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Graphical models are widely used to make inferences concerning inter-
play in multivariate systems. In many applications, data are collected from
multiple related but nonidentical units whose underlying networks may dif-
fer but are likely to share features. Here we present a hierarchical Bayesian
formulation for joint estimation of multiple networks in this nonidentically
distributed setting. The approach is general: given a suitable class of graph-
ical models, it uses an exchangeability assumption on networks to provide
a corresponding joint formulation. Motivated by emerging experimental de-
signs in molecular biology, we focus on time-course data with interventions,
using dynamic Bayesian networks as the graphical models. We introduce a
computationally efficient, deterministic algorithm for exact joint inference in
this setting. We provide an upper bound on the gains that joint estimation
offers relative to separate estimation for each network and empirical results
that support and extend the theory, including an extensive simulation study
and an application to proteomic data from human cancer cell lines. Finally,
we describe approximations that are still more computationally efficient than
the exact algorithm and that also demonstrate good empirical performance.

1. Introduction. Graphical models are widely used to represent multivari-
ate systems. Vertices in a graph (or network; we use both terms interchangeably)
G are identified with random variables and edges between the vertices describe
conditional independence statements or, with suitable modeling and semantic ex-
tensions, causal influences between the variables. In many applications a key sta-
tistical challenge is to construct a network estimator Ĝ(y), based on data y, that
performs well in a sense appropriate to the application. Such “network infer-
ence” is increasingly a mainstream approach in many disciplines, including neu-
roscience, sociology and computational biology.

Network inference methods usually assume that the data are identically dis-
tributed (specifically, that data sets satisfy an exchangeability assumption). How-
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ever, in many applications, data are not identically distributed, but are instead ob-
tained from multiple related but nonidentical units (or “individuals”; we use both
terms interchangeably). This paper concerns network inference in this nonidenti-
cally distributed setting.

Our work is motivated by biological networks in cancer. Multiple studies
have demonstrated the remarkable genomic heterogeneity of cancer [The 1000
Genomes Project Consortium (2010), The Cancer Genome Atlas Network (2012)].
At the same time, the question of how such heterogeneity is manifested at the level
of biological networks has remained poorly understood. We focus in particular on
protein signaling networks in human cancer cell lines. Signaling networks describe
biochemical interplay between proteins and are central to cancer biology. How-
ever, sequence and transcript data alone are inadequate for the study of signaling
and, indeed, these data types can be discordant with the abundance of signaling
proteins and post-transitional modifications (including phosphorylation) that are
key to the process [Akbani et al. (2014)]. Recent developments in proteomics, in-
cluding reverse-phase protein arrays [or RPPA, see Hennessy et al. (2010); this
technology provides the data we analyze below], have improved the ability to in-
terrogate signaling heterogeneity.

To fix ideas, we begin by describing the specific application that motivates
this work. We consider time-course phosphoprotein measurements obtained using
RPPA technology (details appear below) for 6 cell lines. The goal of the study is to
infer cell line-specific protein signaling networks Gj , j = 1, . . . ,6, and addition-
ally to highlight experimentally testable differences between them. Prior network
information is available from the literature, but it is believed that cell line-specific
genetic alterations may induce differences with respect to the “literature network”
(and between cell lines). At the same time, the amount of data per cell line is
limited (6 time points in each of 4 conditions, making a total of 24 data points
per cell line j , constituting data yj ). Since the cell lines j are closely related, yet
potentially different with respect to underlying networks, a key inferential ques-
tion is how to “borrow strength” between the network estimation problems. That
is, we seek a joint estimator of the cell line-specific networks {G1 · · ·G6} based
on the entire (nonidentically distributed) data set {y1 · · ·y6} that shares informa-
tion between the estimation problems while preserving the ability to identify cell
line-specific network structure.

This application is an example of a more general class of biological applications,
where individuals j could correspond to, for example, different patients or cell
lines (or groups thereof; e.g., disease subtypes) and the networks themselves to
gene regulatory or protein signaling networks that could depend on the genetic
and epigenetic state of the individuals. Indeed, continuing reduction in the unit
cost of biochemical assays has led to an increase in experimental designs that
include panels of potentially heterogeneous individuals [Barretina et al. (2012),
The Cancer Genome Atlas Network (2012), Cao et al. (2011), Maher (2012)]. As
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in the signaling example above, in such settings, given individual-specific data yj ,
there is scientific interest in individual-specific networks Gj and their similarities
and differences.

Following Penfold et al. (2012), Werhli and Husmeier (2008) and others, we
focus on the case of directed networks Gj that are exchangeable in the sense that
inference is invariant to permutation of individuals j ∈ J = {1, . . . , J }. We model
data on all individuals {yj : j ∈ J } within a joint Bayesian framework. Regulariza-
tion of individual networks is achieved by introducing a latent network G to couple
inference across all individuals. We report posterior marginal inclusion probabil-
ities for every possible edge in each individual network Gj as well as the latent
network G. The high-level formulation we propose is general and, in principle, es-
sentially any graphical model of interest could be embedded within the framework
described to enable joint estimation.

