
order expansion of the total Poincaré and logarithmic Sobolev constant of μ. This
idea is quantified in the next two theorems.

THEOREM 2.9 (Local Poincaré inequality). Under Assumption 1.4, there ex-
ists an admissible partition PM = {�i}Mi=1 for μ (cf. Definition 2.1) such that
the associated local Gibbs measures {μi}Mi=1, obtained by restricting μ to �i [cf.
(2.2)], satisfy PI(�i) with

�−1
i = O(ε).

THEOREM 2.10 (Local logarithmic Sobolev inequality). Under Assump-
tion 1.5 and for the same admissible partition PM = {�i}Mi=1 for μ as in Theo-
rem 2.9, the associated local Gibbs measures {μi}Mi=1, obtained by restricting μ to
�i [cf. (2.2)], satisfy LSI(αi) with

α−1
i = O(1).

Even if Theorem 2.9 and Theorem 2.10 are very plausible, their proof is not
easy. The reason is that our situation goes beyond the scope of the standard tools
for PI and LSI:
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• The Bakry–Émery criterion (cf. Theorem 3.1) cannot be applied because we do
not have a convex Hamiltonian.

• A naive application of the Holley–Stroock perturbation principle (cf. Theo-
rem 3.2) would yield an exponentially bad dependence on the parameter ε.

• One cannot apply a simple Lyapunov argument, because one cannot impose a
drift condition on the boundary of all elements of the partition PM, simultane-
ously.

For the proof we apply a subtle combination of a Lyapunov and a perturbation ar-
gument. The core of the argument is an explicit construction of a Lyapunov func-
tion. This Lyapunov function has to satisfy Neumann boundary conditions on the
sets �i . By using the canonical partition �i into the basins of attraction of the
gradient flow w.r.t. H (see Remark 2.2), the construction of the Lyapunov func-
tion would be technically very demanding. We avoid these difficulties by choosing
another partition �i such that the Lyapunov function will automatically satisfy
Neumann boundary conditions on �i . We outline the argument for Theorem 2.9
and Theorem 2.10 in Section 3.

REMARK 2.11 (Optimality of Theorem 2.9 and Theorem 2.10). The one-
dimensional case indicates that the results of Theorem 2.9 and Theorem 2.10 are
the best behavior in ε, which one can expect in general. The optimality in the one-
dimensional case was investigated in [43], Section 3.3, by using the Muckenhoupt
functional [36] and Bobkov–Götze functional [8].

2.3.2. Mean-difference estimate. Let us now turn to the estimation of the
mean-difference (Eμi

(f ) − Eμj
(f ))2. From the heuristics and the splitting of the

variance (2.4) and entropy (2.13), we expect to see in the estimation of the mean-
difference the exponential long waiting times of the jumps of the diffusion ξt given
by (1.2) between the elements of the partition PM. We have to find a good upper
bound for the constant C in the inequality(

Eμi
(f ) −Eμj

(f )
)2 ≤ C

∫
|∇f |2 dμ.

For this purpose, we introduce in Section 4.1 a weighted transport distance be-
tween probability measures which yields a variational bound on the constant C.
By an approximation argument (cf. Section 4.2), we give an explicit construction
of a transport interpolation (cf. Section 4.3), which allows for asymptotically sharp
estimates of the constant C.

THEOREM 2.12 (Mean-difference estimate). Let H satisfy Assumption 1.7
and let PM = {�i}Mi=1 be an admissible partition for μ (cf. Definition 2.1).
Moreover, assume that each local Gibbs measure μi of the mixture representa-
tion of μ (cf. Definition 2.3) satisfy PI(�i) with �−1

i = O(ε). Then the mean-
differences between the local Gibbs measures μi and μj for i = 1, . . . ,M − 1
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and j = i + 1, . . . ,M satisfy(
Eμi

(f ) −Eμj
(f )

)2
(2.14)

� Zμ

(2πε)n/2

2πε
√

|det∇2H(si,j )|
|λ−(si,j )| exp

(
H(si,j )

ε

)∫
|∇f |2 dμ,

where λ−(si,j ) denotes the negative eigenvalue of the Hessian ∇2H(si,j ) at the
communicating saddle si,j defined in Assumption 1.7. The symbol � means ≤ up
to a multiplicative error term of the form

1 + O
(√

ε| log ε|3/2).
The proof of Theorem 2.12 is carried out in full detail in Section 4.

REMARK 2.13 (Multiple minimal saddles). In Assumption 1.7, we demand
that there is exactly one minimal saddle between the local minima mi and mj . The
technique developed in Section 4 is flexible enough to handle also cases, in which
there exists more than one minimal saddle between local minima. The according
adaptions and the resulting theorem can be found in [43], Section 4.5.

REMARK 2.14 (Relation to capacity). The quantity on the right-hand side of
(2.14) is the inverse of the capacity of a small neighborhood around mi w.r.t. to a
small neighborhood around mj . The capacity is the crucial ingredient of the works
[9] and [10].

2.3.3. Eyring–Kramers formulas. Now, let us turn to the Eyring–Kramers for-
mula. Starting from the splitting obtained in Lemma 2.4 and Corollary 2.8 a com-
bination of Theorem 2.9, Theorem 2.10 and Theorem 2.12 immediately leads to
the multidimensional Eyring–Kramers formula for the PI (cf. [10], Theorem 1.2)
and LSI.

COROLLARY 2.15 (Eyring–Kramers formula for Poincaré inequality). Under
Assumptions 1.4 and 1.7, the measure μ satisfies PI(�) with

1

�
� Z1Z2

Zμ

(2πε)n/2

2πε
√

|det∇2(H(s1,2))|
|λ−(s1,2)| exp

(
H(s1,2)

ε

)
,(2.15)

where λ−(s1,2) denotes the negative eigenvalue of the Hessian ∇2H(s1,2) at the
communicating saddle s1,2. Further, the order is given such that H(m1) ≤ H(mi)

and H(s1,2) − H(m2) is the energy barrier of the system in the sense of Assump-
tion 1.7. The prefactors Zi are given by the relation

ZiZμ ≈ (2πε)n/2√
det∇2H(mi)

exp
(
−H(mi)

ε

)
.(2.16)
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PROOF. Using the admissible partition PM from Theorem 2.9 we decompose
the variance into local variances and mean-differences given by Lemma 2.4. An
application of Theorem 2.9 and Theorem 2.12 yields the estimate

varμ(f ) ≤∑
i

Zi varμi
(f ) +∑

i

∑
j<i

ZiZj

(
Eμi

(f ) −Eμj
(f )

)2

�
(
O(ε) +∑

i

∑
j>i

ZiZjZμ

(2πε)n/2

2πε
√

|det∇2H(si,j )|
|λ−(si,j )| exp

(
H(si,j )

ε

))
(2.17)

×
∫

|∇f |2 dμ.

The final step is to observe that by Assumption 1.7 the exponential dominating
term in (2.17) is given for i = 1 and j = 2. The precise form of the prefactors Zi

is obtained from (2.1) in Definition 2.1. �

In [10], Theorem 1.2, it is also shown that the upper bound of (2.15) is optimal
by an approximation of the harmonic function. Therefore, in the following we can
assume that (2.15) holds with ≈ instead of �.

REMARK 2.16 (Higher exponentially small eigenvalues). The main result of
[10], Theorem 1.2, does not only characterize the second eigenvalue of L but
also the higher exponentially small eigenvalues. In principle, these characteriza-
tions can be also obtained in the present approach: The dominating exponential
modes in (2.17), that is, those obtained by setting i = 1, correspond to the inverse
eigenvalues of L for j = 2, . . . ,M . By using the variational characterization of the
eigenvalues of the operator L, the other exponentially small eigenvalues may be
obtained by restricting the class of test functions f to the orthogonal complement
of the eigenspaces of smaller eigenvalues.

COROLLARY 2.17 (Eyring–Kramers formula for logarithmic Sobolev inequal-
ities). Under Assumptions 1.5 and 1.7, the measure μ satisfies LSI(α) with

2

α
� Z1Z2

�(Z1,Z2)

Zμ

(2πε)n/2

2πε
√

|det∇2(H(s1,2))|
|λ−(s1,2)| exp

(
H(s1,2)

ε

)
(2.18)

≈ 1

�(Z1,Z2)

1

�
,

where the occurring constants are like in Corollary 2.15 and �(Z1,Z2) denotes
the logarithmic mean (cf. Appendix A)

�(Z1,Z2) = Z1 − Z2

logZ1 − logZ2
.
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PROOF. Using the admissible partition PM from Theorem 2.9 and Theo-
rem 2.10, we decompose the Entropy according to Corollary 2.8. From there, we
estimate the local entropies and variances as well as the mean-differences by using
Theorem 2.9, Theorem 2.10 and Theorem 2.12. Overall, this yields the estimate

Entμ
(
f 2)≤ O(1)

M∑
i=1

Zi

∫
|∇f |2 dμi + O(ε)

M∑
i=1

∑
j 
=i

ZiZj

�(Zi,Zj )

∫
|∇f |2 dμi

+
M∑
i=1

∑
j>i

ZiZj

�(Zi,Zj )

Zμ

(2πε)n/2

2πε
√

|det∇2H(si,j )|
|λ−(si,j )| exp

(
H(si,j )

ε

)
(2.19)

×
∫

|∇f |2 dμ.

The first term on the right-hand side of (2.19) can be rewritten as O(1)
∫ |∇f |2 dμ.

For estimating the second term in (2.19), we argue that its prefactor can be esti-
mated as

M∑
i=1

∑
j 
=i

ZiZj

�(Zi,Zj )

(2.22)
� M

M∑
i=1

ZiO
(
ε−1)= O

(
ε−1).(2.20)

Indeed, using the one-homogeneity of �(·, ·) (cf. Appendix A) yields

ZiZj

�(Zi,Zj )
= Zi

log(Zi/Zj )

Zi/Zj − 1
= ZiP

(
Zi

Zj

)
where P(x) := logx

x − 1
.

The function P(x) is decreasing and has a logarithmic singularity at 0. Therefore,
using the characterization of the partitions sums Zi from (2.16) yields the identity

Zi

Zj

= ZiZμ

ZjZμ

(2.16)≈
√

∇2H(mj )√∇2H(mi)
exp

(
−H(mi) − H(mj )

ε

)
,(2.21)

which becomes exponentially small provided that H(mi) > H(mj ). Hence, the
logarithmic mean can be estimated as

ZiZj

�(Zi,Zj )
= ZiP

(
Zi

Zj

)
� ZiO

(
ε−1)(2.22)

implying the desired estimate (2.20). Therefore, the second term in (2.19) can be
estimated by O(1)

∫ |∇f |2 dμ. The third term dominates the first two terms on an
exponential scale. This leads to the estimate

Entμ
(
f 2)� M∑

i=1

∑
j>i

ZiZj

�(Zi,Zj )

Zμ

(2πε)n/2

2πε
√

|det∇2H(si,j )|
|λ−(si,j )| eH(si,j )/ε

×
∫

|∇f |2 dμ.
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From Assumption 1.7 together with (2.22) follows that the exponentially leading
order term is given for i = 1 and j = 2. �

The Eyring–Kramers formula for the PI and LSI stated in Corollary 2.15 and
Corollary 2.17 are still implicit. To obtain an explicit formula, one still has in-
sert the asymptotic expansion for the partition functions Z1, Z2, and Zμ. The ex-
pression for Zμ depends on the number of global minima of the Hamiltonian H .
Therefore, one has to consider several cases in order to obtain the explicit Eyring–
Kramer formula. In the following corollary, we look at two special cases: In the
first case, there is only one unique global minimum. In the second case, there are
two global minima. In both cases, the dominating term scales exponentially in the
saddle height, but it is surprising that the scaling in ε of the exponential pre factor
for the LSI constant changes.

COROLLARY 2.18 (Comparison of � and α in special cases). Let us state two
specific cases of (2.15) and (2.18). Therefore, let {κ2

i }Mi=1 be given by

κ2
i := det∇2H(mi).(2.23)

On the one hand, if one has one unique global minimum, namely H(m1) < H(mi)

for i ∈ {2, . . . ,M}, it holds

1

�
≈ 1

κ2

2πε
√

|det∇2(H(s1,2))|
|λ−(s1,2)| exp

(
H(s1,2) − H(m2)

ε

)
,(2.24)

2

α
�
(

H(m2) − H(m1)

ε
+ log

(
κ1

κ2

))
1

�
.(2.25)

On the other hand, if H(m1) = H(m2) < H(mi) for i ∈ {3, . . . ,M}, it holds

1

�
≈ 1

κ1 + κ2

2πε
√

|det∇2(H(s1,2))|
|λ−(s1,2)| exp

(
H(s1,2) − H(m2)

ε

)
,(2.26)

2

α
� 1

�(κ1, κ2)

2πε
√

|det∇2(H(s1,2))|
|λ−(s1,2)| exp

(
H(s1,2) − H(m2)

ε

)
.(2.27)

PROOF. By (2.15), we still have to estimate nonexplicit factor Z1Z2Zμ

(2πε)n/2 . If

H(m1) < H(m2), then it holds Z1 = 1 + O(e−(H(m2)−H(m1))/ε). The factor Z2Zμ

is given by (2.16) and we obtain

Z1Z2Zμ

(2πε)n/2 ≈ 1√
det∇2H(m2)

exp
(
−H(m2)

ε

)
,
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which leads to (2.24). For the LSI, we additionally have to evaluate the factor
1

�(Zi,Zj )
which can be done with the help of (2.21)

1

�(Zi,Zj )
= log

(
Zi

Zj

)(
1 + O

(
exp

(
−H(m2) − H(m1)

ε

)))

(2.21)≈ log
(√∇2H(mj )√∇2H(mi)

exp
(
−H(mi) − H(mj )

ε

))
.

That is already the estimate (2.25).
Let us turn now to the case H(m1) = H(m2) < H(m3). Then it holds Z1 +Z2 =

1 + O(e−(H(m2)−H(m1))/ε). In particular it holds Zμ ≈ Z1Zμ + Z2Zμ. Therewith,

we can evaluate the factor Z1Z2
Zμ

(2πε)n/2 by using (2.16)

Z1Z2
Zμ

(2πε)n/2 = (2πε)n/2

Zμ

Z1Zμ

(2πε)n/2

Z2Zμ

(2πε)n/2

≈ (2πε)n/2

Z1Zμ + Z2Zμ

Z1Zμ

(2πε)n/2

Z2Zμ

(2πε)n/2

(2.16)= 1

1/κ1 + 1/κ2

1

κ1

1

κ2
= 1

κ1 + κ2
,

which precisely leads to the expression (2.26). By using the homogeneity of �(·, ·)
(cf. Appendix A) and again (2.16), it follows for the LSI

Z1Z2

�(Z1,Z2)

Zμ

(2πε)n/2 = 1

�((2πε)n/2/(Z2Zμ), (2πε)n/2/(Z1Zμ))
= 1

�(κ2, κ1)
.

Finally, the result (2.27) is a consequence of the symmetry of �(·, ·). �

REMARK 2.19 (Identification of α and �). Remark 1.2 shows that always
α ≤ �. We want to compare this to the case H(m1) = H(m2). Comparing (2.26)
and (2.27), we observe

1 ≤ �

α
� (κ1 + κ2)/2

�(κ1, κ2)
,(2.28)

where the constant κ1 and κ2 are given by (2.23). The right-hand side of (2.28) con-
sists of an quotient of the arithmetic and the logarithmic mean. The lower bound of
1 can also attained by an application of the logarithmic-arithmetic mean inequality
from Lemma A.1. Moreover, equality only holds for κ1 = κ2. Hence, only in the
symmetric case � ≈ α.

REMARK 2.20 (Relation to mixtures). If H(m1) < H(m2), then (2.25) gives

�

α
� 1

2
log
(

κ2

κ1
e(H(m2)−H(m1))/ε

)
≈ 1

2
| logZ2| where Z2 = μ(�2)(2.29)
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which shows an inverse scaling in ε. A different scaling behavior between the
Poincaré and logarithmic Sobolev constant was also observed by Chafaï and Mal-
rieu [14] in a different context. They consider mixtures of probability measures ν0
and ν1 satisfying PI(�i) and LSI(αi), that is, for p ∈ [0,1] the measure νp given
by

νp = pν0 + (1 − p)ν1.

They deduce conditions under which also νp satisfies PI(�p) and LSI(αp) and give
bounds on the constants. They give one-dimensional examples where the Poincaré
constant stays bounded, whereas the logarithmic Sobolev constant blows up loga-
rithmically in the mixture parameter p going to 0 or 1. The common feature of the
examples they deal with is ν1 � ν2 or ν2 � ν1. This case can be generalized to the
multidimensional case, where also a different scaling of the Poincaré and logarith-
mic Sobolev constants is observed. The details can be found in [43], Chapter 6.

In the present case, the Gibbs measure μ has also a mixture representation (2.3).
In the two-component case, it has the form

μ = Z1μ1 + Z2μ2.

Let us emphasize, that μ1 ⊥ μ2. The estimate (2.29) also shows a logarithmic
blow-up in the mixture parameter Z2 for the ratio of the Poincaré and the logarith-
mic Sobolev constant.

2.4. Optimality of the logarithmic Sobolev constant in one dimension. In this
section, we give a strong indication that the result of Corollary 2.17 is optimal. We
explicitly construct a function attaining equality in (2.18) for the one-dimensional
case. For this purpose, let μ be a probability measure on R having as Hamiltonian
H a generic double-well (cp. Figure 2). Namely, H has two minima m1 and m2
with H(m1) ≤ H(m2) and a saddle s in-between. Then Theorem 2.17 shows

inf
g :
∫

g2 dμ=1

∫
(g′)2 dμ∫

g2 logg2 dμ
� �(Z1,Z2)

Z1Z2

√
2πε

Zμ

√|H ′′(s)|
2πε

e−H(s)/ε.(2.30)

We construct a function g attaining the lower bound given by (2.30). We make
the following ansatz for the function g: We define g on a small δ-neighborhood
around the minima m1,m2 and the saddle s:

g(x) :=

⎧⎪⎪⎨⎪⎪⎩
g(m1), x ∈ Bδ(m1),

g(m1) + g(m2) − g(m1)√
2πεσ

∫ x

m1

e−(y−s)2/(2σε) dy, x ∈ Bδ(s),

g(m2), x ∈ Bδ(m2).

The ansatz depends on the parameters g(m1), g(m2) and σ . In between the δ-
neighborhoods, the function g is smoothly extended in a monotone fashion.
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FIG. 2. Double-well potential H on R (labeled).

