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SPATIO-TEMPORAL MODELLING OF EXTREME STORMS1
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A flexible spatio-temporal model is implemented to analyse extreme
extra-tropical cyclones objectively identified over the Atlantic and Europe
in 6-hourly re-analyses from 1979–2009. Spatial variation in the extremal
properties of the cyclones is captured using a 150 cell spatial regularisation,
latitude as a covariate, and spatial random effects. The North Atlantic Oscilla-
tion (NAO) is also used as a covariate and is found to have a significant effect
on intensifying extremal storm behaviour, especially over Northern Europe
and the Iberian peninsula. Estimates of lower bounds on minimum sea-level
pressure are typically 10–50 hPa below the minimum values observed for
historical storms with largest differences occurring when the NAO index is
positive.

1. Introduction. Extreme North Atlantic and European extra-tropical cy-
clones are a major source of risk for society. These natural hazards cause much
damage and insurance loss in Europe due to extreme wind speeds/flooding. Re-
cent examples include the December 1999 windstorms Anatol and Lothar [Ulbrich
et al. (2001)], and windstorm Kyrill in 2007 which resulted in large losses across
most of Europe. Important scientific questions are as follows:

1. How extreme (intense) can extra-tropical cyclones become? Or, more pre-
cisely, how much more extreme compared to the most extreme values recorded in
short series of historical observations/analyses?

2. How does the extreme behaviour vary spatially?
3. How does the extreme behaviour vary in time due to modulation by large-

scale climate patterns?

We consider sea-level pressure (i.e., cyclone depth) as a measure of cyclone
intensity. Unfortunately, there are no simple physical arguments for how deep
an extra-tropical cyclone can become. The most extreme events often deepen ex-
plosively with rapid decreases in central pressure, for example, storms known as
bombs having pressure drops of more than 24 hPa in 24 hours at 60 N. Explosive
cyclogenesis depends on many factors, for example, the deepest recorded 20th
century low of 913 hPa (the Braer cyclone of January 1993) deepened 78 hPa
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in 24 hours due to a combination of several factors such as available moisture
and stratospheric conditions [Odell et al. (2013)]. The unlikely possibility that
such conditions could be maintained for 2 days gives a minimum value of SLP of
around 990−156 = 834 hPa starting from a typical background state of 990 hPa. It
should also be noted that SLP less than 650 hPa would correspond to mid-latitude
geostrophic wind speeds faster than the speed of sound, which due to shock wave
dissipation would be impossible to maintain energetically. In the absence of any
more rigorous physical bounds, it is of interest to estimate bounds empirically us-
ing statistical approaches such as extreme value theory.

Modelling cyclones poses an interesting challenge: the events occur irregularly
in space and time with rates and magnitudes that are spatially heterogeneous and
nonstationary in time (due to modulation by large-scale climate conditions). Fur-
thermore, at any one location, very few extreme events are observed in short histor-
ical data sets. Here we model extreme North Atlantic cyclones using an extended
version of the spatial point process model for extremes from Cooley and Sain
(2010). The extension involves the inclusion of temporal covariates, the adapta-
tion to irregularly occurring (i.e., random occurrence rather than fixed locations)
extremes in space and the application to extra-tropical cyclones.

2. Background and data.

2.1. Extreme extra-tropical cyclones. There has been surprisingly little use of
extreme value theory to investigate extreme cyclones [see Katz (2010) for a discus-
sion about the lack of extreme value theory in climate science]. Lionello, Boldrin
and Giorgi (2008) investigated changes in future cyclone climatology over Eu-
rope using the Generalised Extreme Value (GEV) distribution to model pressure
minima. Return levels were calculated over the whole North Atlantic domain with-
out explicit characterisation of spatial or temporal heterogeneity. Della-Marta and
Pinto (2009) and Della-Marta et al. (2009) used a Generalised Pareto Distribu-
tion (GPD) model to analyse future changes in extreme wind intensity. Three large
nonoverlapping areas were considered, however, there was no formal considera-
tion of spatial or temporal variation in the extremes. Sienz et al. (2010) used GPD
models extending the work by Della-Marta and Pinto (2009) to include tempo-
ral covariates such as the North Atlantic Oscillation (NAO) and a linear trend but
did not account for spatial variability. Bonazzi et al. (2012) used bivariate extreme
value copulas to model the spatial dependence in footprints of peak gust wind
speeds from a set of 135 damaging European cyclones. However, this study did
not explicitly model the magnitude of many cyclones and so does not answer the
question about upper bounds on cyclone magnitudes.

2.2. Brief review of spatial extreme models. Davison, Padoan and Ribatet
(2012) identified three main classes of statistical models for spatial extremes:
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Bayesian hierarchical models (BHM), copula based models and max-stable pro-
cess models. Although max-stable processes explicitly characterise spatial depen-
dence, BHM can be more flexible and pragmatic by allowing for inclusion of phys-
ical mechanisms in terms of covariates and random effects. The major issue with
BHM is the conditional independence assumption of the extremes, whereas for
max-stable processes it is model implementation and flexibility. Copula models
lie somewhere in between since the dependence of the extremes is modelled by
the copula assuming that the marginal distributions are separable from this depen-
dency structure [Sang and Gelfand (2010)].

In this paper, we adapt BHM as the modelling framework mainly because of
their flexibility in allowing for (temporal) covariate effects along with a versatile
spatial dependency structure through random effects. BHM generally assume in-
dependence of the extremes for given values of the covariates and random effects
(conditional independence), although they can be extended to model spatial ex-
tremal dependence by including max-stable processes [Reich and Shaby (2012)].
For the application to extra-tropical cyclones, we believe conditional independence
to be a reasonable working assumption. Much of the dependency between succes-
sive cyclones has been shown to be induced by modulation of rates by time-varying
climate modes and so can be accounted for by including appropriate covariates
[Mailier et al. (2006), Vitolo et al. (2009)].

