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Knowledge of the severity of an influenza outbreak is crucial for inform-
ing and monitoring appropriate public health responses, both during and af-
ter an epidemic. However, case-fatality, case-intensive care admission and
case-hospitalisation risks are difficult to measure directly. Bayesian evidence
synthesis methods have previously been employed to combine fragmented,
under-ascertained and biased surveillance data coherently and consistently,
to estimate case-severity risks in the first two waves of the 2009 A/H1N1
influenza pandemic experienced in England. We present in detail the com-
plex probabilistic model underlying this evidence synthesis, and extend the
analysis to also estimate severity in the third wave of the pandemic strain
during the 2010/2011 influenza season. We adapt the model to account for
changes in the surveillance data available over the three waves. We consider
two approaches: (a) a two-stage approach using posterior distributions from
the model for the first two waves to inform priors for the third wave model;
and (b) a one-stage approach modelling all three waves simultaneously. Both
approaches result in the same key conclusions: (1) that the age-distribution
of the case-severity risks is “u”-shaped, with children and older adults having
the highest severity; (2) that the age-distribution of the infection attack rate
changes over waves, school-age children being most affected in the first two
waves and the attack rate in adults over 25 increasing from the second to third
waves; and (3) that when averaged over all age groups, case-severity appears
to increase over the three waves. The extent to which the final conclusion is
driven by the change in age-distribution of those infected over time is subject
to discussion.

1. Introduction. Evidence synthesis [e.g., Spiegelhalter, Abrams and Myles
(2004), Ades and Sutton (2006)] has become an important method in epidemiol-
ogy, where multiple, disparate, incomplete and often biased sources of observa-
tional (e.g., surveillance or survey) data are available to inform estimation of rele-
vant quantities, such as prevalence and incidence of infectious disease [Albert et al.
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(2011), Birrell et al. (2011), Goubar et al. (2008), Presanis et al. (2011a), Sweeting
et al. (2008), Welton and Ades (2005)]. Data may directly inform a quantity of
interest, θ , or, more usually, may indirectly inform multiple parameters � by di-
rectly informing some function of �, ψ = ψ(�). Such a function may represent,
for example, the relationship between a biased source of data and the parameter
the data should theoretically measure, so that the bias is explicitly modelled. Ev-
idence synthesis methods combine these heterogeneous types of challenging data
in a coherent manner, to estimate the “basic” parameters � and from these ob-
tain simultaneously the “functional” parameters � = {ψ1(�), . . . ,ψm(�)}. These
functional parameters include both those directly observed and others that may
not be observed but are of interest to estimate. This type of estimation typically
necessitates the formulation of complex probabilistic models, often in a Bayesian
framework.

Knowledge of the severity of an influenza outbreak is crucial for informing and
monitoring appropriate public health responses. Severity estimates are necessary
not only during a pandemic to inform immediate public health responses, but also
afterwards, when a robust reconstruction of what happened during the pandemic
is required to evaluate the responses. Moreover, as has happened in past influenza
pandemics [Miller et al. (2009)], if a pandemic strain continues to circulate for
some years, with unusual patterns of age-specific mortality, then severity estimates
over time, both in terms of attack rates (the proportion of the population infected)
and case-severity risks (the probability an infection leads to a severe event), are
required to understand if the strain is likely to continue circulating and if severity
is changing over time.

However, severity is an example epidemic characteristic that is difficult to mea-
sure directly. Typically, severity is expressed as the probability that an infec-
tion will result in a severe event, for example, death. We refer to this probabil-
ity as the “case-fatality risk” (CFR). Severity may also be quantified by “case-
hospitalisation” (CHR) and “case-intensive care admission” (CIR) risks, defined
similarly as probabilities that an infection results in hospitalisation or intensive
care (ICU) admission. Not all influenza infections will be symptomatic, where
“symptomatic” may be defined in different ways, but is here taken to denote febrile
influenza-like illness (ILI). Not all infections will therefore result in symptoms se-
vere enough for a patient to access health care and hence be detectable in surveil-
lance systems [Birrell et al. (2011), Presanis et al. (2011b), Reed et al. (2009)].
Symptomatic case-severity risks (sCHR, sCIR, sCFR), the probabilities a symp-
tomatic infection leads to severe events, are therefore also considered as important
indicators of severity for influenza. Estimation of these probabilities requires infor-
mation on both the cumulative incidence of (symptomatic) infection over a period
of time of interest (the denominator) and the cumulative incidence of severe events
(the numerator). However, the denominator, whether symptomatic or all infection,
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is challenging to determine, due to the unobserved infections. Population-wide
serological testing (testing for antibodies to influenza infection in blood serum
samples) to measure the proportion of the population infected is one possibility,
but is unlikely to be feasible. This challenge is only compounded in a pandemic sit-
uation, where resources and time are even more stretched than usual [e.g., Garske
et al. (2009), Lipsitch et al. (2009)].

The most feasible approach to the assessment of severity is therefore via estima-
tion, combining data from different sources and accounting for their biases, due,
for example, to under-ascertainment. The majority of methods adopted to estimate
influenza case-severity [e.g., Garske et al. (2009), Pebody et al. (2010), Reed et al.
(2009), Sypsa et al. (2011), Wielders et al. (2012), Wilson and Baker (2009)] have
not systematically accounted for all biases. Crucially, they have not made use of
all available information in the estimation process, nor have they accounted for all
uncertainty inherent in the data. Bayesian evidence synthesis provides a flexible
framework in which all available relevant data may be coherently amalgamated,
together with prior information on biases, to estimate case-severity [Lipsitch et al.
(2011), McDonald et al. (2014), Presanis et al. (2009, 2011b), Shubin et al. (2013),
Wu et al. (2010)].