The measure μ is the usual Gibbs measure as in (1.3). We fix Zμ by assuming
that H(m1) = 0. We represent μ as the mixture

μ = Z1μ1 + Z2μ2 where μ1 := μ��1 and μ2 := μ��2,

hereby, �1 := (−∞, s) and �2 := (s,∞) and Zi := μ(�i) for i = 1,2, which
implies Z1 + Z2 = 1. Using via an asymptotic evaluation of

∫
g2 dμ one gets∫

g2 dμ ≈ Z1g
2(m1) + Z2g

2(m2)
!= 1.

This motivates the choice

g2(m1) = τ

Z1
and g2(m2) = 1 − τ

Z2
= 1 − τ

1 − Z1
for some τ ∈ [0,1].

Let us now calculate the denominator of (2.30)∫
g2 logg2 dμ = τ log

τ

Z1
+ (1 − τ) log

1 − τ

Z2
.(2.31)

The final step is to evaluate the Dirichlet energy
∫
(g′)2 dμ. Therefore, we do a

Taylor expansion of H around s. Furthermore, since s is a saddle, it holds H ′′(s) <

0 ∫ (
g′)2 dμ ≈ (g(m2) − g(m1))

2

Zμ2πεσ

∫
Bδ(s)

e−(x−s)2/(σε)−H(x)/ε dx

≈ (g(m2) − g(m1))
2

Zμ2πεσ

∫
Bδ(s)

e−((x−s)2/σ+H(s)+H ′′(s)(x−s)2/2)/ε dx

(2.32)

≈ (g(m2) − g(m1))
2

Zμ2πεσ
e−H(s)/ε

∫
Bδ(s)

e−((x−s)2/(2ε))(2/σ+H ′′(s)) dx

≈
(√

τ

Z1
−
√

1 − τ

Z2

)2
√

2πε

Zμ

e−H(s)/ε 1

2πε

1

σ
√

2/σ + H ′′(s)
,
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where we assume that σ is small enough such that 2
σ

+ H ′′(s) > 0. The last step
is to minimize the right-hand side of (2.32) in σ , which means to maximize the
expression 2σ + σ 2H ′′(s) in σ . Elementary calculus results in σ = − 1

H ′′(s) =
1

|H ′′(s)| > 0 and, therefore,∫ (
g′)2 dμ ≈

(√
τ

Z1
−
√

1 − τ

Z2

)2
√

2πε

Zμ

√|H ′′(s)|
2πε

e−H(s)/ε.(2.33)

Hence, we have constructed by combining (2.31) and (2.33) an upper bound for
the optimization problem (2.30) given by

min
τ∈(0,1)

(
(
√

τ/Z1 − √
(1 − τ)/Z2)

2

τ log(τ/Z1) + (1 − τ) log((1 − τ)/Z2)

)√
2πε

Zμ

√|H ′′(s)|
2πε

e−H(s)/ε.

Note that the parameter τ ∈ (0,1) is still free. The minimum in τ is attained at
τ = Z2 according to Lemma A.3 yielding the desired statement

min
τ∈(0,1)

(
√

Z2/Z1 − √
Z1/Z2)

2

Z2 log(Z2/Z1) + Z1 log(Z1/Z2)
= �(Z1,Z2)

Z1Z2
.

3. Local Poincaré and logarithmic Sobolev inequalities. In this section, we
proof the local PI of Theorem 2.9 and the local LSI of Theorem 2.10. Even if the
choice of a specific admissible partition �i of the space Rn will be crucial, let us
for the moment assume that the partition �i is given by the basins of attraction of
the deterministic gradient flow (cf. Remark 2.2).

There are standard criteria to deduce the PI or the LSI. Unfortunately, these cri-
teria do not apply to our situation. Let us consider the Bakry–Émery criterion and
the Holley–Stroock perturbation principle. The Bakry–Émery criterion connects
convexity of the Hamiltonian to the validity of the PI and the LSI.

THEOREM 3.1 Bakry–Émery criterion [4], Proposition 3, Corollaire 2. Let
H :D →R be a Hamiltonian with Gibbs measure

μ(dx) = Z−1
μ exp(−ε−1H(x))dx

on a convex domain D and assume that ∇2H(x) ≥ λ > 0 for all x ∈ Rn. Then μ

satisfies PI(�) and LSI(α) with

� ≥ λ

ε
and α ≥ λ

ε
.

One cannot apply the criterion of Bakry–Émery [4] to our situation, because H

is not convex on the elements � of the admissible partition (cf. Definition 2.1).
Moreover, the elements � ∈ PM are not convex in general.

In nonconvex cases, the standard tool to deduce the PI and the LSI is the Holley–
Stroock perturbation principle.
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THEOREM 3.2 Holley–Stroock perturbation principle [27], p. 1184. Let H

be a Hamiltonian with Gibbs measure μ(dx) = Z−1
μ exp(−ε−1H(x))dx. Further,

let H̃ denote a bounded perturbation of H and let μ̃ε denote the Gibbs measure
associated to the Hamiltonian H̃ . If μ satisfies PI(�) or LSI(α) then also μ̃ satisfy
PI(�̃) or LSI(α̃) respectively, where the constants satisfy the bounds

�̃ ≥ exp
(−ε−1 oscψ

)
� and α̃ ≥ exp

(−ε−1 osc(H − H̃ )
)
α,

where osc(H − H̃ ) := sup(H − H̃ ) − inf(H − H̃ ).

The perturbation principle of Holley–Stroock [27] allows to deduce the PI and
the LSI constants of nonconvex Hamiltonians from the PI and the LSI of an appro-
priately convexfied Hamiltonian. However due to its perturbative nature, a naive
application Theorem (3.2) would yield an exponential dependence of the PI and
the LSI constant on ε.

An important observation for our argument is that the perturbation principle
of Holley–Stroock can still be useful, if applied in a careful way: Assume for a
moment that the perturbed Hamiltonian H̃ε only differs slightly from the original
Hamiltonian H , that is, osc(H − H̃ε) = O(ε). Because the perturbation is small
w.r.t. ε, the PI and LSI constants of μ and μ̃ only differ up to an ε-independent
factor. This observation is summarized in the following definition and subsequent
Lemma 3.4.

DEFINITION 3.3 (ε-modification H̃ε of H ). The family of Hamiltonians
{H̃ε}ε>0 is an ε-modification of H , if there exists an ε-independent constant
C

H̃
> 0 such that for all ε small enough holds∣∣H̃ε(x) − H(x)

∣∣≤ C
H̃

ε for all x ∈ �.(H̃ε)

To each ε-modification of H we associate the family of ε-modified Gibbs measures
μ̃ε by setting

μ̃ε(dx) := 1

Zμ̃ε

exp
(−ε−1H̃ε(x)

)
dx with Zμ̃ε

:=
∫

exp
(−ε−1H̃ε(x)

)
dx.

LEMMA 3.4 (Perturbation by an ε-modification). If the ε-modified Gibbs
measures μ̃ε satisfy PI(�̃) or LSI(α̃), then the measure μ also satisfies PI(�) or
LSI(α), respectively, where the constants fulfill the estimate

� ≥ exp(−2C
H̃

)�̃ and α ≥ exp(−2C
H̃

)α̃,

where C
H̃

is from (H̃ε).

PROOF. The statement directly follows from an application of Theorem 3.2
by considering the estimate (H̃ε). �
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Our approach to Theorem 2.9 consists of a nonstandard application of a Lya-
punov argument developed by Bakry, Barthe, Cattiaux, Guillin, Wang and Wu (cf.
[2, 3, 12] and [13]), which is reminiscent of the spectral gap characterization by
Donsker and Varadhan [17]. Compared to these works on the Lyapunov approach,
we have to explicitly elaborate the dependence of the PI and LSI constants on ε.
Moreover, the theory is only established for Gibbs measure on the whole space.
Therefore, the Lyapunov approach of the present work has two main ingredients:

• a Lyapunov function that has to satisfy Neumann boundary conditions on � and
certain estimates (cf. Definition 3.7 and Theorem 3.15 below), and

• a PI for a truncated Gibbs measure (cf. Definition 3.5 and Lemma 3.6 below).

With the Lyapunov function, we are able to compare the scaling behavior of the PI
constant of μ with the behavior of the PI constant of the truncated Gibbs measure
μ̂a (cf. Theorem 3.8 and Theorem 3.15 below).

DEFINITION 3.5 (Truncated Gibbs measure). For a given number a > 0, the
truncated Gibbs measures {μ̂a,i}Mi=1 are obtained from the Gibbs measure μ by
restriction to balls of radius a

√
ε around {mi}Mi=1, that is,

μ̂a,i(dx) := 1Ba
√

ε(mi)(x)

Zμ̂a,i

exp
(−ε−1H(x)

)
dx

with Zμ̂a,i
:=
∫
Ba

√
ε(mi)

exp
(−ε−1H(x)

)
dx.

Because the domain and the Hamiltonian of the truncated Gibbs measure μ̂a,i is
convex, one can deduce the scaling behavior of the truncated Gibbs measure μ̂a,i

from the Bakry–Émery criterion. More precisely, it holds the following.

LEMMA 3.6 (PI and LSI for truncated Gibbs measure). For any a > 0 and i =
1, . . . ,M the measures μ̂a,i satisfy PI(�̂) and LSI(α̂) for ε small enough, where

1

�̂
= O(ε) and

1

α̂
= O(ε).(3.1)

PROOF. In the local minimum mi the Hessian of H is nondegenerated by
Assumptions 1.4 or 1.5. Therefore, for ε small enough, H is strictly convex in
Ba

√
ε(mi) and satisfies by the Bakry–Émery criterion (cf. Theorem 3.1) PI(�̂) and

LSI(α̂) with �̂ and α̂ obeying the relation (3.1). �

The standard ansatz exp(H
2ε

) for a Lyapunov function has the nice feature that
it automatically satisfies Neumann boundary conditions on the basins of attrac-
tion w.r.t. H , which would be also a canonical choice of the partition PM (cf.
Remark 2.2). Unfortunately, one cannot guarantee that the necessary estimates for
exp(H

2ε
) hold because there is no control on the sign of �H(x) close to saddles
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[see (3.9) below]. We circumvent this technical problem in the following way: By
the observation from above it suffices to consider an ε-modification H̃ε of H . We
explicitly construct an ε-modification H̃ε on the whole space Rn with the prop-

erty that the standard ansatz exp( H̃ε

2ε
) satisfies the necessary estimates for being

a Lyapunov function. However in general, the function exp( H̃ε

2ε
) does not satisfy

Neumann boundary conditions on the basins of attraction w.r.t. H . This problem
is solved by the following two observations.

• The first one is that exp( H̃ε

2ε
) satisfies Neumann boundary conditions on the basin

of attraction w.r.t. the deterministic gradient flow defined by H̃ε , that is,

�i :=
{
y ∈Rn : lim

t→∞yt = mi, ẏt = −∇H̃ε(yt ), y0 = y
}
.(3.2)

• The second observation is that this partition {�i}Mi=1 of Rn is admissible in the
sense of Definition 2.1 (see Lemma 3.10 below). This fact is intuitively clear
from the fact that H̃ε is only a small perturbation of H .

Hence, we choose the partition PM := {�i}Mi=1 of Rn according to (3.2) and apply
the Lyapunov approach to the local Gibbs measures μ̃ε,i given by

μ̃ε,i(dx) := 1�i
(x)

Zμ̃ε,i

exp
(−ε−1H̃ε(x)

)
dx

(3.3)
with Zμ̃ε,i

:=
∫
�i

exp
(−ε−1H̃ε(x)

)
dx.

We get that the local Gibbs measures μ̃ε,i satisfy a local PI and LSI with the
desired scaling behavior in ε. This scaling behavior of the PI and LSI constant is
then transferred to the original Gibbs measure μ restricted to the sets �i by using
the perturbation Lemma 3.4.

The remaining part of this section is organized in the following way.

• In Section 3.1, we present the abstract framework how the Lyapunov approach
is used for deriving the local PI. We additionally motivate the perturbative na-
ture of the construction of the Lyapunov function. Under the assumption of the
existence of a Lyapunov function, we also state the proof Theorem 2.9.

• In Section 3.2, we provide the central ingredient for the Lyapunov approach,
namely the existence of a Lyapunov function. We also show that the partition
obtained by (3.2) is admissible.

• In Section 3.3, we present the abstract framework how the Lyapunov approach
is used for deriving the local LSI. We show that one can use the same Lyapunov
function for the local PI as for the local LSI. We also state the proof of Theo-
rem 2.10 deducing the local LSI.
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3.1. Lyapunov approach for the Poincaré inequality. We start with explaining
the Lyapunov approach for deducing a PI. The central notion for the Lyapunov
approach is the following definition.

DEFINITION 3.7 (Lyapunov function for Poincaré inequality). Let H :� →
R be a Hamiltonian with Gibbs measure μ(dx) = 1�(x)Z−1

μ exp(−ε−1H(x))dx.
Then W :� → [1,∞) is a Lyapunov function for H provided that:

(i) There exist a domain U ⊂ � and constants b > 0 and λ > 0 such that

ε−1LW ≤ −λW + b1U a.e. in �.(3.4)

(ii) W satisfies Neumann boundary conditions on � such that the integration
by parts formula holds

∀f ∈ H 1(μ|�) :
∫
�

f (−LW)dμ = ε

∫
�
〈∇f,∇W 〉dμ.(3.5)

Compared to the Lyapunov function of [2] the condition (ii) in Definition 3.7
is new. The reason is that we work on the domain � and not on the whole space
Rn. The next statement shows that a Lyapunov function and a PI for the truncated
measure can be combined to get a PI for the whole measure.

THEOREM 3.8 (Lyapunov condition for PI on domains �). Suppose that H

has a Lyapunov functions in the sense of Definition 3.7 and that the restricted
measure μU given by

μU(dx) := μ(dx)�U = 1U(x)

μ(U)
μ(dx),

satisfies PI(�U). Then the associated Gibbs measure μ also satisfies PI(�) with
constant

� ≥ λ

b + �U

�U .

The content of the last theorem is standard (cf. [2]), except that we work on the
domain � and not on the whole space Rn. For the convenience of the reader, we
state the short proof.

PROOF OF THEOREM 3.8. Let us rewrite the Lyapunov condition (3.4) and
observe

1 ≤ − LW

ελW
+ b

λ

1U

W
≤ − LW

ελW
+ b

λ
1U,(3.6)
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since W ≥ 1 by Definition 3.7. By the integration by parts rule (3.5), we obtain
following estimate which is due to Definition 3.7(ii). Therewith, we deduce the
estimate ∫

f 2 (−LW)

εW
dμ =

∫ 〈
∇
(

f 2

W

)
,∇W

〉
dμ

= 2
∫

f

W
〈∇f,∇W 〉dμ −

∫
f 2|∇W |2

W 2 dμ

(3.7)

=
∫

|∇f |2 dμ −
∫ ∣∣∣∣∇f − f

W
∇W

∣∣∣∣2 dμ

≤
∫

|∇f |2 dμ.

Let us now turn this estimate into one for the variance varμ(f ). Due to fundamen-
tal properties of the variance, it holds varμ(f ) ≤ ∫

(f − m)2 dμ, for any m ∈ R.
Hence, applying the estimates (3.6) and (3.7) yields

varμ(f ) ≤
∫

(f − m)2 dμ
(3.6)≤

∫
(f − m)2 (−LW)

ελW
+ b

λ

∫
U

(f − m)2 dμ

(3.8)
(3.7)≤ 1

λ

∫
|∇f |2 dμ + bμ(U)

λ

∫
(f − m)2 dμU.

We set m = ∫
f dμU , then the last integral in the right-hand side of (3.8) becomes

varμU
(f ), to which we apply the assumption PI(�U). �

Considering the last theorem, it is only left to construct a Lyapunov function
in the sense of Definition 3.7 in order to deduce the local PI of Theorem 2.9. An
ansatz (cf. [2]) for a Lyapunov function is the function W = exp( 1

2ε
H). Why is

this in general a good candidate for an Lyapunov function?
First note that because by our Assumptions 1.4 or 1.5 it holds H ≥ 0 hence W ≥

1 as desired. The second reason is that this choice satisfies Neumann boundary
conditions on the boundary of the basin of attraction � (see Theorem B.1).

The third reason is that for this choice of W the Lyapunov condition (3.4) is
already almost satisfied. One only has to have a special look at critical points. To
be more precise, let us consider the condition (3.4) which becomes

LW

εW
= 1

2ε
�H(x) − 1

4ε2

∣∣∇H(x)
∣∣2 !≤ −λ + b1U(x).(3.9)

We investigate under which circumstances this condition is satisfied:

• At infinity: The assumption (A2PI) ensures that (3.9) is satisfied outside of a
fixed large ball B

R̃
(0) [cf. (3.11) below].
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• Away from critical points: The Morse assumption ensures H to be quadratic
around critical points, that is, there exists a global constant cH > 0 such that
|∇H(x)| ≥ cH dist(x,S) in a neighborhoods of critical points S . This estimate
yields (3.9) for x outside of neighborhoods of order

√
ε around critical points

(see proof of Lemma 3.11 below).

The gradient term cannot help to establish the estimate (3.9), if one is close to
critical points. More precisely, it holds:

• If x is in an
√

ε-neighborhood around the minimum 0, then �H(x) ≈∑
i λi >

0, where {λi}ni=1 are the eigenvalues of the Hessian at 0. Additionally, the gradi-
ent can be estimated as |∇H(x)|2 � λ2

min|x|2, where λmin = mini λi . Hence, one
cannot compensate the positive Laplacian by the gradient of H . Therefore, one
has to choose U = Ba

√
ε(0) to guarantee the Lyapunov condition (3.9) around

the minimum at 0.
• If x is close a local maximum, the Laplacian �H(x) is negative. Hence, the

Lyapunov condition is (3.9) is satisfied in this region.
• Assume that x is in an

√
ε-neighborhood around a saddle, that is, a critical point

s ∈ S of order 1 ≤ k < n. Again, the gradient term cannot help to establish the
estimate (3.9). Hence, the condition (3.9) becomes

�H(x) ≈ λ−
1 + · · · + λ−

k + λ+
k+1 + · · · + λ+

n

!≤ −λ,

where λ−
i are the negative eigenvalue of the Hessian at s and λ+

j are the positive
eigenvalues of the Hessian at s. However, for a general Hamiltonian H it may
hold that

λ−
1 + · · · + λ−

k + λ+
k+1 + · · · + λ+

n ≥ 0

implying that W = exp( 1
2ε

H) is not always a Lyapunov function.

Nevertheless, these observations show that W = exp( 1
2ε

H) is a pretty good guess
for a Lyapunov function: One only has to change W close to saddles of H . This
leads to the following strategy (cf. Lemma 3.12 from below):

• We construct a perturbation H̃ε of the Hamiltonian H , which coincides with H

except of
√

ε-neighborhoods around saddles.
• In a

√
ε-neighborhood around a saddle, the perturbation is constructed in such

a way that on the one hand the Laplacian of H̃ε is strictly negative. This implies
that the function W = exp( 1

2ε
H̃ε) satisfies the estimate (3.9), which is necessary

for being a Lyapunov function.
• To assure that W = exp( 1

2ε
H̃ε) satisfies Neumann boundary condition, we

choose � as a basin of attraction w.r.t. the gradient flow of H̃ε [cf. (3.2)].

