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We consider comparisons of statistical learning algorithms using multi-
ple data sets, via leave-one-in cross-study validation: each of the algorithms is
trained on one data set; the resulting model is then validated on each remain-
ing data set. This poses two statistical challenges that need to be addressed
simultaneously. The first is the assessment of study heterogeneity, with the
aim of identifying a subset of studies within which algorithm comparisons
can be reliably carried out. The second is the comparison of algorithms using
the ensemble of data sets. We address both problems by integrating cluster-
ing and model comparison. We formulate a Bayesian model for the array of
cross-study validation statistics, which defines clusters of studies with sim-
ilar properties and provides the basis for meaningful algorithm comparison
in the presence of study heterogeneity. We illustrate our approach through
simulations involving studies with varying severity of systematic errors, and
in the context of medical prognosis for patients diagnosed with cancer, using
high-throughput measurements of the transcriptional activity of the tumor’s
genes.

1. Introduction. Predictive models, in most cases, need to be validated using
data from independent studies. In many disciplines it is common for research com-
munities to generate multiple data sets that address similar prediction problems.
The availability of multiple data sets makes it possible to systematically compare
the performance of alternative statistical learning algorithms, and to characterize
their strengths and limitations in the context of a specific area of application.

Here, the term learning algorithm is used for any procedure, say, linear regres-
sion or nearest neighbor classification, that produces prediction rules. We consider
the task of assessing learning algorithms, via what we call leave-one-in cross-study
validation: the algorithm is trained on one data set; the resulting prediction model
is then validated on each remaining data set, and a validation performance statis-
tic (such as the classification error rate or the mean squared error of prediction)
is recorded. By repeating this over all possible training data sets one generates a
square array Z of validation statistics. Computation of leave-one-in matrices Z is,
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in most cases, straightforward. Our goal is to develop a statistical framework for
the analysis of leave-one-in matrices.

Our motivation comes from earlier experience in clinical genomics [Garrett-
Mayer et al. (2008)] where the goal is to predict individual outcomes based on
high-dimensional features of the genome. Leave-one-in cross-study validation is
well suited to this context for two reasons. First, while different studies address
the same prediction question, they may do so using different sampling designs
or technological platforms, generating heterogeneity that makes it difficult to di-
rectly combine all data. Second, it is not uncommon for studies to be affected by
unknown artifactual variation, such as the so-called batch effects, making it impor-
tant to use methodologies that allow identification and separate handling of studies
that show poor concordance with the majority of the rest [Baggerly, Coombes and
Neeley (2008)].

Our perspective is therefore that cross-study validation should simultaneously
be concerned about two questions: the identification of heterogeneity and outliers
among studies, and the comparison of alternative algorithms, done in a way that
accounts for heterogeneity across studies. We achieve this by modeling directly
each of the algorithm-specific Z matrices. Variability in the validation measures
contained in a Z matrix may arise from several sources, including differences in
study design, study populations and measurement technologies, as well as acciden-
tal causes that may have affected data quality in individual studies. To illustrate,
imagine the outcome of interest is determined by a different set of predictors in
different geographical areas. A collection of studies may include two major clus-
ters of studies, each confined to a given area. Performance evaluations are best
handled by considering cross-study validation within each of these clusters, as a
good algorithm should not be required to generate models that predict well across
geographical areas when trained on data from a single area. Similar considerations
apply to clusters defined by technological platforms.

We propose a two-stage procedure. The first stage addresses sampling variation
in the Z array via Bootstrap. The second stage infers a latent partition of the studies
defined by a Dirichlet process. Studies will be assigned to the same subset when the
corresponding vectors of validation statistics are similar. Conversely, if the Z array
provides evidence of heterogeneity between two studies, then these will tend to be
assigned to separate clusters. Our model achieves two goals: (i) to cluster studies
using Z, generating hypotheses on the sources of heterogeneity; and (ii) to provide
cluster-based summaries of algorithm performance, allowing for comparisons that
account for heterogeneity and possible systematic artifacts in the study pool.

Clustering based on the Z matrix is perhaps most attractive in the context of pre-
diction problems with a large number of predictors. High dimensionality makes it
difficult to spot the important differences between studies and to understand the
factors hindering cross-study replicability. In this scenario, it is important to pro-
vide a solid evaluation of prediction strategies using distinct training and validation
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data sets. This evaluation should be rooted in the context of a specific application.
The Z matrix helps in this: its strengths and limitations arise from reducing the
problem to a single figure of merit for prediction performance. It is simple to in-
terpret and easy to visualize. Also, it is not affected by subtle issues such as over-
fitting, batch effects and selection of favorable training/testing combinations. The
goal of our Bayesian procedure is to retain these advantages of the Z matrix, to
provide an accurate uncertainty analysis and to suggest clusters for further inquiry.

While the motivation and examples for our methodology come from clinical
genomics, the only requirement for its application is the availability of independent
studies using similar approaches to measure predictors.

2. Bayesian cross-study validation analysis.

2.1. The leave-one-in validation performance matrix Z. We consider a set of
S studies, indexed by s and including ns samples, indexed by i. For study s, we
have measurements on outcomes Ys,i and predictors Xs,i . Our focus is the two-
dimensional array of validation statistics Z = (Zs,v; s, v = 1, . . . , S, s �= v). We
use the term algorithm to refer to a training methodology (such as CART or ridge
regression) and the term model to refer to a specific prediction rule, resulting from
using the algorithm on a training data set. For a given algorithm, the statistic Zs,v

measures the predictive performance of the model trained on data set s, when
validated on a different data set v. Typical definitions of Zs,v with binary out-
comes include the classification error rate and, if the model generates risk scores
for binary outcomes, the area under the operating characteristic curve (AUC). Val-
idation statistics for time-to-event outcomes include versions of the concordance
index [Uno et al. (2011) and references therein]. Our approach is based on the Z

matrix and does not include direct modeling of the data at the individual level.
This choice is motivated by the goal of obtaining easily interpretable results with
modest computational effort.

In addition to Zs,v , with s �= v, one can also consider the variables Zs,s , ob-
tained by standard cross-validation, iteratively splitting the data set into training
and validation components. Here we do not use the variables Zs,s to avoid sum-
mary statistics that might be inflated by systematic errors or batch effects.

2.2. Relation to Bayesian meta-analysis. There are important points of con-
tact, as well as differences, between our approach and existing ideas in Bayesian
meta-analysis.

Bayesian modeling allows one to easily account for study heterogeneity. Several
approaches are based on hierarchical models [Berry (1990)]. For example, Warn,
Thompson and Spiegelhalter (2002) consider S = 31 randomized trials for assess-
ing the analgesic Ibuprofen. The data for each study consist of sample size, number
of individuals randomized to placebo and number of events (pain relief) for each
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arm. Treatment assignments Xs,i and outcomes Ys,i are binary. They specify a hi-
erarchical model with latent parameters θs describing success rates in each study
and an unknown distribution F describing variability in the study specific param-

eters, that is, θs |F i.i.d.∼ F . The assumption that, conditionally on these parameters,
individual observations within each study are independent completes the model.