There has been recent interest in spatial BHM for extremes since their intro-
duction by Casson and Coles (1999). In Cooley, Nychka and Naveau (2007) and
Cooley and Sain (2010), a GPD and a point process model are used to model
extreme precipitation where the spatial dependence is characterised by Gaussian
random effects in the formulation of model parameters but without incorporat-
ing temporal nonstationarity. Gaetan and Grigoletto (2007), Heaton et al. (2011)
and Sang and Gelfand (2009) allowed temporal structure in BHM through time-
varying covariates where the conditional model is a GEV distribution. Turkman,
Turkman and Pereira (2010) used a similar model where the conditional model is
a GPD. In this paper, we use the computationally efficient MCMC algorithm from
Cooley and Sain (2010) based on recent work on Markov random fields [Rue and
Held (2005)] and add temporal covariates, to account for temporal trends and vari-
ations. We use the point process model for extremes as the conditional model: it
utilises more of the data than GEV models and, unlike GPD models, inference is
invariant to the choice of threshold.

2.3. Data. Objective feature-identification software [Hodges (1994)] was
used to extract cyclone tracks from 6-hourly National Center for Environmen-
tal Prediction Climate Forecast System (NCEP-CFS) re-analysis data [Saha et al.
(2010)] available over the period 1979–2009. Individual cyclone tracks are iden-
tified by tracking local maxima in relative vorticity just above the boundary layer
(about 1.5 km above sea level). The minimum sea-level pressure (MSLP) and its
location are recorded every 6 hours throughout the lifecycle of each cyclone. We
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FIG. 1. (a) Cyclone tracks for the October 1989 to March 1990 extended winter. Only a subset
of tracks is plotted: ones where any 6-hourly MSLP value reached below 960 hPa. Nadir positions
are denoted with solid circles. (b) Sea-level pressure versus latitude and (c) latitude for two of the
cyclone tracks in (a).

use sea-level pressure as a measure of cyclone intensity mainly because this vari-
able is well observed and has smooth variation during the lifetime of a cyclone,
unlike other possible variables such as wind speed or vorticity. Figure 1(a) shows a
map of cyclone tracks defined by 6-hourly MSLP recordings for a period with high
cyclone activity. Only a subset of tracks is plotted: ones where any 6-hourly MSLP
value reached below 960 hPa. Typical damaging cyclones over Europe reach val-
ues in the range 940–970 hPa, for instance, Anatol: 953 hPa [Ulbrich et al. (2001)]
and Kyrill: 962 hPa [Mitchell-Wallace and Mitchell (2007)], whereas the lowest
ever recorded Braer cyclone reached 913 hPa off the North–West of Scotland in
January 1993 [Odell et al. (2013)].

Although wind speed could also have been used, exploratory analysis suggests
that extreme MSLP and maximum wind speed are strongly dependent, as to be
expected from simple balance arguments. Above the surface boundary layer out-
side equatorial regions, centrifugal and Coriolis forces are approximately balanced
by the pressure gradient force. Hence, wind speeds above the boundary layer in
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extra-tropical cyclones are proportional to pressure gradients (gradient wind bal-
ance). Surface pressure gradients in turn are strongly related to the cyclone MSLP
since extra-tropical cyclones have similar synoptic spatial dimensions (the so-
called Rossby scale). Hence, from such simple dynamical meteorology arguments,
MSLP and maximum wind speeds are expected to be extremally dependent and so
will convey similar information. Let random variables W and Z denote maximum
(6-hourly) wind speeds at about 1.5 km above the surface (on the 925 hPa pressure
surface) and negated MSLP (obtained by multiplying MSLP by −1), respectively,
with associated 6-hourly recorded values wt and zt . Figure 2(a) shows a plot of wt

against zt : there is strong positive association with the loess smoother indicating
a nearly linear relationship. To better visualise extremal dependence, Figure 2(b)
shows the empirical copula obtained by producing a scatter plot of the empirical
probabilities q

(z)
t = (rank(zt ) − 1)/(n − 1) and q

(w)
t [Stephenson et al. (2008)],

where n is the total number of 6-hourly recorded values. This transforms out the
margins to uniform distributions since q

(z)
t and q

(w)
t are estimates of the cumula-

FIG. 2. (a) Wind speed against negated sea-level pressure with an associated loess fit (grey line).
The intersecting lines are the values −960 hPa and 45 m/s for pressure and wind speed, respectively,
representing the same high empirical quantile for each variable. (b) Empirical copula of wind speed
and pressure along with the associated quantile lines from (a). (c) The associated extremal depen-
dency measure χ(p), and (d) χ̄ (p) vs p. The 95% confidence intervals in (c) and (d) are based on
the Normal approximation to proportions and are calculated as introduced in Coles, Heffernan and
Tawn (1999).
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tive distribution functions (CDFs) FZ(Z) and FW(Z). Strong dependence of the
extremes is evident from the convergence of the points in the upper right-hand
corner of the graph.

Figure 2(c) shows estimates of the extremal dependence measure χ [Coles, Hef-
fernan and Tawn (1999)] defined as χ = limp→1 χ(p), where χ(p) = Pr(FZ(Z) >

p|FW(W) > p). As p → 1, χ(p) → 0, implying asymptotic independence, so
we also show χ̄ (p), another measure of strength of extremal dependence, in Fig-
ure 2(d). The quantity χ̄ = limp→1 χ̄ (p) measures the strength of extremal depen-
dence within the class of asymptotic independence. Since χ̄ (p) remains positive
but does not tend to 1, we conclude that there is a positive nonasymptotic associ-
ation at extremes of negated MSLP and maximum wind speed, so either variable
could potentially be used to investigate extremes (see Appendix A.2 for details on
χ and χ̄ ).