After these considerations, let us summarize how the Lyapunov approach is used.
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PROPOSITION 3.9. Assume that an Hamiltonian H̃ε satisfies the Assump-
tion 1.4 uniformly in ε. Let M = {m1, . . . ,mM} denote the local minima of H̃ε .
Assume that there are constants a > 0 and λ0 > 0 such that for all ε > 0 small
enough holds

1

2ε
�H̃ε(x) − 1

4ε2

∣∣∇H̃ε(x)
∣∣2 ≤ −λ0

ε
for all x /∈ ⋃

m∈M
Ba

√
ε(m).(3.10)

Consider the partition PM = {�i}Mi=1 into the basins of attraction of the gradient
flow of H̃ε [cf. (3.2)]. Then the associated local Gibbs measures {μ̃ε,i}Mi=1 given by
(3.3) satisfy PI(�̃i) with constant

�̃−1
i = O(ε).

PROOF. The function W = exp( 1
2ε

H̃ε) satisfies Neumann boundary condi-
tions on each domain of attraction �i in the sense of (3.5) by Theorem B.1. Indeed,
the gradient of W is

∇W = 1

2ε
(∇H̃ε) exp

(
1

2ε
H̃ε

)
.

Hence, ∇W ‖ ∇H̃ε everywhere. Moreover, H̃ε ∈ C3 is Morse and proper by As-
sumption 1.4, which shows all the assumptions of Theorem B.1.

Let �i be fixed. Then the estimate (3.10) is just a translation of the estimate
(3.4) with constants λ = λ0

ε
and b = b0

ε
for some b0 > 0. Moreover, we choose

U = Ba
√

ε(mi). Therefore, the function W is a Lyapunov function in the sense
of Definition 3.7 on �i . Theorem 3.8 yields that the measure μ̃ε,i satisfies PI(�̃i)

with

�̃i ≥ λ0�̂

b0 + ε�̂
,

where �̂ denotes the PI constant of the truncated Gibbs measure μ̂a,i from Defini-
tion 3.5. By Lemma 3.6 holds �̂−1 = O(ε), which yields �̃−1

i = O(ε). �

Following our strategy, the main ingredient of the proof of the local PI is the
existence of an ε-modified Hamiltonian H̃ε satisfying assumption (3.10) of Propo-
sition 3.9.

LEMMA 3.10 (Lyapunov function for PI). There exits an ε-modification H̃ε

of H in the sense of Definition 3.3 such that the Lyapunov estimate (3.10) holds
for H̃ε . The corresponding partition PM = {�i}Mi=1 into the basins of attraction of
the gradient flow of H̃ε [cf. (3.2)] is admissible in the sense of Definition 2.1.
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The proof of Lemma 3.10 is not complicated but a bit lengthy. It is stated in full
detail in Section 3.2. Now, we only have to put together the parts in order to proof
the first main result Theorem 2.9.

PROOF OF THEOREM 2.9. By a combination of Lemma 3.9 and Lemma 3.10
we know that the ε-modified Gibbs measures μ̃ε,i restricted to �i satisfy a PI
with the desired scaling behavior �̃−1

i = O(ε). Lemma 3.4 implies that then the
unmodified Gibbs measure μi restricted to �i also satisfies a PI with the same
scaling behavior �−1

i = O(ε). �

3.2. Construction of a Lyapunov function. This section is devoted to the proof
of Lemma 3.10. We have to construct an ε-modified Hamiltonian H̃ε that satisfies
the estimate (3.10). Following the motivation of Section 3.1, we set H̃ε = H away
from critical points. Therefore, we have to show that H satisfies the estimate (3.10)
away from critical points, which is the content of the next statement.

LEMMA 3.11. Assume that the Hamiltonian H satisfies the Assumption 1.4.
Recall that S denotes the set of all critical points of H in �; that is,

S = {
y ∈ � | ∇H(y) = 0

}
.

Then for a > 0 large enough exists λ0 > 0 and ε0 > 0 such that for all ε < ε0

�H(x)

2ε
− |∇H(x)|2

4ε2 ≤ −λ0

ε
for all x ∈ Rn

∖ ⋃
y∈S

Ba
√

ε(y).(3.11)

PROOF. The proof basically consists only of elementary calculations based
on the nondegeneracy assumption on H . We consider two cases: One in which we
verify (3.11) for |x| ≥ R̃ with R̃ < ∞ large enough. In the second case, we verify
(3.11) for |x| ≤ R̃.

Let us turn to the first case. We use the assumptions (A1PI) and (A2PI) and we
define R̃ such that

∀|x| ≥ R̃ : |∇H | ≥ CH

2
and |∇H |2 − �H(x) ≥ −2KH .(3.12)

Therewith, it is easy to show that for |x| ≥ R̃

�H(x)

2ε
− |∇H(x)|2

4ε2

(3.12)≤ 1

ε

(
KH − |∇H(x)|

2

(∇H(x)

2ε
− 1

))
(3.13)

≤ 1

ε

(
KH − C2

H

8

(
C2

H

8ε
− 1

))
≤ −λ0

ε
,

if ε ≤ C2
H
8 (1 + 8/C2

H (KH + λ0))
−1 =: ε0. The latter shows the desired statement

in this case, with λ0 > 0 arbitrary for ε ≤ ε0(λ0).
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Let us consider the second case. Because |x| ≤ R̃ it holds |�H(x)| ≤ C
R̃

.
Therefore, the desired estimate (3.11) follows, if we show that there is a constant
0 < cH such that∣∣∇H(x)

∣∣≥ cHa
√

ε ∀x ∈ B
R̃
(0)

∖ ⋃
y∈S

Ba
√

ε(y) and ∀a ∈ [0, ε−1/2].(3.14)

Because, then it follows

�H(x)

2ε
− |∇H(x)|2

4ε2

(3.14)≤ 1

ε

(
C

R̃

2
− cHa

4

)
=: −λ0

ε
,

with λ0 > 0 by choosing a > 2C
R̃
/cH =: a0. Hence, we can choose first a > a0,

which gives rise to some λ0(a) > 0, by the last estimate under the assumption
a < ε

−1/2
0 ≤ ε−1/2. Hence, we have to choose ε0 < min{ε0(λ0(a)), a−2} with

ε0(λ0(a)) defined after (3.13).
Finally, the estimate (3.14) is a consequence of the fact that H is a Morse

function (cp. Definition 1.3 and Assumption 1.4) and, therefore, nondegenerate
quadratic around critical points. That means, there exists a global constant cH > 0
such that |∇H(x)| ≥ cH min{dist(x,S),1}, which implies (3.14). �

Now, we consider the ε-modification H̃ε near critical points. The verification
of the following statement represents the core of the construction of the Lyapunov
function.

LEMMA 3.12. Let M = {m1, . . . ,mM} denote the set containing the minima
of H . Then there are constants C > 0, a > 0 and λ0 > 0 such that for ε < C there
exists an ε-modification H̃ε of H in the sense of Definition 3.3 satisfying

H̃ε(x) = H(x) for all x /∈ ⋃
y∈S\M

Ba
√

ε(y)

and

�H̃ε(x)

2ε
− |∇H̃ε(x)|2

4ε2 ≤ −λ0

ε
for all x ∈ ⋃

y∈S\M
Ba

√
ε(y).(3.15)

As a direct consequence of Lemma 3.11, the estimate (3.15) is satisfied for all

x /∈ ⋃
m∈M

Ba
√

ε(m).

PROOF. It is sufficient to construct the ε-modification H̃ε only locally on a
small neighborhood of any critical point y ∈ S \ M. By translation, we may as-
sume w.l.o.g. that y = 0.

Because the Hamiltonian H is a Morse function in the sense of Definition 1.3,
we may assume that ui , i ∈ {1, . . . , n} are orthonormal eigenvectors w.r.t. the Hes-
sian ∇2H(0). The corresponding eigenvalues are denoted by λi , i ∈ {1, . . . , n}
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labeled such that λ1, . . . , λ� < 0 and λ�+1, . . . , λn > 0 for some � ∈ {1, . . . , n}.
If � = n, hence λi < 0 for i = 1, . . . , n, we are nearby a local maximum and set
H̃ε(x) = H(x) on Ba

√
ε(0) and the desired estimate (3.15) follows directly for

x ∈ Ba
√

ε(0).
Otherwise, that is, � < n, let us choose a constant δ > 0 small enough such that

−δ̃ := (n − 2�)δ +
�∑

i=1

λi < 0 and δ ≤ 1

2
min{λi : i = � + 1, . . . , n}.(3.16)

Because u1, . . . , un is an orthonormal basis of Rn, we introduce a norm | · |δ on Rn

by

|x|2δ :=
�∑

i=1

1

2
δ
∣∣〈ui, x〉∣∣2 +

n∑
i=�+1

1

2
(λi − δ)

∣∣〈ui, x〉∣∣2.(3.17)

The norm | · |δ is equivalent to the standard Euclidean norm | · | and satisfies the
estimate

δ

2
|x|2 ≤ |x|2δ ≤ λ+

max − δ

2
|x|2 ≤ λ+

max

2
|x|2,(3.18)

where λ+
max = max{λi : i = �+1, . . . , n}. The last ingredient for the construction of

H̃ε is a smooth cut-off function ξ : [0,∞) →R satisfying for a > 0 to be specified
later

ξ ′(r) = −1 for r ≤ 1
4a2ε, −1 ≤ ξ ′(r) ≤ 0 for r ≥ 1

4a2ε,
(3.19)

ξ(r) = 0 for r ≥ a2ε

and in addition for some Cξ > 0,

0 ≤ ξ(r) ≤ Cξa
2ε and

∣∣ξ ′′(r)
∣∣≤ Cξ

a2ε
.(3.20)

With the help of the norm | · |δ and the function ξ we define the function H̃ε by

H̃ε(x) = H(x) + Hb(x) where Hb(x) := ξ
(|x|2δ

)
.(3.21)

Note that by definition of Hb holds H̃ε(x) = H(x) for all |x| ≥ a
√

ε. Because
ξ(r) = O(ε), it follows that H̃ε is an ε-modification of H in the sense of Defini-
tion 3.3.

Let us now turn to the verification of the estimate (3.15). It is sufficient to deduce
the following two facts: The first one is the estimate

�H̃ε(x) ≤ − δ̃

2
for all |x|δ ≤ a

2

√
ε.(3.22)
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The second one is that there is a constant λ0 > 0 such that for a large enough and
ε small enough it holds

�H̃ε(x)

2
− |∇H̃ε(x)|2

4ε
≤ −λ0 for all

a

2

√
ε ≤ |x|δ ≤ a

√
ε.(3.23)

Let us first derive the estimate (3.22). Using that ξ ′(x) = −1 for |x|δ ≤ a
2

√
ε, one

obtains that �Hb(x) = −�|x|2δ for |x|δ ≤ a
2

√
ε. Hence, by Taylor expansion we

get for |x|δ ≤ a
2

√
ε that

�H̃(x) = �H(0) − �|x|2δ + O(
√

ε) ≤
n∑

i=1

λi −
n∑

i=�+1

λi + (n − 2�)δ + O(
√

ε)

=
�∑

i=1

λi + (n − 2�)δ + O(
√

ε)
(3.16)≤ −δ̃ + O(

√
ε) ≤ − δ̃

2
,

for ε small enough, which yields the desired statement (3.22).
Let us turn to the verification of (3.23). We need that there exists a constant

0 < C� < ∞ independent of ε and a such that

�H̃(x) ≤ C� for all
a

2

√
ε < |x|δ < a

√
ε.(3.24)

Indeed, observe that

�H̃ε(x) = �H(x) + ξ ′′(|x|2δ
)∣∣∇|x|2δ

∣∣2 + ξ ′(|x|2δ
)︸ ︷︷ ︸

≤0

�|x|2δ︸ ︷︷ ︸
≥0

(3.20)≤ �H(x) + Cξ

a2ε

∣∣∣∣∣
�∑

i=1

δ〈ui, x〉ui +
n∑

i=�+1

(λi − δ)〈ui, x〉ui

∣∣∣∣∣
2

≤ �H(x) + Cξ

a2ε

(
�∑

i=1

δ2∣∣〈ui, x〉∣∣2 +
n∑

i=�+1

(λi − δ)2∣∣〈ui, x〉∣∣2)
(3.17)≤ �H(x) + Cξ

a2ε
2λ+

max|x|2δ ≤ CH + 2Cξλ
+
max =: C�,

where C� is independent of ε and a, which yields (3.24).
Additionally, we need that there is a constant 0 < c∇ < ∞ such that∣∣∇H̃ε(x)

∣∣2 ≥ c∇a2ε for all
a

2

√
ε < |x|δ < ã

√
ε.(3.25)

Before deducing (3.25), we want to show that the observations (3.24) and (3.25)
already yield the desired statement (3.23): For a2 ≥ 4C�

c∇ , one gets

�H̃ε(x)

2ε
− |∇H̃ε(x)|2

4ε2 ≤ C�

2ε
− c∇a2

4ε
≤ −C�

2ε
for all

a

2

√
ε < |x|δ < a

√
ε,
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which is the desired statement (3.23). Therefore, it is only left to deduce the esti-
mate (3.25). By the definition of H̃ε from above, we can write∣∣∇H̃ε(x)

∣∣2 = ∣∣∇H(x)
∣∣2 + ∣∣∇Hb(x)

∣∣2 + 2
〈∇H(x),∇Hb(x)

〉
.(3.26)

Let us have a closer look at each term on the right-hand side of the last identity and
let us start with the first term. By applying Taylor’s formula to ∇H(x), we obtain∣∣∇H(x) − ∇2H(0)x

∣∣≤ C̃∇|x| (3.18)≤ C∇|x|δ(3.27)

for some C̃∇ ,C∇ > 0. Therefore, we can estimate∣∣∇H(x)
∣∣2 ≥ ∣∣∇2H(0)x

∣∣2 − C2∇a4ε2 for |x|δ ≤ a
√

ε.(3.28)

By the definition of λ1, . . . , λn, we also know∣∣∇2H(0)x
∣∣2 =

n∑
i=1

λ2
i

∣∣〈ui, x〉∣∣2.(3.29)

Let us have a closer look at the second term in (3.26), namely |∇Hb(x)|2. From
the definition (3.21) of |∇Hb(x)|2 follows

∣∣∇Hb(x)
∣∣2 = ∣∣ξ ′(|x|2δ

)∣∣2( �∑
i=1

δ2∣∣〈ui, x〉∣∣2 +
n∑

i=�+1

(λi − δ)2∣∣〈ui, x〉∣∣2)
(3.30)

(3.17)≤ 2λ+
max|x|2δ .

Now, we turn the analysis of the last term, namely 2〈∇H(x),∇Hb(x)〉. By using
the estimates (3.27) and (3.30), we get for |x|δ ≤ a

√
ε.〈∇H(x),∇Hb(x)

〉 = 〈∇2H(0)x,∇Hb(x)
〉+ 〈∇H(x) − ∇2H(0)x,∇Hb(x)

〉
(3.27)≥
(3.30)

〈∇2H(0)x,∇Hb(x)
〉− 2C∇λmax|x|3δ

(3.31)

≥ −
�∑

i=1

λiδ
∣∣ξ ′(|x|2δ

)∣∣∣∣〈ui, x〉∣∣2
−

n∑
i=�+1

λi(λi − δ)
∣∣ξ ′(|x|2δ

)∣∣∣∣〈ui, x〉∣∣2 − O
(
ε3/2).

Combining now the estimates and identities (3.26), (3.28), (3.29), (3.30) and
(3.31), we arrive for |x|δ ≤ a

√
ε at

∣∣∇H̃ε(x)
∣∣2 ≥

�∑
i=1

(
λi − δ

∣∣ξ ′(|x|2δ
)∣∣)2∣∣〈ui, x〉∣∣2

+
n∑

i=�+1

(
λi − (λi − δ)

∣∣ξ ′(|x|2δ
)∣∣)2∣∣〈ui, x〉∣∣2 − O

(
ε3/2).
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By (3.19) holds |ξ ′(|x|2δ)| ≤ 1, which applied to the last inequality yields

∣∣∇H̃ε(x)
∣∣2 ≥ δ2

n∑
i=1

∣∣〈ui, x〉∣∣2 − O
(
ε3/2).

Because u1, . . . , un is an orthonormal basis of Rn, the desired statement (3.25)
follows for a

√
ε

2 ≤ |x|δ ≤ a
√

ε from

∣∣∇H̃ε(x)
∣∣2 ≥ δ2|x|2 − O

(
ε3/2) (3.18)≥ 2δ2

λ+
max

|x|2δ − O
(
ε3/2)

≥ δ2

2λ+
max

a2ε − O
(
ε3/2)≥ c∇a2ε

for some c∇ < δ2

2λ+
max

and ε small enough. �

Considering the statement of Lemma 3.12, there is only one thing to show in
order to verify Lemma 3.10.

LEMMA 3.13. Let PM = {�i}Mi=1 be the partition obtained from the H̃ε from
Lemma 3.12 by considering the basins of attraction �i from (3.2). Then PM is an
admissible partition in the sense of Definition 2.1.

Before we turn to the proof of Lemma 3.13, we show the following auxiliary
statement.

LEMMA 3.14. If an Hamiltonian H :Rn → R satisfies the Assumption 1.4,
then there exist numbers R > 0 and cH > 0 such that

H(x) ≥ min|z|=R
H(z) + cH

(|x| − R
)
.

Because H ≥ 0 by Assumption 1.4, a direct consequence is
∫

exp(−H(x))dx <

∞.

PROOF. By the assumption (A1PI), we can choose R > 0 large enough such
that ∣∣∇H(x)

∣∣≥ CH

2
for all |x| ≥ R.(3.32)

In particular, this implies that for all critical points s ∈ S holds |s| ≤ R. Now, let
us we consider the following evolution:

ẋt = − ∇H(xt )

|∇H(xt )| , x0 = x,0 ≤ t < ∞
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with starting point x, |x| > R. Because by Lemma B.12

Rn = ⊎
s∈S

{
y ∈ Rn : lim

t→∞yt = s, ẏt = −∇H(yt ), y0 = y
}

and for all critical points s ∈ S of H it holds |s| ≤ R, the gradient line {xt } has
to hit the ball BR(0) after some time t > 0 at some point xt for the first time. It
follows

H(xt ) − H(x0) =
∫ t

0

d

ds
H(xs)ds

= −
∫ t

0
∇H(xs) · ∇H(xs)

|∇H(xs)| ds = −
∫ t

0

∣∣∇H(xs)
∣∣ds.