Heterogeneity of study-specific parameters is often better understood via clus-
tering, as we will propose here. Berry and Christensen (1979) introduced the idea
of using a Dirichlet prior for F . A practical advantage of the Dirichlet process in
this context is the resulting discreteness of F . This implies that when (θ1, . . . , θS)

are sampled either from the prior or from the posterior, one observes clusters
of studies: for every pair (s, v) the event θs = θv has positive probability. Thus,
one obtains a posteriori the distribution of a latent random partition of the stud-
ies {1, . . . , S} dictated by ties in the values of the parameters (θ1, . . . , θS). While
evidence synthesis may average over the distribution of this partition, cluster anal-
ysis can be performed by selecting a single representative partition. Model-based
clustering and the use of a latent partition are effective for dealing with questions
and hypotheses such as (i) the response probabilities are the same across studies,
(ii) there exists a large group of studies sharing identical response probabilities and
(iii) there are studies that should be considered outliers.

2.3. Two-stage analysis. Our validation analysis uses a summary of the data,
consisting of (i) the Z array and (ii) a parametric estimate d̂ of the unknown
joint distribution d of the zero mean random variables Zs,v − ζs,v , where s, v =
1, . . . , S, s �= v, and ζs,v is the expected value of Zs,v . The expected values
ζs,v = EPs,Pv (Zs,v) refer to the true unknown distributions of the data Ps and Pv

within studies s and v. These are joint distributions including both predictors and
outcomes, and might vary across studies.

Our approach is in two stages. The first stage estimates the dispersion of the
Zs,v random variables. The second stage is based on a Bayesian model, specified
using a Dirichlet prior and the dispersion of the Z’s estimated in the first stage.

We propose a simple hierarchical model for Z that balances (i) the need, as
in any validation study, of easily interpretable summary statistics that are free of
questionable assumptions and (ii) the goal of detecting clusters of studies and pos-
sible outliers. We chose a prior model for Z with a minimal level of complexity in
order to avoid difficulties in the interpretation of the resulting estimates. Similar to
Bayesian meta-analysis, we use latent parameters for the unknown means of our
Z random variables. The posterior distribution of these parameters, as discussed
in Section 3, allows clustering of the studies. The goal of the model is to cluster
studies with similar data quality, as well as studies sharing similarities in their de-
signs and implementations. We will first provide a description of our model and
clustering approach in Section 3, assuming identical sample sizes n1 = · · · = nS

across studies, and then remove this constraint.
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One of the advantages of modeling the Z array is the possibility of estimating,
for any pair of studies (s, v), the distribution of Zs,v should both studies be per-
formed a second time. Estimates can be derived using the hypothesis that data are
newly generated under identical technical conditions and that the populations from
which samples arise remain identical. When the estimates of ζs,v are combined
with the inferred partition of the studies {1, . . . , S}, these contribute to interpreta-
tion of the observed values in our Z array.

Stage 1. The first stage estimates d , with the goal of obtaining an approximate
Bayesian analysis for the observed Z array. The approximation consists of plug-
ging an estimate of d into the Bayesian model (Stage 2) to bypass computationally
intensive joint modeling of S data sets. A practical method is the Bootstrap, either
in its frequentist [Efron (1979)] or Bayesian [Rubin (1981)] versions. The result-
ing distribution is representative of the sampling variability of the Z statistics. The
observed variations across the Z’s are due to both sampling variability and also to
possible differences across the study-specific distributions P1, . . . ,PS .

The only result from the first stage of our procedure that we use in the analysis
of the leave-one-in array is the estimate d̂ . Alternative estimators of d could in
principle be used. Here we use the bootstrap because of its broad applicability. It
can be applied to Z matrices generated by a spectrum of training methods ranging
from popular machine learning procedures to algorithms highly tailored to specific
application areas. Also, the bootstrap can estimate the variability of a number of
possible validation summaries, such as the misclassification error rate or the mean
squared error, that can be used to define Z arrays. Finally, the bootstrap is appli-
cable wether or not there exists a probability model consistent with the training
algorithm.

The Bootstrap [Efron (1979)] for estimating d includes (i) the computation
of the empirical distributions P̂1, . . . , P̂S , which (ii) are then iteratively used for
obtaining S independent Bootstrap samples, one for each study, (X∗

1,i , Y
∗
1,i; i ≤

n1), . . . , (X
∗
S,i, Y

∗
S,i; i ≤ nS), with (X∗

s,i , Y
∗
s,i) ∼ P̂s . Here we avoid the use of an

additional index enumerating Bootstrap iterations. At each iteration the validation
statistics are computed on the basis of (X∗

1,i , Y
∗
1,i; i ≤ n1), . . . , (X

∗
S,i, Y

∗
S,i; i ≤ nS),

that is, the Z array is resampled. At each cycle we compute a prediction model us-
ing (X∗

s,i , Y
∗
s,i; i ≤ ns) and then validate it on (X∗

v,i , Y
∗
v,i; i ≤ nv), s �= v, to obtain

Z∗
s,v . Finally, (iii) we estimate d by centering the empirical distribution of the iter-

atively resampled arrays. The Bootstrap estimate of d , as the number of iterations
increases, converges to the nonparametric maximum likelihood estimate of d . In
other words, by resampling we approximate the mapping of P̂1, . . . , P̂S to the dis-
tribution of (Zs,v − ζs,v; s, v = 1, . . . , S, s �= v) under the assumption that Ps = P̂s

for every s ≤ S.
When d is estimated by the Bayesian Bootstrap, the flow of the procedure re-

mains identical, with the exception that the initial components P̂1, . . . , P̂S are re-
placed by random distributions P ∗

1 , . . . ,P ∗
S . The random distributions P ∗

1 , . . . ,P ∗
S
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are defined by P ∗
s ∝ ∑

i≤ns
Ws,iI(Xs,i ,Ys,i ), where Ws,i , i ≤ ns , are independent

exponential variables with a fixed scale parameter. The Bayesian Bootstrap aver-
ages over iteratively generated random distributions P ∗

1 , . . . ,P ∗
S . In this case, the

resampling scheme allows us to obtain the Bayesian estimate of the Z’s disper-
sion under Dirichlet process priors with infinitesimal concentration parameters for
P1, . . . ,Ps .

Stage 2. We specify a Bayesian model for the validation statistics Z. To sim-
plify posterior computations, we plug in a zero mean multivariate normal distribu-
tion d̂ into our model by matching the covariance matrix estimate from the Boot-
strap algorithm in the previous paragraph. This choice, in several cases, is justified
by convergence of the actual joint distribution of the validation statistics Z, for
large sample sizes, to a Normal density. We will provide examples of such conver-
gence.

We introduce an exchangeable random partition � = {C1, . . . ,Cm} of {1, . . . ,

S}, where Cj , j = 1, . . . ,m are groups of studies. The number of clusters m is a
random variable. The random partition � of {1, . . . , S} is specified by S exchange-
able variables sampled from a discrete random distribution; the Dirichlet process
is an example. We refer to Lee et al. (2013) for an overview on exchangeable
partitions. We use C(s) for indicating the subset of the partition � that includes
study s. Also, we use p� to denote the law of the random partition. We state the
probability model for Z; it includes a latent partition and a set of random variables
(μi,j ; i, j = 1, . . .) which play a role similar to the atom locations in a Dirichlet
process mixture:

μ = (μi,j ; i, j = 1, . . .)
i.i.d.∼ pμ,

� ∼ p�,
(2.1)

ε = (εs,v; s, v = 1, . . . , S, s �= v) ∼ d̂ and

Zs,v = μC(s),C(v) + εs,v, s, v = 1, . . . , S, s �= v,

where the components μ,� and ε are a priori independent and pμ is a distribution
on the real line.