Figure 1(b) and (c) show plots of MSLP against latitude and longitude, respec-
tively, for two particular cyclone tracks in the 1989–1990 winter [Figure 1(a)].
The plots illustrate not only the tendency of intense cyclones to move in a west-
to-north direction but also the fact that MSLP decreases (cyclone deepening) as
the cyclone propagates in space and time, to reach a minimum (which we assume
approximates the unobserved value of the cyclone nadir) before it starts increas-
ing again until the end of the life cycle. Understanding the limiting strength of the
nadirs is an important aspect in the study of extra-tropical cyclones. However, the
rate of growth of cyclones depends on the large-scale atmospheric environment
that they pass from, so the pressure limit of cyclone nadirs will vary with the spa-
tial location of the cyclone. By only considering the nadir from each track, we
focus on a fundamental limiting property of cyclones, namely how deep they can
get in general rather than how deep they can get in specific spatial locations. In
other words, we are interested in spatial variation in cyclone intensity rather than
maximum local cyclone impact.

The analysis of nadirs only, also helps to eliminate dependency between suc-
cessive 6-hourly MSLP measures and reduces the amount of data from 313,557
6-hourly measurements to 17,230 nadirs. Figure 3(a) shows the (re-analysis) nadir
from each track in the Atlantic region where dots in black are nadirs with sea-level
pressure lower than 960 hPa. However, a single value for the threshold defining the
extremes is not appropriate and the definition of extremeness should vary spatially.
For example, a damaging cyclone in the Mediterranean is likely to be considered
a weak one over Scandinavia.

Note that we use cyclone tracks from a reanalysis data set mainly because gen-
erally cyclone track observations for the extra-tropics are not readily available.
However, reanalysis data are output from climate models with assimilated histori-
cal observational data. There is much smoothing/interpolation of the observational
data when creating a reanalysis data set, so the interpretation of any results ob-
tained here is conditional on the effects of such smoothing.
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FIG. 3. (a) Map of all cyclone nadirs: dots in black represent nadirs deeper than 960 hPa, (b) map
of recorded X(s, t) that are greater than the threshold (90th empirical quantile) in each grid cell and
(c) map of thresholds in each cell.
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3. Model specification and model fitting.

3.1. Spatial discretisation. Conventional Bayesian spatial models generally
rely on the assumption that data are either gridded or they come from fixed lo-
cations in space [see Banerjee, Carlin and Gelfand (2004)], where one or more
observations are available at each location. Extreme nadirs, however, behave like a
spatial marked point process where both location of occurrence and magnitude are
random. To utilise such Bayesian models, we propose for simplicity to discretise
space by imposing a finite grid and to consider the minimum possible size � for
each grid cell, to ensure that enough data are available for estimation in each cell.
Inference should not be sensitive to the choice of grid spacing, provided it is fine
enough (in the limit � → 0 one should obtain the original marked point process).
Sensitivity analysis for � is an important part of the concept (see Section 3.6).

For spatial marked point processes, estimation is only possible after making
assumptions about spatial (and temporal) structure. The assumption made by dis-
cretising is that, conditional on a cell-specific random effect and possible covari-
ates, the extreme events (nadirs) within each cell come from the same distribution.
The cell-specific random effects are spatially dependent to allow for correlation
between events in neighbouring cells. We also assume that the events can occur
anywhere within the cells, with equal probability. Importantly, redefining space
into discrete grid cells also provides a way of defining extremes in space: as values
below a cell-varying threshold or as the r = 1,2, . . . largest values, in fixed time
periods.

More generally, conditional on a given spatial or spatio-temporal dependence
structure between cells, nadirs are modelled using an appropriate extreme value
model. This is a hierarchical model where at the top of the hierarchy, random ef-
fects and covariates define a spatio-temporal process which modulates the process,
giving rise to extreme nadirs.

3.2. Spatial grid. Conventionally, extreme value modelling is applied to the
upper tails so the nadirs are negated to obtain variable X(s, t), where s refers to
the grid cell and t refers to time. We may think of X(s, t) as the depth of a cyclone
so that high values of X(s, t) correspond to low values of MSLP. We divided the
domain in Figure 3(a) into N = 150 5◦ × 10◦ grid cells. The threshold u(s) in
each cell was defined as the empirical 90th quantile of X(s, t). We performed ex-
ploratory threshold analysis using mean residual life plots [Coles (2001)], ensuring
that the 90th empirical quantile was an appropriate threshold choice. Figure 3(b)
shows the map of the extremes (1736 nadirs) and Figure 3(c) shows the map of
u(s). Note that in Figure 3(c), three cells are highlighted: cells containing coordi-
nates (5.2◦E, 60.2◦N), (0◦E, 5◦N) and (3.5◦W, 40.2◦N) marked in white crosses.
These coordinates relate to the cities of Bergen, London and Madrid, respectively,
and will be used throughout the paper for illustration of results, as they adequately
span Europe in terms of latitude.
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3.3. Model specification. To model the depth X of negated nadirs, we con-
sider the point process model for extremes [Coles (2001)]—conditional on spa-
tial random effects and temporal covariates. For some high threshold u of X, this
model is parametrised in terms of the location, scale and shape parameters of the
GEV distribution, namely, μ, σ and ξ (see Appendix A.1). We use the notation
X ∼ PP(μ,σ, ξ, u). Introducing spatial and temporal variation, let X(s, t) be the
depth in grid cell s ∈ S at time t ∈ T, where S and T are the space and time do-
mains, each a fixed subset of 2-dimensional and 1-dimensional Euclidean space,
respectively. Extending the approach of Cooley and Sain (2010), we model the
X(s, t) in the following way:

X(s, t)|θψ(s), β2(s) ∼ PP
(
μ(s, t), σ (s, t), ξ(s), u(s)

)
,(1)

μ(s, t) = β
μ
0 + β

μ
1 z1(t) + β2(s)z2(t) + θμ(s),(2)

log
(
σ(s, t)

) = βσ
0 + βσ

1 z1(t) + θσ (s),(3)

ξ(s) = β
ξ
0 + θξ (s)(4)

for ψ = μ,σ, ξ . Defining vectors Uψ = (Uψ(1), . . . ,Uψ(N))′ for ψ = μ,σ, ξ ,
U(s) = (Uμ(s),Uσ (s),Uξ (s))′ and U = (Uμ,Uσ ,Uξ )′, the spatial level of the
model is as follows:

(
θμ(s), θσ (s), θξ (s)

)′|U(s) ∼ N
(
U(s),diag(τ )−1)

,(5)

U = (
Uμ,Uσ ,Uξ )′ ∼ N

(
0,�−1)

,(6)

β2(s) ∼ N
(
ν,φ2)

,(7)

where z1 is the latitude of the occurrence and z2 is the North Atlantic Oscillation
(NAO) value (see Section 3.4 about covariate selection). The spatial random effects
θμ(s), θσ (s) and θξ (s) define spatial variability in μ, log(σ ) and ξ across the
cells, after allowing for covariates. The r-year return level, that is, the (1 − 1/r)th
quantile of X(s, t) in cell s and time t , is given by

X1−1/r (s, t) = μ(s, t) + σ(s, t)

ξ(s)

((− log(1 − 1/r)
)−ξ(s) − 1

)
.(8)

As in Cooley and Sain (2010), vectors Uψ are modelled jointly using a sep-
arable formulation [Banerjee, Carlin and Gelfand (2004), Chapter 7], so that the
precision matrix is � = T⊗W. The matrix T is an unknown 3×3 positive definite
symmetric matrix and W is an N × N proximity matrix defining spatial proximity
between the N cells. Therefore, the dimension of � is 3N × 3N . Here, spatial
proximity is based on nearest neighbours so that off-diagonal elements of W are
wi,j = −1 if cells i and j are adjacent and wi,j = 0 otherwise, whereas diagonal
elements wi,i = −∑

i �=j wi,j [see Bailey and Gatrell (1995), pages 261–262 for
other examples of proximity measures].
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Each vector Uμ,Uσ ,Uξ is modelled by an Intrinsic AutoRegressive (IAR) spa-
tial model [Banerjee, Carlin and Gelfand (2004)]. The IAR model uses the prox-
imity matrix and a single unknown parameter to control the spatial dependency
structure (see Appendix A.3). Here, there are three such parameters for each of
Uμ,Uσ ,Uξ and they are found in the diagonal of T. (Note that the value of
τ is conventionally fixed beforehand to avoid nonidentifiability between τ and
the diagonal of T [Banerjee, Carlin and Gelfand (2004)].) Dependence between
Uμ,Uσ ,Uξ is modelled using 3 parameters, the off-diagonals of T, each control-
ling the strength of dependence. Allowing explicitly for this dependence can aid
the MCMC estimation discussed in Section 3.5, in terms of convergence to the
posterior and also mixing of the MCMC samples.

The NAO parameter β2(s) is spatially variable but in an unstructured way. This
ensures that β2(s) share information to aid estimation in cells with few events but
less so compared to using a structured (IAR) spatial prior. Parameter ν

ψ
k reflects

the overall NAO effect on μ(s, t).
We complete the model specification by defining the prior distributions of the

hyperparameters. The intercepts β
μ
0 , βσ

0 , β
ξ
0 were given Gaussian priors with large

variance, and means (μ̄, log σ̄ , ξ̄ ), calculated as means of independent maximum
likelihood fits of point process models in each cell. For parameters β

μ
1 , βσ

1 , ν, we
assumed a flat Gaussian prior with zero mean and large variance. The prior distri-
bution π(·) for φ

ψ
k is chosen so that π(φ

ψ
k ) ∝ 1/φ

ψ
k [Gelman et al. (2013), Chap-

ter 3], whereas for T and P we use a Wishart prior with 3 degrees of freedom
(uninformative) and a mean that relates to the variability of μ, σ and ξ across cells
(see Section 3.5).

3.4. Covariate selection. This was performed by adding explanatory variables
to a “null” model: the model in (1)–(4) without z1 or z2. Models were compared
using the Deviance Information Criterion (DIC), a model selection criterion for
Bayesian models [Spiegelhalter et al. (2002)] and by investigating whether poste-
rior distributions of associated parameters are centred at zero with relatively large
variance.

The model in (1)–(4) was first implemented with the addition of latitude, lon-
gitude, latitude squared, longitude squared and an interaction term between lon-
gitude and latitude as covariates in both μ(s, t) and log(σ (s, t)). This allows for
large-scale spatial trends, leaving the local spatial dependence to the random ef-
fects. It also relaxes the assumption of complete spatial randomness of extreme
events within a cell, both in terms of occurrence and intensity. In principle, non-
parametric surfaces can also be considered for smoothing large-scale spatial trends
[see Davison, Padoan and Ribatet (2012), page 173 for references], but this was
not deemed necessary here. To quantify the effect of large-scale climate patterns,
two climate indices were also considered as covariates: the North Atlantic Oscil-
lation (NAO) and the East Atlantic Pattern (EAP), both of which have been shown
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FIG. 4. (a) Time series of NAO defined as a 5-day average of daily NAO, (b) histogram of NAO
along with vertical lines marking the values −2 and 2, (c) occurrences of recorded nadirs where the
associated NAO value was greater than 2 and (d) less than −2.

to be influential for extra-tropical cyclones [Mailier et al. (2006), Nissen et al.
(2010), Pinto et al. (2009), Seierstad, Stephenson and Kvamsto (2006)]. No co-
variates were considered for the shape parameter ξ(s) since this is a particularly
difficult parameter to estimate, however, it was allowed to vary between cells. Out
of all possible covariate combinations, the lowest DIC value occurred for the par-
ticular model formulation in (1)–(4). The posterior distributions of “insignificant”
parameters (e.g., ones relating to longitude) had means and medians very close to
zero.

