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Understanding centennial scale climate variability requires data sets that
are accurate, long, continuous and of broad spatial coverage. Since instru-
mental measurements are generally only available after 1850, temperature
fields must be reconstructed using paleoclimate archives, known as proxies.
Various climate field reconstructions (CFR) methods have been proposed to
relate past temperature to such proxy networks. In this work, we propose
a new CFR method, called GraphEM, based on Gaussian Markov random
fields embedded within an EM algorithm. Gaussian Markov random fields
provide a natural and flexible framework for modeling high-dimensional spa-
tial fields. At the same time, they provide the parameter reduction necessary
for obtaining precise and well-conditioned estimates of the covariance struc-
ture, even in the sample-starved setting common in paleoclimate applications.
In this paper, we propose and compare the performance of different methods
to estimate the graphical structure of climate fields, and demonstrate how
the GraphEM algorithm can be used to reconstruct past climate variations.
The performance of GraphEM is compared to the widely used CFR method
RegEM with regularization via truncated total least squares, using synthetic
data. Our results show that GraphEM can yield significant improvements,
with uniform gains over space, and far better risk properties. We demon-
strate that the spatial structure of temperature fields can be well estimated by
graphs where each neighbor is only connected to a few geographically close
neighbors, and that the increase in performance is directly related to recov-
ering the underlying sparsity in the covariance of the spatial field. Our work
demonstrates how significant improvements can be made in climate recon-
struction methods by better modeling the covariance structure of the climate
field.

Received March 2013; revised October 2014.
1Supported in part by a NSERC postdoctoral fellowship, and by funding from the Universtity of

Southern California and Stanford University.
2Supported in part by NSF Grants DMS-0906392, DMS-CMG 1025465, AGS-1003823, AGS-

1003818, DMS-1106642, DMS-CAREER-1352656 and Grants DARPA-YFAN66001-111-4131,
AFOSR FA9550-13-1-0043, UPS fund and SMC-DBNKY.

3Supported in part by the National Science Foundation under Grant AGS-1003818.
Key words and phrases. Climate reconstructions, Markov random fields, covariance matrix esti-

mation, sparsity, model selection, pseudoproxies.

324

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS794
http://www.imstat.org


PALEOCLIMATE RECONSTRUCTION VIA MRF 325

1. Introduction and preliminaries.

1.1. Introduction. Fundamental to an informed quantification of recent cli-
mate change is an accurate depiction of past climate variability [Masson-Delmotte
et al. (2013)]. Since widespread instrumental observations of surface temperatures
are only available after the mid-nineteenth century, climate scientists rely on proxy
data (e.g., tree rings, ice cores, sediment cores, corals) to infer past temperatures
via statistical modeling [Jones et al. (2009), National Research Council (2006)]—
a task known as “paleoclimate reconstruction” in the climate literature. Given an
instrumental temperature data set [see, e.g., Brohan et al. (2006)] and a global net-
work of climate proxies [e.g., Mann et al. (2008), Figure 2], the temperature back
in time can be estimated as a function of proxies.

Various CFR methods have been proposed to infer past climate [see Tingley
et al. (2012)]. Here we adopt an approach based on multivariate linear regression
as in the regularized EM algorithm [Schneider (2001)]. In that setting, the CFR
problem is formalized as a missing data problem, which we now describe.

Consider a spatial grid and let p denote the number of temperature and proxy
points. Let n = na + nm denote the sum of the number of years of available in-
strumental data, na , and missing data, nm. In practice, p ≈ 3000, n ≈ 2000 and
na ≈ 150 (instrumental period). We model the temperature and proxy points as a
multivariate random vector (X1, . . . ,Xp) ∼ Np(μ,�) with missing values, where
μ = (μ1, . . . ,μp) is the mean vector and � = (σij )p×p is the covariance matrix
of the model. We denote by X the (incomplete) n × p data matrix where each row
represents a year of observations containing r instrumental temperature observa-
tions and s proxy measurements. Hence, the rows represent time order and the
columns represent different spatial locations of both instrumental temperature and
proxy data (see Figure 1).

FIG. 1. Temperature/proxy matrix with missing values.
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FIG. 2. Location, type and temporal availability of proxies in the Mann et al. (2008) database.

Figure 2 shows that the availability of the proxy data from the network of
Mann et al. (2008) decreases rapidly in time, and missing values constitute as
much as 80% of the entries in the matrix. Reconstructing the pre-instrumental
temperature field may be cast as a missing data problem, for which several
strategies exist [Little and Rubin (2002)]. However, the high dimensionality of
the problem (“large p, small n”) makes it challenging to apply standard meth-
ods. For instance, it is well known that the sample covariance matrix is a poor
estimator of � in that setting [Lin and Perlman (1985), Paul (2007), Stein
(1986)]. In this paper, we explore the use of Gaussian Markov random fields
(a.k.a. Gaussian graphical models) for estimating �. This approach provides
flexibility in terms of modeling the inherent spatial heterogeneities of the field,
but at the same time reduces the number of parameters that need to be esti-
mated, thereby leading to improved reconstructions of past temperature. We start
by recounting existing reconstruction strategies before introducing our new ap-
proach.
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1.2. The EM algorithm. A popular method for the imputation of missing val-
ues is the EM algorithm [Dempster, Laird and Rubin (1977), Little and Rubin
(2002)]. In the multivariate normal setting, given an estimate of μ and �, the
EM algorithm reduces to regressing the missing values on the available ones, and
thereafter updating the estimates of μ and �. This procedure is iterated until con-
vergence. More precisely, let x denote the kth row of X, and let xa and xm denote
the parts of x where data are available and missing, respectively. Let μ(0) and
�(0) be initial estimates of μ and �. For example, μ(0) and �(0) could be the
sample mean and sample covariance of the data set completed by replacing every
missing value by the mean of the available values in the corresponding columns
of X [Schneider (2001)]. The EM algorithm iteratively constructs a sequence μ(l)

and �(l) of estimates of μ and �. For every l ≥ 0, the E-step consists of a linear
regression