Until the 2012/2013 winter, England experienced three waves of infection with
the 2009 pandemic A/H1N1 influenza strain: in the summer of 2009, the autumn
and winter of 2009–2010, and the autumn and winter of 2010–2011. The sever-
ity of the first two waves, as measured by case-severity risks, was previously
estimated [Presanis et al. (2011b)] by synthesising data either from surveillance
systems in place to monitor seasonal influenza or from systems set up specif-
ically in response to the pandemic [Health Protection Agency (2010)]. In this
paper, we present in detail the statistical model used in Presanis et al. (2011b)
and extend the approach to estimating severity in the third wave of infection.
After the first two waves, the World Health Organization declared a move to
a post-pandemic period (http://www.who.int/mediacentre/news/statements/2010/
h1n1_vpc_20100810/en/index.html), at which time many of the surveillance sys-
tems that operated during the pandemic situation were either stopped or changed
in form. We describe how the model of Presanis et al. (2011b) is further developed
to account for these changes in the available data.

The evidence used to estimate severity in the first two waves and the changes
to the surveillance systems between waves are described in Section 2. A Bayesian
approach to evidence synthesis is introduced in Section 3. We then describe in
Section 4 a generic model for estimating severity, before showing in Section 5.1
how the model was implemented in the first two waves. We next develop the model
to estimate severity in the third wave, presenting two approaches (Sections 5.2
and 5.3, resp.). Results are given in Section 6 and we end with a discussion in
Section 7.

http://www.who.int/mediacentre/news/statements/2010/h1n1_vpc_20100810/en/index.html
http://www.who.int/mediacentre/news/statements/2010/h1n1_vpc_20100810/en/index.html
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2. Surveillance data.

2.1. First & second waves. During the first two pandemic waves in 2009–
2010, data were available from various surveillance systems at or used by the UK’s
Health Protection Agency (HPA, now Public Health England) that provided evi-
dence on some aspect of the pandemic, at various levels of severity. These sources
indirectly informed the case-severity risks and full details of each are given in
Section 1.1 of the supplementary material [Presanis et al. (2014)]. Briefly, they
included the following:

(i) data on laboratory-confirmed pandemic A/H1N1 cases [i.e., cases where
infection with the pandemic strain was confirmed virologically, via real-time poly-
merase chain reaction (RT-PCR) testing of nasal or throat swabs] in the first
few weeks of the pandemic [Health Protection Agency (2010), Health Protection
Agency, Health Protection Scotland, Communicable Disease Surveillance Centre
Northern Ireland and National Public Health Service for Wales (2009)]. The data
included dates of illness onset and information on hospital admission if it occurred,
from which age group-specific case-hospitalisation risks amongst confirmed cases
could be estimated. Note that these confirmed-case-hospitalisation risks are likely
to be higher than the case-hospitalisation risks in all symptomatic cases, since not
all symptomatic cases will have been confirmed in the first few weeks, and more
severe cases in hospital are more likely to have been detected than less severe
cases;

(ii) estimates of the number of symptomatic cases by week, age and region,
produced by the HPA. These estimates were recognised to be under-estimates,
given the data of point (iii);

(iii) serial data on age group-specific proportions of individuals with anti-
bodies to the pandemic strain of influenza (“sero-prevalence”), from repeated
cross-sectional surveys of residual sera from other (unrelated) diagnostic testing
[Hardelid et al. (2011), Miller et al. (2010)]. These data indirectly inform the cu-
mulative incidence of infection, that is, the proportion of the population infected
over a period of time. Initially these data were taken at face value, but concerns
about potential sampling biases led to extra sensitivity analyses (see Section 6.1);

(iv) data on laboratory-confirmed cases in hospital (Campbell et al. 2011), in-
cluding age group and dates of illness onset, hospital admission and ICU admis-
sion; and

(v) data on the number of deaths amongst persons with confirmed pandemic
A/H1N1 influenza and/or mention of influenza on the death certificate, reported to
the HPA and/or the Chief Medical Officer [Donaldson et al. (2009), Pebody et al.
(2010)].

2.2. Third wave. During the third wave, data sources (i), (ii) and (iv) were no
longer available in the same form. Although results from testing of samples from
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before and after the third wave from data source (iii) are now available [Hoschler
et al. (2012)], at the time of the analyses presented here, they were not accessible.
Full details of each source below are given in Section 1.2 of the supplementary
material [Presanis et al. (2014)].

(vi) Between the second and third waves, the surveillance system for hospital
admissions of confirmed cases moved to being a sentinel surveillance system, the
UK Severe Influenza Surveillance Scheme (USISS). The data from this system are
available at a coarser level of age aggregation and come from a sentinel sample of
23 acute NHS hospital trusts in the 2010–2011 season, as opposed to the 129 trusts
participating in hospital surveillance during the first two waves.

(vii) Additional data are available on patients present in all ICUs in England
with suspected pandemic A/H1N1 influenza, again at a coarser age aggregation,
from the Department of Health [DH; Department of Health (2011)].

(viii) We also have data on virological positivity (proportion testing positive
for the pandemic strain) from a sentinel system, “Datamart,” comprising results of
RT-PCR testing from 16 HPA and NHS laboratories in England, covering mainly
patients hospitalised with respiratory illness.

(ix) In the third wave, the HPA estimates of source (ii) were not available,
due to the underlying data being specified at a different level of disaggregation.
Instead, we use estimates of the number symptomatic (details in Section 3.1 of
the supplementary material [Presanis et al. (2014)]) obtained from an alternative
general practice sentinel surveillance system [Fleming (1999)].

2.3. Challenges. Estimating case-severity by dividing the observed number
of infections at a severe level over a period of time by the observed (i.e., con-
firmed) number of infections in the same period is highly likely to result in biased
estimates. This bias is due to both under-ascertainment of infections in surveil-
lance systems and differential probabilities of observation by severity of infection
[Garske et al. (2009), Presanis et al. (2011b)]. Any estimation therefore has to
account for these probabilities of observing infections (“detection probabilities”).
Further challenges are posed by the following: uncertainty about the representa-
tiveness of the surveillance data for the general population (sampling biases); the
different degrees of aggregation in each data source; the fact that some of the data
sources, such as the sero-prevalence data, only inform indirectly the number of in-
fections; and the changes in surveillance systems over time. A synthesis of all the
above data sources to estimate case-severity therefore requires these challenges to
be addressed.