Using the lower bound (3.32) on |∇H(xt )|, we get that

H(x) = H(xt ) +
∫ t

0

∣∣∇H(xs)
∣∣ds ≥ inf|z|=R

H(z) + t
cH

2
.

Because the evolution xt moves at speed 1, we know that t is the length of the
gradient-flow line connecting the points x and xt . However, this length cannot be
shorter than t ≥ |x| − R, which yields the desired statement. �

PROOF OF LEMMA 3.13. We start with showing that H̃ε has the same local
minima M = {m1, . . . ,mM} as the original Hamiltonian H . Because

H̃ε(x) = H(x) for all x /∈ ⋃
y∈S\M

Ba
√

ε(y),

it suffices to show that H̃ε has no local minima in the set⋃
y∈S\M

Ba
√

ε(y).

However, this statement follows directly from the estimate (3.15), that is,

�H̃ε(x)

2ε
− |∇H̃ε(x)|2

4ε2 ≤ −λ0

ε
for all x ∈ ⋃

y∈S\M
Ba

√
ε(y).

Indeed, the last estimate shows that either |∇H̃ε(x)| 
= 0 or �H̃ε(x) < 0.
The fact that H̃ε has the same local minima as H allows us to apply Lemma B.12

showing

Rn =
M⊎
i=1

�i =
M⊎
i=1

{
y ∈ Rn : lim

t→∞yt = mi, ẏt = −∇H̃ε(yt ), y0 = mi

}
,

which is already (ii) of Definition 2.1.
The last step in the proof is to show that μ(�i)Zμ satisfies the asymptotic ex-

pansion given by (2.1). Let us consider one local minimum mi ∈ M. W.l.o.g. we



1844 G. MENZ AND A. SCHLICHTING

assume H̃ε(mi) = H(mi) = 0. We introduce �i := (∇2H(mi))
−1 and define for

r0 > 0 specified later the ellipsoid

Ei := {
x ∈ Rn :

∣∣�−1/2
i (x − mi)

∣∣≤√2r0ε| log ε|},
where the square root of �−1

i is uniquely defined in the set of positive symmetric
matrices. Note that for small enough ε it holds Ei ⊂ �i and H̃ε(x) = H(x) for
x ∈ Ei . The covariance matrix �i is nondegenerate because of H being a Morse
function. Therefore, there is a constant cH < 1 such that

B√
cH 2r0ε| log ε|(mi) ⊂ Ei ⊂ B√

c−1
H 2r0ε| log ε|(mi).(3.33)

We split the integral into

μ(�i)Zμ =
∫
Ei

exp
(
−H̃ε(x)

ε

)
dx +

∫
�i\Ei

exp
(
−H̃ε(x)

ε

)
dx =: I1 + I2.

The results follows from an asymptotic expansion for I1 and an error estimate for
I2.

We start with the error estimate for I2. Let the constant R > 0 be chosen as in
Lemma 3.14. We split the term I2 up into

I2 =
∫
(�i\Ei)∩BR(0)

exp
(
−H̃ε(x)

ε

)
dx +

∫
�i\BR(0)

exp
(
−H̃ε(x)

ε

)
dx

=: I3 + I4.

Let us estimate the term I3. On a small neighborhood around mi it holds H = H̃ε

and H is uniformly convex. Therefore, there is a constant δ > 0 and κ > 0 such
that for all x with |x − mi | ≤ δ∣∣(∇2H(x)

)1/2
ξ
∣∣2 = 〈

ξ,∇2H(x)ξ
〉≥ κ|ξ |2 for all ξ ∈ Rn.

Hence, for x ∈ �i \Ei we have the lower bound by additionally considering (3.33)

H̃ε(x) ≥ inf
z∈∂Ei

H̃ε(z) ≥ κ

2
inf

z∈∂Ei

|z − mi |2 ≥ κcH r0ε| log ε|.

Now, we can estimate I3 as

I3 ≤ exp
(−κcH r0| log ε|)∣∣BR(0)

∣∣.
Let us turn to the estimation of I4. An application of Lemma 3.14 yields

I4 ≤ exp
(
−ε−1 min|z|=R

H(z)
)∫

�i\BR(0)
exp

(
−cH

|x| − R

ε

)
dx

≤ CH exp
(−κchr0| log ε|).
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So overall, we have estimated the term I2 as

I2 ≤ CH exp
(−κchr0| log ε|)= CHεκcH r0 = O

(
εα)

(3.34)
for r0 >

α

κcH

and α > 0.

Hence, I2 becomes smaller than every power of ε for r0 large enough.
Now, we turn to the asymptotic approximation of the term I1. The Taylor ex-

pansion of H on Ei yields for x ∈ Ei

H(x) = 1
2

〈
x,∇2H(mi)x

〉+ O
((

ε| log ε|)3/2)
.

In particular, this implies

exp
(
−H(x)

ε

)
= exp

(
− 1

2ε

〈
x,∇2H(mi)x

〉)
exp

(
O
(√

ε| log ε|3/2)).
For ε small enough, it holds exp(O(

√
ε| log ε|3/2)) = 1+O(

√
ε| log ε|3/2). There-

with, we get the following expression for I1:

I1 =
∫
Ei

exp
(
− 1

2ε

〈
x,∇2H(mi)x

〉)
dx
(
1 + O

(√
ε| log ε|3/2))

= (2πε)n/2√
det∇2H(mi)

×
(

1 −
√

det∇2H(mi)

(2πε)n/2

∫
Rn\Ei

exp
(
− 1

2ε

〈
x,∇2H(mi)x

〉)
dx

)
× (

1 + O
(√

ε| log ε|3/2)).
Now, we apply the following tail estimate for a Gaussian, which we will proofed
for the convenience of the reader below:√

det∇2H(mi)

(2πε)n/2

∫
Rn\Ei

exp
(
− 1

2ε

〈
x,∇2H(mi)x

〉)
dx = O(

√
ε).(3.35)

The latter yields the asymptotic expansion

I1 = (2πε)n/2√
det∇2H(mi)

(
1 + O

(√
ε| log ε|3/2)).(3.36)

Now, the desired asymptotic expansion (2.1) for μ(�i)Zμ follows form a combi-
nation of the expansion for the term I1 in (3.36) and I2 in (3.34) with α chosen
sufficiently large, that is, α > (n + 1)/2.

We close the argument by deducing the desired tail estimate (3.35). By the
change of variables x �→ y = (2ε�i)

−1/2(x − mi) and by denoting ω(ε) =
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√
r0| log ε|, we deduce√

det∇2H(mi)

(2πε)n/2

∫
Rn\Ei

exp
(
− 1

2ε

〈
x,∇2H(mi)x

〉)
dx

= 1

πn/2

∫
Rn\Bω(ε)(0)

e−y2
dy

= n

�(n/2 + 1)

∫ ∞
ω(ε)

rn−1e−r2
dr = �(n/2,ω2(ε))

�(n/2)
,

where �(n
2 ,ω2(ε)) is the complementary incomplete Gamma function. It has the

asymptotic expansion (cf. [38], pp. 109–112)

�

(
n

2
,ω2(ε)

)
= O

(
e−ω2(ε)ωn−2(ε)

)= O
(
εr0 |r0 log ε|n/2−1)= O(

√
ε)

for r0 large enough, which yields the desired result. �

3.3. Lyapunov approach for the logarithmic Sobolev inequality. The goal of
this section is to prove Theorem 2.10 deducing the local LSI. We follow the same
strategy as for the proof of Theorem 2.9, which we outlined in Section 3.1. There-
fore, we consider the partition PM = {�i}Mi=1 into the basins of attraction of the
gradient flow of H̃ε [cf. (3.2)].

The Lyapunov condition for proving LSI is stronger than the one for PI. Nev-
ertheless, the construction of the ε-modified Hamiltonian H̃ε from the previous
section carries over and we can use the same Lyapunov function as for the PI, but
have to provide additional estimates. The Lyapunov condition for LSI goes back
to the work of Cattiaux et al. [12]. We adapt [13], Theorem 1.2, to the case for
domains �. In addition, we will work out the explicit dependence between the
constants of the Lyapunov condition, the logarithmic Sobolev constant and espe-
cially their ε-dependence.

THEOREM 3.15 (Lyapunov condition for LSI). Suppose that:

(i) There exists a C2-function W :� → [1,∞) and constants λ,b > 0 such
that for L = ε� − ∇H · ∇ holds

∀x ∈ � :
1

ε

LW

W
≤ −λ|x|2 + b.(3.37)

(ii) ∇2H ≥ −KH for some KH > 0 and μ satisfies PI(�).
(iii) W satisfies Neumann boundary conditions on � [cf. (3.5)].

Then μ satisfies LSI(α) with

1

α
≤ 2

√
1

λ

(
1

2
+ b + λμ(|x|2)

�

)
+ KH

2ελ
+ KH(b + λμ(|x|2)) + 2ελ

�ελ
,(3.38)

where μ(|x|2) denotes the second moment of μ.
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Before turning to the proof of Theorem (3.38), we need the following auxiliary
result.

LEMMA 3.16 ([13], Lemma 3.4). Assume that V :� → R is a nonnegative
locally Lipschitz function such that:

(i) For some lower bounded function φ

LeV

eV
= LV + ε|∇V |2 ≤ −εφ(3.39)

in the distributional sense.
(ii) V satisfies Neumann boundary condition on � [cf. (3.5)].

Then for any g ∈ H 1(μ) holds∫
φg2 dμ ≤

∫
|∇g|2 dμ.

PROOF. We can assume w.l.o.g. that g is smooth with bounded support and φ

is bounded. For the verification of the desired statement, we need the symmetry of
L in L2(μ) w.r.t. to V :

∀f ∈ H 1(μ) :
∫

f (−LV )dμ = ε

∫
∇f · ∇V dμ,(3.40)

and the Young inequality:

2g∇V · ∇g ≤ |∇V |2g2 + |∇g|2.(3.41)

An application of the assumption (3.39) yields

ε

∫
φg2 dμ

(3.39)≤
∫ (−LV − ε|∇V |2)g2 dμ

(3.40)= ε

∫ (
2g∇V · ∇g − |∇V |2g2)dμ

(3.41)≤ ε

∫
|∇g|2 dμ,

which is the desired estimate. �

The proof of Theorem 3.15 relies on an interplay of some other functional in-
equalities, which will not occur anywhere else.

PROOF OF THEOREM 3.15. The argument of [13] is a combination of the
Lyapunov condition (3.37) leading to a defective WI inequality and the use of
the HWI inequality of Otto and Villani [40]. In the following, we will use the
measure ν given by ν(dx) = h(x)μ(dx), where we can assume w.l.o.g. that ν is a
probability measure, that is,

∫
hdμ = 1. The first step is to estimate the Wasserstein

distance in terms of the total variation [46], Theorem 6.15

W 2
2 (ν,μ) ≤ 2

∥∥| · |2(ν − μ)
∥∥

TV.(3.42)
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For every function g with |g| ≤ φ(x) := λ|x|2, where λ is from the Lyapunov
condition (3.37) we get∫

g d(ν − μ) ≤
∫

φ dν +
∫

φ dμ

(3.43)
=
∫ (

λ|x|2 − b
)
h(x)μ(dx) +

∫
b dν + μ(φ).

We can apply to
∫
(λ|x|2 −b)hdμ Lemma 3.16, where the assumptions are exactly

the Lyapunov condition (3.37) by choosing V = logW . Moreover, the Neumann
condition also translates to V since W is bounded from below by 1. Therewith, we
arrive at ∫ (

λ|x|2 − b
)
hdμ ≤

∫
|∇√

h|2 dμ =
∫ |∇h|2

4h
dμ = 1

2
I (ν|μ),(3.44)

by the definition of the Fisher information. Taking the supremum over g in (3.43)
and combining the estimate with (3.42) and (3.44) we arrive at the defective
Wasserstein-information inequality

λ

2
W 2

2 (ν,μ) ≤ λ
∥∥| · |2(ν − μ)

∥∥
TV ≤ 1

2
I (ν|μ) + b + μ(φ).(3.45)

The next step is to use the HWI inequality [40], Theorem 3, which holds by the
assumption ∇2H ≥ −KH

Entμ(h) ≤ W2(ν,μ)

√
2I (ν|μ) + KH

2ε
W 2

2 (ν,μ).

Substituting inequality (3.45) into the HWI inequality and using the Young in-
equality ab ≤ τ

2a2 + 1
2τ

b2 for τ > 0 results in

Entμ(h) ≤ τI (ν|μ) +
(

1

2τ
+ KH

2ε

)
W 2

2 (ν,μ)

(3.46)
(3.45)≤

(
τ + 1

2λ

(
1

τ
+ KH

ε

))
I (ν|μ) + 1

λ

(
1

τ
+ KH

ε

)(
b + μ(φ)

)
.

The last inequality is of the type Entμ(h) ≤ 1
αd

I (ν|μ) + B
∫

hdμ and is often
called defective logarithmic Sobolev inequality dLSI(αd,B). It is well known that
a defective logarithmic Sobolev inequality can be tightened by PI(�) to LSI(α)

with constant (cf. Proposition [31])

1

α
= 1

αd

+ B + 2

�
.(3.47)

A combination of (3.46) and (3.47) reveals
1

α
= τ + 1

2λ

(
1

τ
+ KH

ε

)
+ 1

�

(
1

λ

(
1

τ
+ KH

ε

)(
b + μ(φ)

)+ 2
)

= τ + 1

τλ

(
1

2
+ b + μ(φ)

�

)
+ KH

2ελ
+ KH(b + μ(φ)) + 2ελ

�ελ
=: τ + c1

τ
+ c2.



PI AND LSI BY DECOMPOSITION OF THE ENERGY LANDSCAPE 1849

The last step is to optimize in τ , which leads to τ = √
c1 and, therefore, 1

α
=

2
√

c1 + c2. The final result (3.38) follows by recalling the definition of φ(x) =
λ|x|2. �

The crucial ingredient is a Lyapunov function satisfying the condition (3.37).
We follow the ideas of Section 3.1 and Section 3.2. We use the same ε-modification
H̃ε as constructed in the proof of Lemma 3.12.

LEMMA 3.17 (Lyapunov function for LSI). We consider the ε-modification
H̃ε of H constructed in Section 3.2. Then the Lyapunov function W(x) =
exp( 1

2ε
H̃ε(x)) satisfies on � the Lyapunov condition (3.37) with constants

b = b0

ε
and λ ≥ λ0

ε

for some b0, λ0 > 0 and Hessian ∇2H̃ε(x) ≥ −K
H̃ε

for some K
H̃ε

≥ 0.

The proof consists of three steps, which correspond to three regions of interests.
First, we will consider a neighborhood of ∞, that is, we will fix some R̃ > 0 and
only consider |x| ≥ R̃. Then we will look at an intermediate regime for a

√
ε ≤

|x| ≤ R̃, where we will have to take special care for the neighborhoods around
critical points and use the construction of Lemma 3.12. The last regime is for
|x| ≤ a

√
ε, which will be the simplest case.

Therefore, besides the construction done in the proof of Lemma 3.12, we need
an analogous formulation of Lemma 3.11 under the stronger assumption (A1LSI).

LEMMA 3.18. Assume that the Hamiltonian H satisfies assumption (A1LSI).
Then there is a constant 0 ≤ CH < ∞ and 0 ≤ R̃ < ∞ such that H(x) = H̃ε(x)

for |x| ≥ R̃ and for ε small enough

�H(x)

2ε
− |∇H(x)|2

4ε2 ≤ −CH

ε
|x|2 for all |x| ≥ R̃.(3.48)

We skip the proof of the Lemma 3.18, because it would work in the same way
as for Lemma 3.11 and only consists of elementary calculations based on the
nondegeneracy assumption on H . The only difference, is that we now demand
the stronger statement (3.48), which is a consequence of the stronger assumption
(A1LSI) in comparison to assumption (A2PI).

Now, we have collected the auxiliary statements and can proof Lemma 3.17.

PROOF OF LEMMA 3.17. First, let us check the lower bound on the Hessian
of H̃ε . Because we use the same H̃ε as constructed in Lemma 3.12, the support of
H̃ε − H is compact. Additionally, H̃ε is smooth. This already implies the lower
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bound on the Hessian ∇2H̃ε for compact domains. Outside a sufficient large do-
main, we know that H = H̃ε . Hence, the lower bound on ∇2H̃ε follows directly
from assumption (A2LSI).

Now, we verify the Lyapunov condition (3.37). Recall that W = exp( 1
2ε

H̃ε).
Hence, straightforward calculation reveals

1

ε

LW

W
= 1

2ε
�H̃ε + 1

4ε2 |∇H̃ε|2 − 1

2ε2 |∇H̃ε|2 = 1

2ε
�H̃ε − 1

4ε2 |∇H̃ε|2.

If |x| ≥ R̃ with R̃ given in Lemma 3.18, we apply (3.48) and have the Lyapunov
condition fulfilled with constant λ = CH

ε
. This allows us to only consider x ∈ B

R̃
∩

�, which is a bounded domain. In this case, Lemma 3.12 yields for a
√

ε ≤ |x| ≤ R̃

the estimate

1

ε

LW

W
≤ −λ0

ε
≤ − λ0

R̃2ε
|x|2.(3.49)

Let us consider the final case |x| ≤ a
√

ε. In this case, the Hamiltonian H = H̃ε .
Additionally, H is smooth and strictly convex on Ba

√
ε(0). Therefore, one easily

obtains the bound

1

ε

LW

W
≤ 1

2ε
�H(x) ≤ b0

ε
.(3.50)

A combination of (3.49) and (3.50) yields the desired estimate (3.37). �

Before proceeding with the proof of Theorem 2.10, we remark, that the Lya-
punov condition for the PI and in particular for the LSI imply an estimate of the
second moment of μ.

LEMMA 3.19 (Second moment estimate). If H fulfills the Lyapunov condition
(3.4) with U = BR(0) for R > 0, then μ has finite second moment and it holds∫

|x|2μ(dx) ≤ 1 + bR2

λ
.(3.51)

PROOF. As it is outlined in the proof of Theorem 3.8 (cf. also [2]), the Lya-
punov condition (3.4) yields the following estimate: for any function f and m ∈R

it holds ∫
(f − m)2 dμ ≤ 1

λ

∫
|∇f |2 dμ + b

λ

∫
BR(0)

(f − m)2 dμ.