(
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are the regression coefficients and the decompositions of �(l) and μ(l) associated
with the decomposition of x among its available and missing parts. Denote by
X(l+1) the completed estimate of X, obtained after the regression (1.1) has been
performed in order to impute the missing values in each row of X. In the M-step
of the algorithm, the estimates of μ and � are updated by
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ij is the covariance of the residuals. Using the same block decomposi-

tion as in (1.2), we have
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The reader is referred to Little and Rubin (2002) and McLachlan and Krishnan
(2008) for more details about the EM algorithm.
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1.3. The regularized EM algorithm. Obtaining a precise estimate of � is
a crucial step of the EM algorithm. In the sample-starved setting common to
many paleoclimate problems, the sample covariance matrix is generally not in-
vertible and can be a very poor estimator of �. This is a serious problem since
parts of � need to be inverted to compute the regression coefficients B . Differ-
ent �2-type methods to regularize the problem have been proposed in the liter-
ature. Among them are ridge regression [a.k.a. Tikhonov regularization, Hanke
and Hansen (1993), Hastie, Tibshirani and Friedman (2008), Hoerl and Kennard
(1970a, 1970b), Tikhonov and Arsenin (1977)] and truncated total least squares
[TTLS, Fierro et al. (1997), Golub and Van Loan (1980), Van Huffel and Vande-
walle (1991)] regression. These methods can be used to replace the regression
matrix B(l) in equation (1.1) by a regularized estimate, and have been imple-
mented within the EM algorithm. The resulting algorithm is known as RegEM
[Schneider (2001)] and has been widely used in paleoclimate studies [Emile-Geay
et al. (2013a, 2013b), Mann et al. (2005, 2007a, 2008, 2009), Riedwyl et al.
(2009, 2005)]. For example, in RegEM-TTLS, the linear regressions in the EM
algorithm are replaced by truncated total least squares (TTLS) regressions. The
TTLS solution of a linear system Ax = b is obtained by expressing the total least
squares solution of the linear system as a function of the SVD of the matrix A,
and then truncating all but a given number of eigenvalues. The number of retained
eigenvalues corresponds to the truncation parameter of RegEM-TTLS [see Fierro
et al. (1997) for more details].

To date, all direct regression methods have resulted in reconstructions that un-
derestimate the amplitude of past climate variations to some extent [e.g., Smerdon
et al. (2010, 2011), von Storch et al. (2004)]. This “regression dilution” [Frost and
Thompson (2000)] is a direct consequence of modeling the temperature condi-
tional on (noisy) proxy values [Christiansen (2010, 2013), Tingley and Li (2012),
von Storch et al. (2004)]. Regularization may compound this problem, as with
ridge regression the smoothness of the filter factors has been shown to leak energy
from the leading SVD modes, resulting in overly damped estimates of past tem-
perature [Smerdon and Kaplan (2007)]. This problem may be mitigated via TTLS
[Mann et al. (2007b)], as it attempts to correct for regression dilution by steepening
the regression slope; however, the solution is no longer guaranteed to be optimal
even under broad assumptions [Carroll and Ruppert (1996)]. Furthermore, a major
shortcoming of TTLS as currently used in climate applications is that the trunca-
tion parameter must be specified a priori, rather than being estimated adaptively.
Given the applicability of the RegEM algorithm for missing data problems in the
paleoclimate context (e.g., surface temperature reconstructions for the past 2000
years), we seek to develop an imputation method that rests on a more accurate and
data-adaptive estimate of � itself.

1.4. Gaussian Markov random fields. A GMRF is a multivariate normal
model which encodes conditional independence structure between variables [see
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Lauritzen (1996), Whittaker (1990)]. More precisely, let (X1, . . . ,Xp) be a mul-
tivariate random vector with inverse covariance matrix (or precision matrix)
� = (ωij ) = �−1. The partial correlation coefficient between Xi and Xj given
the rest of the variables, denoted by ρij |rest, can be obtained from the inverse co-
variance matrix [see Whittaker (1990), Corollary 5.8.2], and is given as follows:

ρij |rest = −ωij√
ωiiωjj

.(1.5)

In the case of multivariate normal data, one can show that ρij |rest = 0 if and only if
Xi is independent of Xj given the rest of the variables [Whittaker (1990), Corol-
lary 6.3.4]. The zeros in the precision matrix therefore indicate conditional in-
dependence between the corresponding variables. The conditional independence
relations in a distribution can be conveniently encoded using a graph. Recall that
a graph G = (V ,E) is a pair of sets V and E ⊆ V × V , where each element of V

represents a vertex of the graph and each point of E is a pair of elements of V . We
encode the conditional independence relations by adding an edge between i and j

if and only if Xi is not conditionally independent of Xj given the rest of the vari-
ables. The random vector (X1, . . . ,Xp) is then said to satisfy the pairwise Markov
property with respect to the graph G. For details on the pairwise, local and global
Markov properties, we refer the reader to Lauritzen (1996) and Whittaker (1990).

Once the conditional independence structure (or graphical structure) of a Gaus-
sian random vector is known, this information can be used for estimating its covari-
ance matrix �. More specifically, given an i.i.d. sample x1, . . . , xn of (X1, . . . ,Xp)

with mean x = 1
n

∑n
i=1 xi , and a graph G, the graphical maximum likelihood esti-

mator of � can be computed by solving

�̂G = argmax
�=�−1>0

ωij=0,(i,j)/∈E

log det� − tr(S�),(1.6)

where S is the sample covariance matrix of x1, . . . , xn, given by

S = 1

n

n∑
i=1

(xi − x)(xi − x)�,(1.7)

and log det� − tr(S�) is (up to a constant) the multivariate normal profile log-
likelihood function. The problem (1.6) can be solved efficiently for up to a few
thousand variables using, for example, regression-based algorithms [see Hastie,
Tibshirani and Friedman (2008), Algorithm 17.1]. The resulting matrix �̂G is gen-
erally a better estimate than the widely used sample covariance matrix, especially
when the number of observations n is smaller than the number of variables p.

In this paper, we propose a methodology that combines graphical models with
the EM algorithm for the purpose of reconstructing past temperature fields. In our
approach, we first model the conditional independence structure of the target field
based on structural assumptions or directly from the data. A sparse estimate of �
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is then obtained in accordance with this graphical structure at every step of the EM
algorithm. This approach greatly reduces the number of parameters to estimate,
leads to better conditioned and more precise estimates of �, and also exploits
the natural conditional independence structure of the spatial field. The regression
step (1.1) can then be performed using any regularization method (or even no reg-
ularization at all). We call the resulting algorithm GraphEM (see Algorithm 1 in
Appendix A; see also Appendix B for the derivation of the GraphEM algorithm
within the EM framework).

The rest of the paper is structured as follows. In Section 2 we explore various
methods to estimate the graphical structure of the joint temperature/proxy field.
We then test the performance of GraphEM in a realistic geophysical context in
Sections 3 and 4. The characteristics of the estimated conditional independence
structures are then studied in Section 5. We conclude with a discussion section.

2. Methodology. Different methods have been proposed in the literature to
discover the conditional independence relations (or graphical structure) of a data
set, in either the Bayesian or frequentist framework [see e.g., Banerjee, El Ghaoui
and d’Aspremont (2008), Dawid and Lauritzen (1993), Friedman, Hastie and Tib-
shirani (2008), Letac and Massam (2007), Rajaratnam, Massam and Carvalho
(2008)]. In this work, we explore two different approaches: �1-penalized maxi-
mum likelihood [Banerjee, El Ghaoui and d’Aspremont (2008), Friedman, Hastie
and Tibshirani (2008), Guillot et al. (2012), Hsieh et al. (2011)] and neighborhood
graphs.