3. Evidence synthesis methods. Evidence synthesis [see, e.g., Ades and Sut-
ton (2006), Eddy, Hasselblad and Shachter (1992)] denotes the idea of estimating
a set of k “basic” parameters � = (θ1, θ2, . . . , θk) from a collection of n indepen-
dent data sources y = (y1, y2, . . . , yn), arising from multiple studies, perhaps of
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differing design. Each source yi, i ∈ 1, . . . , n provides evidence on a “functional”
parameter ψi = fi(�). The function fi may either be equality to a single specific
element θj of �, so that the data directly informs θj , or a function of one or more
components of �, so that the data indirectly inform multiple basic parameters. The
collection (ψ1,ψ2, . . . ,ψn) is therefore a mixture of basic and functional param-
eters. The aim is to estimate the set of basic parameters �, from which the func-
tional parameters (ψ1,ψ2, . . . ,ψn), as well as any other functions (ψn+1, . . . ,ψm)

of � that are of interest, may be simultaneously derived. Denote the total set of
functions by � .

Inference may be carried out either in a classical setting, maximising the likeli-
hood L(y|�) = ∏n

i=1 Li(yi |�), or, as in this paper, in a Bayesian setting, assign-
ing a prior distribution to the basic parameters, P(�), and obtaining the posterior
distribution P(�|y) ∝ P(�)L(y|�) typically via a simulation-based algorithm
such as Markov chain Monte Carlo (MCMC). The posterior distribution of any of
the functional parameters may also be derived.

A Bayesian evidence synthesis meets the challenges of case-severity estimation
by allowing the relationship between data and parameters to be accurately for-
mulated, for example, through the use of bias parameters such as detection prob-
abilities; prior information on such biases to be easily introduced; and a natural
framework in which to assess the consistency of evidence [Presanis et al. (2013)],
as part of the inference and model criticism cycle advocated by Box (1980) and
O’Hagan (2003).

4. A general Bayesian model for severity. The following generic synthesis
of evidence to estimate severity was the basis of the estimation of severity of the
2009 pandemic A/H1N1 strain of influenza [Presanis et al. (2009, 2011b)], both in
the USA and in England during the first two waves.

Assume the population of interest is divided into 7 age groups: < 1, 1–4, 5–14,
15–24, 25–44, 45–64, 65+, indexed by a ∈ 1, . . . ,7. Denote the age-specific pop-
ulation sizes by Nw,a , where w indexes waves of infection (w = 1,2,3 in the case
of England). Consider infections at five increasing severity levels: all infections
(Inf ), symptomatic infections (S), hospitalisations (H ), ICU admissions (I ) and
deaths (D). For each wave and age-group, consider each of these sets of infections
to be subsets of the set of infections at a less severe level, such that D ⊆ H and
I ⊆ H ⊆ S ⊆ Inf . Note that we assume the set of deaths is a subset of the set of
hospitalisations, but that not all deaths are a subset of the set of ICU admissions.
The set of infections Inf is clearly a subset of the population. For each age group
a, denote the cumulative number of new infections during wave w at severity level
l (i.e., the size of subset l) by Nw,a,l .

4.1. Parameterisation. Denote by cw,a,l|λ the age- and wave-specific condi-
tional probability that a case is at severity level l given the case has already
reached a less severe level λ, that is, l ⊆ λ. For l = S,H, I , let Nw,a,l =
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cw,a,l|λ × Nw,a,λ, where λ = Inf , S,H , respectively. For all infections, define
Nw,a,Inf = cw,a,Inf |Pop × Nw,a . For deaths, define Nw,a,D = cw,a,D|H × Nw,a,H ,
that is, in terms of the conditional probability of dying given hospitalisation. The
conditional probabilities cw,a,Inf |Pop, cw,a,S|Inf , cw,a,H |S , cw,a,I |H and cw,a,D|H are
basic parameters to which we assign prior distributions and the Nw,a,l are func-
tional parameters. Note that in the US analysis [Presanis et al. (2009)], the Nw,a,l

were considered stochastic nodes, realisations of a Binomial distribution with
probability parameter cw,a,l|λ and an appropriate denominator Nw,a,λ. However, in
the UK analysis [Presanis et al. (2011b)] and the analyses reported below, conver-
gence of the MCMC algorithm was only achieved when the corresponding deter-
ministic (mean) assumption was made for the Nw,a,l , for reasons that are discussed
further in Section 7.

The subsetting assumptions allow the case-hospitalisation, case-ICU admission
and case-fatality risks to be defined as functional parameters expressed as products
of component conditional probabilities:

CHRw,a = cw,a,H |Inf = cw,a,H |S × cw,a,S|Inf ,

CIRw,a = cw,a,I |Inf = cw,a,I |H × cw,a,H |S × cw,a,S|Inf ,(1)

CFRw,a = cw,a,D|Inf = cw,a,D|H × cw,a,H |S × cw,a,S|Inf .

Similarly, the symptomatic case-ICU admission and symptomatic case-fatality
risks are defined as

sCHRw,a = cw,a,H |S,

sCIRw,a = cw,a,I |S = cw,a,I |H × cw,a,H |S,(2)

sCFRw,a = cw,a,D|S = cw,a,D|H × cw,a,H |S.

The conditional probability cw,a,Inf |Pop is commonly referred to as the “infec-
tion attack rate” (IARw,a) and cw,a,S|Pop = cw,a,S|Inf × cw,a,Inf ,Pop is known as
the “symptomatic attack rate,” SARw,a .

Let dw,a,l denote “detection” probabilities, that is, probabilities that infections
at severity level l are observed. The full set of wave- and age-specific basic param-
eters to which we assign a prior distribution is then

θ(w,a) = {IARw,a, cw,a,S|Inf , cw,a,H |S, cw,a,I |H , cw,a,D|H ,dw,a,S, dw,a,H ,

dw,a,I , dw,a,D},
with the total set defined as

� = ⋃
w,a

θ(w,a).