It is well known that the NAO has influence on the development of extra-tropical
cyclones [Pinto et al. (2009)]. By definition, the NAO index is standardised to have
zero mean and unit variance, and here it was defined as 5-day nonoverlapping av-
erages from 1979–2009. Figure 4(a) shows the time series of NAO and Figure 4(b)
shows the histogram of NAO where the values of 2 and −2 are marked, as we
consider these as high and low NAO threshold values throughout the rest of this
paper. Figure 4(c) and (d) show extreme values of X(s, t) for which NAO ≥ 2
and NAO ≤ −2, respectively. There is a clear North–South pattern in the Central
Atlantic, implying NAO has a notable effect on extreme cyclones.

3.5. Estimation by Markov chain Monte Carlo. For all ψ = μ,σ, ξ , random
effects θψ(s) and β2(s), and parameters β

μ
1 and βσ

1 , were sampled by Metropolis–

Hastings, specifically using a random walk sampler. The intercepts β
ψ
0 were sam-

pled from their full conditionals using Gibbs sampling, by treating them as inter-
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cepts in the mean for each θψ(s). Samples of (Uμ,Uσ ,Uξ )′ and T were drawn
using Gibbs sampling, utilising the specific techniques in Cooley and Sain (2010).
Both ν and φ2 were sampled from their full conditionals: Gaussian and scaled
inverse-χ2, respectively.

Note that when the IAR model is used as a prior it is improper: the density does
not integrate to 1. So, to make the intercept terms β

ψ
0 identifiable, the rows of W

must sum to zero. This in turn imposes the restriction that
∑

s Uψ(s) = 0.
The parameter τ was set to (0.1,10,100)′. These values were chosen by fitting

independent point process models in each cell and investigating the level of vari-
ability between cells for μ(s), log(σ (s)) and ξ(s), not only to reflect the difference
in scale for the three parameters but also to make sure that most of the variability
is modelled by the random effects Uμ,Uσ ,Uξ and not τ . If values in τ are too
small, then the variability in each θψ(s) is forcibly large and may cause problems
in estimating the diagonal of T which relates to the variability of each Uψ . Sensi-
tivity analysis was performed to ensure these values have little effect on inference
(not shown for conciseness).

The Wishart prior for the precision matrix T was given the following mean:
diag(0.02,4,40)′. As with τ , these values were calibrated by fitting independent
point process models and were chosen to reflect the associated levels of variability
for each of μ(s), log(σ (s)) and ξ(s).

The model in (1)–(4) was implemented in R [R Development Core Team
(2012)] using three parallel MCMC chains. These were run on a workstation with a
3.07 GHz i7 processor and the processing speed for each chain was 30 seconds for
1000 samples. A total of 50,000 samples were collected per chain and thinned by 5
to reduce auto-correlation. After thinning, the first 3000 samples from each chain
were discarded based on a trace plot of deviance (minus twice the log-likelihood)
shown in Figure 5(a). Convergence in the deviance is a good indication of conver-
gence to the joint posterior of all parameters [Gelman et al. (2013)]. Summarising,
21,000 posterior samples were used to calculate posterior distribution statistics for
the parameters. Figure 5(b) shows an example trace plot of ξ(s) for the grid cell
containing the London coordinate.

3.6. Sensitivity to grid cell size. A purely spatial model [i.e., model (1)–(4)
without z1 and z2] and a stationary model [i.e., model (1)–(4) without z1, z2 and
the random effects] were implemented for different grid configurations. For each
model, the 100-year return level (i.e., the level exceeded by the annual maximum
in any particular year with probability 0.01) of X(s, t) was calculated using (8),
for each of the three coordinates marked in Figure 3(c). Figure 6 shows the pos-
terior mean of the 100-year return level against the number of cells in each grid
configuration along with 95% credible intervals for each model. Convergence of
the return value, as the number of cells increases, is evident for the spatial model
(although this varies slightly due sampling variation). The random effects pool
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FIG. 5. (a) Deviance samples from each of the three MCMC chains. Vertical lines denote the
burn-in and the total number of simulations. Samples between the two lines are used for inference.
(b) Samples of the shape parameter ξ(s) for the grid cell containing London.

information spatially, whereas the stationary model ignores neighbouring cells,
resulting in failure to converge, especially over London. Pooling also results in
notably smaller credible intervals for the spatial model—note that the intervals are

FIG. 6. Dots are posterior means of the 100-year return level of X(s, t) versus number of cells in
different grid specifications, along with 95% credible intervals. Left [(a) and (d)], middle [(b) and (e)]
and right [(c) and (f)] panels refer to the Bergen, London and Madrid cells, respectively. Top [(a),
(b), (c)] and bottom [(d), (e), (f)] panels refer to the stationary and the spatial models, respectively.
For reference, the deepest recorded value of X(s, t) in each cell is shown with a cross symbol.