2.1. �1-penalized maximum likelihood. A flexible approach for obtaining a
sparse estimate of the precision matrix � is to maximize the normal likelihood
subject to an �1 penalty on its norm. More specifically, the �1-penalized maximum
likelihood problem consists of solving

max
�>0

l(�) − ρ‖�‖1,(2.1)

where � = �−1 denotes the precision matrix of the data, l(�) is the normal log-
likelihood of �, ρ > 0 is a regularization parameter, and ‖�‖1 is the 1-norm of �:

‖�‖1 =
p∑

i=1

p∑
j=1

|ωij |.(2.2)

The use of an �1 penalty, as first introduced in the context of the LASSO regres-
sion [Tibshirani (1996)], favors the introduction of zero elements and thus leads
to sparse solutions [see Hastie, Tibshirani and Friedman (2008), Section 3.4.3]. At
the same time, using an �1 penalty leads to a convex problem that can be solved
efficiently using modern methods of convex optimization. Once an estimate of �

is known, the associated graph can be inferred from the pattern of zeros in �. In
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this work, we employ the graphical lasso (glasso) algorithm of Friedman, Hastie
and Tibshirani (2008) to obtain a sparse estimate of � by solving an �1-penalized
likelihood problem. As ρ varies, the matrix �̂ displays different sparsity patterns.
When ρ = 0 and n ≥ p, there is no penalty and �̂ is equal to the maximum likeli-
hood estimate S−1 of �, where S denotes the sample covariance matrix of the data
matrix. The estimate �̂ tends to a diagonal matrix as the regularization parameter
ρ is increased. Problem (2.1) can also be easily modified to use a different penalty
for different parts of the matrices. Consider, for example, the precision matrix of a
temperature/proxies field. The matrix can be organized in block form

� =
(

�TT �TP

�PT �PP

)
,(2.3)

where �TT,�TP and �PP are block matrices corresponding to the tempera-
ture/temperature, temperature/proxy and proxy/proxy parts of the matrix. Since
the signal contained in proxies is generally weaker than the temperature signal, it
may be sensible to use different penalty parameters for different parts of the ma-
trix when solving the �1-penalized maximum likelihood problem. Problem (2.1)
can thus be replaced by

max
�>0

l(�) − ρTT‖�TT‖1 − 2ρTP‖�TP‖1 − ρPP‖�PP‖1,(2.4)

where ρTT, ρTP, ρPP > 0 are regularization parameters. This problem can also be
solved efficiently by using a modified graphical lasso algorithm [see Friedman,
Hastie and Tibshirani (2008), equation (15)]. Figure 3 displays the tempera-
ture neighbors of a few locations for a graph estimated using (2.4) (sparsity
level = 1.4%) on a real temperature data set [Brohan et al. (2006)], and illus-
trates the potential of the �1 method to detect real geophysical structures. Note
that the method correctly identifies anisotropic climate features like the equatorial
Pacific cold tongue (left), the California current system (center) and east Atlantic
structures related to the subtropical gyre circulation (right).

In practice, choosing suitable penalty parameters in (2.1) or (2.4) can be diffi-
cult. A high penalty forces many zero entries in the precision matrix, while a low
penalty adds some edges that make little geophysical sense. An optimal choice
should strike a balance between those extremes. If ρ > ρmax := maxi �=j |Sij |, it
can be shown [see, e.g., Witten, Friedman and Simon (2011), Theorem 2] that the

FIG. 3. Example of estimated graphical structure of a temperature field (HadCRUT3v).
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resulting glasso estimate of � is a diagonal matrix. A relevant finite number of reg-
ularization parameter values can therefore be obtained by dividing the interval be-
tween some small value ρmin and the biggest relevant value ρmax. In our numerical
work, we have chosen ρmin = 0.1 · ρmax and have divided the interval [ρmin, ρmax]
into 10 values. Problem (2.1) can then be solved for each of these penalty parame-
ters to obtain estimates �̂ of the precision matrix �. To each estimate corresponds
a graph based on the structure of zeros in �̂. When the dimension of the problem
to solve is small (e.g., in regional reconstructions) or a single penalty parameter is
used for the whole precision matrix [as in equation (2.1)], an optimal parameter
can be chosen using k-fold cross-validation. However, when a different penalty pa-
rameter is used for each part of the precision matrix, performing cross-validation
for an array of regularization parameters (e.g., a 10 × 10 × 10 grid of penalty pa-
rameters) incurs a prohibitive computational cost. A possible solution consists of
searching for a graph that is (a) dense enough to capture the salient spatial depen-
dences, and (b) sparse enough to make the reconstruction possible and stable (by
reducing the dimension of the problem to a size comparable to the sample size).
A triple (ρTT, ρTP, ρPP) of regularization parameters with the desired sparsity can
be chosen by starting with large values of the three penalty parameters, and pro-
gressively reducing the value of each penalty parameter until a given target sparsity
is obtained for each part of the precision matrix. This technique requires comput-
ing the solution of problem (2.4) at only a few points of the grid. This sparsity
approach is implemented in our proposed version of GraphEM, and is compared
to the neighborhood approach described below in Section 4. In this paper, we have
chosen fixed sparsity levels when performing large reconstruction ensembles, after
verifying via targeted experiments that the specified sparsity levels were close to
those deemed optimal by 5-fold cross-validation.

2.2. Neighborhood graphs. Since temperature variations at a given point are
to a large extent explained by temperature of surrounding points, it is natural to use
a neighborhood graph (i.e., a graph where two vertices are connected if and only
if they are within a specified radius R) to approximate the true graphical structure
of the joint temperature/proxy field; see, for example, Cook et al. (1999) where a
similar assumption was made. The radius can be either specified or chosen from
the data. As we illustrate in Figure 4, the choice of an optimal radius can be made
by performing cross-validation over the instrumental period and choosing the ra-
dius that minimizes the MSE of the reconstructed values. Besides this natural and
meaningful Markov random field structure in spatial temperature fields, a neigh-
borhood graph approach has the distinct advantage that the underlying graph does
not have to be estimated from sample-deficient high-dimensional data, and that the
procedure does not require solving computationally intensive optimization prob-
lems. Dimensionality reduction is achieved with great ease and at the same time
has an intuitive geophysical interpretation; sparsity is entirely governed by the
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FIG. 4. Cross-validation scores for choosing a neighborhood graph radius (5-fold cross-valida-
tion).

neighborhood radius R. On the other hand, neighborhood graphs are less flexible
and cannot model in an adaptive way (1) conditional independence relations result-
ing from anisotropic structures present in the data (such as land/ocean boundaries,
mountain ranges, atmospheric flow patterns, etc.), and (2) long range dependen-
cies that arise due to teleconnections. However, when the noise level is too high, a
simple model such as a neighborhood graph may be preferable to the �1-penalized
covariance estimation method.