We set f (x) = |x| and m = 0 to observe the estimate (3.51). �

Now, we have collected all auxiliary results to proof the second main Theo-
rem 2.10.
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PROOF OF THEOREM 2.10. For the same reason as in the proof of Theo-
rem 2.9, we omit the index i. The first step is also the same as in the proof of
Theorem 2.9. By Lemma 3.4, we obtain that, whenever H̃ε is an ε-modification of
μ in the sense of Definition 3.3, the logarithmic Sobolev constants α and α̃ of μ

and μ̃ε satisfy α ≥ exp(−2C
H̃

)α̃.
The next step is to construct an explicit ε-modification H̃ satisfying the Lya-

punov condition (3.37) of Theorem 3.15, which is provided by Lemma 3.17.
Additionally, the logarithmic Sobolev constant α̃ depends on the second mo-

ment of μ̃ε . Since H̃ε satisfies by Lemma 3.10 in particular the Lyapunov con-
dition for PI (3.4) with constants λ ≥ λ0

ε
, b ≤ b0

ε
and R = a

√
ε, we can apply

Lemma 3.19 and arrive at∫
|x|2 dμ̃ε ≤ 1 + R2b

λ
≤ 1 + b0a

2

λ0
ε = O(ε).

Now, we have control on all constants occurring in (3.38) and can determine the
logarithmic Sobolev constant α̃ of μ̃ε . Let us estimate term by term of (3.38) and
use the fact from Theorem (2.9), that μ̃ε satisfies PI(�̃) with �̃−1 = O(ε)

2

√
1

λ

(
1

2
+ b + λμ̃ε(|x|2)

�

)
≤ 2

√
ε

λ0

(
1

2
+ O(1)

)
= O(

√
ε).

The second term evaluates to KH
2ελ

= O(1) and finally the last one

KH(b + λμ̃ε(|x|2)) + 2ελ

�ελ
= O(ε)

(
KH

(
b0

ε
+ O(ε)

)
+ O(1)

)
= O(1).

A combination of all the results leads to the conclusion α̃−1 = O(1) and since H̃ε

is only an ε-modification of H also α−1 = O(1). �

4. Mean-difference estimates—weighted transport distance. This section
is devoted to the proof of Theorem 2.12. We want to estimate the mean-difference
(Eμi

f −Eμj
f )2 for i and j fixed. The proof consists of four steps:

In the first step, we introduce the weighted transport distance in Section 4.1.
This distance depends on the transport speed similarly to the Wasserstein distance,
but in addition weights the speed of a transported particle w.r.t. the reference mea-
sure μ. The weighted transport distance allows in general for a variational charac-
terization of the constant C in the inequality(

Eμi
(f ) −Eμj

(f )
)2 ≤ C

∫
|∇f |2 dμ.

The problem of finding good estimates of the constant C is then reduced to the
problem of finding a good transport interpolation between the measures μi and μj

w.r.t. to the weighted transport distance.



1852 G. MENZ AND A. SCHLICHTING

For measures as general as μi and μj , the construction of an explicit transport
interpolation is not feasible. Therefore, the second step consists of an approxima-
tion, which is done in Section 4.2. There, the restricted measures μi and μj are
replaced by simpler measures νi and νj , namely truncated Gaussians. We show in
Lemma 4.6 that this approximation only leads to higher order error terms.

The most import step, the third one, consists of the estimation of the mean-
difference w.r.t. the approximations νi and νj . Because the structure of νi and νj

is very simple, we can explicitly construct a transport interpolation between νi

and νj (see Lemma 4.11 in Section 4.3). The last step consists of collecting and
controlling the error (cf. Section 4.4).

4.1. Mean-difference estimates by transport. At the moment, let us consider
two arbitrary measures ν0 � μ and ν1 � μ. The starting point of the estimation is
a representation of the mean-difference as a transport interpolation. This idea goes
back to [14]. However, they used a similar but nonoptimal estimate for our purpose.
Hence, let us consider a transport interpolation (�s :Rn → Rn)s∈[0,1] between ν0
and ν1, that is, the family (�s)s∈[0,1] satisfies

�0 = Id, (�1)�ν0 = ν1 and (�s)�ν0 =: νs.

The representation of the mean-difference as a transport interpolation is attained
by using the fundamental theorem of calculus, that is,(

Eν0(f ) −Eν1(f )
)2 =

(∫ 1

0

∫ 〈∇f (�s), �̇s

〉
dν0 ds

)2

.

At this point, it is tempting to apply the Cauchy–Schwarz inequality in L2(dν0 ×
ds) leading to the estimate in [14]. However, this strategy would not yield the
preexponential factors in the Eyring–Kramers formula (2.15) (cf. Remark 4.2). On
Stephan Luckhaus’ advice, the authors realized the fact that it really matters on
which integral you apply the Cauchy–Schwarz inequality. This insight lead to the
following proceeding:(

Eν0(f ) −Eν1(f )
)2 =

(∫ 1

0

∫ 〈∇f, �̇s ◦ �−1
s

〉
dνs ds

)2

=
(∫ 〈

∇f,

∫ 1

0
�̇s ◦ �−1

s

dνs

dμ
ds

〉
dμ

)2

(4.1)

≤
∫ ∣∣∣∣∫ 1

0
�̇s ◦ �−1

s

dνs

dμ
ds

∣∣∣∣2 dμ

∫
|∇f |2 dμ.

Note that in the last step we have applied the Cauchy–Schwarz inequality only in
L2(dμ) and that the desired Dirichlet integral

∫ |∇f |2 dμ is already recovered.
The prefactor in front of the Dirichlet energy on the right-hand side of (4.1)

only depends on the transport interpolation (�s)s∈[0,1]. Hence, we can minimize
over all possible admissible transport interpolations and arrive at the following
definition.
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DEFINITION 4.1 (Weighted transport distance Tμ). Let μ be an absolutely
continuous probability measure on Rn with connected support. Additionally, let
ν0 and ν1 be two probability measures such that ν0 � μ and ν1 � μ, then define
the weighted transport distance by

T 2
μ (ν0, ν1) := inf

�s

∫ ∣∣∣∣∫ 1

0
�̇s ◦ �−1

s

dνs

dμ
ds

∣∣∣∣2 dμ.(4.2)

The family (�s)s∈[0,1] is chosen absolutely continuous in the parameter s such
that �0 = Id on suppν0 and (�1)�ν0 = ν1. For a fixed family and (�s)s∈[0,1] and
a point x ∈ suppμ, the cost density is defined by

A(x) :=
∣∣∣∣∫ 1

0
�̇s ◦ �−1

s (x)νs(x)ds

∣∣∣∣.(4.3)

REMARK 4.2 (Relation of Tμ to [14]). The transport distance Tμ(ν0, ν1) is
always smaller than the constant obtained in [14], Section 4.6. Indeed, applying
the Cauchy–Schwarz inequality on L2(ds) in (4.2) yields

T 2
μ (ν0, ν1) ≤ inf

�s

∫ ∫ 1

0

∣∣�̇s ◦ �−1
s

∣∣2 dνs

dμ
ds

∫ 1

0

dνs

dμ
ds dμ

≤ inf
�s

(
sup
x

(∫ 1

0

dνs

dμ
(x)ds

)∫ ∫ 1

0
|�̇s |2 ds dν0

)
,

where we used the assumption that νs � μ for all s ∈ [0,1] in the last L1-L∞-
estimate.

REMARK 4.3 (Relation of Tμ to the L2-Wasserstein distance W2). If the sup-
port of μ is convex, we can set the transport interpolation (�s)s∈[0,1] to the linear
interpolation map �s(x) = (1 − s)x + sU(x). Assuming that U is the optimal
W2-transport map between ν0 and ν1, the estimate in Remark 4.2 becomes

T 2
μ (ν0, ν1) ≤

(
sup
x

∫ 1

0

dνs

dμ
(x)ds

)
W 2

2 (ν0, ν1).

REMARK 4.4 (Invariance under time rescaling). The cost density A given by
(4.3) is independent of rescaling the transport interpolation in the parameter s.
Indeed, we observe that

A(x) =
∣∣∣∣∫ 1

0
�̇s ◦ �−1

s (x)νs(x)ds

∣∣∣∣= ∣∣∣∣∫ T

0
�̇T

t ◦ (�T
t

)−1
(x)νT

t (x)dt

∣∣∣∣,
where �T

t = �t/T and νT
t = νt/T .

REMARK 4.5 (Relation to negative Sobolev-norms). The weighted transport
distance is a dynamic formulation for the homogeneous negative Sobolev norm
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Ḣ−1(dμ) like Benamou and Brenier did for the Wasserstein distance [5]. Precisely,
for ν0 = �0μ and ν1 = �1μ holds

T 2
μ (ν0, ν1) = ‖�0 − �1‖2

Ḣ−1(dμ)
= inf

h∈Ḣ 1(μ)

{∫
|∇h|2 dμ :Lh = �0 − �1

}
.

In fact, it is possible to define a whole class of weighted Wasserstein type distances
interpolating between the negative Sobolev norm and the Wasserstein distance.
Theses transports were introduced in [16].

4.2. Approximation of the local measures μi . In this subsection, we show that
it is sufficient to consider only the mean-difference w.r.t. some auxiliary measures
νi approximating μi for i = 1, . . . ,M . More precisely, the next lemma shows that
there are nice measures νi which are close to the measures μi in the sense of the
mean-difference.

LEMMA 4.6 (Mean-difference of approximation). For i = 1, . . . ,M let νi be
a truncated Gaussian measure centered around the local minimum mi with covari-
ance matrix �i = (∇2H(mi))

−1, more precisely

νi(dx) = 1

Zνi

e−�−1
i [x−mi ]/(2ε)1Ei

(x)dx

(4.4)
where Zνi

=
∫
Ei

e−�−1
i [x−mi ]/(2ε) dx,

where we write A[x] := 〈x,Ax〉. The restriction Ei is given by an ellipsoid

Ei = {
x ∈ Rn :

∣∣�−1/2
i (x − mi)

∣∣≤ √
2εω(ε)

}
.(4.5)

Additionally, assume that μi satisfies PI(�i) with �−1
i = O(ε).

Then the following estimate holds:(
Eνi

(f ) −Eμi
(f )

)2 ≤ O
(
ε3/2ω3(ε)

) ∫ |∇f |2 dμ,(4.6)

where the function ω(ε) :R+ → R+ in (4.5) and (4.6) is smooth and monotone
satisfying

ω(ε) ≥ | log ε|1/2 for ε < 1.

The first step toward the proof of Lemma 4.6 is the following statement.

LEMMA 4.7. Let νi be a probability measure satisfying νi � μi . Moreover, if
μi satisfies PI(�i) for some �i > 0, then the following estimate holds:(

Eνi
(f ) −Eμi

(f )
)2 ≤ 1

�i

varμi

(
dνi

dμi

)∫
|∇f |2 dμi.(4.7)
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PROOF. The result is a consequence from the representation of the mean-

difference as a covariance. Therefore, we note that dνi = dνi

dμi
dμi since νi � μi

and use the Cauchy–Schwarz inequality for the covariance

(
Eνi

(f ) −Eμi
(f )

)2 =
∫

f
dνi

dμi

dμi −
∫

f dμi

∫ dνi

dμi

dμi

= cov2
μi

(
dνi

dμi

, f

)
≤ varμi

(
dνi

dμi

)
varμi

(f ).

Using the fact that μi satisfies a PI results in (4.7). �

The above lemma tells us that we only need to construct νi approximating μi in
variance for i = 1, . . . ,M . The following lemma provides exactly this.

LEMMA 4.8 (Approximation in variance). Let the measures νi be given by
(4.4). Then the partition sum Zνi

satisfies for ε small enough

Zνi
= (2πε)n/2

√
det�i

(
1 + O

(√
εω3(ε)

))
.(4.8)

Additionally, νi approximates μi in variance, that is,

varμi

(
dνi

dμi

)
= O

(√
εω3(ε)

)
.(4.9)

PROOF. The proof of (4.8) reduces to an estimate of a Gaussian integral on
the complementary domain Rn \Ei . We deduced this estimate already in the proof
of Lemma 3.13. By the same argument, we deduce

Zνi
= (2πε)n/2

√
det�i

(
1 + O

(√
εω3(ε)

))
.

Since μi comes from the restriction to an admissible partition according to Defi-
nition 2.1

Zμi
= ZiZμ exp

(
H(mi)

ε

)
(2.1)= Zνi

(
1 + O

(√
εω3(ε)

))
.(4.10)

The relative density of νi w.r.t. μi can be estimated by Taylor expanding H around
mi . By the definition of νi given in (4.4), we obtain that �−1

i [y − mi] − Hi(y) =
O(|y − mi |3). This observation together with (4.10) leads to

dνi

dμi

(y) = Zμi

Zνi

e−�−1
i [y−mi ]/(2ε)+Hi(y)/(2ε)1Ei

(y) = Zμi

Zνi

eO(|y−mi |3)/ε1Ei
(y)

= 1 + O
(√

εω3(ε)
)
.
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Now, the conclusion directly follows from the definition of the variance

varμi

(
dνi

dμi

)
=
∫
Ei

(
dνi

dμi

)2

dμi −
(∫ dνi

dμi

dμi

)2

=
∫
Ei

1 + O
(√

εω3(ε)
)

dμi −
(∫

Ei

dνi

)2

≤ 1 + O
(√

εω3(ε)
)− 1 = O

(√
εω3(ε)

)
. �

PROOF OF LEMMA 4.6. A combination of Lemma 4.7 and Lemma 4.8 to-
gether with the assumption �−1

i = O(ε) immediately reveals

(
Eνi

(f ) −Eμi
(f )

)2 (4.7), (4.9)≤ O
(
ε3/2ω3(ε)

) ∫ |∇f |2 dμi. �

4.3. Affine transport interpolation. The aim of this section is to estimate
(Eνi

(f ) − Eνj
(f ))2 with the help of the weighted transport distance Tμ(νi, νj )

introduced in Section 4.1 and is formulated in Lemma 4.11. For the proof of
Lemma 4.11, we construct an explicit transport interpolation between νi and νj

w.r.t. the measure μ. We start with a class of possible transport interpolations and
optimize the weighted transport cost in this class.

Let us state the main idea of this optimization procedure. Therefore, we recall
that the measures νi and νj are truncated Gaussians by the approximation we have
done in the previous Section 4.2. Hence, the measures νi and νj are characterized
by their mean and covariance matrix. We will choose the transport interpolation
(cf. Section 4.3.1) such that the push forward measures νs := (�s)�ν0 are again
truncated Gaussians. Hence, it is sufficient to optimize among all paths γ connect-
ing the minima mi and mj and all covariance matrices interpolating between �i

and �j .

4.3.1. Definition of regular affine transport interpolations. Let us state in
this section the class of transport interpolation among we want to optimize the
weighted transport cost.

DEFINITION 4.9 (Affine transport interpolations). Assume that the mea-
sures νi and νj are given by Lemma 4.6. In detail, νi = N (mi, ε

−1�i)�Ei and
νj = N (mj , ε

−1�j)�Ej are truncated Gaussians centered in mi and mj with
covariance matrices ε−1�i and ε−1�j . The restriction Ei and Ej are given for
l = 1, . . . ,M by the ellipsoids

El := {
x ∈ Rn :

∣∣�−1/2
l (x − ml)

∣∣≤ √
2εω(ε)

}
where ω(ε) ≥ | log ε|1/2.

A transport interpolation �s between νi and νj is called affine transport interpo-
lation if there exists:
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• an interpolation path (γs)s∈[0,T ] between mi = γ0 and mj = γT satisfying

γ = (γs)s∈[0,T ] ∈ C2([0, T ],Rn) and ∀s ∈ [0, T ] : γ̇s ∈ Sn−1,(4.11)

• an interpolation path (�s)s∈[0,T ] of covariance matrices between �i and �j

satisfying

� = (�s)s∈[0,T ] ∈ C2([0, T ],Rn×n
sym,+

)
, �0 = �i and �T = �j,

such that the transport interpolation (�s)s∈[0,T ] is given by

�s(x) = �1/2
s �

−1/2
0 (x − m0) + γs.(4.12)

Since the cost density A given by (4.3) is invariant under rescaling of time (cf.
Remark 4.4), one can always assume that the interpolation path γs is parameterized
by arc-length. Hence, the condition γ̇s ∈ Sn−1 [cf. (4.11)] is not restricting.

We want to emphasize that for an affine transport interpolation (�s)s∈[0,T ]
the push forward measure (�s)�ν0 = νs is again a truncated Gaussian N (γs,

ε−1�s)�Es , where Es is the support of νs being again an ellipsoid in Rn given
by

Es = {
x ∈ Rn :

∣∣�−1/2
s (x − γs)

∣∣≤ √
2εω(ε)

}
.(4.13)

Therewith, the partition sum of νs is given by [cf. (4.8)]

Zνs = (2πε)n/2
√

det�s

(
1 + O(

√
ε)
)
.(4.14)

By denoting σs = �
1/2
s and using the definition (4.12) of the affine transport inter-

polation (�s)s∈[0,T ], we arrive at the relations

�̇s(x) = σ̇sσ
−1
0 (x − m0) + γ̇s,

�−1
s (y) = σ0σ

−1
s (y − γs) + m0,

�̇s ◦ �−1
s (y) = σ̇sσ

−1
s (y − γs) + γ̇s .

Among all possible affine transport interpolations, we are considering only those
satisfying the following regularity assumption.

ASSUMPTION 4.10 (Regular affine transport interpolations). An affine trans-
port interpolation (γs,�s)s∈[0,T ] belongs to the class of regular affine transport
interpolations if the length T < T ∗ is bounded by some uniform T ∗ > 0 large
enough. Further, for a uniform constant cγ > 0 holds

inf
{
r(x, y, z) :x, y, z ∈ γ, x 
= y 
= z 
= x

}≥ cγ ,(4.15)

where r(x, y, z) denotes the radius of the unique circle through the three distinct
points x, y and z. Furthermore, there exists a uniform constant C� ≥ 1 for which

C−1
� Id ≤ �s ≤ C� Id and ‖�̇s‖ ≤ C�.(4.16)
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FIG. 3. Global radius of curvature.

The infimum in condition (4.15) is called global radius of curvature (cf. [20]).
It ensures that a small neighborhood of size cγ

2 around γ is not self-intersecting,
since the infimum can only be attained for the following three cases (cp. Figure 3):

(i) All three points in a minimizing sequence of (4.15) coalesce to a point at
which the radius of curvature is minimal.

(ii) Two points coalesce to a single point and the third converges to another
point, such that the both points are a pair of closest approach.

(iii) Two points coalesce to a single point and the third converges to the starting
or ending point of γ .

In the following calculations, there often occurs a multiplicative error of the
form 1 + O(

√
εω3(ε)). Therefore, let us introduce for convenience the notation

“≈” meaning “=” up to the multiplicative error 1 + O(
√

εω3(ε)). The symbols
“�” and “�” have the analogous meaning.

Now, we can formulate the key ingredient for the proof of Theorem 2.12,
namely the estimation of the weighted transport distance Tμ(νi, νj ).