2236 T. ECONOMOU, D. B. STEPHENSON AND C. A. T. FERRO

TABLE 1
Summary of parameter posterior distributions

Parameter Prior Posterior mean (s.e.) 95% Cr.I. R̂

β
μ
1 (Latitude) N(0,100) 4.71 (0.62) [3.61,5.94] 1.13

βσ
1 (Latitude) N(0,100) 0.12 (0.07) [0.00,0.25] 1.03

Overall NAO effect ν N(0,100) 1.21 (0.24) [0.77,1.66] 1.01
Variance NAO effect φ2 ∝ 1/φ2 5.6 (1.85) [3.09,10.25] 1.00
β

μ
0 N(−944.1,100) −987.4 (0.51) [−988.5,−986.5] 1.04

βσ
0 N(5.7,100) 2.03 (0.06) [1.91,2.15] 1.05

β
ξ
0 N(−0.19,100) −0.13 (0.03) [−0.18,−0.07] 1.10

skewed. We chose N = 150 cells for the analysis so that all cells have an adequate
number of nadirs (ranging from 14 to 376).

4. Results. Posterior distributions for global parameters are summarised in
Table 1. Latitude has a positive linear effect on both the location and log-scale
parameters of extreme cyclone depth X(s, t). The overall NAO effect ν is positive,
in agreement with findings from previous studies [Pinto et al. (2009)]. To assess
MCMC convergence, the Gelman and Rubin R̂ multi-chain diagnostic was used
for each of our model parameters [Gelman et al. (2013)]. The R̂ values for each
parameter in Table 1 are all close to unity, suggesting convergence.

Figure 7 shows posterior means and standard deviations of μ(s, t), σ(s, t) and
ξ(s). Much of the spatial structure in the extreme nadirs comes from the location
and scale parameters. The posterior means for the shape parameter ξ(s) are more
uniform and generally negative, apart from one cell over Iceland. Exploring this
further, the two deepest nadirs in the reanalysis occurred in this cell, and they are
considerably lower than the rest of the nadirs in the vicinity. A return level plot
from the particular cell indicated that the two nadirs (one of them being from the
record-breaking Braer cyclone) unduly influenced the sign of the shape parameter.
This has been quantified by removing those two points and refitting the model,
however, this being an analysis of extremes, it makes little sense to remove such
values.

A negative shape parameter implies that the distribution of extreme cyclone
depth X(s, t), at time t and cell s, has an upper bound given by σ(s, t)/ξ(s) −
μ(s, t). Here this corresponds to a lower limit on nadir sea-level pressure. Many
of the posteriors for ξ(s) do have some mass over the positive real line [see, e.g.,
Figure 5(b)]. However, except for the Iceland cell, the negative masses for ξ(s)

are all greater than 0.5, therefore, we can use the negative posterior ξ(s) sam-
ples to obtain a conditional posterior distribution for the estimated lower limit.
The posterior means of these limits are shown in Figure 8(c) for NAO = 0. The
limit for the cell containing Bergen is 890.0 hPa [193.0, 932.6] and for the Lon-
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FIG. 7. Posterior means for (a) μ(s, t), (c) σ(s, t), (e) ξ(s) and (g) β2(s) and standard errors
in (b), (d), (f) and (h), respectively, where z1(t) is latitude at centre of grid cell and z2(t) = 0.
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FIG. 8. Estimated lower limits of nadir sea-level pressure for (a) NAO = 2, (b) NAO = −2 and
(c) NAO = 0. (d) shows the difference between (a) and (b).

don cell it is 943.0 hPa [714.8, 959.4], whereas in the Madrid cell it is 953.5 hPa
[537.9, 978.7]. The 95% credible intervals are skewed and noticeably wide, which
is to be expected given we are trying to estimate the 100th percentile. The lower
bounds on some of these intervals are too low to be physically plausible and this
reflects the fact that the statistical model is not constrained by physical mecha-
nisms. Note also that there is considerable literature focusing on the problem of
estimating upper/lower bounds of distributions. See de Haan and Ferreira [(2006),
Chapter 4] for a detailed discussion and a description of both maximum likelihood
and moment estimators for bounds arising from extreme value distributions. In ad-
dition, Einmahl and Magnus (2008) provide refined estimators for bounds of world
records in athletics and their respective sampling distributions.

The posterior means and standard deviations of the NAO effects β2(s) are
shown in Figure 7(g) and (h), respectively. A positive effect is prominent in the
area where cyclones deepen the most: in the vicinity of Iceland, northern Europe
and Scandinavia. A negative effect is also apparent, effectively over Spain and the
Azores. This North–South NAO effect in the central Atlantic is consistent with the
exploratory diagnostics in Figure 4(c) and (d). Maps of the estimated lower limit
for NAO = −2 and NAO = 2 are given in Figure 8(a) and (b). To better see the ef-
fect of NAO on the estimated lower limit, Figure 8(d) shows the difference in hPa
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FIG. 9. Individual grid cell return level plots (posterior means) with 95% credible intervals. Ob-
served values shown in solid circles. Top panel: NAO = 2; bottom panel: NAO = −2. Left panel:
Bergen cell; middle panel: London cell; right panel: Madrid cell. Horizontal lines are estimated
upper bounds of X(s, t) for NAO = 2 (top) and NAO = −2 (bottom).

between the estimated lower limits for NAO = 2 and NAO = −2. The difference
can get up to 25 hPa in the area where NAO has the biggest effect, that is, northern
Europe and Scandinavia.

Figure 9 shows return level plots of X(s, t) for the Bergen–London–Madrid grid
cells, for NAO = ±2. Note that this is not a goodness-of-fit test, as each point in
these plots (the recorded value) is associated with a different NAO value, whereas
the return level curves are calculated at NAO = ±2. A positive/negative NAO ef-
fect is noticeable in the Bergen/Madrid cells, confirming the NAO North–South
effect. No NAO effect is evident in the London cell. The horizontal line in each
plot is the estimated cyclone depth limit, suggesting that for all three cells, nadirs
could have been much deeper than the ones recorded.