The full set of wave- and age-specific functional parameters is

ψ(w,a) = {SARw,a,CHRw,a, sCHRw,a,CIRw,a, sCIRw,a,CFRw,a, sCFRw,a,

Nw,a,Inf ,Nw,a,S,Nw,a,H ,Nw,a,I ,Nw,a,D},
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with the total set defined as

� = ⋃
w,a

ψ(w,a).

4.2. Prior distribution. The prior distributions assigned to the basic parame-
ters, whether diffuse or informative, will depend on the specifics of the severity
model considered; see Section 5.

4.3. Data and likelihood. In general, at each severity level l, we observe
Ow,a,l infections out of the Nw,a,l total infections. Each Ow,a,l is assumed to be
Binomially distributed with size parameter Nw,a,l and detection probability dw,a,l :

Ow,a,l ∼ Bin(Nw,a,l, dw,a,l).

The likelihood would then be

L(y|�) = ∏
w,a,l

(
Nw,a,l

Ow,a,l

)
d

Ow,a,l

w,a,l (1 − dw,a,l)
Nw,a,l−Ow,a,l .

The specific models, for example, as in Sections 5.1 and 5.2, may have varia-
tions on this likelihood, depending on the data available. For example, data may
be directly available on the number of hospitalisations resulting in ICU admission,
in which case these data may contribute to the likelihood in the following form:

Ow,a,I ∼ Bin(Ow,a,H , cw,a,I |H).

4.4. Computation. Once the priors and likelihood are defined, samples are ob-
tained from the resulting joint posterior distribution by MCMC simulation, using
OpenBUGS [Lunn et al. (2009)]. In each model described below, three indepen-
dent chains were run for 2,000,000 iterations each, with the first 500,000 iterations
discarded as a burn-in period and the remainder thinned to every 10th iteration,
resulting in 450,000 samples on which to base posterior inference. Convergence
was established by both visual inspection of the trace plots and examination of the
Brooks–Gelman–Rubin diagnostic plots [Brooks and Gelman (1998)].

5. The severity model in England. The model used in Presanis et al. (2011b)
for the first two waves of infection in England is described in the next section.
Two alternative methods of modelling the third wave of infection are then given:
(a) a two-stage approach where posterior distributions from the second wave model
are used to inform prior distributions for some of the conditional probabilities in
the third wave; and (b) a one-stage approach where all three waves are modelled si-
multaneously, with the third wave conditional probabilities parameterised in terms
of the corresponding second wave probabilities.
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FIG. 1. Schematic DAG for the severity model, first two waves, for one age group.

5.1. First & second waves. Figure 1 is a schematic Directed Acyclic Graph
(DAG) displaying the relationship between parameters and data in the model for
severity in the first two waves in England [Presanis et al. (2011b)]. The figure dis-
plays one generic example age group, with the a and w indices left out for simplic-
ity. Parameters are denoted by circles and data by rectangles. The dashed rectangle
represents repetition over the two waves w ∈ {1,2}. Double circles are basic pa-
rameters which are assigned prior distributions, either vague or informative, and
filled light grey circles denote the key parameters (both basic and functional) we
wish to estimate. Dashed arrows denote functional relationships, for example, the
definition of each number Nw,a,l = cw,a,l|λ ×Nw,a,λ or equations (1) and (2). Solid
arrows represent distributional assumptions, for example, that an observation is Bi-
nomially distributed.

5.1.1. Prior distribution. Independently for each age group, a vague
Dirichlet(1,1,1) prior distribution is given to the infection attack rate, IARw,a ,
in each of the two waves, together with the remaining fraction of the population,
comprising those either uninfected in the first two waves or with some degree of
immunity at baseline:(

IAR1,a, IAR2,a,1 −
2∑

w=1

IARw,a

)
∼ Dirich(1,1,1).

The three proportions are therefore constrained a priori to sum to 1 and to lie
between 0 and 1. This parameterisation assumes each infected individual was in-
fected in only a single wave. The remaining priors are either Uniform or Beta
distributions, with full details given in Section 2.2 of the supplementary material
[Presanis et al. (2014)].
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5.1.2. Likelihood. The likelihood is a product of binomial and log-normal
contributions, as detailed in the following.

Infections. The sero-prevalence data [source (iii) of Section 2] consist of the
number of samples testing positive for pandemic A/H1N1 antibodies, both before
and after the first wave. They are realisations of two binomial distributions and
provide information on the corresponding prevalences at the two time points. The
difference in these two prevalences informs the infection attack rate in the first
wave, via the functional relationship π1,a = πbaseline,a + IAR1,a (Figure 1). The
post-second wave sero-prevalence data were not used initially, as some samples
taken after the vaccination campaign had begun were likely to test positive due to
vaccination rather than infection. A lack of information on the vaccination status
of individuals in the sample, together with concerns that individuals in the sample
may have been more likely than the general population to be at risk of infection,
due to pre-existing conditions, and therefore to be vaccinated [Bird (2010), Miller
et al. (2010)], precluded the use of the data without further work to address these
challenges.

Symptomatic infections. The estimates Ôw,a,S (Figure 1) of the number symp-
tomatic from the HPA (source (ii), Section 1.1.2 of the supplementary material
[Presanis et al. (2014)]) are assumed to be log-normally distributed, with a mean
that (on the original scale) is drawn from a binomial distribution with size param-
eter Nw,a,S and probability parameter given by the detection probability dw,a,S .
This parameterisation reflects the belief that the HPA estimates are underestimates
of the number symptomatic Nw,a,S .