The probability that the conditional expected values of a pair (s, v) of Z

columns (or rows) are identical is strictly positive:

p

(⋂
r≤S

{μC(s),C(r) = μC(v),C(r),μC(r),C(s) = μC(r),C(v)}
)

> 0.

Also, the distribution of the array (μC(s),C(v); s, v = 1, . . . , S, s �= v) is invariant
with respect to any permutation σ = (σ1, . . . , σS) of {1, . . . , S},

(μC(s),C(v); s, v = 1, . . . , S)
d= (μC(σs),C(σv); s, v = 1, . . . , S).
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The model can handle an arbitrary number of additional studies (S + 1,

S + 2, . . .). Therefore, one can perform predictive inference by considering a fu-
ture (S + 1)th study and obtain, conditionally on the observed Z statistics, the
distribution of (μC(S+1),C(s),μC(s),C(S+1); s = 1, . . . , S).

Arrays with exchangeable rows and columns have been studied in a series of pa-
pers beginning with the contributions of Aldous (1981) and Hoover (1982). These
authors proved de Finetti-type representations for these processes. Random arrays
invariant in distribution to any simultaneous permutation σ of rows and columns,
such as (μC(s),C(v); s, v ≥ 1), are called jointly exchangeable. This type of arrays
arises, for instance, when relationships between individuals are represented using
two-way tables [Roy and Teh (2009)]. In our study, these representation theorems
provide a formal justification to use latent cluster membership variables for mod-
eling exchangeable arrays.

2.4. Asymptotic normality of validation arrays. The proposed model for Z is
closely connected with Dirichlet process mixtures. Consider, for example, S stud-
ies designed for estimating θs = E(Ys,i). A possible approach for exploring the
hypothesis of multiple clusters defined by studies with identical means θs consists
in combining approximate likelihood functions N(Ȳs = ∑

i Ys,i/ns; θs, σ̂
2
s /

√
ns)

with a random distribution F for the means, that is, θs |F i.i.d.∼ F . See Burr and Doss
(2005) for a detailed study of this approach, and Dersimonian and Laird (1986) for
a frequentist perspective. The approximation, from a Bayesian standpoint, con-

sists in using Normal kernels with scale parameters
√∑

i (Ys,i − Ȳs)2/ns , and is
supported by asymptotic arguments. Similarly, we combine an exchangeable ran-
dom partition with a multivariate Normal kernel d̂ justified, in several cases, by
asymptotic arguments.

A smooth estimate of d is computationally convenient and circumvents artifacts
that arise with a discrete one, including the possibility of posterior distributions as-
signing exactly null probability to most of the � configurations. One can identify
several cases in which the leave-one-in array is asymptotically Normal. Below
we briefly discuss one case where Z converges to a multivariate Normal distribu-
tion on a linear subspace of RS×(S−1). We discuss results for logistic regression,
Poisson regression, proportional hazards models and support vector machine pro-
cedures in the supplementary material [Trippa et al. (2015)].

Consider the linear model Ys |Xs ∼ N(Xsβs, Iσ 2
s ), with (Ys,Xs) = (Ys,i,Xs,i;

i ≤ ns), least squares estimates β̂s and mean squared errors (MSE) of prediction

Zs,v = ‖Yv − Xvβ̂s‖2

nv

.

Here, and in all the examples in the Supplementary Material, we let all sam-
ple sizes grow at the same rate, ns ≈ csn1, s = 2, . . . , S, and fix c2, . . . , cS .
Independence of ‖Yv − Xvβ̂v‖2 and (Xv, β̂v) implies, under mild assumptions
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on the Xs,i distributions, asymptotic normality. First, n
−1/2
v (‖Yv − Xvβ̂v‖2 −

nvσ
2
v ) → N(0,2σ 2

v ). Next, to obtain Zs,v , we need to add to the in-sample mean
squared error n−1

v ‖Yv − Xvβ̂v‖2 a second term, n−1
v [‖Xv(βv − βs)‖2 + 2(δv −

δs)XvXv(βv − βs) + ‖Xv(δv − δs)‖2], with δv = (β̂v − βv). It can be shown
that n

−1/2
v (δv − δs)[XvXv(βv − βs) − E(XvXv(βv − βs))] → 0 and n

−1/2
v (δv −

δs)XvXv(δv − δs) → 0. Finally, both n
−1/2
v (δv − δs)E(XvXv(βv − βs)) and

n
−1/2
v (βv −βs)(XvXv −E(XvXv))(βv −βs) converge to normal densities. Asymp-

totic joint normality for Z follows from the asymptotic independence of δv and
n

−1/2
v (XvXv).

3. Cluster-based validation statistics. The procedure we propose generates
a posterior distribution p(�|Z) for the unknown partition � of our S studies. The
tuning of the distribution p� and approaches for selecting the prior model are
discussed in the supplementary material [Trippa et al. (2015)]. A representative
partition summarizes the posterior distribution. We select an estimate �̂ that mini-
mizes the expectation of a loss function l(�̂,�), that is, �̂ = arg minE(l(·,�)|Z).
The partition �̂ is a posterior point estimate. Quintana and Iglesias (2003) give a
discussion on the decision theoretic paradigm applied to random partitions. Sev-
eral loss functions l(�̂,�) have been proposed; see, for example, Denœud and
Guénoche (2006).

We use the easily interpretable maximum transfer metric; see Charon et al.
(2006) for a recent contribution. This metric l(�1,�2) is defined as the minimum
number of elementary corrections necessary to match the partitions �1 and �2;
an elementary correction consists of moving a unit to a different (possibly empty)
subset. If we consider, for example, �1 = ({1,2}, {3,4}) and �2 = ({1,4}, {2,3}),
then l(�1,�2) = 2, and a possible chain of corrections is ({1,2}, {3,4}) →
({1,2,3}, {4}) → ({1,3}, {2,4}).

Our procedure tends to assign studies to separate clusters when they differ on
aspects that affect the validation statistics Z. The dissimilarity captured by the
clustering method might be due to different measurement techniques, different
predictors distributions or other factors varying across studies. Interpretation of
the inferred partition requires subsequent analyses to identify the primary causes
of heterogeneity, such as data quality or experimental designs. The results can
then inform the construction of models trained on multiple data sets. If, for in-
stance, heterogeneity is driven by different distributions of relevant predictors, but
the covariates effects on the outcome are consistent across studies, then it might
be appropriate to combine the available data sets. In contrast, if heterogeneity is
driven by measurement errors or batch effects, additional efforts may focus on data
normalization steps.

We can now introduce the concept of clustering-based validation performance
measure, by which we mean summary statistics aimed at assessing cross-study
prediction taking into account study heterogeneity and within-cluster similarities.
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Recall that model 2.1 formalizes the identity between the conditional expected
values of Zs,v and Zs′,v′ when study s clusters together with s ′ and v clusters
with v′. For example, we may be interested in the performance measure obtained
when one trains on any of the studies in the cluster of study s and validates in
any of the studies in the cluster of study v, that is, μC(s),C(v). The latent variable
C(s) indicates the cluster that includes s and μC(s),C(v) can be interpreted as the
expectation of Zs,v assuming that studies s and v are repeated de novo. A point
estimate E(μC(s),C(v)|Z) can be obtained by averaging E(μC(s),C(v)|�,Z) with
respect to the posterior distribution of the partition �. Similarly, one may derive
interval estimates.