In general, the individual j ’s could have complex, hierarchical relationships,
for example, with j ’s belonging to groups and subgroups [e.g., corresponding to
cancer types and subtypes; see Curtis et al. (2012)]. The exchangeable case we
consider corresponds in a sense to the simplest possible hierarchy in which each
individual is dependent on a single latent graph (see Figure 1). In settings where
groups can be treated as approximately homogeneous, the approach presented in
this paper can be trivially used to give group-level estimates, by using j to index
groups rather than individuals, with all data for group j modeled as dependent on
graph Gj . This corresponds to an assumption of identically distributed data within
(but not between) groups. In the empirical study presented below we consider also
robustness of our approach under violation of the exchangeability assumption.

For the application to time-course data from protein signaling that we focus
on, we present a detailed development using directed graphical models called dy-
namic Bayesian networks (DBNs). These are directed acyclic graphs (DAGs) with
explicit time indices [Murphy (2002)]. The main contributions of this paper are as
follows:

• Bayesian computation. For the time-course setting, we put forward an efficient
and exact algorithm. This is done by exploiting factorization properties of the
DBN likelihood, analytic marginalization over continuous parameters and belief
propagation. In moderate dimensional settings this allows exact joint estimation
to be carried out in seconds to minutes (we discuss computational complexity
below).

• Theory. We provide a result that quantifies the statistical efficiency of joint rel-
ative to separate estimation and that gives a sufficient condition for improved
performance.

• Empirical investigation. The availability of an efficient Bayesian algorithm en-
ables, for the first time, a comprehensive empirical study of joint estimation,
including a wide range of simulation regimes and an application to experimen-
tal data from a panel of human cancer cell lines. For several classical (non-
joint) DBNs, including a recent causal variant suitable for interventional data
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[Spencer, Hill and Mukherjee (2012)], we formulate corresponding joint esti-
mators. This allows us to investigate the effect of joint estimation itself; we find
that it often provides gains relative to the corresponding individual-level esti-
mators. Some computationally favorable approximations to joint inference are
described that we find perform well under a range of conditions.

Joint estimation has previously been discussed in the Gaussian graphical model
(GGM) literature [Danaher, Wang and Witten (2014)]. In contrast to GGMs, mo-
tivated by biological applications, we focus on DAG models with a causal inter-
pretation. Approaches to context-specific DAG structure based on the embellish-
ment of Bayesian networks include Boutilier et al. (1996), Geiger and Heckerman
(1996). Our approach differs by regularizing based on network structure alone;
we do not place exchangeability assumptions on the data-generating parameters.
Related work that is based on DAGs includes Dondelinger, Lèbre and Husmeier
(2013), Niculescu-Mizil and Caruana (2007), Werhli and Husmeier (2008). In a
sequel to the present work, Oates, Costa and Nichols (2014) provide an exact al-
gorithm for joint maximum a posteriori (MAP) estimate of multiple (static) DAGs.
In contrast, here we focus on Bayesian model-averaging (as opposed to MAP es-
timation) and on time-course data (or, more generally, Bayesian networks with a
fixed ordering of the variables).

In a similar vein to the present paper, Oyen and Lane (2013) estimated mul-
tiple DAGs sharing a common ordering of the vertices, but they considered only
applications involving J = 2 individuals. Our work is closely related to Penfold
et al. (2012), who also considered Bayesian joint estimation of directed graphs
from time-course data. However, as we discuss in detail below, the methodology
they propose is prohibitively computationally expensive for the applications we
consider here. In comparison, the exact algorithm we propose offers massive com-
putational gains that in turn allow us to present a much more extensive study of
joint estimation than has hitherto been possible. Furthermore, we allow for prior
information regarding the network structure (including individual-specific charac-
teristics) and present theoretical results concerning the statistical efficiency of joint
network estimation.

The remainder of the paper is organized as follows. In Section 2 we describe
a hierarchical Bayesian formulation and in Section 3 we discuss computationally
efficient joint inference in the case of DBNs. Empirical results are presented in
Section 4, including an application to protein signaling in cancer. Finally, we close
with a discussion of our findings in Section 5.

2. Joint network inference: The general case. We describe a general statis-
tical formulation for joint network inference that can be coupled to essentially any
class of graphical models. For computational tractability it may be necessary to
place restrictions on the class of graphical models; in Section 3 we present a de-
tailed development for DBNs that are well-suited to our motivating application in
cancer.
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FIG. 1. Joint network inference (JNI). A hierarchical model for analysis of multivariate data from
multiple, nonidentical units or individuals, indexed by j . (Shaded nodes are unobserved. G0 = prior
network, G = latent network, Gj = network specific to individual j , θj = parameters for individ-
ual j , Yj = observables for individual j , Zj = ancillary information available on individual j ,
η,λj = inverse temperature hyperparameters, φj = hyperparameters defining a prior on θj . Panel
notation is used to indicate the presence of multiple individuals j ∈J . Note that in practice we take
λj ≡ λ for all j ∈J .)