Hospitalisations and deaths. The observed hospitalisations Ow,a,H and deaths
Ow,a,D [sources (iv) and (v), resp., see also Figure 1] are binomial realisations,
with size parameters Nw,a,l, l ∈ {H,D} and probability parameters given by their
respective (wave- but not age-specific) detection probabilities dw,�. Amongst ob-
served hospitalisations for whom we have information on final outcomes [a subset
of source (iv)], the observed ICU admissions and deaths are realisations of bino-
mial distributions with probability parameters given by the conditional probabili-
ties cw,a,I |H and cw,a,D|H , respectively (Figure 1). Fuller details of the model are
given in Section 2 of the supplementary material [Presanis et al. (2014)].

5.2. The third wave: A two-stage approach. The changes in surveillance
sources available during the third wave, particularly the smaller sample sizes and
coarser age aggregation, resulted in the data providing less direct information on
the parameters than in the first two waves. To ensure identifiability of all param-
eters, informative prior distributions were employed for some parameters. The
darker grey circles in Figure 2, a DAG of the third wave model, denote these pa-
rameters, with Beta prior distributions chosen to reflect the posterior distributions
of the equivalent second wave parameters (see Table 15 of the supplementary ma-
terial [Presanis et al. (2014)]). The changes also entailed two smaller submodels,
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FIG. 2. Schematic DAG for the severity model, third wave, for one age group.

one for the data on ICU patients with suspected pandemic A/H1N1 infection and
one for general practice (GP) consultation and positivity data, the results of which
are incorporated into the third wave severity model as likelihood terms (see below
for more detail).

Infections. The infection attack rate again has a Dirichlet prior over the three
waves, but it is now more informative:

(π2,a, IAR3,a,1 − π2,a − IAR3,a) ∼ Dirich(2xa/ya,1,1),

where π2,a is the proportion either with antibodies at baseline or infected during
one of the first two waves, that is, the post-second wave antibody prevalence. For
each age group a, xa and ya are chosen such that a Beta(xa, ya) distribution ap-
proximates the marginal posterior distribution of π2,a derived from the model of
Section 5.1. The choice of Dirichlet parameters allows the prior mean for π2,a to
reflect the posterior mean from Section 5.1, but gives greater prior uncertainty than
the corresponding posterior.

Symptomatic infections. As the HPA did not produce estimates of the num-
ber symptomatic during the third wave, data on ILI consultations and virological
positivity from an alternative primary care sentinel surveillance system ([Fleming
(1999)]; see Section 1.2.1 of the supplementary material [Presanis et al. (2014)])
were used to estimate the number symptomatic, before incorporating this estimate
into the severity model. A log-linear regression of the ILI consultation data on time
and age was fitted jointly with a logistic regression of the positivity data on time
and age [cf. Birrell et al. (2011)]. A negative binomial likelihood was assumed for
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the consultation data and a binomial likelihood for the positivity data. The num-
ber symptomatic due to the pandemic A/H1N1 strain was then estimated as the
sum over weeks of the product of the expected consultation rate and the expected
proportion positive for pandemic A/H1N1, adjusted for the proportion of symp-
tomatic patients who contact primary care. The resulting posterior mean (Ô ′

3,a,S )
and standard deviation (σ ′

3,a,S ) of the logarithm of the number symptomatic are
incorporated into the likelihood of the third wave severity model as a normal term:

Ô ′
3,a,S ∼ N

(
log(N3,a,S), σ ′2

3,a,S

)
(see Section 3.1 of the supplementary material [Presanis et al. (2014)] for details).

Hospitalisations. The hospitalisation data for the third wave (source (vi), Sec-
tion 1.2.2 of the supplementary material [Presanis et al. (2014)]) come from a sen-
tinel system. The observed number of hospitalisations therefore provides a lower
bound for the number of hospitalisations, contributing to the total likelihood as a
binomial component with probability parameter given by the (non-age specific)
detection probability d3,H . Recall that these data are available at a coarser age ag-
gregation than in the first two waves. The size parameter is therefore a functional
parameter N∗

3,b,H = ∑
a∈Ab,H

N3,a,H that is a sum over the appropriate age groups
a ∈ Ab,H , where Ab,H are sets describing the mapping from the coarser age groups
b to the severity model age groups a.

ICU admissions. The extra information on suspected patients present in ICU
(source (vii), Section 1.2.3 of the supplementary material [Presanis et al. (2014)])
are modelled as a bivariate immigration-death process to represent movement in
and out of ICU. This process is combined with the positivity data of source (viii)
to estimate the cumulative number of confirmed pandemic A/H1N1 incident cases
admitted to ICU during the third wave (Section 4 of the supplementary material
[Presanis et al. (2014)]). The resulting posterior mean (standard deviation) of the
logarithm of the cumulative ICU admissions, Ô ′

3,b,I (σ
′
3,b,I ), are incorporated in

the likelihood for the third wave severity model as normally distributed:

Ô ′
3,b,I ∼ N

(
log

(
N∗

3,b,I

)
, σ ′2

3,b,I

)
,

where b denotes the age groups available for the suspected ICU data (two groups:
children and adults). As with the hospitalisation data, the N∗

3,b,I = ∑
a∈Ab,I

N∗
3,a,I

are sums over the appropriate age groups. The number N∗
w,a,I is still a lower bound

for the cumulative number of ICU admissions over the third wave, since the data
of source (vii) cover only a portion of the time of the third wave: this is expressed
as having a binomial distribution with size parameter Nw,a,I and probability pa-
rameter given by the age-constant detection probability dw,I .

Deaths. Finally, the observed deaths are again binomially distributed, as in the
first two waves. Full details of the changes to model the third wave are given in
Section 3 of the supplementary material [Presanis et al. (2014)].
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5.3. Modelling all three waves simultaneously. Modelling the three waves of
infection in two stages enables the use of the posterior distributions of case-severity
in the second wave as prior distributions in the third wave analysis. However,
a two-stage approach does not allow estimation of the posterior probability of a
change in severity occurring over waves. To do so requires modelling all three
waves simultaneously, as if we had not seen any of the data until the end of the
third wave.