LEMMA 4.11. Assume that νi and νj are given by Lemma 4.6. Then the
weighted transport distance Tμ(νi, νj ) can be estimated as

T 2
μ (νi, νj ) = inf

�s

∫ (∫ 1

0

∣∣�̇s ◦ �−1
s

∣∣dνs

dμ
ds

)2
dμ

≤ inf
�s

∫ (∫ 1

0

∣∣�̇s ◦ �−1
s

∣∣dνs

dμ
ds

)2

dμ

(4.17)

� Zμ

(2πε)n/2 2πε

(√|det(∇2H(si,j )|
|λ−(si,j )| + T (C�)(n−1)/2

√
2πε

e−ω2(ε)

)
× eH(si,j )/ε,

where the infimum over �s only considers regular affine transport interpolations
�s in the sense of Assumption 4.10.
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In particular, if we choose ω(ε) ≥ | log ε|1/2, which is enforced by Lemma 4.6,
we get the estimate

T 2
μ (νi, νj ) ≤ Zμ

(2πε)n/2

2πε
√

|det(∇2H(si,j )|
|λ−(si,j )| eH(si,j )/ε

(4.18)
× (

1 + O
(√

εω3(ε)
))

.

Before turning to the proof of Lemma 4.11, we want to anticipate the struc-
ture of the affine transport interpolation (γ,�) which realizes the desired estimate
(4.18): Having a closer look at the structure of the weighted transport distance
T 2

μ (νi, νj ), it becomes heuristically clear that the mass should be transported from
Ei to Ej over the saddle point si,j into the direction of the eigenvector to the neg-
ative eigenvalue λ−(si,j ) of ∇2H(si,j ). There, only the region around the saddle
gives the main contribution to the estimate (4.18). Then we only have one more
free parameter to choose for our affine transport interpolation (γ,�): It is the co-
variance structure �τ∗ of the interpolating truncated Gaussian measure ντ∗ at the
passage time τ ∗ at the saddle point si,j . In the proof of Lemma 4.11 below, we will
see by an optimization procedure that the best �τ∗ is given by �−1

τ∗ = ∇2H(si,j ),
restricted to the stable subspace ∇2H(si,j ).

The proof of Lemma 4.11 presents the core of the proof of the Eyring–Kramers
formulas and consists of three steps carried out in the following sections:

• In Section 4.3.2, we carry out some preparatory work: We introduce tube coor-
dinates on the support of the transport cost A given by (4.3) (cf. Lemma 4.12),
we deduce a pointwise estimate on the transport cost A and we give a rough a
priori estimate on the transport cost A.

• In Section 4.3.3, we split the transport cost into a transport cost around the sad-
dle and the complement. We also estimate the transport cost of the complement
yielding the second summand in the desired estimate (4.17).

• In Section 4.3.4, we finally deduce a sharp estimate of the transport cost around
the saddle yielding the first summand in the desired estimate (4.17).

4.3.2. Preparations and auxiliary estimates. The main reason for making the
regularity Assumption 4.10 on affine transport interpolations is that we can intro-
duce tube coordinates around the path γ as illustrated in Figure 4. In these coordi-
nates, the calculation of the cost density A given by (4.3) becomes a lot handier.

We start with defining the caps E−
0 and E+

T as

E−
0 := {

x ∈ E0 : 〈x − γ0, γ̇0〉 < 0
}

and E+
T := {

x ∈ ET : 〈x − γT , γ̇T 〉 > 0
}
.

The caps E−
0 and E+

T have no contribution to the total cost but unfortunately need
some special treatment. Further, we define the slices Vs with s ∈ [0, T ]

Vs = {
x ∈ span{γ̇s}⊥ :

∣∣�−1/2
s x

∣∣≤ √
2εω(ε)

}
.
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FIG. 4. The support of A in tube coordinates.

In spanVs , we can choose a basis e2
s , . . . , e

n
s smoothly depending on the parame-

ter s. In particular, there exists a family (Qs)s∈[0,T ] ∈ C2([0, T ], SO(n)) satisfying
the same regularity assumption as the family (�τ )τ∈[0,T ] such that

Qse
1 = γ̇s, Qse

i = ei
s for i = 2, . . . , n,(4.19)

where (e1, . . . , en) is the canonical basis of Rn.
Let use now define the tube E as

E = ⋃
s∈[0,T ]

(γs + Vs).

The support of the cost density A given by (4.3) is now given by

suppA = E−
0 ∪ E ∪ E+

T .(4.20)

By the definition (4.13) of Es and the uniform bound (4.16) on �s holds

diamVs ≤ 2
√

2εC�ω(ε).(4.21)

Therewith, we find

suppA ⊂ B2
√

2εC�ω(ε)

(
(γτ )τ∈[0,T ]

) := {
x ∈ Rn : |x − γτ | ≤ 2

√
2εC�ω(ε)

}
.

The assumption (4.13) ensures that B2
√

2εC�ω(ε)((γτ )τ∈[0,T ]) is not self-intersec-
ting for any ε small enough. The next lemma just states that by changing to tube
coordinates in E one can asymptotically neglect the Jacobian determinant detJ .

LEMMA 4.12 (Change of coordinates). The change of coordinates (τ, z) �→
x = γτ + zτ with zτ ∈ Vτ satisfies for any function ξ on E∫

E
ξ(x)dx ≈

∫ T

0

∫
Vτ

ξ(γτ + zτ )dzτ dτ.

PROOF. We use the representation of the tube coordinates via (4.19). There-
with, it holds that x = γτ + Qτz, where z ∈ {0} × Rn−1. Then the Jacobian J of
the coordinate change x �→ (τ,Qτz) is given by

J = (
γ̇τ + Q̇τ z, (Qτ )2, . . . , (Qτ )n

) ∈Rn×n,
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where (Qτ )i denotes the ith column of Qτ . By the definition (4.19) of Qτ fol-
lows γ̇τ = (Qτ )1. Hence, we have the representation J = Qτ + Q̇τ z ⊗ e1. The
determinant of J is then given by

det(Qτ + Q̇τ z ⊗ e1) = det(Qτ )︸ ︷︷ ︸
=1

det
(
Id+(Q�

τ Q̇τ z
)⊗ e1

)= 1 + (Q�
τ Q̇τ z

)
1.

By Assumption 4.10 holds ‖Q̇τ‖ ≤ C� implying (Q�
τ Q̇τ z)1,1 = O(z). Since

Qτz ∈ Vτ , we get O(z) = O(
√

εω(ε)) by (4.21). Hence, we get

detJ = 1 + O
(√

εω(ε)
)
,

which concludes the proof. �

An important tool is the following auxiliary estimate.

LEMMA 4.13 (Pointwise estimate of the cost-density A). For x ∈ suppA, we
define

τ = arg min
s∈[0,T ]

|x − γs | and zτ := x − γτ .(4.22)

Then the following estimate holds:

A(x) � (2πε)−(n−1)/2
√

det1,1
(
Q�

τ �̃−1
τ Qτ

)
e−�̃−1

τ [zτ ]/(2ε)

(4.23)
=: Pτe

−�̃−1
τ [zτ ]/(2ε),

where Qτ is defined in (4.19) and �̃−1
τ is given by

�̃−1
τ = �−1

τ − 1

�−1
τ [γ̇τ ]

�−1
τ γ̇τ ⊗ �−1

τ γ̇τ .(4.24)

Further, det1,1 A denotes the determinant of the matrix obtained from A removing
the first row and column.

REMARK 4.14. With a little bit of additionally work, one could show that
(4.23) holds with “≈” instead of “�.” It follows from (4.24) that the matrix �̃−1

τ is
positive definite. Hence, A is an Rn−1-dimensional Gaussian on the slice γτ + Vτ

up to approximation errors.

PROOF OF LEMMA 4.13. By the regularity Assumption 4.10 on the transport
interpolation, we find that for all x ∈ suppA holds uniformly

IT (x) := {s :Es � x} satisfies H1(IT (x)
)= O

(√
εω(ε)

)
.

This allows us to linearize the transport interpolation around τ given in (4.22). It
holds for s such that x ∈ Es

�−1
s [x − γs] = �−1

τ [γτ + zτ − γs] + O
(
ε3/2ω3(ε)

)
(4.25)

= �−1
τ

[
(τ − s)γ̇τ + zτ

]+ O
(
ε3/2ω3(ε)

)
.
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For similar reasons, we can linearize the determinant det�s and have det�s =
det�τ +O(

√
εω(ε)). Finally, we have the following bound on the transport speed:∣∣�̇s ◦ �−1

s (x)
∣∣1Es (x) = ∣∣σ̇sσ

−1
s (x − γs) + γ̇s

∣∣1Es (x)

≤ (∣∣σ̇sσ
−1
s (x − γs)

∣∣+ |γ̇s |)1Es (x)(4.26)

≤ (
C�|x − γs | + 1

)
1Es (x) = (

1 + O
(√

εω(ε)
))

1Es (x).

Let us first consider the case x ∈ E. We use (4.14), (4.25) and (4.26) to arrive with
x = γτ + zτ where zτ ∈ Vτ at

A(x) =
∫
IT (x)

∣∣�̇s ◦ �−1
s (x)

∣∣ 1

Zνs

exp
(
− 1

2ε
�−1

s [x − γs]
)
1Es (x)ds

≤ 1

(2πε)n/2

∫
IT (x)

1 + O(
√

εω(ε))√
det�s

exp
(
− 1

2ε
�−1

s [x − γs]
)

ds

� 1

(2πε)n/2
√

det�τ

∫
R

exp
(
− 1

2ε
�−1

τ

[
(τ − s)γ̇τ + zτ

])
ds

=
√

det�−1
τ

(2πε)n/2

√
2πε√

�−1
τ [γ̇τ ]

exp
(
− 1

2ε
�̃−1

τ [zτ ]
)(

1 + O
(√

εω3(ε)
))

,

where the last step follows by an application of a partial Gaussian integration (cf.
Lemma C.1). Finally, by using the relation (C.2), we get that

det�−1
τ

�−1
τ [γ̇τ ]

= det
1,1

(
Q�

τ �̃−1
τ Qτ

)
,

and conclude the hypothesis for this case.
Let us now consider the case x ∈ E−

0 ∪ E+
T . For convenience, we only consider

the case x ∈ E−
0 . By the definition of E−

0 holds τ = 0. The integration domain
IT (x) is now given by

IT (x) = [0, s∗) with s∗ = O
(√

εω(ε)
)
.(4.27)

Therewith, we can estimate A(x) in the same way as for x ∈ E and conclude the
proof. �

We only need one more ingredient for the proof of Lemma 4.11. It is an a priori
estimate on the cost density A.

LEMMA 4.15 (A priori estimates for the cost density A). For A, it holds:∫
A(x)dx � T and(4.28)

A(x) �
(

C�

2πε

)(n−1)/2
for x ∈ suppA.(4.29)
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PROOF. Let us first consider the estimate (4.28). It follows from the charac-
terization (4.20) of the support of A that∫

A(x)dx =
∫
E
A(x)dx +

∫
E−

0 ∪E+
T

A(x)dx.(4.30)

Now, we estimate the first term on the right-hand side of the last identity. Using the
change to tube coordinates of Lemma 4.12 and noting that the upper bound (4.23)
is a (n− 1)-dimensional Gaussian density on Vτ for τ ∈ [0, T ], we can easily infer
that ∫

E
A(x)dx � |γ | = T .

Let us turn to the second term on the right-hand side of (4.30). For convenience,
we only consider the integral w.r.t. the cap E−

0 . It follows from (4.26) and (4.27)
that ∫

E−
0

A(x)dx �
∫
E−

0

∫ 1

0
νs(x)ds dx =

∫ s∗

0

∫
E−

0

νs(x)dx ds

�
∫ s∗

0

∫
νs(x)dx ds = s∗ = O

(√
εω(ε)

)
,

which yields the desired statement (4.28).
Let us now consider the estimate (4.29). Note by Remark 4.14 the matrix �̃−1

τ

given by (4.24) is positive definite and the matrix we subtract is also positive defi-
nite. Therefore, it holds in the sense of quadratic forms

0 < �̃−1
τ = �−1

τ − 1

�−1
τ [γ̇τ ]

�−1
τ γ̇τ ⊗ �−1

τ γ̇τ ≤ �−1
τ .

Now, the uniform bound (4.16) yields√
det
1,1

(
Q�

τ �̃−1
τ Qτ

)≤ C
(n−1)/2
� .

Then the desired statement (4.29) follows directly from the estimate (4.23). �

4.3.3. Proof of Lemma 4.11: Reduction to neighborhood around the saddle.
Firstly, observe that from (4.29) follows the a priori estimate

A2(x)

μ(x)
�
(

C�

2πε

)n−1

Zμe1/εH(x).(4.31)

Hence, on an exponential scale, the leading order contribution to the cost comes
from neighborhoods of points where H(x) is large. Therefore, we want to make
the set, where H is comparable to its value at the optimal connecting saddle si,j ,
as small as possible. For this purpose, let us define the following set:

�γ,� := {
x ∈ suppA :H(x) ≥ H(si,j ) − εω2(ε)

}
.(4.32)
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Therewith, we obtain by denoting the complement �c
γ,� := suppA \ �γ,� the

splitting

T 2
μ (νi, νj ) ≤

∫
�γ,�

A2(x)

μ(x)
dx +

∫
�c

γ,�

A2(x)

μ(x)
dx.

The integral on �c
γ,� can be estimated with the a priori estimate (4.31) and

Lemma 4.15 as follows:∫
�c

γ,�

A2(x)

μ(x)
dx

(4.32)≤ ZμeH(si,j )/ε−ω2(ε)
∫
�c

γ,�

A2(x)dx

(4.29)
� ZμeH(si,j )/ε−ω2(ε)

(
C�

2πε

)(n−1)/2 ∫
A(x)dx(4.33)

(4.28)
� ZμeH(si,j )/ε−ω2(ε)

(
C�

2πε

)(n−1)/2

T .

We observe that estimate (4.33) is the second summand in the desired bound
(4.17).

4.3.4. Proof of Lemma 4.11: Cost estimate around the saddle. The aim of this
subsection is to deduce the estimate∫

�γ,�

A2(x)

μ(x)
dx � Zμ

(2πε)n/2 eH(si,j )/ε
2πε

√
|det(∇2H(si,j ))|
|λ−(si,j )| .(4.34)

Note that this estimate would yield the missing ingredient for the verification of
the desired estimate (4.17).

By the nondegeneracy Assumption 1.7, we can assume that ε is small enough
such that E−

0 ∪ E+
T ⊂ �c

γ,� . Hence, it follows that �γ,� ⊂ E. We claim that the
transport interpolation �s can be chosen such that there exists a connected subin-
terval IT ⊂ [0, T ] satisfying

�γ,� ⊂ ⋃
s∈IT

(Vs + γs) and H1(IT ) = O
(√

εω(ε)
)
.(4.35)

Indeed, the level set {x ∈ Rn :H(x) ≤ H(si,j ) − εω2(ε)} consists of at least two
connected components Mi and Mj such that mi ∈ Mi and mj ∈ Mj . Further, it
holds

dist(Mi,Mj) = inf
x∈Mi,y∈Mj

|x − y| = O
(√

εω(ε)
)
,

which follows from expanding H around si,j in direction of the eigenvector cor-
responding to the negative eigenvalue of ∇2H(si,j ). We can choose the path γ in
direction of this eigenvector in a neighborhood of size O(

√
εω(ε)) around si,j ,

which shows (4.35).
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Combining the covering (4.35) and Lemma 4.12 yields the estimate∫
�γ,�

A2(x)

μ(x)
dx �

∫
IT

∫
Vτ

A2(γτ + zτ )

μ(γτ + zτ )
dzτ dτ.(4.36)

Recalling the definition (4.19) of the family of rotations (Qτ )τ∈[0,T ], it holds that
zτ = Qτz with z ∈ {0} ×Rn−1. Hence, the following relation holds:∫

IT

∫
Vτ

A2(γτ + zτ )

μ(γτ + zτ )
dzτ dτ

(4.37)

=
∫
{0}×Rn−1

∫
IT

1Vτ (Qτ z)
A2(γτ + Qτz)

μ(γτ + Qτz)
dτ dz.

The next step is to rewrite H(γτ + Qτz). We assume, that γ actually passes the
saddle si,j at time τ ∗ ∈ (0, T ). Then, by the reason that |zτ | = O(

√
εω(ε)) for

zτ ∈ Vτ and the global nondegeneracy assumption (1.4), we can Taylor expand
H(γτ + zτ ) around si,j = γτ∗ for τ ∈ IT and zτ = Qτz ∈ Vτ . More precisely, we
get

H(γτ + Qτz) − H(si,j )

= 1
2∇2H(si,j )[γτ + Qτz − si,j ] + O

(|γτ + Qτz − si,j |3)
= 1

2∇2H(si,j )[γτ − γτ∗] + 1
2∇2H(si,j )[Qτz]

+ 〈Qτz,∇2H(si,j )(γτ − γτ∗)
〉+ O

(|γτ + Qτz − γτ∗ |3).
Now, further expanding γτ and Qτ in τ leads to

γτ = γτ∗ + γ̇τ∗
(
τ − τ ∗)+ O

(∣∣τ − τ ∗∣∣) and

Qτz = Qτ∗z + O
(∣∣τ − τ ∗∣∣|z|).

For the expansion of H , we arrive at the identity

H(γτ + Qτz) − H(si,j )

= 1
2∇2H(si,j )

[
γ̇τ∗
(
τ − τ ∗)+ O

(∣∣τ − τ ∗∣∣2)]
+ 1

2∇2H(si,j )
[
Qτ∗z + O

(∣∣τ − τ ∗∣∣|z|)]
+ 〈

Qτ∗z + O
(∣∣τ − τ ∗∣∣|z|),∇2H(si,j )

(
γ̇τ∗
(
τ − τ ∗)+ O

(∣∣τ − τ ∗∣∣2))〉
+ O

(|γτ + Qτz − γτ∗ |3)
= 1

2∇2H(si,j )[γ̇τ∗](τ − τ ∗)2 + 1
2∇2H(si,j )[Qτ∗z]

+ 〈
Qτ∗z,∇2H(si,j )γ̇τ∗

〉(
τ − τ ∗)

+ O
(∣∣τ − τ ∗∣∣3, |z|∣∣τ − τ ∗∣∣2, |z|2∣∣τ − τ ∗∣∣, |z|3).
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Using |τ − τ ∗| = O(
√

εω(ε)) and |z| = O(
√

εω(ε)), we obtain for the error the
estimate

O
(∣∣τ − τ ∗∣∣3, |z|∣∣τ − τ ∗∣∣2, |z|2∣∣τ − τ ∗∣∣, |z|3)

= O
(
ε3/2ω3(ε)

)
.