2.1. Hierarchical model. Consider a space G of graphs on the vertex set P =
{1, . . . ,P }. To keep the presentation general, we do not specify the type of graph
or restrictions on G at this stage (the special case of DBNs for time-course data
is described below). As shown in Figure 1, each individual network Gj ∈ G is
modeled with dependence on a latent network G ∈ G that in turn depends on a prior
network G0 ∈ G (Section 2.2). In this way, estimates of the individual networks Gj

are regularized by shrinkage toward the common latent network G that, in turn,
may be constrained by an informative network prior. As in any graphical model,
observations Yj on individual j are dependent upon a graph Gj and parameters θ j .
Here Zj denotes any ancillary information available on individual j . The model is
specified by

p
(
G|G0, η

) ∝ exp
(−ηd

(
G,G0))

,(1)

p
(
Gj |G,λ,Zj ) ∝ exp

(−λjdj (
Gj,G;Zj ))

(2)

and a suitably chosen graphical model likelihood p(Yj |Gj, θ j ,Zj ). Equation (1)
follows the “network prior” approach of Mukherjee and Speed (2008) that was
proposed for biological applications where subjective prior structural information
is available. The functionals dj , d :G × G → R and hyperparameters η,λj must
be specified (Section 2.2). This paper restricts attention to exchangeable models,
in particular, we consider functionals dj that are independent of the index j . We
refer to the above formulation as joint network inference (JNI).

2.2. Network prior. The network prior [equation (1)] requires a penalty func-
tional d :G × G → R and a prior network G0 ∈ G, with the former capturing how
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close a candidate network G ∈ G is to the latter. We discuss choice of G0 below.
Given G0, a simple choice of penalty function d is the structural Hamming dis-
tance (SHD) given by d(G,G0) = ‖G − G0‖, where ‖M‖ = ∑

i,j |mi,j | is the
�1-norm of an adjacency matrix and the differential network G − G0 is defined
to have edges that occur in exactly one of the networks G, G0 [see also Ibrahim
and Chen (2000), Imoto et al. (2003)]. The hyperparameter η controls the strength
of the prior network G0 [equation (1)]. Motivated by an application in cancer bi-
ology where prior structural information G0 is available, we follow Penfold et al.
(2012) by restricting attention to SHD priors, however, our statistical formulation
is general (see below) and compatible with other penalty functionals. Alternatively,
one could employ a beta-binomial prior as described in, for example, Dondelinger,
Lèbre and Husmeier (2013), that allows for the hyperparameters of the binomial
to be integrated out [see also Oyen and Lane (2013)]. Note that in the latter case
it is not possible to integrate specific prior structural information, making beta-
binomial priors unsuitable for the application that this paper considers.

Given a latent network G, individual networks Gj are regularized in a simi-
lar way, as dj (Gj ,G) = ‖Gj − G‖. In their work on combining multiple data
sources, Werhli and Husmeier (2008) allow the λj to vary over individuals j ∈ J .
Likewise, Penfold et al. (2012) learn the λj on a per-individual basis. However,
in both studies, hyperparameter elicitation is nontrivial (see Section 3.3). In the
present paper, we consider only the special case where λ1 = λ2 = · · · = λJ := λ.

A graph G ∈ G can be characterized by (i) its adjacency matrix or (ii) its parent
sets as G = (π1, . . . , πP ), where πp ⊆ P = {1 · · ·P } are the parents of vertex p

in G. We write Gp for the set of possible parent sets for p, such that formally
G = G1 × · · · × GP . Although we focus on SHD priors, the inference procedures
presented in this paper apply to the more general class of “modular” priors, that
may be factored over p ∈P and written in the form

d
(
G,G0) = ∑

p∈P
dp

(
πp,π0

p

)
, dj (

Gj,G;Zj ) = ∑
p∈P

dj
p

(
πj

p,πp;Zj )
(3)

for some functionals dp, d
j
p :Gp × Gp → R. Here π0

p and π
j
p are parent sets for

variable p, corresponding to G0 and Gj , respectively.
In general, inference for the JNI model [equations (1), (2)] will be computa-

tionally intensive, as demonstrated in Penfold et al. (2012), Werhli and Husmeier
(2008). In Section 3 below we show that efficient, exact inference is nevertheless
possible within the DBN class of graphical models.

3. Joint network inference: DBNs. The JNI model and network priors, as
described above, are general. To apply the JNI framework in a particular context
requires an appropriate likelihood at the individual level, that is, specification of the
joint distribution p(Yj |Gj, θ j ,Zj ) of observables Yj given network Gj , ancillary
information Zj and parameters θ j , together with a prior distribution p(θ j |Gj,Zj )
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over model parameters. We focus on time-course data, using DBNs and exploiting
families of conjugate prior distributions. We show that factorization properties of
the DBN likelihood permit computationally tractable joint inference and provide
an explicit algorithm based on belief propagation.

3.1. DBN formulation. A DBN is a graphical model based on a DAG on the
vertex set P×T , where T is a set of time indices [Figure 8(a); see Murphy (2002)].
This DAG with PT vertices is known as the “unrolled” DAG. Here, following
Hill et al. (2012) and others, we use DBNs that permit only edges forward in
time and that are stationary in the sense that neither the network nor parameters
change with time. For such DBNs, the network can be described by a directed
graph G with exactly P vertices, with edges understood to go forward in time
in the unrolled DAG [see Appendix B and Figure 8(b)]. Note that G may have
cycles. In what follows, all graphs (prior, latent and individual) describe the latter
P -vertex representation.