As an illustration, Figure 5 displays the neighborhood of size 800 km, 1000 km
and 1200 km at different locations with the same latitude on a 5◦ × 5◦ grid. The
average number of neighbors (and their standard deviation) are 8.42 (2.08), 10.24
(3.37) and 16.61 (4.92), respectively.

We also consider sparser variants of the neighborhood graph model based on
the structure of the paleoclimate reconstruction problem. First, since climate is the

FIG. 5. Illustration of neighborhood graphs.
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TABLE 1
Neighborhood graph variants for the joint temperature/proxy field

Name TT TP PP

Neigh Neighborhood Neighborhood Neighborhood
IndPP Neighborhood Neighborhood Diagonal
CARTP Neighborhood CAR Diagonal
CARTT CAR Neighborhood Diagonal
CARTT+TP CAR CAR Diagonal

signal shared between proxies, it is natural to assume that the proxies are indepen-
dent of each other conditional on the temperature data (i.e., to assume that �PP
is diagonal). We thus explore a simpler model where the temperature/temperature
(TT) and the temperature/proxy (TP) parts of the graph are constructed as above
with a neighborhood graph, but where �PP is diagonal. Further, since temperature
proxies are reflective of local temperature only, it is natural to impose a local struc-
ture in �PT as well (i.e., �PT = 0 except for the columns corresponding to each
proxy’s closest temperature grid point). Finally, given that the optimal neighbor-
hood graphs chosen by cross-validation tend to feature only the immediate neigh-
bors of each temperature gridpoint, it is natural to impose such constraints on the
TT part of the graph a priori. Note that such a model is equivalent to a spatial
conditionally auto-regressive (CAR) model [Besag (1974)]. The variants consid-
ered in the paper are summarized in Table 1, and their performance in modeling
the conditional independence structure of the temperature/proxy field is studied in
Section 4.

3. Validation via pseudoproxy experiments.

3.1. Background. In the climate literature, pseudoproxy experiments have be-
come the method of choice to objectively evaluate the performance of CFR tech-
niques against a geophysically-relevant target [see Smerdon (2011) for a recent
review]. This target temperature field is often the output of coupled general circu-
lation model (GCM) simulations for the past 1000 years or so, sampled at a fixed
spatiotemporal resolution. Although GCM-simulated temperature fields do not ex-
actly match the characteristics of observed temperature fields, they are generated
in accordance with physical laws embedded in such models, and thus provide a
controlled, realistic framework to test reconstruction methods.

In practice, a pseudoproxy is obtained by adding noise to a GCM-simulated
temperature field at locations where proxy observations are available in the real
world. Because such observations are sparse, the pseudoproxy network therefore
comprises a small collection of time series. Given only knowledge of the tem-
perature field over a 150-year calibration interval, the CFR method is then used to
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backcast a thousand-year long temperature field based on this relatively small sam-
ple of noisy temperature time series. Given a simulated temperature field T (l, t) at
location l and time t (standardized to have mean 0 and variance 1 over time) from
a GCM model, the pseudoproxies P(l, t) are constructed as follows:

P(l, t) = T (l, t) + 1

SNR
· ξ(l, t),(3.1)

where ξ(l, t) are independent realizations of a Gaussian white noise process, and
the (scalar) signal-to-noise ratio SNR controls the amount of noise in the pseu-
doproxy. Although pseudoproxies constitute an oversimplification of reality, they
have been used extensively in the climate literature [Annan and Hargreaves (2012),
Bradley (1996), Christiansen, Schmith and Thejll (2009), Li and Smerdon (2012),
Mann and Rutherford (2002), Smerdon (2011), Smerdon et al. (2011), Tingley
and Huybers (2010a)] to provide a numerical laboratory to test the performance of
CFR methods.

In our simulations, we used the NCAR CSM 1.4 model experiment [Ammann
et al. (2007)], which simulates the climate of the last millennium (850–1980 AD)
on a 5◦ × 5◦ grid. As per previous work [Li, Nychka and Ammann (2010), Mann
et al. (2007a), Smerdon et al. (2011), Wang et al. (2014)], the locations of the
pseudoproxies were chosen in accordance with Mann, Bradley and Hughes (1998)
(MBH98, Figure 6) and the value of SNR has been fixed to 0.5. Other SNR val-
ues have also been investigated but, for the sake of brevity, are not presented here.
The last 150 years of data have been used as a calibration period, and the remain-
ing 981 years of temperature data have been reconstructed using GraphEM. As
a benchmark, we follow recent work [Steiger et al. (2013), Tingley and Huybers
(2010a)] and use RegEM-TTLS, which was widely used in high-profile climate
reconstructions [Mann et al. (2008, 2009)].

3.2. Performance metrics. Various metrics have been used in the literature to
measure the quality of CFR methods and reconstructed temperature fields [Bürger
(2007), Cook, Briffa and Jones (1994)]. Let T (l, t) denote the temperature at a
location l and at time t , and denote by T̂ (l, t) a reconstruction of T (l, t). The

FIG. 6. Geographic location of the pseudoproxies in the MBH98 database.



336 D. GUILLOT, B. RAJARATNAM AND J. EMILE-GEAY

mean squared error (MSE) measures the mean difference between the two fields
at a given location l:

MSE(T̂ )(l) = 1

N

∑
t

(
T (l, t) − T̂ (l, t)

)2
,(3.2)

where N is the number of time points. To measure the improvement made by our
proposed graphical method, we define the relative MSE difference at a location l

by

relative MSE difference (l) = MSERegEM-TTLS(l) − MSEGraphEM(l)

MSERegEM-TTLS(l)
.

Although a small MSE indicates a good reconstruction, it is not immediately clear
how small the MSE has to be for the reconstruction to be considered a “good re-
construction.” A useful approach is to compare the MSE of a given reconstruction
to that of a reconstruction that is equal to a constant value over time (a “constant
reconstruction”). The reduction of error (RE) compares the MSE of a given recon-
struction to a constant reconstruction equal to the mean temperature of the field
T c(l) over the calibration period:

RE(l) = 1 − MSE(T̂ )(l)

MSE(T c)(l)
.(3.3)

Similarly, the coefficient of efficiency (CE) compares the MSE of the reconstruction
to a constant reconstruction equal to the mean of the temperature field T v(l) over
the validation interval:

CE(l) = 1 − MSE(T̂ )(l)

MSE(T v)(l)
.(3.4)

Finally, the bias at point l is the difference between T̂ (l, ·) and T (l, ·) averaged
over time. A perfect reconstruction would have a MSE of 0, a CE and a RE of 1
and a bias of 0. The closer to those values, the better the reconstruction.