We can also estimate the validation performance that one would obtain from
training in a study from the set C(s), and validating in a future (S + 1)th study,
by using μC(s),C(S+1). In particular, the joint posterior distribution of μC(s),C(S+1)

and μC(v),C(S+1), with s, v ≤ S, can be used for comparing studies s and v.
Let B be a subset of studies in {1, . . . , S}. We extend the definition of the val-

idation statistic Zs,v to handle the case where a model is trained on the combi-
nation of the data from all the studies in B , and then validated on study v. We
denote the resulting validation statistic by ZB,v . If B includes v, then v is not
used to train the model, and ZB,v is redefined to be the same as ZB\v,v , where
B \ v = {s ≤ S : s ∈ B and s �= v}. We also use B(s) ⊂ {1, . . . , S} to denote the
studies within the same � latent cluster of s, that is, B(s) = {v ≤ S :C(s) = C(v)}.

Clustering has the goal of identifying homogeneous groups of studies with sim-
ilar sampling distributions. When this works, it is natural to train models by com-
bining the studies in a cluster. However, the figure of merit used for the Z summary,
not unlike a loss function, implies adopting a specific one-dimensional perspective
in looking at the data. It is possible, for example, that two studies with different co-
variate distributions might be clustered together, or two studies which only differ
in design, but not in the populations, may be allocated to separate clusters.

Clustering can be used to estimate the performance obtained when validating
in study s after training on studies in B(s), that is, using only data sets similar
to s. This task reduces to estimating ZB(s),s . The function B → ZB,s , over the
collection of {1, . . . , S} subsets, can be directly computed using our S data sets
and is not related with the Bayesian model, but ZB(s),s , the value of this function
at B(s), is estimated because B(s) is an unknown latent component of the model.
This approach is only useful when there is no strong evidence that s belongs to
a singleton cluster. We thus estimate ZB(s),s by using the posterior distribution
of the partition � and conditioning on the event B(s) �= {s}. We report both the
estimate of ZB(s),s obtained by averaging over � configurations with B(s) �= {s}
and the posterior probability of the conditioning event B(s) �= {s}. Alternatively,
we can generate a plug-in estimate Z

B̂(s),s
by focusing on B̂(s), the cluster in �̂

that includes the sth study.
When we estimate ZB(s),s the goal is to evaluate a model trained by a homo-

geneous set of studies B(s). Our clustering procedure uses validation statistics to
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detect study heterogeneity, and therefore the resulting partition is representative
of differences between studies captured by the Z validation summaries. Studies
included in the same cluster could still differ in important ways. We consider this
point further in the discussion.

For comparing studies, we also need to be concerned about the potential for
variations of clustering-based summaries, such as ZB(s),s , driven by different total
sample sizes within each cluster. Under the assumption of identical sample sizes
n1 = · · · = nS , which will be later removed, one can expect that the value ZB(s),s

improves with the number of studies in B(s). We thus define the sample size ad-
justed validation statistics Z

j
B,s . The definition of these statistics is analogous to

that of ZB,s . We randomly select j distinct samples from the ensemble of stud-
ies B . We train a model on these j samples and validate it on data set s to generate
a performance measure, say, an AUC. We iterate this procedure, keeping fixed both
B and s; Z

j
B,s is the average of the accuracy measures obtained during these iter-

ations. In this case, if B includes s, then the units in s are not selected for training
the model. The index j can vary from a minimal size of interest up to the overall
number of samples in B \ s.

Our interest is in the map j → Z
j
B(s),s ; recall that B(s) is unknown but can be

estimated using the posterior distribution of �. The statistics Z
j
B(s),s have an in-

terpretation similar to ZB(s),s ; moreover, one can contrast the estimates of Z
j
B(s),s

and Z
j
B(v),v to compare the sth study to the vth study. We can estimate Z

j
B(s),s

plugging in the point estimate �̂ or directly using the posterior distribution of �.

If we follow the first approach, the estimator is Z
j

B̂(s),s
, while the second approach

averages with respect to the posterior distribution of B(s). In both cases we es-
timate, assuming

∑
B(s) nv ≥ j + ns , the mean value of the validation statistic

when the algorithm is trained by j data points from the unknown subset B(s) \ s

and then validated on s. In the second case, we report the posterior probability of∑
B(s) nv ≥ j + ns , and compute our estimate conditionally on this event because

Z
j
B(s),s is well defined only when B(s) includes at least j + ns units.

4. Simulation study.

4.1. Scenario 1. The goal of this simulation study is to illustrate the extent to
which our model-based approach contributes to the interpretation of cross-study
validation statistics, beyond what can be learned from direct visualization of Z.
As this relies on estimating the unknown partition � and the latent μC(s),C(v)

variables, we also discuss our model’s ability to reconstruct these.
The scenario is defined by 9 studies grouped into three clusters, C1 = {1,2,3},

C2 = {4,5,6} and C3 = {7,8,9}, which differ in the amount of measurement er-
ror in the predictors. All studies have a sample size of 300. For subject i from
study s we have a binary outcome Ys,i and 50 candidate predictor variables Xs,i .
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In group C1, the 50 covariates are simulated from a multivariate Normal distribu-
tion with null mean; all variances are equal to 17. The dependence between Xs,i

and Ys,i , s = 1,2,3, is specified by a logistic regression function; 10 regression
coefficients are equal to 0.1 and 40 are equal to 0. In group C2 we add independent
measurement errors with null mean and standard deviation equal to 14 to 50% of
the covariates. In C3 we add independent measurement errors with mean 0.33 and
standard deviation 8 to all covariates.

For each study we obtain a prediction model by fitting a logistic function us-
ing ridge regression; we tune the penalization parameter with standard cross-
validation. We then assess model performance using the mean absolute error
(MAE) of prediction, that is, Zs,v = n−1

v

∑
i ‖Yv,i − logit−1(β̂o

s + β̂sXv,i)‖, where
(β̂o

s , β̂s) denote the regression coefficients estimated using only data from study s.

FIG. 1. Leave-one-in array, with rows corresponding to training data sets and columns to valida-
tion data sets. Panel (A) shows the leave-one-in array Z for a single simulation. Panel (B) shows
the true expected values ζs,v of Zs,v . Panel (C) shows the Bayesian estimates E(μC(s),C(v)|Z). The
diagonals in panels (A), (B) and (C) are blank. Panel (D) considers 500 simulations and plots the
empirical estimates Zs,v against the Bayesian estimates E(μC(s),C(v)|Z). Panel (D) considers a
training data set s in C1 and a validation data set v in C2. The green lines correspond to the true
expected value ζs,v . Panel (D) also reports the MSE ratio contrasting the Bayesian estimates with the
empirical estimates. Panel (E) contrasts the Bayesian estimates of ζs,v with the empirical estimates
by displaying the MAEs. Panel (E) considers all combinations with s and v in C1,C2 or C3.
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Figure 1(A) shows the Z array for a single simulation, with rows correspond-
ing to training data sets and columns corresponding to validation data sets. This
array shows that sampling variability accounts for a relevant part of the observed
differences across validation summaries, and the resulting panel is not easily in-
terpretable by direct visual inspection. Figure 1(B) shows Monte Carlo approx-
imations of the true expected values ζs,v of the Zs,v variables under the de-
scribed sampling models. The expected value ζs,v is computed integrating with
respect to the actual distributions (Ps,Pv) of (Xs,i, Ys,i) and (Xv,i, Yv,i). Fig-
ure 1(C) shows the cluster-based Bayesian estimates E(μC(s),C(v)|Z) based on
our two-stage procedure. In this simulation, our clustering procedure gives a point
estimate �̂ = [{1}, {2,3}, {4,5,6}, {7,8,9}] of the latent partition. The distance
l(�̂,�TRUE), measured with the maximum transfer metric, is equal to 1.