Under a modular network prior, structural inference for DBNs can be carried
out efficiently as described in Hill et al. (2012). In brief, the posterior Gj |y factor-
izes into a product of local posteriors π

j
p |y, one factor for each target variable p.

Background and assumptions for DBNs are summarized in Appendix B; for gen-
eral background on DBNs we refer the interested reader to Murphy (2002) and for
relevant details concerning the class of DBNs used here to Hill et al. (2012).

Write y(t) for the matrix of observed data at time t for all individuals j and
variables p. In order to simplify notation, we define a data-dependent functional

P(X) = p
(
X(1)

) m∏
t=2

p
(
X(t)|y(t − 1)

)
(4)

that implicitly conditions upon observed history. Let y
j
p(t) denote the observed

value of variable p in individual j at time t . The above notation allows us to
conveniently summarize the product

p
(
yj
p(1)|πj

p

)
p

(
yj
p(2)|y(1),πj

p

) · · ·p(
yj
p(m)|y(m − 1),πj

p

)
(5)

as P(yj
p|πj

p). Thus, we have that, for DBNs, the full likelihood also satisfies

p
(
y|G1, . . . ,GJ ,Z1, . . . ,ZJ ) = ∏

j∈J

∏
p∈P

P
(
yj
p|πj

p,Zj )
,(6)

where y denotes the complete data (for all individuals, variables and times). In
other words, the parent sets π

j
p for p ∈ P , j ∈ J are mutually orthogonal in the

Fisher sense, so that inference for each may be performed separately.
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3.2. Efficient, exact joint estimation. We carry out exact inference in this set-
ting using belief propagation [Pearl (1982)]. Belief propagation is an iterative
procedure in which messages are passed between variables in such a way as to
compute exact marginal distributions; in this respect belief propagation belongs to
a more general class of iterative algorithms known as “sum-product” algorithms
[Kschischang, Frey and Loeliger (2001)]. Our algorithm is summarized as follows
(for simplicity we suppress dependence upon ancillary information Zj ):

(1) We begin by marginalizing over parameters θ j and caching the local scores
P(yj

p|πj
p) for all parent sets π

j
p ∈ Gp , all variables p ∈ P and all individuals

j ∈ J ; these could be obtained using any DBN likelihood. In this paper we ex-
ploited conjugate priors to obtain exact expressions for marginal likelihoods [equa-
tion (33), see Appendix C for details].

(2) Following marginalization, the JNI graphical model collapses to the discrete
Bayesian network shown in Figure 2, whose nodes are themselves graphs.

(3) Posterior marginal distributions p(πp|yp,π0
p) and p(π

j
p |yp,π0

p) are then
computed using belief propagation on this discrete Bayesian network. Pseudocode
for this step is provided in Algorithm 1 in Appendix D.

Let AJNI denote the P × P matrix of marginal posterior inclusion probabili-
ties for edges in the latent network G, that is, (AJNI)ip := p(i ∈ πp|y,G0). These
quantities are analogous to posterior inclusion probabilities in Bayesian variable
selection and are computed, using Bayesian model averaging, as

(AJNI)ip = p
(
i ∈ πp|y,G0) = ∑

πp∈Gp

1i∈πpp
(
πp|y, π0

p

)
,(7)

where 1A is the indicator of the event A and similarly for individual networks
(Aj

JNI)ip := p(i ∈ π
j
p |y,G0).

Following Hill et al. (2012), we reduced the space of parent sets Gp using an

in-degree sparsity restriction of the form |πj
p | ≤ c for all π

j
p ∈ Gp , p ∈ P , j ∈ J .

FIG. 2. Marginalization of JNI over continuous (unknown) parameters θj . (Shaded nodes are
unobserved. G0 = prior network, G = latent network, Gj = network specific to individual j ,
Yj = observables for individual j , Zj = ancillary information available on individual j . Hyper-
parameters η, λj , φj are suppressed for clarity. Panel notation is used to indicate the presence of
multiple individuals j ∈J .)
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Thus, the cardinality of the space of parent sets |Gp| = O(P c) is polynomial in P ,
where it was previously super-exponential. As in variable selection, the bound c

should be chosen large enough that Gp includes the true data-generating model
with high probability.

Caching of selected probabilities is used to avoid redundant recalculation. Pseu-
docode is provided in Algorithm 1 in Appendix D, consisting of three phases of
computation. Storage costs are dominated by phases I and II, each requiring the
caching of O(JP 1+c) terms. Phase II dominates computational effort, with total
(serial) algorithmic complexity O(J 2P 1+2c). However, within-phase computation
is “embarrassingly parallel” in the sense that all calculations are independent (in-
dicated by square parentheses notation in the pseudocode). In practice, we have
found that problems of size P ≤ 20, J ≤ 20, c ≤ 3 can be solved within min-
utes using serial computation on a standard laptop computer. We provide serial
and parallel MATLAB R2014a implementations in Supplement B [Oates et al.
(2014b)].