4. Results. In order to test the performance and the sensitivity of GraphEM
to reconstruct temperature over the whole globe, we performed 50 reconstruc-
tions, each corresponding to a different noise realization ξ(l, t). The performance
of GraphEM is then compared to the performance of RegEM-TTLS. The trunca-
tion parameter was set to 5, but the results show little sensitivity to this choice.

To study the performance of GraphEM, reconstructions were performed us-
ing both the neighborhood graph methods and the �1 method (Section 2). For
illustration purposes, in Sections 4.1 and 4.2, we present detailed results for the
neighborhood graph method with a cutoff radius of 800 km, as suggested by
cross-validation (see Figure 4). Verification statistics for other cutoff radii, for
the neighborhood graph variants and for the �1 method are also provided in Ta-
bles 2 and 3.
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FIG. 7. Relative MSE improvement for SNR = 0.5 (neighborhood graph, cutoff radius = 800 km).

4.1. Spatial reconstructions. We begin by studying the performance of
GraphEM in space. Figure 7 displays the average relative MSE improvement for
the 50 reconstructions, and shows that the improvement can be substantial when
using GraphEM. The improvement is positive for almost every location. The av-
erage improvement is about 43%, whereas improvements as large as 80% are
recorded in certain regions. Figure 7 also provides some compelling evidence that
the magnitude of the percentage improvement appears to be even greater at some
locations that are distant from proxy sites. In particular, vast swathes of the entire
central and northern Pacific stretching from East Asia to North and central Amer-
ica display significantly higher improvements in MSE. The same appears to be
true for parts of the southern Atlantic. This is remarkable given the high degree
of locality of the chosen graph. Hence, a local graph does not translate into short-
range correlations; on the contrary, it can actually improve the representation of
long-range dependencies. Improvements over the Indian ocean, however, tend to
be modest perhaps because of the paucity of data.

Figure 8(a) and (b) display the CE statistics (averaged over the 50 noise real-
izations) for RegEM-TTLS and GraphEM, respectively. Again, in many regions,
GraphEM leads to substantial improvements, particularly where the skill was very
poor with RegEM-TTLS. The different precision metrics averaged over space (for

FIG. 8. CE map for the (a) RegEM-TTLS and (b) GraphEM reconstructions for SNR = 0.5 (neigh-
borhood graph, cutoff radius = 800 km).
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TABLE 2
Mean (and standard deviation) of the performance metrics averaged over space for the global

reconstructions

Method MSE RE CE Bias

�1 method
GraphEM (0.3% target sparsity) 0.44 (0.01) 0.33 (0.01) 0.11 (0.02) 0.09 (0.01)
GraphEM (0.5% target sparsity) 0.42 (0.01) 0.36 (0.01) 0.15 (0.01) 0.08 (0.01)
GraphEM (0.7% target sparsity) 0.41 (0.01) 0.36 (0.01) 0.16 (0.01) 0.08 (0.01)
GraphEM (0.9% target sparsity) 0.41 (0.01) 0.36 (0.01) 0.15 (0.01) 0.08 (0.01)

Neigh
GraphEM (600 km radius) 0.42 (0.01) 0.35 (0.01) 0.14 (0.01) 0.06 (0.01)
GraphEM (800 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1000 km radius) 0.40 (0.01) 0.38 (0.01) 0.18 (0.01) 0.06 (0.01)
GraphEM (1200 km radius) 0.41 (0.01) 0.36 (0.01) 0.16 (0.01) 0.06 (0.01)

IndPP
GraphEM (600 km radius) 0.42 (0.01) 0.35 (0.01) 0.13 (0.01) 0.06 (0.01)
GraphEM (800 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1000 km radius) 0.40 (0.01) 0.38 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1200 km radius) 0.41 (0.01) 0.37 (0.01) 0.16 (0.01) 0.06 (0.01)

CARTP
GraphEM (600 km radius) 0.42 (0.01) 0.35 (0.01) 0.14 (0.01) 0.06 (0.01)
GraphEM (800 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1000 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1200 km radius) 0.40 (0.01) 0.38 (0.01) 0.18 (0.01) 0.06 (0.01)

CARTT
GraphEM (600 km radius) 0.39 (0.01) 0.39 (0.01) 0.20 (0.01) 0.06 (0.01)
GraphEM (800 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1000 km radius) 0.40 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1200 km radius) 0.40 (0.01) 0.38 (0.01) 0.18 (0.01) 0.06 (0.01)

CARTT+TP
GraphEM (600 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (800 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1000 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)
GraphEM (1200 km radius) 0.39 (0.01) 0.39 (0.01) 0.19 (0.01) 0.06 (0.01)

RegEM-TTLS
RegEM-TTLS 0.84 (0.10) −0.24 (0.14) −0.61 (0.19) 0.01 (0.02)

the unsmoothed reconstruction) are presented in Table 2 along with their standard
deviation computed using the 50 reconstructions. This table confirms once more
that GraphEM performs better spatially and is more stable than RegEM-TTLS.

Although the results presented in Table 2 are quite similar for the different
GraphEM methods, the neighborhood graphs seem to perform slightly better than
the �1 method. They could therefore be useful in noisy cases for which discovering
the structure of the field from the data is difficult. Another advantage of the neigh-
borhood method is that the cutoff radius is easy to choose by cross-validation.
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In comparison, choosing appropriate regularization parameters to use with the �1
method is computationally intensive.

We also observe that the four neighborhood graph variants produce very simi-
lar results. In particular, the simplest graph CARTT performs quite well, underly-
ing the importance of locality in the temperature/proxy field. In the pseudo proxy
experiment, the better validation metrics also correspond to the models that best
reflect the data generating mechanism, that is, the models where �PP is diagonal.
Climate fields found in nature may display a more complex structure, but to the ex-
tent that it can be reasonably approximated by a neighborhood graph, our results
suggest that GraphEM could produce very skillful reconstructions.

The results also demonstrate that a larger graph (e.g., neighborhood 1200 km
vs CAR) can still lead to a very good reconstruction. This is to be expected since
an edge between two vertices does not prohibit the corresponding entry in � from
being very small. Thus, a graph containing a certain number of spurious edges
(such as the graphs obtained from the �1 method) may still perform well, which
means that results are broadly insensitive to the graph density. Finally, we note
that although the �1 method performs slightly worse in our experiments, it has
the potential to detect real geophysical structures, and could lead to improvements
when working with data sets with a stronger signal.