A joint model for all three waves implies different assumptions from the two-
stage approach. First, the prior distribution for the infection attack rates in each
wave is assumed again to be diffuse:(

IAR1,a, IAR2,a, IAR3,a,1 −
3∑

w=1

IARw,a

)
∼ Dirich(1,1,1,1).

Here, the remaining fraction of the population 1 − ∑3
w=1 IARw,a comprises both

those with antibodies at baseline (pre-pandemic) and those remaining uninfected
by the end of the third wave.

The proportion symptomatic, cS|Inf , is now constrained to be equal across all
three waves and all age groups, instead of its third wave prior being informed by
its second wave posterior distribution. Likewise, the three conditional probabilities
sCHRw,a = cw,a,H |S, cw,a,I |H and cw,a,D|H for w = 3 are no longer given prior
distributions based on second wave posterior distributions, but are parameterised
in terms of their corresponding second wave conditional probabilities:

logit(c3,a,l|λ) ∼ N
(
logit(c2,a,l|λ), τ 2

l|λ
)

for each (l|λ) ∈ {
(H |S), (I |H), (D|H)

}
,(3)

τl|λ ∼ Unif[0,1].
A value of τ = 1 for the standard deviations would imply that the odds ratios
of the third compared to the second wave probabilities lie between 0.14 and 7.10.
A value of τ = 0 would imply an odds ratio of 1, that is, equality of the conditional
probabilities: c3,a,l|λ = c2,a,l|λ.

All other aspects of the joint model for all three waves are as in the separate
first/second and third wave models of Sections 5.1 and 5.2, respectively.

6. Results. Results from the model for the first two waves, given in full in
Presanis et al. (2011b), suggest a mild pandemic, characterised by case-severity
risks increasing between the two waves. From the analysis of data from the third
wave, Figures 3 and 4 show the posterior medians and 95% credible intervals for
the case-severity risks and infection attack rates, respectively, by age, wave and
model. Although there are some differences between the two-stage models (left-
hand sides of the figures) and the combined three-wave model (right-hand sides),
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FIG. 3. CHR,CIR and CFR by age, wave and model. Note the different scales on the y-axes.
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FIG. 4. Infection attack rate by age, wave and model.

the conclusions are broadly similar. There is a clear “u”-shape to the age distribu-
tion of the case-severity risks (Figure 3) in all three waves, with the youngest and
oldest age groups having the highest probabilities of experiencing severe events,
but also the most uncertainty in the estimates. The age distribution of the infection
attack rates (Figure 4), on the other hand, is convex, with school-age children hav-
ing the highest probability of being infected in the first two waves, though not the
third.

The joint three-wave model allows estimation of the posterior probabilities of
increases across waves in either the attack rates or the case-severity risks (Table 1).
Across waves, there is some evidence of a shift in the age distribution of the in-
fection attack rates, with posterior probabilities p ≥ 0.85 of an increase from the
second to third waves seen in adults and the very young, but not in school-age
children (posterior probability p = 0.13).

At first glance, the estimates averaged over the age groups (Table 1) suggest the
case-severity risks have increased over all three waves. The posterior probabilities
of a rise across waves of the CIR and CFR are all greater than 73%. However,
closer scrutiny of the age-specific estimates shows this increase does not occur
consistently in every age group and wave. There is stronger evidence of a rise in
ICU admission and fatalities from the first to second waves than from the second
to third. The pattern is less clear in the case-hospitalisation risks.

The reason for the pattern of increase in the CIR and CFR over waves is not
immediately apparent without further investigation. Three possible hypotheses are
as follows: (a) that the increase is due to the age shift in the infection attack rate
away from school-age children toward adults across waves; (b) that the lack of
third wave data and consequent parameterisation of some of the third wave condi-
tional probabilities in terms of the corresponding second wave probabilities [equa-
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tion (3)] results in the attenuated change in severity from the second to third wave;
and/or (c) that unaccounted differences in the representativeness of the different
surveillance systems used in the third wave compared to the first two may have an
effect on the estimated severity. These possibilities are not mutually exclusive and
the extent to which the estimated severity is reliant on each is unknown.

6.1. Sensitivity analyses. The potential for unaccounted biases in the sero-
prevalence data (Sections 2 and 5.1.2), as well as the belief that the HPA case
estimates represented underestimates, prompted several sensitivity analyses to fur-
ther assess the uncertainty in the infection attack rates in the first two waves. Sen-
sitivity to the choice of data informing the denominators (the infection attack rate
IARw,a or the number of symptomatic infections Nw,a,S ) and to the prior distribu-
tion of IARw,a was assessed. Specifically, four models with different data inform-
ing IARw,a and Nw,a,S were considered:

1. using the HPA case estimates to inform Nw,a,S , assuming they do so unbi-
asedly in the first two waves (i.e., with dw,a,S = 1), and using no sero-prevalence
data;

2. the model presented here and in Presanis et al. (2011b), assuming the HPA
case estimates are biased downwards and using only the baseline and post-first
wave sero-prevalence data;

3. as in model 2, but using all the sero-prevalence data (up to post-second wave)
of Table 5 of Section 1.1.3 of the supplementary material [Presanis et al. (2014)],
assuming the HPA case estimates are biased downwards in both waves; and

4. as in model 3, but assuming the sero-prevalence data are biased upwards and
the HPA case estimates are biased downwards.

Analyses using models 1 and 2 were then repeated using three different prior dis-
tributions for the infection attack rate:

a. Dirichlet(2,2,6), allowing the total attack rate over the two waves to be a
priori 0.4 on average, with 95% prior mass in the interval (0.1–0.7), and with a
1 : 1 ratio between the two waves;

b. Dirichlet(2.67,1.33,6), allowing again a prior total attack rate of 0.4 (0.1–
0.7), but with a 2 : 1 ratio between waves;

c. Dirichlet(1.33,2.67,6), allowing a prior total attack rate of 0.4 (0.1–0.7),
with a 1 : 2 ratio between waves.