3.3. Network prior elicitation. Elicitation of hyperparameters for network pri-
ors is an important and nontrivial issue. Here we specify the hyperparameters λ,η

in a subjective manner. We do so due to reported difficulties in estimation of hyper-
parameters for related models [Dondelinger, Lèbre and Husmeier (2013), Penfold
et al. (2012), Werhli and Husmeier (2008)]. We present three criteria below that, for
the special case of SHD, are simple to implement and can be used for expert elic-
itation. These heuristics seek to relate the hyperparameters to more directly inter-
pretable measures of the similarity and difference that they induce between prior,
latent and individual networks: (i) First, we note the following formula for the
probability of maintaining the status (present/absent) of a candidate parent i ∈ P
between the latent network G and an individual network Gj :

hλ := p
(
i /∈ πj

p�πp

) = 1

1 + e−λ
.(8)

This probability provides an interpretable way to consider the influence of λ. For
example, a prior confidence of hλ ≈ 0.73 that a given edge status in G is preserved
in a particular individual Gj translates into an odds ratio hλ/(1 − hλ) ≈ 2.7 and
a hyperparameter λ ≈ 1 (see SFigure 1 in the supplementary material [Oates et
al. (2014a)]). An analogous equation relates η and hη := p(i /∈ πp�π0

p), allowing
prior strength to be set in terms of the probability that an edge status in the prior
network G0 is maintained in the latent network G. (ii) A second, related approach
is to consider the expected total SHD between an individual network Gj and the
latent network G:

E
(∥∥Gj − G

∥∥) = P 2(1 − hλ).(9)

This can be interpreted as the average number of edge changes needed to obtain Gj

from G. An analogous equation holds for η and hη. (iii) Third, in certain applica-
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tions, the latent network G may not have a direct scientific interpretation, in which
case the criteria presented above may be unintuitive. Then, hyperparameters can
be elicited by consideration of (a) similarity between individual networks Gj,Gk

and (b) concordance of individual networks Gj with the prior network G0 (see
Supplement A [Oates et al. (2014a)] for further discussion).

3.4. An information sharing bound. Below we consider the extent to which
information can be shared between individuals within JNI, providing an upper
bound that is attained as the number of individuals J grows large. To formalize
the contribution to inference from information sharing, we consider the case in
which no data is available on a specific individual (without loss of generality, in-
dividual j = 1) and analytically quantify the extent to which JNI can estimate the
true network G1 by “borrowing strength” from the data Y2, . . . ,YJ that repre-
sent observations on the remaining individuals. (Over-lines will be used to signify
the “true” data-generating networks.) As a baseline, write Aj

0 = p(i ∈ π
j
p |Yj ) for

the (naive) estimator that prohibits the sharing of information between individu-
als. For simplicity we restrict attention to the case where no network prior is used
(η = 0), the data-generating hyperparameter λ is known and in-degree restrictions
are not in place (c = P ). Then, with neither data nor prior information available
on individual 1, it trivially follows that

EY,G,G1,...,GJ |η,λ

[‖A1
0 − G1‖
P 2

]
= 1

2
,(10)

where the expectation is taken over all possible data-generating networks and cor-
responding data.

From standard, independent network inference we know that consistent estima-
tion requires unbiasedness of the likelihood function p(Yj |Gj), in the sense that
EYj |Gj p(Yj |Gj) is maximized by Gj = Gj . We therefore begin by construct-
ing the analogous regularity condition for joint estimation: Write R for the matrix
that encodes the prior metric on G as (R)G,G′ = exp(−λ‖G − G′‖)/C(λ), where
C(λ) = ∑

G∈G exp(−λ‖G‖). Write S for the matrix of expected Bayesian scores
(S)

Gj ,Gj = EYj |Gj p(Yj |Gj).

ASSUMPTION (Joint regularity). For each column of the matrix M =
(RSR)G,G, the nondiagonal entries are strictly smaller than the diagonal entry,
that is, MG,G < MG,G for all G �= G.

To gain intuition for the joint regularity assumption, consider the special case
where λ → ∞; here R = I and we only require that the expected local Bayesian
score (S)

Gj ,Gj is maximized by Gj = G, that is, we recover the unbiasedness
condition from standard network inference.
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THEOREM. Under the joint regularity assumption, there exists 0 < ε < 1 such
that

EY,G,G1,...,GJ |η,λ

[‖A1
JNI − G1‖

P 2

]
= f (J ) + 1

1 + eλ
,(11)

where f (J ) ≤ 2P 2εJ−1 → 0 as J → ∞.

PROOF. See Appendix A. �

Comparing equation (11) to (10), we see that information sharing offers gains
in estimation, agreeing with intuition, with larger gains when the true networks are
almost homogeneous (λ large). Moreover, the statistical power of JNI to estimate
G1 converges to its maximum exponentially quickly as J → ∞.