4.2. Spatial average. The spatial reconstructions given by RegEM-TTLS and
GraphEM can also be averaged over space to obtain (area-weighted) spatial av-
erages. Figure 9 displays a 95% deviation band (constructed using the 50 recon-
structions) for the mean temperature series reconstructed with RegEM-TTLS and
GraphEM. The instrumental period is also reconstructed via the pseudoproxies

FIG. 9. Global spatial averages (multiple noise realizations, 95% deviation interval) for SNR = 0.5
(neighborhood graph, cutoff radius = 800 km). The thick lines represent the median of each ensem-
ble.
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using the estimated mean and covariance matrix obtained from GraphEM. The
uncertainty bands have been obtained by computing the (weighted) average tem-
perature at each time for each reconstruction, and then constructing a confidence
interval containing 95% of the 50 simulated values. A 20 year low-pass filter has
been applied after computing the quantiles for illustration and interpretation pur-
poses. The mean width of the deviation interval for GraphEM and RegEM-TTLS
are 0.25 and 0.66, respectively. The associated reconstruction statistics are pro-
vided in Table 3. Note that the CE scores for GraphEM are significantly larger

TABLE 3
Mean (and standard deviation) of the performance metrics for the spatial average reconstructions

Method MSE RE CE Bias

�1 method
GraphEM (0.3% target sparsity) 0.12 (0.01) 0.75 (0.02) 0.25 (0.08) 0.09 (0.01)
GraphEM (0.5% target sparsity) 0.11 (0.01) 0.79 (0.02) 0.36 (0.05) 0.08 (0.01)
GraphEM (0.7% target sparsity) 0.11 (0.01) 0.79 (0.02) 0.37 (0.05) 0.08 (0.01)
GraphEM (0.9% target sparsity) 0.11 (0.01) 0.79 (0.02) 0.36 (0.05) 0.08 (0.01)

Neigh
GraphEM (600 km) 0.12 (0.01) 0.82 (0.01) 0.46 (0.04) 0.06 (0.01)
GraphEM (800 km) 0.11 (0.01) 0.83 (0.01) 0.50 (0.04) 0.06 (0.01)
GraphEM (1000 km) 0.10 (0.01) 0.83 (0.01) 0.50 (0.04) 0.06 (0.01)
GraphEM (1200 km) 0.10 (0.01) 0.83 (0.01) 0.48 (0.04) 0.06 (0.01)

IndPP
GraphEM (600 km radius) 0.12 (0.01) 0.82 (0.01) 0.46 (0.04) 0.06 (0.01)
GraphEM (800 km radius) 0.11 (0.01) 0.83 (0.01) 0.50 (0.04) 0.06 (0.01)
GraphEM (1000 km radius) 0.11 (0.01) 0.83 (0.01) 0.50 (0.04) 0.06 (0.01)
GraphEM (1200 km radius) 0.11 (0.01) 0.83 (0.01) 0.48 (0.04) 0.06 (0.01)

CARTP
GraphEM (600 km radius) 0.12 (0.01) 0.83 (0.01) 0.47 (0.04) 0.06 (0.01)
GraphEM (800 km radius) 0.11 (0.01) 0.83 (0.01) 0.49 (0.04) 0.06 (0.01)
GraphEM (1000 km radius) 0.11 (0.01) 0.83 (0.01) 0.50 (0.04) 0.06 (0.01)
GraphEM (1200 km radius) 0.11 (0.01) 0.83 (0.01) 0.49 (0.04) 0.06 (0.01)

CARTT
GraphEM (600 km radius) 0.11 (0.01) 0.83 (0.01) 0.49 (0.04) 0.06 (0.01)
GraphEM (800 km radius) 0.11 (0.01) 0.83 (0.01) 0.49 (0.04) 0.06 (0.01)
GraphEM (1000 km radius) 0.11 (0.01) 0.83 (0.01) 0.49 (0.04) 0.06 (0.01)
GraphEM (1200 km radius) 0.11 (0.01) 0.84 (0.01) 0.50 (0.04) 0.06 (0.01)

CARTT+TP
GraphEM (600 km radius) 0.11 (0.01) 0.83 (0.01) 0.47 (0.04) 0.06 (0.01)
GraphEM (800 km radius) 0.11 (0.01) 0.83 (0.01) 0.47 (0.04) 0.06 (0.01)
GraphEM (1000 km radius) 0.11 (0.01) 0.83 (0.01) 0.47 (0.04) 0.06 (0.01)
GraphEM (1200 km radius) 0.11 (0.01) 0.83 (0.01) 0.47 (0.04) 0.06 (0.01)

RegEM-TTLS
RegEM-TTLS 0.15 (0.03) 0.63 (0.18) −0.12 (0.56) 0.01 (0.02)
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than the corresponding scores for RegEM-TTLS. Moreover, the standard devia-
tions of the CE scores are significantly smaller for GraphEM. The results thus
demonstrate that GraphEM can also be useful for reconstructing indices such as
the mean temperature, with better risk properties than RegEM-TTLS.

4.3. Uncertainty quantification. Section 4.1 demonstrates the ability of
GraphEM to reduce the uncertainties in paleoclimate reconstructions via an en-
semble of pseudoproxies. In practice, it is necessary to obtain an estimate of the
uncertainties internally [see, e.g., Li, Nychka and Ammann (2010)]. We therefore
produce prediction intervals for both RegEM and GraphEM using a nonparametric
block bootstrap method [Liu (1988)]. The technique is described in Appendix C,
and is illustrated for the global reconstruction of Section 4.1. Using the recon-
struction X̂1, . . . , X̂N provided by the nonparametric bootstrap, we estimate a 95%
prediction interval for each reconstructed mean by computing the 2.5th and 97.5th
percentiles of the empirical distribution. The mean width of the uncertainty bands
for GraphEM and RegEM-TTLS are 0.35 and 0.45, respectively. Comparing Fig-
ures 9 and 10, we observe that the uncertainties of GraphEM seem slightly overes-
timated, whereas the uncertainties of RegEM-TTLS seem underestimated by the
bootstrap.

The coverage rates over the validation period for GraphEM and RegEM-TTLS
are, respectively, 92.3% and 91.4%. The coverage rates of our method thus appear
reasonable. Two natural techniques can be used if a given coverage rate needs to be
obtained: (1) modify the band width to obtain the right coverage, or (2) inflate the
variance of the reconstructed values in the bootstrap [see Janson and Rajaratnam

FIG. 10. Inflated spatial average uncertainty estimated by nonparametric bootstrap, blocksize = 2
(neighborhood graph, cutoff radius = 800 km). The thick lines represent the median of each ensem-
ble.