The term 〈Qτ∗z,∇2H(si,j )γ̇τ∗〉(τ −τ ∗) in the expansion of H has no sign and has
to vanish. This is only the case, if we choose γ̇τ∗ as an eigenvector of ∇2H(si,j )

to the negative eigenvalue λ−(si,j ), because then〈
Qτ∗z,∇2H(si,j )γ̇τ∗

〉(
τ − τ ∗)= λ−(si,j )〈Qτ∗z, γ̇τ∗〉 = 0.

Additionally, by this choice of γ̇τ∗ the quadratic form ∇2H(si,j )[γ̇τ∗] evaluates to

∇2H(si,j )[γ̇τ∗] = λ−(si,j )|γ̇τ∗ |2 = λ−(si,j ).

Therefore, we deduced the desired rewriting of H(γτ + Qτz) as

H(γτ + Qτz) = H(si,j ) − ∣∣λ−(si,j )
∣∣(τ − τ ∗)2

(4.38)
+ 1

2∇2H(si,j )[Qτ∗z] + O
(
ε3/2ω3(ε)

)
.

From the regularity assumptions on the transport interpolation, we can deduce that

�̃−1
τ [Qτz] = �̃−1

τ∗ [Qτz] + O
(∣∣τ − τ ∗∣∣|z|2)

= �̃−1
τ∗
[
Qτ∗z + O

(∣∣τ − τ ∗∣∣|z|)]+ O
(∣∣τ − τ ∗∣∣|z|2)

= �̃−1
τ∗ [Qτ∗z] + O

(
ε3/2ω3(ε)

)
.

Then it follows easily from the definition (4.23) of Pτ that

Pτ ≈ Pτ∗ for τ ∈ IT .(4.39)

Applying the cost estimate (4.23) of Lemma 4.13, the representation (4.38) and
the identity (4.39) yields the estimate for (γτ + Qτz) ∈ �γ,�

A2(γτ + Qτz)

μ(γτ + Qτz)
(4.40)

� ZμeH(si,j )/εP 2
τ∗e−(2�̃−1

τ∗ −∇2H(si,j ))[Qτ∗z]/(2ε)−|λ−(si,j )|(τ−τ∗)2/(2ε).

The exponentials are densities of two Gaussian, if we put an additional constraint
on the transport interpolation. Namely, we postulate

2�̃−1
τ∗ − ∇2H(si,j ) > 0 on spanVτ∗
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in the sense of quadratic forms. It holds that spanVτ∗ = Qτ∗({0} × Rn−1) =
span{γ̇τ∗}⊥ is stable subspace of ∇2H(si,j ). With these preliminary considera-
tions, we finally are able to estimate the right-hand side of (4.37) as follows:∫

{0}×Rn−1

∫
IT

1Vτ (Qτ z)
A2(γτ + Qτz)

μ(γτ + Qτz)
dτ dz

(4.40)
� ZμeH(si,j )/ε

∫
{0}×Rn−1

∫
IT

P 2
τ∗

× e−(2�̃−1
τ∗ −∇2H(si,j ))[Qτ∗z]/(2ε)−|λ−(si,j )|(τ−τ∗)2/(2ε) dτ dz

(4.41)

≤ ZμeH(si,j )/ε

√
2πε√

|λ−(si,j )|
∫
{0}×Rn−1

P 2
τ∗e−(2�̃−1

τ∗ −∇2H(si,j ))[Qτ∗z]/(2ε) dz

= ZμeH(si,j )/ε

√
2πε√

|λ−(si,j )|
P 2

τ∗
(2πε)(n−1)/2√

det1,1(Q
�
τ∗(2�̃−1

τ∗ − ∇2H(si,j ))Qτ∗)

= Zμ

(2πε)n/2 eH(si,j )/ε 2πε√
|λ−(si,j )|

det1,1(Q
�
τ∗�̃−1

τ∗ Qτ∗)√
det1,1(Q

�
τ∗(2�̃−1

τ∗ − ∇2H(si,j ))Qτ∗)︸ ︷︷ ︸
to optimize!

.

The final step consists of optimizing the choice of �̃τ∗ . Let us use the notation
A = Q�

τ∗�̃−1
τ∗ Qτ∗ and B = Q�

τ∗H(si,j )Qτ∗ . Then the minimization problem has
the structure

inf
A∈Rn×n

sym,+

{
det1,1 A√

det1,1(2A − B)
: 2A − B > 0 on {0} ×Rn−1

}
.(4.42)

In the Appendix, we show in Lemma C.2 that the optimal value of (4.42) is attained
at �̃−1

τ∗ = ∇2H(si,j ) restricted to Vτ∗ . The optimal value is given by

det1,1 A√
det1,1(2A − B)

=
√

det
1,1

(
Q�

τ∗∇2H(si,j )Qτ∗
)
.

Because Vτ∗ is the stable subspace of ∇2H(si,j ), it holds

det
1,1

(
Q�

τ∗∇2H(si,j )Q
�
τ∗
)= det(∇2H(si,j ))

λ−(si,j )
= |det(∇2H(si,j ))|

|λ−(si,j )| .(4.43)

The final step is a combination of (4.36), (4.37), (4.41) and (4.43) to obtain the
desired estimate (4.34). This together with (4.33) concludes (4.17) of Lemma 4.11.
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4.3.5. Proof of Lemma 4.11: Total error estimate. For the verification of
Lemma 4.11, it is only left to deduce the estimate (4.18). For that purpose, we
analyze the error terms in the estimate (4.17) that is,

T 2
μ (νi, νj )

� Zμ

(2πε)n/2 eH(si,j )/ε2πε

(√|det(∇2H(si,j ))|
|λ−(si,j )|︸ ︷︷ ︸

=O(1)

+ T (C�)(n−1)/2
√

2πε
e−ω2(ε)

︸ ︷︷ ︸
=O(ε−1/2e−ω2(ε))

)
.

By the choice of ω(ε) ≥ | log ε|1/2, enforced by Lemma 4.6, we see that

O
(
ε−1/2e−ω2(ε))= O(

√
ε).

Recalling, that “�” means “≤” up to a multiplicative error of order 1 +
O(

√
εω3(ε)) we get the desired estimate (4.18)

T 2
μ (νi, νj ) � Zμ

(2πε)n/2 eH(si,j )/ε2πε

√
|det(∇2H(si,j ))|

|λ−(si,j )|
(
1 + O

(√
εω3(ε)

))
.

4.4. Proof of Theorem 2.12: Conclusion of the mean-difference estimate. With
the help of Lemma 4.6 and Lemma 4.11 the proof of Theorem 2.12 is straightfor-
ward. We can estimate the mean-differences w.r.t. to the measure μi by introducing
the means w.r.t. the approximations νi and νj(

Eμi
(f ) −Eμj

(f )
)2

= (
Eμi

(f ) −Eνi
(f ) +Eνi

(f ) −Eνj
(f ) +Eνj

(f ) −Eμj
(f )

)2
.

We apply the Young inequality with a weight that is motivated by the final total
multiplicative error term R(ε) in Theorem 2.12. More precisely,(

Eμi
(f ) −Eμj

(f )
)2

≤ (1 + ε1/2ω3(ε)
)(
Eνi

(f ) −Eνj
(f )

)2
+ 2

(
1 + ε−1/2ω−3(ε)

)((
Eμi

(f ) −Eνi
(f )

)2 + (Eμj
(f ) −Eνj

(f )
)2)

.

Then the estimate (4.6) of Lemma 4.6 yields(
Eμi

(f ) −Eμj
(f )

)2 ≤ (1 + √
εω3(ε)

)(
Eνi

(f ) −Eνj
(f )

)2
(4.44)

+ O(ε)

∫
|∇f |2 dμ,

which justifies the statement, that the approximation only leads to higher-order
error terms in ε. An application of (4.1) to the estimate (4.44) transfers the mean-
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difference to the Dirichlet form with the help of the weighted transport distance(
Eμi

(f ) −Eμj
(f )

)2 ≤ ((1 + √
εω3(ε)

)
T 2

μ (νi, νj ) + O(ε)
) ∫ |∇f |2 dμ.

The weighted transport distance Tμ(νi, νj ) is dominating the above estimate. Fi-
nally, we arrive at the estimate(

Eμi
(f ) −Eμj

(f )
)2 � T 2

μ (νi, νj )

∫
|∇f |2 dμ.

Now, the Theorem 2.12 follows directly from an application of the estimate (4.18)
of Lemma 4.11 and setting ω(ε) = | log ε|1/2.

APPENDIX A: PROPERTIES OF THE LOGARITHMIC MEAN �

In this part of the Appendix, we collect some properties of the logarithmic mean
�(·, ·). A more complete study can be found in [11].

Let us first recall the definition of �(·, ·) :R+ ×R+ →R+

�(a,b) =
∫ 1

0
asb1−s ds =

⎧⎨⎩
a − b

loga − logb
, a 
= b,

a, a = b.
(A.1)

The equation (A.1) justifies the statement, that �(·, ·) is a mean, since one imme-
diately recovers the simple bounds min{a, b} ≤ �(a,b) ≤ max{a, b}. Moreover,
two other immediate properties are:

• �(·, ·) is symmetric
• �(·, ·) is homogeneous of degree one, that is, for �(λa,λb) = λ�(a, b) for

λ > 0.

The derivatives of �(·, ·) are given by straight-forward calculus

∂a�(a, b) = 1 − �(a,b)/a

loga − logb
> 0 and ∂b�(a, b) = 1 − �(a,b)/b

logb − loga
> 0.

Hence, �(·, ·) is strictly monotone increasing in both arguments.
The following result is almost classical and proven for instance in [11], Theo-

rem 1, [35], Appendix A, and [7].

LEMMA A.1. The logarithmic mean can be bounded below by the geometric
mean and above by the arithmetic mean

√
ab ≤ �(a,b) ≤ a + b

2
,(A.2)

with equality if and only if a = b.

The bounds in (A.2) are good, if a is of the same order as b, whereas the fol-
lowing bound is particularly good if a

b
becomes very small or very large.
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LEMMA A.2. It holds for p ∈ (0,1), the following bound:

�(p,1 − p)

p(1 − p)
< min

{
1

p log(1/p)
,

1

(1 − p) log(1/(1 − p))

}
.(A.3)

PROOF. Let us first consider the case 0 < p < 1
2 . Then it is enough to show

that

�(p,1 − p)

p(1 − p)
p log

1

p
= (1 − 2p) log(1/p)

(1 − p) log((1 − p)/p)

!
< 1.(A.4)

This follows easily from the following lower bound on the denominator

(1 − p) log
1 − p

p
= (1 − 2p) log

1

p
+ p log

1

p
− (1 − p) log

1

1 − p

> (1 − 2p) log
1

p
,

since p log 1
p

− (1 − p) log 1
1−p

> 0 for 0 < p < 1
2 . The case 1

2 < p < 1 follows
by symmetry under the variable change p �→ 1 − p. It remains to check the case
p = 1

2 . The left-hand side of (A.4) evaluates for p = 1
2 to

lim
p→1/2

�(p,1 − p)

p(1 − p)
p log

1

p
= log 2 < 1. �

The logarithmic mean also occurs in the following optimization problem, which
appears in the proof of the optimality of the Eyring–Kramers formula for the log-
arithmic Sobolev constant in one dimension (cf. Section 2.4).

LEMMA A.3. For p ∈ (0,1) and t ∈ (0,1), we define the function hp(t) ac-
cording to

hp(t) = (
√

t/p − √
(1 − t)/(1 − p))2

t log(t/p) + (1 − t) log((1 − t)/(1 − p))
.(A.5)

Then it holds

min
t∈(0,1)

hp(t) = �(p,1 − p)

p(1 − p)
.(A.6)

The minimum in (A.6) is attained for t = 1 − p.

PROOF. Let us introduce the function fp : (0,1) → R and gp : (0,1) → R

given by the nominator and denominator of hp in (A.5), namely

fp(t) :=
(√

t

p
−
√

1 − t

1 − p

)2

and gp(t) := t log
t

p
+ (1 − t) log

1 − t

1 − p
.
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It is easy to verify, that the following relations for the derivatives hold true:

f ′
p(t) =

(√
t

p
−
√

1 − t

1 − p

)(
1√
tp

+ 1√
(1 − p)(1 − t)

)
,

g′
p(t) = log

t

p
− log

1 − t

1 − p
,(A.7)

f ′′
p (t) =

√
(1 − t)t

(1 − p)p

1

2(1 − t)2t2 > 0, g′′
p(t) = 1

(1 − t)t
> 0.

Hence, both functions fp an gp are strictly convex and have a unique minimum
for t = p, where they are both zero. The derivative of the quotient of fp and gp

has the form

h′
p(t) :=

(
fp(t)

gp(t)

)′
= 1

g2
p(t)

(
f ′

p(t)gp(t) − fp(t)g′
p(t)

)
.(A.8)

The representation (A.7) for g′
p leads to

h′
p(t)g2

p(t) = (
tf ′

p(t) − fp(t)
)

log
t

p
+ (

(1 − t)f ′
p(t) + fp(t)

)
log

1 − t

1 − p
.(A.9)

Now, we can use (A.7) for f ′
p to find

tf ′
p(t) − fp(t)

=
(√

t

p
−
√

1 − t

1 − p

)(√
t

p
+ t√

(1 − p)(1 − t)
−
√

t

p
+
√

1 − t

1 − p

)
(A.10)

= 1√
(1 − p)(1 − t)

(√
t

p
−
√

1 − t

1 − p

)
and likewise

(1 − t)f ′
p(t) + fp(t) = 1√

tp

(√
t

p
−
√

1 − t

1 − p

)
.(A.11)

Using (A.10) and (A.11) in (A.9) leads by (A.8) to

h′
p(t) = 1

g2
p(t)

(√
t

p
−
√

1 − t

1 − p

)
︸ ︷︷ ︸

=:vp(t)

(
log(t/p)√

(1 − p)(1 − t)
+ log((1 − t)/(1 − p))√

tp

)
︸ ︷︷ ︸

=:wp(t)

.

Since gp(p) = g′
p(p) = 0 and g′′

p(p) > 0, the function 1
g2
p(t)

has a pole of order 4

in t = p. Moreover, the function vp(t) has a simple zero in t = p. We have to do
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some more investigations for the function wp(t). First, we observe that wp(t) can
be rewritten as

wp(t) = t − p√
(1 − t)t (1 − p)p︸ ︷︷ ︸

=:ŵp(t)

×
(√

tp log(t/p)

(t − p)
−

√
(1 − t)(1 − p) log((1 − t)/(1 − p))

(p − t)

)
︸ ︷︷ ︸

:=w̃p(t)

.

The function w̃p(t) can be expressed in terms of the logarithmic mean

w̃p(t) =
√

tp

�(t,p)
−

√
(1 − t)(1 − p)

�(1 − t,1 − p)
(A.12)

and is measuring the defect in the geometric-logarithmic mean inequality (A.2).
Let us switch to exponential variables and set

x(t) := log

√
t

p
and y(t) := log

√
1 − t

1 − p
.

Note that either x(t) ≤ 0 ≤ y(t) for t ≤ p or y(t) ≤ 0 ≤ x(t) for t ≥ 0 with equality
only for t = p. Therewith, (A.12) can be rewritten as

w̃p(t) = x(t)

sinh(x(t))
− y(t)

sinh(y(t))
.

By making use of the fact, that the function x �→ x
sinhx

is symmetric, strictly mono-
tone decreasing in |x| and has a unique maximum in 1, we can conclude that

w̃p(t) = 0 if and only if x(t) = −y(t).

The solutions to the equation x(t) = −y(t) are given for t ∈ {p,1 − p}. Let us
first consider the case t = p, then x(t) = y(t) = 0 and wp(p) is a zero of order 2,
since the function x �→ x

sinh(x)
is strictly concave for t = 0. Now, we can go back

to h′
p(t) and argue with the representation

lim
t→p

h′
p(t) = lim

t→p

vp(t)ŵp(t)w̃p(t)

g2
p(t)

!
= 0.

This is a consequence of counting the zeros for t = p in the nominator and denom-
inator according to their order; for the denominator g2

p(p) is a zero of order 4. For
the nominator, we have vp(p) is a zero of order 1, ŵp(p) is a zero of order 1 and
w̃p(p) is a zero of order 2, which leads in total again to a zero of order 4 exactly
compensating the zero of the denominator.
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The other case is t = 1 − p. Let us evaluate hp(1 − p), which is given by

hp(1 − p) = (p − (1 − p))2/(p(1 − p))

(1 − p) log((1 − p)/p) + p log(p/(1 − p))

= 1

p(1 − p)

(p − (1 − p))2

(p − (1 − p)) log(p/(1 − p))
= �(p,1 − p)

p(1 − p)
.

Since t = 1 − p is the only critical point of hp(t) inside (0,1), it remains to check
whether the boundary values are larger than hp(1 − p). They are given by

lim
t→0

hp(t) = 1

(1 − p) log(1/(1 − p))
and lim

t→1
hp(t) = 1

p log(1/p)
.

We observe that the demanded inequality to be in a global minimum

hp(1 − p) = �(p,1 − p)

p(1 − p)

!
< min

{
1

p log(1/p)
,

1

(1 − p) log(1/(1 − p))

}
is just (A.3) of Lemma A.2. �

APPENDIX B: INTEGRATION BY PARTS ON BASINS OF ATTRACTION

The goal of this Appendix is to proof the integration by parts formula, which is
an ingredient of the Lyapunov approach in Section 3.

THEOREM B.1 (Integration by parts). Let H ∈ C3(Rn,R) be a Morse func-
tion (cf. Definition 1.3) with compact sublevel sets and let � be the basin of attrac-
tion associated to a local minimum of H (cf. Definition B.7), then it holds

∀f,g ∈ H 1(μ|�) with ∇g ‖ ∇H on ∂� :
∫
�

f (−Lg)dμ = ε

∫
�
〈∇f,∇g〉dμ,

where ∇g ‖ ∇H means |∇g(x) · ∇H | = |∇g(x)||∇H(x)| for Hn−1-a.e. x ∈ ∂�.

REMARK B.2. The property of H possessing compact sublevel sets is called
proper. This gives enough compactness, that is, the Palais–Smale condition [29],
Definition 6.2.1, to apply several results from Morse theory and dynamical sys-
tems. Moreover, if H satisfies Assumption (1.4), then H is proper.

B.1. Properties of gradient flows.

DEFINITION B.3 (Gradient flow). Let φt(x) be the trajectory associated to the
negative gradient flow of H started in x, that is,

∂tφt = −∇H(φt) and φ0(x) = x ∈ Rn.
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LEMMA B.4 (Properties of gradient flow trajectories).

(i) For each x, the trajectory t �→ φt(x) has a maximal interval of definition
of the form (−αx,∞) for αx ∈ (−∞,0) ∪ {−∞}.