4. Results. The proposed methodology was compared against several exist-
ing network inference algorithms. We restricted attention to methods that are
compatible with time-course data and, following the majority of the literature,
carry out estimation for each individual separately. The computational demands
of Niculescu-Mizil and Caruana (2007), Penfold et al. (2012), Werhli and Hus-
meier (2008) precluded application in this setting. Specifically, in the simulated
data examples we report below, over 3000 rounds of inference were performed in
total, on problems larger than DREAM4 (P = 10, J = 5). Using the approach of
Penfold et al. (2012), these experiments would have required more than 10 years
serial computational time; in contrast, our approach required less than 24 hours se-
rial computation on a standard laptop. Thus, we consider the following methods:

(i) DBN. A dynamic Bayesian network, as described in Hill et al. (2012), in-
cluding nonlinear interaction terms. For this choice of model it is possible to con-
struct a fully conjugate set of priors, delivering a closed-form expression for the
local Bayesian score P(yj

p|πj
p,Zj ). The model is summarized in Appendix B.

(ii) IDBN. Spencer, Hill and Mukherjee (2012) recently proposed an extension
of Hill et al. (2012) that allows analysis of data sets that contain interventions; this
is outlined in Appendix B. Interventional DBNs (IDBNs) inherit the computational
advantages of DBNs, in the sense that there is a closed-form expression for the
local Bayesian score, but extend DBNs in a causal direction. We considered two
alternative implementations of IDBNs: (i) IDBN. The approach of Spencer, Hill
and Mukherjee (2012) was applied to each individual separately. (ii) Mono IDBN.
Data on all individuals were pooled together and fed into a single IDBN analysis,
an approach that Werhli and Husmeier (2008) described as “monolithic.”

(iii) Rel Nets. A popular approach within the bioinformatics community is to
score edges based on Pearson correlation of participating nodes [“relevance net-
works”; see, e.g., Butte et al. (2000)]. Here, we used a time-course analogue in
which the correlation is calculated between successive time points.
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(iv) LASSO. An �1-penalized likelihood was used to obtain estimates for co-
efficients in a linear autoregressive model. Coefficients were estimated for each
variable independently, taking each variable in turn as the response. The penalty
parameters λp were each selected using leave-one-out cross-validation. Nonzero
coefficients indicated the presence of edges. Further details appear in Supple-
ment A [Oates et al. (2014a)].

Note that DBN and IDBN are able to integrate a prior network G0, whereas Rel
Nets and LASSO are not. JNI facilitates joint estimation given a suitable graphical
model likelihood. We applied JNI to the DBN and IDBN models described above.
This resulted in several proposed estimators:

(v) J-DBN. JNI applied to DBN.
(vi) J-IDBN. JNI applied to IDBN.

(vii) Fixed IDBN. Here we formed the likelihood assuming a single graph for
all individuals and the latent network (i.e., G1 = · · · = GJ = G) but with parame-
ters allowed to differ. This can be considered a joint analogue of Mono IDBN that
allows individual-specific parameter values.

(viii) AJ-IDBN. A computationally efficient approximation to J-IDBN, in
which the latent network topology is first estimated using Fixed IDBN. This is in
turn used as an informative network prior within J independent rounds of IDBN.
In this way information sharing is allowed to occur, but at the expense of a coherent
joint posterior.

In the empirical study below we compare JNI variants (v)–(viii) against existing
methods (i)–(iv).

4.1. Performance metrics. The proposed methodology addresses three ques-
tions, some or all of which may be of scientific interest depending on the ap-
plication: (i) estimation of the latent network G, (ii) estimation of individual net-
works G1, . . . ,GJ , and (iii) estimation of differences between individual networks
[“differential networks”; Ideker and Krogan (2012)]. We quantify performance for
each task using the area under the receiver operating characteristic (ROC) curve
(AUR). This metric, equivalent to the probability that a randomly chosen true edge
is preferred by the inference scheme to a randomly chosen false edge, summa-
rizes, across a range of thresholds, the ability to select edges in the data-generating
network. AUR may be computed relative to the true latent network G or rela-
tive to the true individual networks Gj , quantifying performance on tasks (i) and
(ii), respectively. Both sets of results are presented below, in the latter case av-
eraging AUR over all individual networks. For (iii), in order to assess ability to
estimate differential networks, we computed AUR scores based on the statistics
F

j
ip = |p(i ∈ π

j
p |y,G0,Zj ) − p(i ∈ πp|y,G0,Z1, . . . ,ZJ )| that should be close

to one if i ∈ π
j
p�πp , otherwise F

j
ip should be close to zero.
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It is easy to show that inference for the latent network, under only the prior
(i.e., Ĝ = G0), attains mean AUR equal to hη. Similarly, prior inference for the
individual networks (i.e., Ĝj = G0) attains mean AUR equal to 1 − hη − hλ +
2hηhλ. This provides a baseline for the proposed methodology at tasks (i) and (ii)
and allows performance to be decomposed into AUR due to prior knowledge and
AUR contributed through inference.

Using a systematic variation of data-generating parameters, we defined 15 dis-
tinct data-generating regimes described below. For all 15 regimes we considered
50 independent data sets; standard errors accompany average AUR scores. Results
presented below use a computationally favorable in-degree restriction c = 3. In
order to check robustness to c, a subset of experiments were repeated using c = 4,
with close agreement observed (SFigure 4 in the supplementary material [Oates et
al. (2014a)]).