Therefore, we also consider the quantity π(s, t) = Pr(X(s, t) > xm(s)), where
xm(s) is the negated minimum recorded nadir in grid cell s for the 30-year period.
(Note that this is equivalent to describing how unusual the recorded depth was,
rather than the probability of ever getting deeper than the recorded 30-year min-
imum nadir.) We transform the GEV parameters to reflect the distribution of 30-
year, rather than yearly depth values: σ̃ = σδξ and μ̃ = μ + σ̃ (1 − δ−ξ )/ξ where
δ = 30. Figure 10(a) shows π(s, t) for values of NAO associated with xm(s). There
are high values of π(s, t), especially over western Europe. Figure 10(b) shows
π(s, t) for NAO = 2, indicating that for a positive NAO phase there is high prob-
ability of deeper nadirs over Europe, Iceland and Scandinavia. For NAO = −2,
Figure 10(c) attributes high probability of deeper nadirs over Spain, Portugal, west
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FIG. 10. Probability of observing a deeper nadir than the recorded 30-year deepest nadir in each
cell: (a) Calculated for NAO values associated with the recorded values nadirs, (b) NAO = 2 and
(c) NAO = −2. (d) The difference in hPa between the estimated depth limit and the deepest recorded
30-year nadirs in each cell.

of France and also over the Azores region. Furthermore, Figure 10(d) shows the
difference in hPa between the estimated depth limit for MSLP [Figure 10(a)] and
xm(s) for each cell. For most cells, the difference is in the range of 10–50 hPa,
while for cells over Iceland the range is 80–110 hPa, indicating the 30-year reanal-
ysis is not long enough to capture nadir depths near the estimated limits.

We use posterior predictive checking Gelman et al. [(2013), Chapter 6] to as-
sess model fit. This compares each observation, x(s, t)obs, to the posterior predic-
tive distribution for replications, X(s, t)rep, of X(s, t) given the data, D, used to
fit the model. If the observations do not behave as if they are sampled from their
posterior predictive distributions, then this indicates poor model fit. Samples of
X(s, t)rep were obtained by simulating from GEV distributions with parameters
equal to draws from their joint posterior distribution and then the posterior predic-
tive means and 95% posterior predictive intervals were approximated from these
samples. We plot the observations of (a) the deepest 30-year nadirs and (b) the
deepest yearly nadirs against the corresponding posterior predictive means and
intervals in Figure 11(a) and (b), respectively. None of the observations seem ex-
treme with respect to the posterior predictive distributions: the 45-degree line falls
well within the prediction intervals.
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FIG. 11. Recorded versus predicted values of: (a) 30-year deepest nadirs in each cell and (b) yearly
deepest nadirs in each cell. The predicted values are the means of the posterior predictive distribu-
tions while the grey shaded area represents the associated 95% prediction intervals.

We also calculate the probability integral transform (PIT), z(s, t) =
Pr(X(s, t)rep ≤ x(s, t)obs | D), of each observation relative to its posterior pre-
dictive distribution. If the model is a good fit, then the z(s, t) should follow a
uniform distribution on the interval (0,1). For each grid cell, s, we plot the prob-
ability points (i − 1)/(n(s) − 1) for i = 1, . . . , n(s) against the order statistics
of the z(s, t) values for that cell, where n(s) is the number of observations in
cell s. Departures from the 45-degree line indicate poor model fit. We indicate the
sampling variation that would be expected in these plots when the model is per-
fect by pointwise 95% confidence intervals, constructed by simulating samples of
size n(s) from the uniform distribution on (0,1). Figure 12 shows these plots for
Bergen, London and Madrid. No points fall outside the 95% intervals, indicating
adequate fit. Note that PIT values are often used in forecast verification; see, for in-
stance, Gneiting, Balabdaoui and Raftery (2007) and references therein. Although

FIG. 12. Probability–probability plots of theoretical Unif(0,1) probabilities versus probability in-
tegral transform (PIT) values z(s, t) for the Bergen, London and Madrid cells. The 95% confidence
intervals reflect sampling uncertainty.
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histograms are the more conventional way of displaying PIT values, here we only
have a few data points for each cell, so we use probability–probability plots.

5. Conclusions. We have implemented a flexible model, adapted from Cooley
and Sain (2010), to reanalysis cyclone data in what we believe to be the first
study that simultaneously models both the spatial and temporal structure of ex-
treme extra-tropical cyclones. Using (1) spatial random effects, (2) latitude as a
covariate and (3) a 150 cell spatial regularisation, spatial variation was adequately
modelled in the extremal behaviour of the cyclones. The North Atlantic Oscilla-
tion was used as a covariate and was found to have a significant effect on extremal
cyclone behaviour, especially over Northern Europe and the Iberian peninsula.

Although this is a first step toward studying the spatio-temporal behaviour of
extreme cyclones, the analysis relies on assumptions which may oversimplify the
problem: (1) the creation of an artificial grid, (2) the choice of threshold in each
cell and (3) the subjective choice of spatial proximity. The choice of the grid is
a potential weakness which can introduce bias, as both the number of cells and
their shape are subjectively chosen. Techniques such as Dirichlet tessellation or
Delaunay triangulation [Illian et al. (2008)] may be useful for defining a more
optimal “data-driven” grid. The shape of the cells is particularly important if one
is interested in modelling data along cyclone tracks rather than individual points
as in our application. If interest was in the relative spatial cyclone impact, one
could use cell-specific rather than cyclone-specific nadirs, rendering the rectangu-
lar cells inappropriate. Hexagonal cells would be more appropriate as illustrated in
an application to tropical cyclones in Elsner, Hodges and Jagger (2012). Threshold
choice in each cell may also prove to be an issue. Ideally, model fit should be one
of the criteria for choosing the threshold. For the application in this paper, three
different thresholds were considered: the 85%, 90% and 95% quantile in each cell.
Model fit diagnostics (Figures 11 and 12) indicated worse fit for the 85% quantile,
and an identical fit for the higher quantiles—which is why we selected the 90%
quantile for model implementation. To avoid choosing the threshold altogether,
one might instead estimate the threshold from the data. For example, we have
explored the possibility of using a mixture model as in Frigessi, Haug and Rue
(2002) where the threshold is estimated but which also allows all available data
(not just the extremes) to be used for each cell, which in turn allows the use of a
finer grid. Last, the proximity structure used to define the covariance matrix of the
spatial random effects is also an assumption which can affect the degree of spatial
smoothing. The spatially random occurrence of cyclone nadirs was “marginalised”
here by dividing the region into grid cells, whereas one should ideally try to model
both the spatial occurrence and intensity at the same time, for example, by using
spatial marked point process models. Nevertheless, despite these assumptions, the
model in this study is flexible enough to be used in other similar studies, for exam-
ple, ones involving tropical cyclone wind speed maxima or cyclone-related peak
precipitation.
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APPENDIX