Comparison of panels (A) and (C) shows that the two-stage procedure cor-
rectly reconstructs the block structure of the true expected values ζs,v displayed
in panel (B). Also, the procedure correctly identifies a group of studies, which
are not affected by measurement errors, with estimated μC(s),C(s) value be-
low 0.2.

We repeated the simulation 500 times. In each iteration, and for each pair
(s, v), we estimated the unknown ζs,v means using our Bayesian estimator
E(μC(s),C(v)|Z) and the empirical estimator Zs,v . The results are plotted in Fig-
ure 1(D) against each other for a single (s, v) combination, with s in C1 and v

in C2. Then, for each (s, v) combination, we contrasted the MSEs and the MAEs
of the Bayesian estimates with the empirical estimates. Across all (s, v) combi-
nations the Bayesian estimator has lower MSE and MAE than the empirical es-
timates. These results are graphed in panel (E); each point corresponds to one
(s, v) combination, and the MAEs of the Bayesian and empirical estimates are
plotted against each other. In this comparison the Bayesian estimator achieves a
substantially lower dispersion around the true expected value ζs,v compared to the
empirical estimator.

For each simulation we computed l(�̂,�TRUE), the number of elementary set
operations between the true and estimated latent partition. On average this dis-
tance is 1.63 and, in most iterations, �̂ has a distance of 2 set operations or less
from �.

4.2. Scenario 2. We consider a sampling model previously used in Waldron
et al. (2011). We use it to investigate how the comparison of alternative algorithms
is enhanced by Bayesian modeling of the Z arrays. Here we add measurement
errors to the outcome variable in subsets of studies. We investigate how modeling
of Z allows algorithm performance assessment for continuously varying training
sample size. The main focus is on the maps j → Z

j
B(s),s to contrast methods. We

also highlight how posterior inference on clustering based statistics, such as the
estimates of μC(s),C(v), captures uncertainty on the algorithms’ performances.
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We simulated 540 zero-mean Normal predictors Xs,i with a covariance matrix
structured in blocks:

σl,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if l = j ,
0.2, if l, j ≤ 100 and l �= j ,
0.2, if 100 < l, j ≤ 200 and l �= j ,
0.2, if 200 < l, j ≤ 370 and l �= j ,
0, otherwise.

Conditionally on these predictors, we then generated binary outcomes Ys,i with
E(Ys,i |Xs,i) = [1 + exp(−βXs,i)]−1. Here i ≤ ns = 100 and s = 1, . . . ,9. The
regression coefficients (β1, . . . , β540) are βj = 0.2 for j ≤ 370 and βj = 0 for
j > 370. Departing from the sampling model of Waldron et al. (2011), we added
measurement errors to Ys,i , by changing the value of Ys,i with probability 0.05
in C1 = {1,2,3}, 0.25 in C2 = {4,5,6} and 0.5 in C3 = {7,8,9}. These proba-
bilities are independent of Ys and Xs . Note that any classification approach ap-
plied to studies s = 7,8,9 has an average error rate of 0.5 because the binary
outcomes Ys,i , after measurement errors, become independent from the covariates
and E(Ys,i |Xs,i) = 0.5.

We consider for illustration three classification methods: LASSO regression,
ridge regression and a linear support vector machine; penalization parameters are
tuned with cross-validation. We choose our validation statistics to be the clas-
sification error rates. For each study s, we computed the true clustering-based
Z

j
B(s),s statistics; in simulation studies the true latent partition, as well as B(s),

s = 1, . . . , S, is known. If, for instance, s = 1, then B(s) \ s = {2,3}, and Z
j
B(s),s

measures the average classification performance obtained when a model is trained
by j ≤ 200 records randomly sampled from B(s) \ s. The classification perfor-
mance is obtained through empirical validation on data set s.

We then used the posterior distribution of B(s) \ s and computed the estimates
E(Z

j
B(s),s |Z,

∑
v∈B(s)\s nv ≥ j). The first three panels in Figure 2 contrast Z

j
B(s),s

(dashed lines) with the Bayesian estimates (solid lines); each color corresponds to
one of the three methods. Overall, the estimates correctly portray the differences
that exist between the performances of the three algorithms; in this scenario, the
support vector machine slightly outperforms ridge regression, which, in turn, has
lower prediction errors than LASSO. These differences are shown in the third row
of Figure 2 where we plot the maps j → ζ

j
s , with ζ

j
s equal to the expected value

of Z
j
B(s),s . The second line of panels in Figure 2 shows the posterior probabilities

p(C(s) = C(v)|Z). In this example, the proposed model captures the underlying
partition of the 9 studies and the differences across methods’ performances.

We repeated the simulation 500 times, generating 9 independent data sets for
each iteration. In the bottom three panels of Figure 2, we show medians and quar-
tiles of the Z

j
B(s),s posterior estimates, for j = 100,200, obtained across these 500
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FIG. 2. Clustering based validation statistics. The top row considers a single simulation and com-

pares the true values of the validation statistics Z
j
B(s),s

(dashed lines) with our Bayesian estimates
(solid lines) for varying size of training sets. Using the same data, the second row displays the poste-
rior probabilities that two studies, s and v, are clustered together. The third row summarizes results

from 500 simulations; solid lines display the true expected values ζ
j
s of Z

j
B(s),s , while dots marks

medians and quartiles of the corresponding Bayesian estimates at j = 100 and j = 200 across sim-
ulations. Colors denote the three algorithms. In the 1st (2nd, 3rd) column s = 1 (4,7).

iterations. These are compared to approximations of the true maps j → ζ
j
s , ob-

tained by averaging the true error rates Z
j
B(s),s across simulations. These maps are

displayed with solid lines in the third row of panels in Figure 2. These panels sum-
marize the distribution across simulations of the estimated clustering validation
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measures Z
j
B(s),s and confirm that the estimates are representative of the perfor-

mances of the algorithms being compared.

5. Application to survival prediction in cancer. We illustrate an application
to the development of a prediction model for overall survival of ovarian cancer
patients using microarray gene expression data. Ovarian cancer is the most lethal
gynecological cancer, and numerous groups have undertaken microarray experi-
ments to measure tumor gene expression for development of prognostic models
of patient survival. It is widely accepted that gene signatures proposed for clinical
application must be validated on independent data sets. In this area of research sev-
eral strategies and methods have been proposed for prediction. Which one works
best? How much uncertainty is involved in ranking methods? Posterior probabili-
ties on the μC(s),C(v) random variables are suitable for answering these questions.