4.2. Simulation study.

4.2.1. Data generation. Data were generated according to DBN models (Ap-
pendix B) as described in detail in Supplement A [Oates et al. (2014a)]. This
data-generating scheme was extended to mimic interventional experiments that
are a feature of our application to breast cancer. In this case, for each time course,
a randomly chosen variable is marked as the target of an interventional treatment.
Data were then generated according to the augmented likelihood described in Ap-
pendix B (fixed effects were taken to be zero).

4.2.2. Model misspecification and nonlinear data-generating models. We as-
sume exchangeable networks; it is therefore interesting to explore the perfor-
mance of the proposed estimators when the assumption of exchangeability is
violated. Specifically, we consider a “worst case” scenario where individual net-
works G1, . . . ,GJ are sampled from a mixture model with two distinct compo-
nents. Moreover, we consider the extreme case where networks in distinct mixture
components share only a few edges in common; it is expected that exchangeable
estimators will exhibit poor performance in this scenario. Further, in order to in-
vestigate the impact of model misspecification at the level of the time-series model
itself, we considered time-course data generated from a computational model of
protein signaling, based on nonlinear ODEs [Xu et al. (2010)]. In order to extend
this model, which is for a single cell type, to simulate a heterogeneous population,
we selected three protein species per individual (at random) and deleted their out-
going edges to obtain the data-generating networks Gj (see Supplement A [Oates
et al. (2014a)]).

4.2.3. Estimator performance. We consider the three estimation tasks:

Latent network. We investigated ability to recover the latent network G. The
existing approaches (i)–(iv) estimate only individual-specific networks. For es-
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timation of the latent, shared network using these methods, we simply took an
unweighted average of the J estimated adjacency matrices. The proposed joint es-
timators (v)–(viii) were assigned hyperparameter values η = 1, λ = 2 [λ = 3 for
Xu et al. (2010)] based on the heuristic of equation (8); sensitivity to misspec-
ified hyperparameter values is investigated later in Section 4.2.4. Results based
on simulated data with interventions are displayed in STable 3 (see supplemen-
tary material [Oates et al. (2014a)]). We found little difference in the ability of
J-IDBN, Fixed IDBN and AJ-IDBN to recover the latent network structure across
a wide range of regimes, though J-IDBN achieved best performance in 9 out of 15
regimes. Interestingly, we found that the IDBN estimator, which performs an un-
weighted average of J independent inferences, performed significantly worse than
each of J-IDBN, Fixed-IDBN and AJ-IDBN in, respectively, 15, 13 and 11 out of
15 regimes. Similarly, all the above approaches clearly outperformed Mono IDBN
and Rel Nets, which were in turn outperformed by inference based on the prior
alone, demonstrating the importance of accounting for individual-specific param-
eter values. The joint formulation of DBNs (J-DBN) significantly outperformed
standard DBNs, with higher AUR in all 15 regimes. LASSO performed best in the
regime with long time series (n = 10) but failed in other regimes to outperform
inference based on the prior alone. We obtained qualitatively similar results for
both alternative data-generating schemes (STables 4–5, see supplementary mate-
rial [Oates et al. (2014a)]).

Individual networks. At this task, J-IDBN outperformed all other approaches in
9 out of 15 regimes. AJ-IDBN offered a similar level of performance and together
these estimators demonstrated better performance compared to alternatives in 13
out of 15 regimes. Since AJ-IDBN avoids intensive computation, this may pro-
vide a practical estimator of individual networks in higher dimensional settings.
Again, the joint approaches J-IDBN and J-DBN both outperformed the standard
approaches IDBN and DBN, respectively, demonstrating an increase in statisti-
cal power resulting from the proposed methodology. Rel Nets and LASSO per-
formed poorly at this task. Similar results were observed using the alternative
data-generating schemes (STables 4–5, see supplementary material [Oates et al.
(2014a)]).

Differential networks. Since JNI regularizes between individuals, we sought to
test whether it could eliminate spurious differences and thereby improve estima-
tion of differential networks. Differential networks may also be estimated using
existing methods (i)–(iv); to do so, in each case we compared individual network
estimates with the estimate of the latent network obtained as described in Sec-
tion 4.2.3 above. We found that, while estimation of differential networks appears
to be more challenging than the other tasks, J-IDBN outperformed the other ap-
proaches in 7 out of 15 regimes. Moreover, the J-IDBN and J-DBN methods out-
performed IDBN and DBN, respectively, in all 15 regimes. These results suggest
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that coherence of joint analysis aids in suppressing spurious features for estima-
tion of differential network topology. Rel Nets performed poorly at this task and
LASSO performed slightly better. Intriguingly, AJ-IDBN performed well in esti-
mating differential networks, performing best in 7 out of 15 regimes. This suggests
that the approximate joint estimator may be suited to estimation of differential net-
works. Results on the noninterventional data sets supported this conclusion (STa-
ble 4, see supplementary material [Oates et al. (2014a)]). On the Xu et al. (2010)
data sets, however, IDBN and Rel Nets were among the best performing estima-
tors (STable 5, see supplementary material [Oates et al. (2014a)]), despite being
misspecified for the nonlinear data-generating model.