(ii) For each x: limt→∞ φt(x) =: φ∞(x) ∈ S .
(iii) Stability on finite time intervals, that is, for any T > 0 holds if xn → x also

φT (xn) → φT (x).

PROOF. Since H is locally Lipschitz, the trajectory φt (x) has a maximal inter-
val of definition 0 ∈ (αx,βx) ∪ {±∞} by the Picard–Lindelöf theorem. Moreover,
since

∂tH(xt ) = −∣∣∇H(xt )
∣∣2 = −|ẋt |2 ≤ 0(B.1)

the trajectory {φt(x)}t≥0 is confined to the sublevel set {y :H(y) ≤ H(x)}, which
is compact, since H is proper. On this sublevel set, H is globally Lipschitz and the
limit limt→∞ φt(x) =: φ∞(x) exists proving (i). In addition, this implies∫ ∞

0

∣∣∇H(φt)
∣∣2 dt

(B.1)= −
∫ ∞

0
∂tH(φt )dt = H(x) − H

(
φ∞(x)

)
< ∞.

Therefore, it follows φ∞(x) ∈ S := {x ∈ Rn :∇H(x) = 0} is a critical point prov-
ing (ii). The stability follows from the estimate∣∣φT (xn) − φT (x)

∣∣= ∣∣∣∣xn +
∫ T

0
∂tφt (xn)dt − x −

∫ T

0
∂tφt (x)

∣∣∣∣
(B.2)

≤ |xn − x| +
∫ T

0

∣∣∇H
(
φt (xn)

)− ∇H
(
φt(x)

)∣∣dt.

All φt(xn) are confined to a common compact set by properness of H and in par-
ticular ∇H is Lipschitz continuous in this compact set. This leads for some K > 0
and all t ∈ (0, T ) to the estimate∣∣∇H

(
φt (xn)

)− ∇H
(
φt(x)

)∣∣≤ K
∣∣φt(xn) − φt(x)

∣∣.
Using this estimate in (B.2), we can apply the Gronwall inequality to obtain
|φT (xn) − φT (x)| ≤ |xn − x|(1 + eKT ), which proves (iii). �

We want to define a global flow w.r.t. ∇H . Since, ∇H can have superlinear
growth and is in particular not globally Lipschitz continuous, we use the following
reparameterized version for a global flow.

THEOREM B.5 (Global flow by reparameterization [34], Theorem 4.4). A
global flow of diffeomorphism φ̃t :Rn →Rn w.r.t. H is defined by

∂t φ̃t (x) = F
(
φ̃t (x)

) := − ∇H(φ̃t (x))

1 + |∇H(φ̃t (x))| and φ̃0(x) = x.(B.3)
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This flow is equivalent to the negative gradient flow of H upon a reparameteri-
zation of time. The vector field F is globally Lipschitz and bounded. It defines a
global flow on Rn, that is, φ̃t+s = φ̃t ◦ φ̃s for all t, s ∈ R.

COROLLARY B.6. Each point x ∈ Rn belongs to exactly one trajectory t →
φt(x).

PROOF. We apply [29], Corollary 1.9.1, to the global flow φ̃t and by Theo-
rem B.5 translate the result back to φt . �

B.2. The stable manifold.

DEFINITION B.7 (Stable manifold). To each critical point s ∈ S , the stable
manifold is defined by

Ws(s) :=
{
x ∈ Rn : lim

t→∞φt(x) = s
}
.

Moreover, we call the dimension k ∈ {0, . . . , n} of the unstable subspace of
∇2H(s) the index of the saddle point s. If m is a local minimum of H , that is,
a critical point of index 0, we call Ws(m) the basin of attraction for m.

Lemma B.4(ii) and Corollary B.6 ensure the stable manifold to be well defined
and immediately provide the following.

COROLLARY B.8 (Partition of state space). Let S be all critical points of H ,
then Rn is the disjoint union of all stable manifolds denoted by

Rn := ⋃·
s∈S

Ws(s).

THEOREM B.9 (Local stable manifold theorem [29], Theorem 6.3.1). Let s ∈
S and Es(s) be the stable subspace of ∇2H(s), that is, ∇2H(s)|Es has a positive
spectrum. Then there exists a neighborhoods U, Ũ of s, such that Ws(s) ∩ U is
a C1-graph over (s + Es(s)) ∩ Ũ . Especially, the dimension of Ws(s) ∩ U and
Es(s) are equal to n − k, where k is the index of s.

The local result can be extended by the reparameterized flow to the global man-
ifold theorem.

THEOREM B.10 (Global stable manifold theorem [29], Corollary 6.3.1). The
stable manifolds Ws(s) for s ∈ S of the flow associated to F (B.3) are immersed
C1-manifolds of dimension n − k, where k is the index of s.

In the present case of a gradient flow, the result can be strengthened to the
following.
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THEOREM B.11 (Global stable manifold theorem for gradient systems [29],
Corollary 6.4.1). The stable manifolds Ws(s) for s ∈ S of the gradient flow as-
sociated to H are embedded C1-submanifolds of dimension n − k, where k is the
index of s.

PROOF. We have to modify the proof of [29], Corollary 6.3.1, since ∇H can
have superlinear growth. Instead, considering the gradient flow w.r.t. H , we con-
sider the equivalent flow φ̃t of Theorem B.5. We have to observe two additional
facts, which we postpone to the end of the proof.

(a) The flow has no nonconstant homoclinic orbits, that is, nonconstant orbits
with limt→−∞ φ̃t (x) = limt→∞ φ̃t (x) (cp. [29], Lemma 6.4.3).

(b) For each x, holds |∇H(φ̃t (x))| → 0 as t → ∞ and either |∇H(φ̃t (x))| → 0
or H(φ̃t (x)) → ∞ as t → −∞ (cp. [29], Lemma 6.4.4).

This allows us to complete the proof by first applying Theorem B.10 to F(x) =
−∇H(x)/(1 + |∇H(x)|). Every point x ∈ Rn is contained in a unique trajectory
φt(x) by Corollary B.6. However, a trajectory is typical not compact. In (b) we
show that limit points in Rn are critical points of H . The local situation around
critical points is given by the local stable manifold theorem B.9, which provides
a local chart around the critical point. Selfintersection of trajectory is excluded by
the observation in (a). Hence, the immersion of Theorem B.10 is an embedding.

We still have to show (a) and (b):
Ad (a): The energy also decreases w.r.t. to the reparameterized flow

∂tH
(
φ̃t (x)

)= −∇H · ∂t φ̃t (x) = − |∇H(φ̃t (x))|2
1 + |∇H(φ̃t (x))| ≤ 0.(B.4)

Hence, for a trajectory either holds |∇H | = 0 or |∇H | > 0 for all t , which gives
(a).

Ad (b): Integrating the identity (B.4), we obtain for t2 > t1

H
(
φ̃t1(x)

)− H
(
φ̃t2(x)

)= ∫ t2

t1

|∇H(φ̃t (x))|2
1 + |∇H(φ̃t (x))| dt ≥

∫ t2

t1

∣∣∇H
(
φ̃t (x)

)∣∣dt.

Since H is bounded from below, we get that H(φ̃∞(x)) > −∞. Hence,

H
(
φ̃t1(x)

)− H
(
φ̃t2(x)

)
< ∞

for all t2 > t1 and we immediately deduce from (B.4) that φ̃∞(x) ∈ S showing
the first part of (b). If H(φ̃−∞(x)) < ∞, then by the same argument φ−∞(x) ∈ S .
Hence, we have shown the dichotomy (b). �
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B.3. The boundary of the basin of attraction.

LEMMA B.12. The set {Ws(m)}m∈M is a partition of Rn upon Lebesgue null
sets, denoted by

Rn = ⊎
m∈M

Ws(m).(B.5)

Moreover, it holds ⋃
m∈M

∂Ws(m) = ⋃·
y∈S\M

Ws(y).(B.6)

PROOF. For (B.5), we observe that Ws(y) for y ∈ S \ M are Lebesgue null
sets, since they are (n − k)-dimensional C1-submanifolds for 1 ≤ k ≤ n (cf. The-
orem B.11).

Theorem B.11 proves in particular, that for each m ∈M the embedded subman-
ifold Ws(m) is open in Rn, hence ∂Ws(m) ∩ Ws(m) = ∅. Therewith, the second
statement (B.6) follows from Corollary B.8. �

THEOREM B.13 (The boundary of the basin of attraction). Let m ∈ M be a
local minimum of H . There exists a set Sm ⊂ S \M of k-saddles with k ≥ 1 such
that

∂Ws(m) = ⋃·
y∈Sm

Ws(y).

PROOF. We define a critical point y ∈ S to be in Sm if for each open neigh-
borhood U(y) holds U(y) ∩ Ws(m) 
= ∅. From B.6 follows that y ∈ Sm can-
not be another local minimum and hence Sm ⊂ S \ M. Now, we take xn →
x ∈ ∂Ws(m). From (B.6) follows that x ∈ Ws(y) for some y ∈ S \ M. We
have to prove that y ∈ Sm. There exists an open neighborhood U(x) such that
xn ∈ U(x) for n > N . Then for any open neighborhood U(y) of y exists T > 0
such that φT (x) ∈ U(y). By existence of the flow φt for positive time, it fol-
lows hat φT (U(x)) ∩ U(y) =: U(φT (x)) is an open neighborhood of φT (x).
By stability of the flow on finite time intervals [cf. Lemma B.4(iii)], it follows
φT (xn) → φT (x), hence φT (xn) ∈ U(φT (x)) for n large enough, which shows
that Ws(m) ∩ U(φT (x)) 
= ∅ and finally y ∈ Sm. �

PROOF OF THEOREM B.1. Let m be a local minimum of H . By Theorem B.13
the boundary of Ws(m) is the union of C1-submanifolds. The relevant submani-
folds for integration, are the (n − 1)-dimensional ones. By Theorem B.11, these
(n− 1)-dimensional submanifolds correspond to stable manifolds of saddle points
of index 1, denoted by S1. Hence, for Hn−1-a.e. x ∈ ∂Ws(m) exists a 1-saddle
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y ∈ Sm ∩ S1 such that x ∈ Ws(y). Therefore, the normal on Ws(m) exists Hn−1-
a.e., which gives enough regularity to integrate for f,g ∈ H 1(μ|�) by parts∫

�
f (−Lg)dμ = ε

∫
Ws(m)

〈∇f,∇g〉dμ − ε
∑

y∈Sm∩S1

∫
Ws(y)

f ∇g · nHn−1(dμ).

By the assumption ∇g ‖ ∇H , it is enough to show that ∇H(x) · n = 0 for Hn−1-
a.e. x ∈ ∂Ws(m). This is proven by contradiction for x ∈ ∂Ws(m). Assume that
x /∈ S , that is, ∇H(x) 
= 0 and ∇H(x) · n 
= 0. Then for some ε > 0 there exists
t∗ ∈ (−ε, ε) such that φt∗(x) ∈ Ws(m). By definition of Ws(m) and global exis-
tence of the trajectory {φt(x)}t≥t∗ from Lemma B.4(ii) follows x ∈ Ws(m), which
contradicts (B.6) and Corollary B.8. �

APPENDIX C: AUXILIARY RESULTS FROM SECTION 4

C.1. Partial Gaussian integrals. This section is devoted to proof the repre-
sentation for partial or incomplete Gaussian integrals. Lemma (C.1) is an ingredi-
ent to evaluate the weighted transport cost in Section 4.3.

LEMMA C.1 (Partial Gaussian integral). Let �−1 ∈ Rn×n
sym,+ be a symmetric

positive definite matrix and let η ∈ Sn−1 be a unit vector. Therewith, {rη + z∗}r∈R
is for z∗ ∈Rn with 〈η, z∗〉 = 0 an affine subspace of Rn. The integral of a centered
Gaussian w.r.t. to this subspace evaluates to∫

R
exp

(
−1

2
�−1[rη + z∗])dr =

√
2π√

�−1[η]
exp

(−�̃−1[z∗]),
with �̃−1 = �−1 − �−1η ⊗ �−1η

�−1[η] .

PROOF. To evaluate this integral on an one-dimensional subspace of Rn, we
have to expand the quadratic form �−1[rη + z∗] and arrive at the relation∫

R
exp

(
−1

2
�−1[rη + z∗])dr

= exp
(
−1

2
�−1[z∗])∫

R
exp

(
−r2

2
�−1[η] + r

〈
η,�−1z∗〉)dr

= exp
(
−1

2
�−1[z∗]) √

2π√
�−1[η]

exp
(〈η,�−1z∗〉2

2�−1[η]
)

=
√

2π√
�−1[η]

exp
(
−1

2

(
�−1 − �−1η ⊗ �−1η

�−1[η]
)[

z∗]),

which concludes the hypothesis. �
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C.2. Subdeterminants, adjugates and inverses. Let A ∈ Rn×n
sym,+, then de-

fine for η ∈ Sn−1 the matrix

Ã := A − Aη ⊗ Aη

A[η] .(C.1)

The matrix Ã has at least rank n− 1, since we subtracted from the positive definite
matrix A a rank-1 matrix. Further, from the representation, it is immediate that Ã

has rank n − 1 if and only if η is an eigenvector of A. In this case, kerA = spanη.
It immediately follows Ã > 0 on V := span{η}⊥, which is the (n−1)-dimensional
subspace perpendicular to η. Then for a matrix A ∈ Rn×n

sym,+ we want to calculate
the determinant of A restricted to this subspace V . This determinant is obtained
by first choosing Q ∈ SOn such that Q({0} ×Rn−1) = V and then evaluating the
determinant of the minor consisting of the (n− 1)× (n− 1) lower right submatrix
of Q�AQ denoted by det1,1(Q

�AQ). Hence, we have

det
1,1

(
Q�AQ

)
with Q ∈ SO(n) :Q�η = e1 = (1,0, . . . ,0)�.

Since V = span{η}⊥, it follows that the first column of Q is given by η and we can
decompose Q�AQ into

Q�AQ =
(

A[η] Q̂�Aη

Q̂�Aη� Q̂�AQ

)
,

where for a matrix M , M̂ is the lower right (n − 1) × (n − 1) submatrix of M and
for a vector v, v̂ the (n − 1) lower subvector of v. Therewith, we find a similarity
transformation which applied to Q�AQ results in

detA = detQ�AQ = det

⎛⎝( A[η] Q̂�Aη

Q̂�Aη� Q̂�AQ

)⎛⎝1 −Q̂�Aη

A[η]
0 Idn−1

⎞⎠⎞⎠

= det

⎛⎝ A[η] 0

Q̂�Aη� Q̂�AQ − Âη ⊗ Âη

A[η]

⎞⎠
= A[η]det

1,1

(
Q�AQ − Q�Aη ⊗ Q�Aη

A[η]
)
.

The determinant of the minor is given by

det
1,1

(
Q�AQ − Q�Aη ⊗ Q�Aη

A[η]
)

= det
1,1

(
Q�

(
A − Aη ⊗ Aη

A[η]
)
Q

)
.

Hence, by the definition (C.1) of Ã and the subdeterminant, we found the identity

detA = A[η]det
1,1

(
Q�ÃQ

)
.(C.2)
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C.3. A matrix optimization.

LEMMA C.2. Let B ∈ Rn×n
sym,+, then it holds

inf
A∈Rn×n

sym,+

{
detA√

det(2A − B)
: 2A > B

}
= √

detB

and for the optimal A holds A = B .

PROOF. We note that

detA√
det(2A − B)

= 1√
det(A−1)det(2 Id−A−1/2BA−1/2)

.

Therewith, it is enough to maximize the radical of the root. Therefore, we sub-
stitute A−1/2 = CB−1/2 with C > 0 not necessarily symmetric and observe that
A−1/2 = B−1/2C�. We obtain

det
(
A−1)det

(
2 Id−A−1/2BA−1/2)= det

(
B−1)det

(
CC�)det

(
2 Id−CC�).

Note that CC� ∈ Rn×n
sym,+ and it is enough to calculate

sup
C̃∈Rn×n

sym,+

{
det(C̃)det(2 Id−C̃) : C̃ < 2 Id

}
.

From the constraint 0 < C̃ < 2 Id, we can write C̃ = Id+D, where D is symmetric
and satisfies − Id < D < Id in the sense of quadratic forms. From here, we finally
observe

det(C̃)det(2 Id−C̃) = det(Id+D)det(Id−D) = det
(
Id−D2).

Since D2 ≥ 0, we find the optimal C̃ given by Id, which yields that A = B . �

C.4. Jacobi matrices. For a smooth function f :Rn → Rn denotes Df (x)

the Jacobi matrix of the partial derivatives of f in x ∈ Rn given by

Df (x) :=
(

dfi

dxj

(x)

)n

i,j=1
.

LEMMA C.3. Let A,B ∈ Rn×n and f :Rn → Rn smooth, then it holds

∇∣∣Ax + f (Bx)
∣∣= (

A + Df (x)B
)� Ax + f (Bx)

|Ax + f (Bx)| ,(C.3)

D
f (x)

|f (x)| = 1

|f (x)|
(

Id− f (x)

|f (x)| ⊗ f (x)

|f (x)|
)
Df (x).(C.4)
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PROOF. Let us first check the relation (C.3) and calculate the partial derivative

d|Ax + f (Bx)|
dxi

= 1

2|Ax + f (Bx)|
∑
j

d

dxi

(∑
k

Ajkxk + fj (Bx)

)2

.(C.5)

The inner derivative of (C.5) evaluates to

d

dxi

(∑
k

Ajkxk + fj (Bx)

)2

(C.6)

= 2
(∑

k

Ajkxk + fj (Bx)

)(
Aji + dfj (Bx)

dxi

)
.

The derivative of fj (Bx) becomes

dfj (Bx)

dxi

= dfj (
∑

k B1kxk, . . . ,
∑

k Bnkxk)

dxi
(C.7)

=
n∑

k=1

∂kfj (Bx)Bki = (
Df (Bx)B

)
ji .

Hence, a combination of (C.5), (C.6) and (C.7) leads to
d|Ax + f (Bx)|

dxi

= 1

|Ax + f (Bx)|
∑
j

(
(Ax)j + fj (Bx)

)(
Aji

(
Df (Bx)B

)
ji

)
=∑

j

(
A + Df (Bx)B

)�
ij

(Ax + f (Bx))j

|Ax + f (Bx)| ,

which shows (C.3). For the equation (C.4), let us first consider the Jacobian of the
function F(x) = x

|x| , which is given by

DF(x) = 1

|x|
(

Id− x

|x| ⊗ x

|x|
)
.

Then, by the chain rule, we observe that

D
f (x)

|f (x)| = D(F ◦ f )(x) = DF
(
f (x)

)
Df (x),

which is just (C.4). �
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