The choice of informative priors is motivated by the total attack rates in prior
pandemics, with the prior uncertainty still relatively large. Jackson, Vynnycky and
Mangtani (2010) found susceptible attack rates (i.e., proportion of susceptibles in-
fected, as opposed to proportion of the total population) of between 19 and 58% in
the first wave of the 1968–1969 pandemic, compared to between 15 and 50% in the
second, which motivates prior (b). This prior may in fact be sceptical for the 2009
pandemic, as instead of a 2 : 1 ratio between waves, the HPA case estimates and
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TABLE 1
Posterior probabilities, by age, that the IAR,CHR,CIR,CFR, cI |H and cD|H are greater in

(a) wave 2 vs wave 1, (b) wave 3 vs wave 2, and (c) wave 3 vs wave 1

Age Pr(W2 > W1) Pr(W3 > W2) Pr(W3 > W1)

IAR <1 19% 87% 71%
1–4 96% 85% 99%
5–14 99% 13% 77%

15–24 94% 96% 100%
25–44 96% 100% 100%
45–64 100% 99% 100%
65+ 95% 99% 100%

All ages 100% 99% 100%

CHR <1 96% 62% 95%
1–4 60% 57% 64%
5–14 26% 27% 13%

15–24 37% 48% 39%
25–44 47% 36% 38%
45–64 19% 52% 24%
65+ 60% 63% 68%

All ages 30% 79% 54%

CIR <1 98% 62% 97%
1–4 86% 58% 86%
5–14 43% 34% 31%

15–24 34% 31% 27%
25–44 91% 36% 82%
45–64 80% 14% 50%
65+ 98% 11% 89%

All ages 90% 73% 95%

CFR <1 58% 69% 70%
1–4 74% 64% 80%
5–14 38% 82% 66%

15–24 60% 24% 41%
25–44 86% 35% 77%
45–64 61% 52% 61%
65+ 74% 40% 67%

All ages 76% 90% 93%

cI |H <1 90% 54% 90%
1–4 85% 54% 85%
5–14 65% 53% 66%

15–24 39% 32% 28%
25–44 100% 43% 99%
45–64 100% 0% 93%
65+ 99% 1% 87%

All ages 100% 35% 100%
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TABLE 1
(Continued)

Age Pr(W2 > W1) Pr(W3 > W2) Pr(W3 > W1)

cD|H <1 26% 62% 31%
1–4 71% 61% 76%
5–14 52% 96% 93%

15–24 69% 20% 46%
25–44 94% 43% 91%
45–64 90% 51% 89%
65+ 72% 20% 54%

All ages 97% 85% 98%

the severe data suggest the ratio was at least 1 : 1, if not 1 : 2 or greater. However,
this ratio may vary by both age and region, with London in particular experienc-
ing a somewhat different epidemic to the rest of the country [Birrell et al. (2011)].
Prior (c) therefore allows for the converse, with a greater second wave than first.

The sensitivity analyses to the choice of prior distribution of the infection at-
tack rate in the first two waves suggest the key messages from Presanis et al.
(2011b) are robust to the choice of prior distribution. Results were less robust to
the choice of denominator data included in the model. The inclusion of the post-
second wave sero-prevalence data suggested a higher infection attack rate [28.4%
(26.0–30.8%)] than the baseline analysis [11.2% (7.4–18.9%)], with a correspond-
ing lower case-fatality risk in the second wave [0.0027% (0.0024–0.0031%) com-
pared to 0.009% (0.004–0.014%)]. Full details of these sensitivity analyses are
given in Section 5 of the supplementary material [Presanis et al. (2014)]. Recall
(Section 5.1.2) that the samples tested post-second wave and before and after the
third wave [Hoschler et al. (2012)] may overrepresent individuals at higher risk
of infection and vaccination. The observed sero-prevalence in these samples may
therefore suggest a higher infection attack rate than truly occurred. Further work
to obtain background information on individuals in the samples, and therefore to
account for sampling biases, is underway, prompted in part by the results of these
sensitivity analyses.

In the third wave, a sensitivity analysis to the set of virological positivity
data used was performed (Sections 1.2.1 and 3.1 of the supplementary material
[Presanis et al. (2014)]). The main analysis used the full positivity data, with the
results of the Bayesian joint regression model of the positivity and primary care
consultation data (Table 13 of the supplementary material) incorporated into the
combined 3-wave model as shown in Figure 2 and Section 3.1 of the supplemen-
tary material. The sensitivity analysis employed instead a set of virological posi-
tivity data restricted to tests made on swabs that were collected within 5 days of
an ILI consultation, with corresponding results from the joint regression model in
Table 14 of the supplementary material. The results from including the two alter-



2396 PRESANIS ET AL.

FIG. 5. Third wave CHR,CIR and CFR from the combined model, by age and source of positivity
data. Note the different scales on the y-axes.

native sets of estimates from the joint regression model into the combined 3-wave
model are compared in Figures 5 and 6.

The general conclusions about the age distribution of the case-severity risks and
infection attack rate in the third wave are unchanged by the use of the restricted
positivity data. The restricted data do imply a slightly higher and more uncertain
attack rate in each age group (Figure 6), due to the higher observed positivity and
smaller sample sizes. Correspondingly, the case-severity risks are slightly lower in
each age group in the sensitivity analysis (Figure 5), but the greater uncertainty in
the denominator does not seem to translate directly into greater uncertainty in the
risks.