We identified nine previously curated studies utilizing five different microar-
ray platforms, each providing patient overall survival for at least 40 late-stage,
serous-type, ovarian tumors (Table 1). Microarray data were processed using stan-
dard normalization methods, after which probe identifiers were mapped to stan-
dard gene symbols, as provided by the curatedOvarianData library [Ganzfried et
al. (2013)]. Only gene symbols represented on all platforms were considered for
across-platform comparability. We noted that limiting consideration to those genes
present across all platforms has a negligible effect on prediction performance. For
example, we separately fitted Cox models with ridge penalty and estimated with
cross-validation C-statistics, separately considering one study at a time; the av-
erage decrease of the C-statistics when only genes present in all platform were
considered compared to using all available genes was less than 0.01.

5.1. Accounting for different sample sizes. The sample size ns varies across
studies. One can therefore expect higher values of the validation statistics Zs,v for

TABLE 1
The nine ovarian cancer data sets considered in this study. We only considered

late-stage serous tumors from these studies

s Study ns Microarray platform

1 Bentink et al. (2012) 117 Illumina Human v2
2 Crijns et al. (2009) 157 Operon Human v3
3 Yoshihara et al. (2010) 110 Affymetrix hgug4112a
4 Bonome et al. (2008) 185 Affymetrix hgu133a
5 Tothill et al. (2008) 139 Affymetrix hgu133plus2
6 The Cancer Genome Atlas Research Network (2011) 420 Affymetrix hthgu133a
7 Mok et al. (2009) 53 Affymetrix hgu133plus2
8 Konstantinopoulos et al. (2010) 42 Affymetrix hgu95av2
9 Dressman et al. (2007) 59 Affymetrix hgu133a
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those models trained in the largest studies. To prevent this from creating artifactual
clusters of studies, we apply an intuitive correction.

We selected a threshold of 110 samples and considered the 6 studies that have
a sample size larger than the threshold. We then computed the empirical estimates
Z110 = (Z110

s,v ; s, v = 1,2,3,4,5,6, s �= v). The computation of Z110
s,v is straight-

forward. We iterate two steps: (i) we train a prediction model M110
s with 110 data

points sampled without replacement from the sth data set, then (ii) we validate the
resulting model on the entire vth data set. We set Z110

s,v equal to the average value
of the validation statistics across iterations. The statistic Z110

s,v estimates the perfor-
mance of a model trained by 110 samples from Ps . We computed these estimates
with 200 iterations.

The covariance matrix 	110 of Z110 is then estimated by bootstrapping. The
array Z110 and 	̂110 are used for obtaining the posterior distribution of the
random partition �110 with the model proposed in Section 2; we only replace
(Z,�) with (Z110,�110). The reported probability that two studies, say, s = 1
and v = 6, belong to the same cluster is provided by the posterior distribution
p(�110|Z110, 	̂110).

Next, we need to extend this posterior, which refers to the 6 studies we selected,
to the remaining 3 which have less than 110 samples. To achieve this goal, we
compute p(�42|Z42, 	̂42) by reducing the threshold from 110 to 42, and report
the following adjusted random partition:

p̂(� = π) = p(�42 = π |Z42, 	̂42) × p(�110 = �110(π)|Z110, 	̂110)∑
π ′ 1(�110(π ′) = �110(π))p(�42 = π ′|Z42, 	̂42)

,(5.1)

where the sum is over possible partitions of the 9 studies and the operator �110

projects them into partitions of the 6 studies {1,2,3,4,5,6} above the 110 samples
threshold. Two of these 6 studies (s, v) are clustered together by π if and only if
they are clustered together by �110(π). Expression (5.1) implies p̂(�110(�) =
·) = p(�110 = ·|Z110, 	̂110).

This correction for sample size effects preserves the interpretability of the clus-
tering algorithm. It also avoids more complex constructions, such as replacing the
latent random variables μ in (2.1) with latent functions for sample size-specific
average validation statistics. The most computationally intensive stage of the pro-
cedure is the computation of 	42 and 	110; the arrays Z42 and Z110 have been
resampled 1000 times.

5.2. Comparative analysis of prediction methods. Ovarian cancer studies for
developing prognostic signatures are commonly based on two distinct groups of
data sets, a training group, which in most cases only includes a single data set, and
a group of publicly available validation data sets. A recent example that presents
key questions related with our study is Kang, D’Andrea and Kozono (2012), and
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the subsequent comment Swisher, Taniguchi and Karlan (2012). The goal in Kang,
D’Andrea and Kozono (2012) is to develop a molecular score based on expres-
sion of 151 genes that are involved in platinum-induced DNA damage repair to
predict response to chemotherapy. This exemplifies using a biological hypothesis
to preselect predictors for constructing prognostic models, thus avoiding some of
the challenges arising in the “large p small n” setting. In Swisher, Taniguchi and
Karlan (2012) authors point out that both independent validations and a suitable
sample size of the validation data set are essential for assessing prediction mod-
els.

Prescreening the space of predictors has the advantages of parsimony and inter-
pretability, but comes at the cost of some information loss. Our goal in this section
is to quantify this trade-off using cross-study validation. We use the truncated Cτ

statistic as proposed in Uno et al. (2011), truncated at τ = 3 years, for measuring
survival prediction accuracy. The Cτ statistic, given a prediction model M and in-
dependent (possibly censored) survival data with covariates (Yi,Xi), i = 1, . . . , n,
from an unknown distribution P , estimates the conditional probability P(rn+1 ≥
rn+2|Yn+1 ≤ Yn+2, Yn+1 ≤ τ). The random variables (rn+1, rn+2) are risk scores
computed from M based on individual covariates (Xn+1,Xn+2); if, for instance,
M is a proportional hazards model with coefficients β̂ , then rn+1 = β̂Xn+1 and
rn+2 = β̂Xn+2. The estimate converges, under the assumption of noninformative
censoring, to the unknown conditional probability. It is only required that the cen-
soring cumulative distribution function remains below 1 at τ .

We applied our method with prediction models constructed using several ap-
proaches. The first one is a direct application of survival ridge regression, using
available gene expression data, under the assumption of proportional hazards with
a linear link function. The second is similar to the approach followed in Kang,
D’Andrea and Kozono (2012); we only use available gene expression data within
the selective list proposed by the authors. Note that we do not attempt to repro-
duce their study; we follow a similar strategy. Also, in this case prediction mod-
els were derived using penalized maximum likelihood. Additionally, to these two
approaches we also attempted the use of Kernel-based methods for estimating a
smooth nonparametric link function [Li and Luan (2003)]. This produced results
(i.e., values of the Cτ estimator) clearly inferior to the first two approaches.

Our goal is to show that the cross-study validation approach we present here
facilitates methods comparison by estimating the easily interpretable μ latent vari-
ables. All the analyses were repeated separately under each method. Modeling of
the Z array, in this example, produces an appreciable reduction of the uncertainty
on the μ latent variables compared to the direct computation of the credible inter-
vals by bootstrapping. All the model-based estimates of the μ latent variable are
shrunk toward the average of the Z entries.