342 D. GUILLOT, B. RAJARATNAM AND J. EMILE-GEAY

(2014), Li, Nychka and Ammann (2010) for details]. Recall that in our recon-
structions, the instrumental period is also reconstructed using the pseudoproxies.
The reconstructed values over the instrumental period can thus provide guidance
about how much to inflate the uncertainty bands to obtain a given coverage rate.
In Figure 10, the coverage rates over the instrumental period for GraphEM and
RegEM-TTLS are 91.3% and 90.7%, respectively. In order to obtain a coverage
rate of, say, 95% over the instrumental period, the GraphEM and RegEM-TTLS
bands must be inflated by a factor of 1.15 and 1.42, respectively. Inflating the
bands by these factors yields coverage rates of 94.2% and 97.2% on the validation
period, respectively. Inflation factors can also be computed in a more principled
way by using k-fold cross-validation over the instrumental period. In our simu-
lations, we split the instrumental period into 5 blocks and used the bootstrap to
reconstruct each block using the other 4 blocks. In each case, an inflation factor
can be computed so that the uncertainty bands cover 95% of the targeted mean
over the instrumental period. Using this technique, we obtained an average infla-
tion factor of 1.10 with GraphEM (similar to the inflation factor obtained without
cross-validation).

5. Characteristics of paleoclimate Markov random fields. Our results
demonstrate that the GraphEM approach produces substantial improvements in
comparison to RegEM-TTLS almost uniformly over space. This section exam-
ines the characteristics of paleoclimatic Markov random fields. More precisely,
we study the properties of the joint temperature/proxy graph estimated using the
�1 method, with the goal of understanding (a) whether the GraphEM approach is
indeed achieving its original aim of parameter reduction, and (b) what are the im-
portant features of estimated temperature/proxy fields. In particular, we examine
the difference between the graphical structures estimated from the data using the
�1 method (Section 2.1) and the neighborhood structures described in Section 2.2.

We first illustrate the achieved parameter reduction when the graph is estimated
from the data. Figure 11 displays the distribution of the average distance from

FIG. 11. Distribution of the average distance to each vertex in the different part of the graph
(sparsity level = 0.5%, SNR = 0.5). (a) TT, (b) TP, (c) PP.
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each vertex to its neighbors in the TT, TP and PP part of the temperature/proxy
graph estimated with the �1 method with a sparsity level of 0.5% in each part
of the precision matrix. We observe that each point is generally only connected
to geographically close neighbors, although the graph can display some far away
connections (which may or may not represent geophysical relations). The average
number of neighbors in the TT, TP and PP parts of the graph are 10.5, 9.4 and
0.42, respectively. The graph therefore displays a neighborhood structure in the
TT and TP part of the graph, with a cutoff radius of roughly 800 km. Note also
that the absence of connections in the PP part of the graph suggests that proxies
are conditionally independent given the temperature data, and that the estimated
graph is very similar to the 2 families of graphs described at the end of Section 2.2.
The main message is that the number of neighbors is relatively few compared to
one that would be present with a full precision matrix, and that locality seems to
be an important characteristic of paleoclimate Markov random fields.

Figure 12 displays the distribution of the number of temperature neighbors of
each proxy (in the graph estimated with the �1 method) when no noise has been
added to the temperature time series when generating pseudoproxies (SNR = ∞),
as compared to the typical noise case that has been studied thus far (SNR = 0.5).
Both graphs have been obtained using the �1 method with a sparsity level of 0.5%.
This comparison shows that many proxies do not have any temperature neighbors
in the SNR = 0.5 case. In comparison, a relation between each proxy and some
temperature locations has been detected in the SNR = ∞ case. Detecting temper-
ature/proxy relations from the data can thus be an issue when the level of noise is
high. The potential for the �1 method to detect spurious relations in the presence of
noise is also to be expected [Banerjee, El Ghaoui and d’Aspremont (2008)]. This
problem may be mitigated by adding further constraints on the estimated graph.
Neighborhood graphs offer a natural solution and provide a good graphical struc-
ture independently of the level of noise.

We now examine how sparsity translates to improvements in paleoclimate re-
constructions. Figure 13 displays the improvements given by GraphEM (as com-

FIG. 12. Distribution of the number of temperature neighbors of proxy points (sparsity level = 0.5).
(a) SNR = ∞, (b) SNR = 0.5.
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FIG. 13. Boxplot of the % improvement as a function of the number of temperature neighbors
(sparsity level = 0.5%, SNR = 0.5).

pared to RegEM-TTLS) at different temperature points vs. their connectivity
(number of temperature neighbors) in the corresponding graph.

The figure indicates that percentage improvement is smaller for temperature
points with very few neighbors. The improvement is maximal when the number of
neighbors roughly corresponds to the number of immediate geographical neigh-
bors of the vertex. Once again, this demonstrates the importance of locality in
paleoclimate Markov random field structures. We note, however, that large im-
provements are still recorded at locations with a larger number of neighbors. The
larger neighborhoods may represent real geophysical structures, in which case the
reconstruction may benefit from the flexibility of the model. These edges may also
be spurious. We note, however, that the presence of an edge (i, j) in the graph sim-
ply does not force the corresponding entry ωij in the precision matrix to be zero.
When � is estimated in accordance with the graph, ωij can still be very small.
Large improvements are therefore possible when spurious edges are present in the
graph.

6. Concluding remarks. The main objective of the paper was to explore the
efficacy of recent advances in the theory of graphical models and high-dimensional
inference for statistical paleoclimate reconstructions. Markov random fields pro-
vide a sparse representation of the precision matrix of spatial fields, and thus
achieve the dimension reduction that is often necessary in high-dimensional set-
tings.

We explored two families of methods to estimate the graphical structure of cli-
mate fields: a neighborhood approach and a �1 penalized inverse covariance es-
timation approach. In neighborhood graphs, each vertex is only connected to its
immediate neighbors, reflecting the fact that variables at two locations are ex-
pected to be independent given the temperature in a geographical neighborhood.
The size of the neighborhoods can be chosen from the data by cross-validation.
The �1 method, in contrast, provides more flexibility to represent the spatial het-
erogeneities of geophysical fields (e.g., land/ocean contrasts, topographical bound-
aries, teleconnection patterns), which would in general be difficult with parametric
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(e.g., Matérn family) covariance functions. The GraphEM algorithm was subse-
quently tested on pseudoproxy data. We also proposed a block bootstrap method
to internally estimate the uncertainties in the reconstructions performed using
GraphEM and RegEM-TTLS.