7. Discussion. We have extended and further developed a Bayesian evidence
synthesis model [Presanis et al. (2011b)] to characterise and estimate the severity
of the 2009 pandemic A/H1N1 strain of influenza in the three waves of infection
experienced in England. The model has been adapted to account for changes in
the surveillance data available over the course of the three waves, considering two
approaches: (a) a two-stage approach, using posterior distributions from the model
for the first two waves to inform prior distributions for the third wave analysis;
and (b) modelling all three waves simultaneously, accounting for the reduction in
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FIG. 6. Third wave infection attack rate from the combined model, by age and positivity data set
used.

available data by parameterising the third wave severity parameters in terms of the
corresponding second wave parameters. Both approaches have resulted in broadly
the same three key conclusions:

1. The age distribution in case-severity risks is “u”-shaped, implying children
aged less than a year and older adults have highest severity, although their esti-
mates are also the most uncertain. This pattern is consistent with the increasing
severity with age seen in other countries during the 2009 pandemic [Presanis et al.
(2009), Shubin et al. (2013), Sypsa et al. (2011), Wong et al. (2013), Wu et al.
(2010)], where in each of these analyses, the authors did not distinguish between
children under 1 year of age and those aged 1–4. The pattern is also consistent
with global relative risks by age of severe events compared to the general popula-
tion estimated by Van Kerkhove et al. (2011).

2. The age distribution of the infection attack rate changes over waves, with
school-age children most affected in the first two waves and an increase in the
attack rate in adults aged 25 and older from the second to third waves.

3. When averaged over all ages, severity in those infected appears to increase
over the three waves.

The changing age distribution and apparent increase in severity over waves is con-
sistent with estimates from the two pandemic waves experienced by other countries
[Shubin et al. (2013), Truelove et al. (2011), Yang et al. (2011)].



2398 PRESANIS ET AL.

It is important to note that the estimates presented here do not account for risk
factors for severe influenza, nor for vaccination status nor for other preventive mea-
sures, such as social distancing, which might have an effect on severity. Both the
joint regression model of virological positivity and GP consultation and the full
severity model would require further development to account for these factors and
to be able to use the second and third wave serology data accounting for sampling
biases. Assessment of the effect on estimates of assumptions—such as that of no
influenza-related deaths occurring outside of hospital or the parameterisation of the
third wave in terms of the second wave in the combined analysis—is also key. The
possible effect of any differences in representativeness of the various surveillance
systems in the third compared to the first two waves is an issue for further inves-
tigation. The sample sizes and prior distributions chosen do not provide enough
information to enable convergence of the MCMC algorithm for the severity model
when taking the number of infections Nw,a,l to be a Binomial realisation from the
number at a less severe level λ. This lack of convergence implies there may be
too much uncertainty to allow identifiability of the model in this case, prompting
instead the mean assumption Nw,a,l = cw,a,l|λ × Nw,a,λ. Another area for future
investigation is to assess how informative the priors are required to be or how large
sample sizes need to be to enable convergence when the Nw,a,λ are stochastic.

Despite these challenges, our Bayesian evidence synthesis approach has al-
lowed us to draw important public health conclusions, not only in characterising
the severity of the 2009 pandemic, but also in shaping future research. The sen-
sitivity analyses showed the severity estimates were robust to prior assumptions
about the infection attack rate, but less robust to the choice of data to include in
informing the attack rate. Although the magnitude of the severity estimates var-
ied, the conclusions of a “u”-shaped age distribution to severity and an apparent
increase in severity over waves were nevertheless robust. The sensitivity of the re-
sults has, furthermore, contributed to the initiation of a project to obtain further
data to better understand the potential sampling bias in the sero-prevalence data
[Laurie et al. (2013)].

The evidence synthesis framework has also given us the flexibility to account for
biases, using prior information on parameters representing the biases, for example.
Bias modelling has been an integral part of the model development, inference and
criticism cycle, as have the sensitivity analyses. It is important, in any analysis, to
understand the contribution of each item of evidence, whether in the form of model
structure, prior distribution or data, in driving inferences. It is particularly crucial
when an analysis relies on informative priors for identifiability, as is the case here.
Another key aspect of model criticism in an evidence synthesis is to assess the
consistency of the various data sources, not only with each other, but also with
the model structure. It is possible, and indeed common, in syntheses of multiple
sources of evidence to find both that some parameters are only barely identified by
the data and that other parameters are informed indirectly by more than one data
item. In the latter case, there is clearly potential for different sources of data to



SYNTHESISING EVIDENCE TO ESTIMATE INFLUENZA SEVERITY 2399

conflict, providing inconsistent evidence on a particular parameter [Lu and Ades
(2006), Presanis et al. (2008), Sweeting et al. (2008)]. Such conflicts need to be
detected, measured, understood and resolved. Conflict diagnostics, in the form of
cross-validatory posterior prediction, for the first wave confirm the inconsistency
between the serology data and the HPA estimates of the number symptomatic if
taken at face value [Presanis et al. (2013)]. In our main analysis, we addressed
the conflict by incorporating a bias parameter for the HPA estimates, whereas in
the sensitivity analyses, we also considered a bias parameter for the serology data.
Further preliminary work on measuring conflict seems to confirm the suggestion of
the sensitivity analyses that the severe end data does indeed conflict with the evi-
dence on the attack rates. Given the uncertainties in the attack rates, understanding
and resolving this conflict is an important next step. The iterative process of fitting,
criticising and further developing an evidence synthesis model to address conflicts,
as we have done and are continuing to do here, leads automatically to internal con-
sistency. By contrast, external validation is much more challenging in an evidence
synthesis framework. As already noted, due to identifiability issues common to
evidence syntheses, it is rare to find external data against which to validate - such
data are instead used in the synthesis.

Despite these challenges, an evidence synthesis using a complex probabilistic
model provides a powerful approach to estimating influenza severity when the
available evidence comes from multiple sources that are incomplete and biased.
The embedding of a “pyramid” approach to severity estimation within an evidence
synthesis framework, as presented here, is easily adapted to other contexts, both
within epidemiology, where many diseases may be observed at different levels
of severity or diagnosis, and in other fields where observation occurs at different
levels, for example, quality control or ecology.
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SUPPLEMENTARY MATERIAL

Appendix: Synthesising evidence to estimate pandemic (2009) A/H1N1 in-
fluenza severity in 2009–2011 (DOI: 10.1214/14-AOAS775SUPP; .pdf). Ap-
pendix describing the data, further model details and sensitivity analyses.
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