Figure 3 shows the observed validation statistics Z110
s,v . As mentioned, these are

empirical estimates of predictive performances adjusted for sample size variabil-
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FIG. 3. Validation analysis based on Cτ statistics. The left panel considers ridge regression based
on all available gene expression data, while the right panel considers only a list of genes selected
on the basis of the proposal in Kang, D’Andrea and Kozono (2012). Each colored point illustrates
a Z110

s,v validation statistic; colors indicate the training data set s while the integers in gray in-
dicate the validation data set v. The “−” symbols indicate the corresponding Bayesian estimates
E(μ110

C(s),C(v)
|Z110). The dashed lines are 80% confidence intervals of the unknown means E(Z110

s,v )

obtained by Bootstrapping. The “∗” symbols indicate 80% credible intervals obtained from the pos-
terior distribution of μ110

C(s),C(v)
given Z110.

ity. Each panel corresponds to one of the two approaches we compare, and colors
indicate the training data sets, while the integers displayed in grey indicate the
validation data sets. The plots show the 80% confidence intervals of the unknown
means E(Z110

s,v ) obtained by bootstrapping (dashed lines). They also display the
model estimates (marked with the “−” symbol) of the μ110

C(s),C(v) variables and
the 80% credible intervals (marked with the “∗” symbol). Under both approaches
all μ110

C(s),C(v) variables are estimated within the (0.5,0.6) interval. Our compari-
son suggests that models fitted after upfront selection of a subset of genes based
on biological hypothesis perform worse than using all gene expression data. This
indicates that genes other than those involved directly in DNA damage repair can
contribute to explaining survival of ovarian cancer patients. All comparisons of the
Bayesian estimates E(μ110

C(s),C(v)|Z110) under the two approaches are consistent

with this evaluation. We also compared the posterior distributions of μ110
C(s),C(v)

under the two approaches; at each pair (s, v), when we sample from the poste-
rior distributions we obtain inferior μ110

C(s),C(v) values for the selective approach
with probability above 0.67. If we use all genes, we obtain a probability of 0.78
that all μ110

C(s),C(v) are larger than 0.5, meaning that all models perform better than
assigning risk scores completely at random.
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The posterior distribution of the latent partition of the 6 studies with sample
sizes above 110 suggests the existence of two clusters, one including studies 4 and
5 and the other with all remaining studies. The estimate of the latent partition is
identical under the two considered approaches for constructing predictive models
but needs to be combined with relevant uncertainty. In particular, in both cases
the partition constituted by a single degenerate subset with the six studies together
accumulates posterior probabilities from both approaches above 0.15. When we
added to the analysis the remaining three studies with sample sizes below 110, the
resulting probabilities of the degenerate partition remained above 0.12. In sum-
mary, we found moderate evidence of a nondegenerate partition with heteroge-
neous subgroups.

In order to interpret the latent partition estimate of our leave-one-in analysis, we
computed clustering-based validation statistics. Each solid line in Figure 4 is rep-
resentative of a data set s and illustrates, for hypothetical sample sizes j from 100
to 600, estimates of how well outcomes in study s can be predicted by randomly
selecting j data points within the cluster containing s. More formally, the y axis
shows estimates of Z

j
B(s),s with j = 100, . . . ,600. In this example the reported

probabilities of the events
∑

v∈B(s)\s nv ≥ j are all above 0.6 for j ≤ 300. These

estimates are contrasted (dashed lines in Figure 4) with Z
j
{1,...,S},s . These are esti-

mates of how well outcomes in s can be predicted by randomly selecting j data
points from all available studies. We observe little difference between the solid and
dashed lines. This similarity suggests that the clustering is not driven by heteroge-
neous data quality levels across studies (i.e., there is no evidence of clusters that

FIG. 4. Sample size adjusted validation statistics. Solid lines display estimates of the cluster-

ing-based statistics Z
j
B(s),s

for values of j ranging between 100 and 600. Dashed lines display

the validation statistics Z
j
{1,...,S},s , that is, the cluster B(s) is replaced with the entire collection of 9

studies. Each color corresponds to a specific validation study s.
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produce prediction models with poor performance). Clustering is driven by stud-
ies 4 and 5, in which, due to covariates distributions, it appears relatively easier
to achieve C-statistics above 0.6 compared to all other studies. Clustering-based
statistics in Figure 4 suggest additional samples, above 600 and above the overall
number of samples from the nine studies, might significantly contribute obtaining
better prediction models.

For a comparison, we fitted the data sets with a hierarchical proportional hazards
model, with studies clustered through a Dirichlet process, and Normal marginal
priors for the regression coefficients. The prior assigns a vector of regression co-
efficients to each cluster of studies, while coefficients are independent across clus-
ters. To facilitate the comparison, we tuned the Dirichlet process to match the
estimate of the number of clusters in our leave-one-in analysis. We used the list of
possible values for the latent partition and approximated the posterior using the ap-
proach discussed in Sinha, Ibrahim and Chen (2003). Our interest is in comparing
the latent partitions obtained using the model just described to those from the val-
idation analysis. If clustering in the leave-one-in analysis is driven by differences
in the study-specific regression models, and not in the distributions of the predic-
tors, then one expects the two approaches to infer similar partitions. Instead, the
total variation distance between posterior distributions is 0.79, and we did not no-
tice similarities. This is consistent with the interpretation of the partition inferred
through the validation analysis that we discussed in the previous paragraph.

We also considered random survival forests for constructing prediction mod-
els; we used methodology and software discussed in Ishwaran et al. (2008). This
method directly provides mortality scores for each sample in a test data set. Un-
der several choices of the tuning parameters involved in the application of random
forests, including minimal final nodes sizes [see Ishwaran et al. (2008) for details],
the resulting predictive models appeared inferior to ridge regression when com-
pared using Cτ statistics. Under all considered choices of the tuning parameters
at least 66% of the μ110

C(s),C(v) estimates were inferior to ridge regression. Con-
trasting results with random survival forests based on all available gene expression
data versus the use of selected genes as suggested in Kang, D’Andrea and Kozono
(2012), we obtained again higher μ110

C(s),C(v) estimates using all available gene ex-
pression data.

6. An example of heterogeneous studies. Next we discuss cross-study val-
idation of four nonsmall cell lung cancer studies recently reviewed in Ferté et al.
(2013), based on the data sets curated by the authors. The data structure is sim-
ilar to the previous example and includes gene expression predictors and patient
survival times. We refer to Ferté et al. (2013) for a detailed description. The four
studies and corresponding samples sizes are as follows: the Director’s challenge
study Shedden et al. (2008) (299), Zhu et al. (2010) study (62), Hou et al. (2010)
study (79) and the TCGA [Hammerman et al. (2012)] study (90). This example em-
phasizes the necessity of accounting for study heterogeneity and that averaging the
Zs,v statistics does not provide a complete description of models’ performances.



422 TRIPPA, WALDRON, HUTTENHOWER AND PARMIGIANI

The Director’s study [Shedden et al. (2008)] includes data from 4 institutions.
Our first analysis investigates whether there are large differences in the data origi-
nating from these institutions. The posterior of the model assigns probability 0.83
to the event that these 4 data sets are clustered together. Then, we considered the
hypothesis of clusters involving the remaining data sets [Hammerman et al. (2012),
Hou et al. (2010), Zhu et al. (2010)]. The approach is identical to the description
in the previous section: we trained models using gene expression data and vali-
dated using concordance Cτ statistics. The posterior of � produced an estimate of
two clusters, one including the Director’s study and the Zhu et al. study, and the
second including the remaining two studies. The posterior strongly supports the
hypothesis of separate clusters. The posterior probability at the estimated configu-
ration �̂ is 0.44, and 0.48 posterior probability accumulates on the neighborhood
{� : l(�, �̂) = 1}.