Our experiments show that the GraphEM approach gives consistently better
reconstructions than the frequently used RegEM-TTLS [see, e.g., Mann et al.
(2008, 2009)] almost uniformly over space. We show that Gaussian Markov
random fields yield demonstrably improved estimates of the underlying spatio-
temporal process, which we tied to the sparsity of the estimated covariance model.
A caveat of the �1 method is the tendency to sometimes detect spurious edges in the
graph, that is, to detect relationships that arise from the presence of noise, instead
of physical links between the temperature field and the proxies (or pseudoproxies)
that derive from it. This is to be expected due to the signal to noise relationship
in the data, and is inherent in all statistical and signal processing recovery tech-
niques. Further constraints on the graph can naturally be added to ensure that the
graphs selected by the graphical lasso retain a high degree of locality. In contrast,
neighborhood graphs seem to provide an adequate approximation to the condi-
tional structure of the temperature/proxy field, independently of the level of noise
present in the data. The size of the neighborhoods can also be chosen from the
data so as to minimize the prediction error. As we demonstrate in our simulations,
neighborhood graphs perform well and can be used in situations where there is
less hope of discovering the graphical structure of the field from the data. We also
observed that most locations in the graphs estimated using the �1 method are con-
nected to geographically close locations. Locality is therefore an important feature
in paleoclimate graphs. We also note that most proxies have no proxy neighbors
in graphs estimated from the data, suggesting that proxies are independent of each
other given the temperature data.

Finally, and although we were primarily motivated by paleoclimate applications
and the use of the EM algorithm in this context, it is worth pointing out that graph-
ical models are also applicable within Bayesian CFR methods [e.g., Tingley and
Huybers (2010b, 2010a)] and beyond the confines of climate science. GraphEM as
described here provides a useful addition to the RegEM framework, one that will
be applicable to any high-dimensional imputation problem, and one that can be
used in tandem with other �2 regularization approaches, especially data-adaptive
ones. Future work will extend the use of Gaussian Markov random fields as pro-
cess models for geophysical fields, in tandem with hierarchical models.
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APPENDIX A: DESCRIPTION OF THE GRAPHEM ALGORITHM

Algorithm 1 The graphical EM algorithm (GraphEM)
Input: Incomplete n × p matrix X, graph G.

1: Initialize X(0) by replacing the missing values in X by the sample mean of
each variable over the instrumental period;

2: Compute initial estimates μ(0) and �(0) of μ and � by computing the sample
mean and sample covariance of X(0);

3: Initialize i ← 0;
4: Initialize �

(0)
G = �(0);

5: repeat
6: Compute X(i+1) by performing a linear regression of the missing values on

the available ones for each row of X, using the current estimate μ(i) of μ

and the current graphical estimate �
(i)
G of � [see (1.1)];

7: Compute μ(i+1) by computing the sample mean of X(i+1);
8: Compute �(i+1) as in (1.3);
9: Compute the new graphical estimate �

(i+1)
G by solving (1.6) with S =

�(i+1), that is,

�
(i+1)
G = argmax

�=�−1>0
�ij=0,(i,j)/∈E

log det� − tr
(
�(i+1)�

);(A.1)

10: i ← i + 1;
11: until convergence

Output: Completed matrix X̂, estimate μ̂ of μ, estimate �̂ of �.

APPENDIX B: DERIVATION OF THE GRAPH-EM ALGORITHM

We follow the notation in Little and Rubin [Little and Rubin (2002)]. The com-
plete data belongs to a regular exponential family given by a Gaussian Markov
random field with graph G = (V ,E) (as compared to a complete model in the
classical EM algorithm). The sufficient statistics are given by

S =
(

n∑
i=1

yij , j = 1, . . . , k;
n∑

i=1

yij yik with (j, k) ∈ E

)
.(B.1)

Let θ(t) = (μ(t),�(t)) denote the current estimate of the parameters. The E-step is
given as follows:

E

[
n∑

i=1

yij

∣∣∣∣Yobs, θ
(t)

]
=

n∑
i=1

y
(t)
ij , j = 1, . . . , k(B.2)
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and

E

[
n∑

i=1

yij yik

∣∣∣∣Yobs, θ
(t)

]
=

n∑
i=1

(
y

(t)
ij y

(t)
ik + c

(t)
jki

)
, (j, k) ∈ E(B.3)

with

y
(t)
ij =

{
yij , when yij is observed,

E
[
yij |yobs,i , θ

(t)
]
, when yij is missing

(B.4)

and

c
(t)
jki =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if at least one of the yij or yik is observed,

0, if j ⊥G k|obs, i,

Cov
[
yij , yik|yobs,i , θ

(t)
]
,

if both yij and yik are missing and j �⊥G k|obs, i,

(B.5)

where j ⊥G k means that j and k are separated in the graph G [see, e.g., Lauritzen
(1996), Example 3.2]. At a first glance, it would appear as if there is little differ-
ence between the treatment in the graphical vs. the complete case. A closer look
reveals that there are some notable differences, the first being in the calculation of

the sufficient statistics. Second, note that the definition of y
(t)
ij and c

(t)
jki below are

different: y
(t)
ij when yij is missing is given as follows:

E
[
yij |yobs,i , θ

(t)]
(B.6)

= μ
(t)
j + (

�G
j,obs

)(t)[(
�G

obs,obs
)(t)]−1(

yobs,i − μ
(t)
obs

)
,

where (�G)(t) corresponds to a graphical covariance matrix �. When both yij and
yik are missing and (j, k) ∈ E,

Cov
[
yij yik|yobs,i , θ

(t)]
(B.7)

= (
�G

jk

)(t) − (
�G{j,k},obs

)(t)[(
�G

obs,obs
)(t)]−1(

�G
obs,{j,k}

)(t)
.

Note, however, that Cov[yij yik|yobs,i , θ
(t)] = �

(t)
jk|obs,i . Thus,

c
(t)
jki = �

(t)
jk|obs,i = 0 if j ⊥G k|obs, i.(B.8)

The M-step in the GraphEM algorithm therefore consists of using the sufficient
statistics for the complete data derived in (B.2) and (B.3) to determine the graphical
mle. In particular, the estimate of the mean parameter is given by the sample mean
and the estimate of the graphical covariance is given in equation (A.1).
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APPENDIX C: NONPARAMETRIC BOOTSTRAP

Algorithm 2 RegEM/GraphEM Uncertainty quantification (nonparametric boot-
strap)

Input: Incomplete n × p matrix X containing ni years of instrumental data,
number of bootstrap samples N > 1, blocksize b.

1: for i = 1, . . . ,N do
2: Construct a bootstrap sample Xboot,i by sampling with replacement �ni/b�

blocks of size b from the lines of X in the instrumental period, and �(n −
ni)/b� blocks of size b from lines in the rest of the matrix;

3: Reconstruct the missing values in Xboot,i using RegEM/GraphEM. The al-
gorithm outputs estimates μboot,i , �boot,i of the mean and covariance matrix
of the field;

4: Obtain X̂i by reconstructing the missing values in X by performing the
regression step of RegEM/GraphEM starting with μboot,i and �boot,i ;

5: For each line (xm, xa) of X̂i that originally contained missing values, add
a noise realization to xm from the conditional distribution of xm|xa , where
we assume (xm, xa) ∼ N(μboot,i ,�boot,i).

6: end for
Output: Ensemble of N reconstructions X̂1, . . . , X̂N of the incomplete field X.
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