A.1. Point process model for extremes. The point process model for ex-
tremes involves a bivariate variable Y = (X,T ), with T ∈ [0,1] being a scaled
random variable associated with time and X ∈R a random variable associated with
intensity. The model is a marked point process, which for X > u (a high threshold)
under some linear normalisation and mixing criteria [Smith (1989)] behaves like a
nonhomogeneous Poisson process with intensity function

λ(x, t) = 1

σ

[
1 + ξ

(
x − μ

σ

)]−1/ξ−1

,(9)

provided that 1 + (ξ/σ )(x − μ) > 0. The intensity function λ(x, t) is zero for
1 + (ξ/σ )(x − μ) < 0. The exceedance rate is explicitly modelled in terms of the
mean number of exceedances in the time interval [t1, t2]:

�
([t1, t2] × (u,∞)

) = (t2 − t1)

[
1 + ξ

(
u − μ

σ

)]−1/ξ

.

The likelihood given observations yi = (xi, ti) in region [0,1] × (u,∞) is

L(μ,σ, ξ ;x, t) = exp
{
−ny

∫ 1

0

∫ ∞
u

λ(x, t) dx dt

}∏
i

λ(xi, ti)(10)

= exp
{
−ny

[
1 + ξ

(
u − μ

σ

)]−1/ξ}∏
i

λ(xi, ti),(11)

where ny is the number of years of observed data so that parameters μ, σ and ξ

correspond to the GEV distribution of yearly maxima. Because the time variable
T does not actually appear in (9) and thus in (11), we use the concise notation
X ∼ PP(μ,σ, ξ, u) as in Section 3.3. The likelihood contribution from a single
event (xi, ti) is

L(μ,σ, ξ, u) = exp
{
−ny[ti − ti−1]

[
1 + ξ

(
u − μ

σ

)]−1/ξ}
λ(xi, ti),

for i = 0, . . . , n where n is the number of events. Note that t0 = 0 and that the
likelihood contribution, for the time interval between the last event occurrence and
t = 1, is the probability of no events in the interval, that is,

exp
{
−ny[1 − tn]

[
1 + ξ

(
u − μ

σ

)]−1/ξ}
.

The conditional model in (1)–(4) was implemented using the likelihood (11) for
each cell. However, because of the temporal covariates, the outermost integral over
time in (10) is impossible to calculate analytically unless one knows explicitly how
the covariates evolve in time. A remedy is to approximate the integral: divide the
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time range in small intervals with endpoints 0 = k1, k2, . . . , kJ = 1 and assume the
function is constant in each interval. The integral

∫ 1

0

[
1 + ξ(s)

(
u(s) − μ(s, t)

σ (s, t)

)]−1/ξ(s)

dt

is thus approximated by the Riemann sum

1

J

J∑
i=1

[
1 + ξ(s)

(
u(s) − μ(s, ki)

σ (s, ki)

)]−1/ξ(s)

,

where J is the number of intervals. In practice, J is determined by observations of
the covariates for all data (not just the extremes).

A.2. Measures of extremal dependence. The measure of extremal depen-
dence 0 < χ < 1 between random variables Z and W is defined as

χ = lim
p→1

Pr
(
FZ(Z) > p|FW(W) > p

) = lim
p→1

χ(p),

where FZ and FW are the respective distribution functions of Z and W . The other
extremal dependence measure −1 ≤ χ̄ ≤ 1 is defined as

χ̄ = lim
p→1

2 log Pr(FZ(z) > p)

log Pr(FZ(z) > p,FW(w) > p)
− 1 = lim

p→1
χ̄ (p).

If χ > 0 and χ̄ = 1, the two variables are asymptotically dependent and χ

measures the strength of that dependence. If χ = 0 and χ̄ < 1, the two vari-
ables are asymptotically independent, in which case χ̄ measures the strength of
dependence—within the class of asymptotically independent variables. Roughly,
χ̄ measures the “speed” at which χ(p) approaches zero. Coles, Heffernan and
Tawn (1999) advocate the use of both χ and χ̄ as indicators of extremal depen-
dence, providing complementary information on different aspects of that depen-
dence.

A.3. Intrinsic AutoRegressive priors. Consider a grid with N cells. If the
random effect φ = (φ(1), . . . , φ(N))′ is assumed to have an IAR prior, then φ ∼
N(0, (τW)−1), where W is the adjacency matrix and the conditional distribution
for each φ(s) given the rest is given by

φ(s)|φ(−s) ∼ N

(
φ̄(s),

1

τm(s)

)
,

where φ(−s) is φ excluding φ(s); φ̄(s) is the average of φ(−s) that are adjacent
to φ(s) and m(s) is the number of those adjacencies.
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