We finally compared sample size adjusted statistics Z
j
s,v to interpret the clus-

tering configuration. Figure 5 summarizes the main discrepancies visualized with
these comparisons. On average, models fitted with 50 ≤ j ≤ 290 samples from the
Director’s study tend to achieve substantially higher validation results when vali-
dated on the Zhu et al. study (blue line) than when validated on the remaining two
studies (black lines). In the latter case the validation statistics decrease with train-
ing data set sample size, and the fitted models fail to predict survival times. We
tested this difference using the bootstrap covariance estimates. The evaluation of
prediction models produced by the largest study [Shedden et al. (2008)] changes

FIG. 5. Sample size adjusted validation statistics for interpreting the clustering estimate �̂. The

plot displays Z
j
s,v validation statistics when the model is trained by the largest study [Shedden et

al. (2008)] and validated on the remaining studies (black and blue lines). Additionally, it displays
validation statistics when we train on the Hou et al. study and use the TCGA study for validation
(green line). Prediction models have been trained using ridge regression.
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considerably if we only average the validation statistics across the three remain-
ing studies, and it appears appropriate to report substantial discrepancies when we
validate the Director’s study results with the Zhu et al. study, versus validation on
the Hou et al. and TCGA studies. While this is beyond the scope of our analysis,
the next step is to investigate in depth the reason for these discrepancies.

7. Discussion. Despite the availability of large collections of related data sets
in many areas of application, articles that evaluate statistical learning algorithms
based on a comprehensive analysis of available data sets remain a minority. Those
using more than one data set are often based on cross-validation within each study
due to heterogeneity between studies; see Demšar (2006), Japkowicz and Shah
(2011) and Bernau et al. (2014) for discussions. Similar to meta-analyses for evi-
dence synthesis, comprehensive model evaluations need to jointly consider study
heterogeneity and algorithm performance. Here we propose a Bayesian approach
to compare algorithms while incorporating relevant sources of uncertainty, includ-
ing uncertainty on the comparability of independent studies.

The basis for our framework is the leave-one-in array Z of validation statis-
tics. The concept is applicable to any validation statistic, such as concordance
indices, classification errors and distances between predicted and observed re-
sponses. While it is certainly possible, and very useful, to simply use the leave-
one-in array as a visualization tool without further modeling, our experience with
evaluating genomic signatures in cancer suggests that modeling can substantially
enhance interpretability of the leave-one-in analysis. Modeling addresses study
heterogeneity, can prevent erroneous interpretations driven by sampling variability
in the summary statistics, can help address multiplicity issues, and can formalize
the process of identifying outlying studies requiring separate consideration. The
analysis of the Z array helps interpreting the range of observed cross-study valida-
tion statistics, whether it is caused by differences in the study-specific distributions
Ps or it reflects sampling variability.

Our two-stage procedure is based on a single figure of merit Z: this choice
is motivated by the need for a simple strategy and by the consideration that
this still accomplishes the main goal to control sources of overoptimism such
as over-fitting, selection of favorable training/testing combinations and the use
of internal cross-validations when the studies at hand are heterogeneous. Use of
a one-dimensional figure of merit can, however, be a limitation. For example, if
two studies generated data of poor quality, perhaps because of errors during sam-
ple processing and data management, our algorithm would likely cluster them to-
gether, because they both fail to produce accurate predictions and generate simi-
larly poor Z scores when used for validating candidate models. These two studies
might still be different in important ways; for example, they may consider two
different populations. From this perspective, additional summaries of the data and
potentially additional analyses may be advisable to identify differences between
studies.
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When multiple studies are available, a natural direction is to combine them.
Bayesian hierarchical models, for instance, have emerged as a very useful
paradigm to borrow information across studies [Lindley and Smith (1972) and
Morris and Normand (1992)]. The leave-one-in analysis is not intended to replace
combined analyses, but to address a different question: cross-study replicability of
prediction. We consider the evaluation of prediction methods using leave-one-in
matrices an important complementary goal and, in some cases, a prerequisite to
the construction of predictive models based on multiple data sources. The analysis
of leave-one-in matrices can be used not only to compare prediction methods, but
also to select the most appropriate prediction methods for a subsequent combined
analysis. In a related application to ovarian cancer prognosis using gene expression
profiles, we illustrate a case where we first use cross-study validation to quantify
the extent to which existing prognostic algorithms can produce results that hold up
across studies [Waldron et al. (2014)], and then proceed to develop new prognostic
algorithms based on a combined analysis [Riester et al. (2014)].

One advantage of the leave-one-in approach is that it can be used to evaluate
any prediction approach, including heuristic procedures for which it might be chal-
lenging to construct hierarchical extensions. The modeling complexity that comes
with constructing joint models for multiple studies varies across fields. In some
cases the algorithms are based on probabilistic models and multi-study extensions
are possible. In others they are not, and might be based on heuristics or be very
specific to the field of application. The complexity and problem-specific compe-
tence necessary for developing joint models for heterogeneous data sets are greater
compared to the analysis of Z matrices for off-the-shelf methods.

To address study heterogeneity, we cluster studies with similar validation pro-
files through a latent partition. The computation of the posterior distribution of the
latent partition is straightforward and is a direct application of established com-
putational strategies for fitting Dirichlet mixture models. We refer to the supple-
mentary material [Trippa et al. (2015)] for more details. Clustering sharpens the
interpretation of the cross-study validation results by allowing one to explore the
maps B → ZB,s , focusing on either the estimates B̂(s) or on those partitions that
a posteriori appear consistent with the dispersion estimate d̂ and the observed ar-
ray Z.

A simple alternative to formal Bayesian clustering of data sets is a reordering
of rows and columns of Z, by maximizing objective functions, to obtain high val-
ues of the validation statistics close to the matrix diagonal. While this is perhaps
simpler than what we propose, it can be dangerous to interpret the Zs,v validation
summaries without consideration of the associated sampling variability, and it is
easy to introduce an optimistic bias with clusters obtained by optimizing intra-
cluster validation statistics.

In this article we only considered external validation statistics, where training
and testing are performed on separate studies. Alternatively, one could integrate
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internal cross-validation into our framework by adding a diagonal to the Z array,
with entries consisting of within study cross-validation statistics. A drawback of
standard cross-validation techniques in this context is that they may result in overly
optimistic assessments [Bernau et al. (2014)].

In this work we compared learning algorithms by separate analyses of the re-
sulting Z arrays, but a natural extension is the joint analysis of multiple Z arrays
corresponding to competing algorithms. A similar discussion applies to considera-
tion of multiple validation statistics at the same time. A separate refinement could
seek a data-driven approach for selecting the thresholds described in Section 5.1
to correct for sample size differences across studies.

SUPPLEMENTARY MATERIAL

Supplement to “Bayesian nonparametric cross-study validation of predic-
tion methods” (DOI: 10.1214/14-AOAS798SUPP; .pdf). We discuss results for
logistic regression, Poisson regression, proportional hazards models and support
vector machine procedures in the supplementary material.
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