4.2.4. Robustness. We assess three aspects of robustness:

Hyperparameter misspecification. For the above investigation we used equa-
tion (8) to elicit hyperparameters η,λ. This was possible because the data-
generating parameters were known by design, however, in general this will not
be the case. We therefore sought to empirically investigate the effect of hyper-
parameter misspecification. SFigure 3 (see supplementary material [Oates et al.
(2014a)]) displays how performance of the J-IDBN estimator for latent networks
depends on the choice of hyperparameters λ,η. Performance does not appear to
be highly sensitive to the precise hyperparameter values used and there is a large
region in which AUR remains high.

Outliers and batch effects. The biological data sets that motivate this study often
contain outliers. At the same time, experimental design may lead to batch effects.
In order to probe estimator robustness, we generated data as described above, with
the addition of outliers and certain batch effects. Specifically, Gaussian noise from
the contamination model 0.95N (0,0.12) + 0.05N (0,102) was added to all data
prior to inference. At the same time, one individual’s data were replaced entirely
by Gaussian white noise to simulate a (strong) batch effect that could arise, for
example, if preparation of a specific biological sample was incorrect. The relative
decrease in performance at feature detection is reported in SFigure 5 (see sup-
plementary material [Oates et al. (2014a)]). We found that J-IDBN remained the
best-performing estimator for all three estimation problems. However, for the dif-
ferential network estimation task, in particular, the decrease in performance was
pronounced for joint methods.

Nonexchangeability. SFigure 6 (see supplementary material [Oates et al.
(2014a)]) displays the result of inference on data where the exchangeability as-
sumption is violated. It can be seen that the performance of all (exchangeable)
estimators decreases in these circumstances, but the magnitude of the decrease
is small (e.g., for estimation of individual networks, J-IDBN experiences a 0.01
decrease in AUR). We note that the proposed estimators can be extended to nonex-
changeable settings where elements of the structure that relates individuals are
known; see Oates and Mukherjee (2014) for further details.
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FIG. 3. Signaling downstream of the epidermal growth factor receptor (EGFR). The graph shown
summarizes known causal links characterized by extensive biochemistry. (Note that edges in the
graph represent high-level summaries of often complex molecular interactions that may involve latent
chemical species.)

4.3. Protein signaling networks in breast cancer. We consider experimental
data derived from human breast cancer cell lines, focusing on protein signaling
networks within which many (wild type) causal relationships are well understood
from extensive biochemistry (Figure 3). The investigation presented below serves
three purposes: First, it allows investigation of the applicability of the proposed
joint approaches to experimental data. Second, it allows investigation of the use
of ancillary information, in the form of mutational status and histological infor-
mation. Finally, the results and approach are relevant to the topical question of
exploring signaling heterogeneity across cancer cell lines.

Data were obtained using reverse-phase protein arrays [Hennessy et al. (2010)]
from J = 6 breast cancer cell lines (AU 565, HCC 1569, MCF 7, MDA MB 231,
SKBR3 and SUM 190PT; experimental protocol is described in brief in Supple-
ment A [Oates et al. (2014a)]). Data comprised observations for the P = 17 pro-
teins shown in Figure 3 (see also STable 1 in the supplementary material [Oates
et al. (2014a)]; we note that these data form part of a larger study including fur-
ther cell lines and proteins). Specifically, y contains the logarithms of the measured
concentrations. Data were acquired under treatment with an EGFR/HER2 inhibitor
Lapatinib (“EGFRi”), an Akt inhibitor (“Akti”), EGFRi and Akti in combination,
and without inhibition (“DMSO”) at 0.5, 1, 2, 4, 8 and 24 hours following Serum
stimulation, giving a total of nj = 24 observations of each variable in each indi-
vidual cell line.

4.3.1. Informative priors on causal structure. For the cancer cell lines ana-
lyzed here, ancillary information is available in the form of genetic aberrations
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(mutation statuses) and histological profiling. These were obtained from published
sources [Neve et al. (2006)] and online databases [Forbes et al. (2011)] and re-
produced in STable 2 (see supplementary material [Oates et al. (2014a)]). These
sources give causally relevant information on structure specific to the individual
cell lines j ∈ J . We used this information to help specify priors on the graphs
Gj , considering in particular two cases: (i) Loss-of-function mutations in kinase
domains; in line with the nature of the mutation, here we set the prior probability
on edges emanating from the mutant protein to zero. Where the mutation is known
to also affect the ability of a protein to be phosphorylated, then incoming edges
were also assigned zero prior probability. (ii) Cell lines with ectopic expression
of the receptor HER2 are known to depend heavily upon EGFR signaling. In this
case the network prior did not penalize edges emanating from the EGFR receptor
nodes. A full discussion of ancillary data appears in Supplement A [Oates et al.
(2014a)].

In addition to the cell-line-specific mutational information above, decades of
experimental work (including interventional, biochemical and biophysical stud-
ies) have provided a wealth of information about (wild type) causal relationships
between nodes. We used this noncell line-specific information to specify a prior
graph G0 that was common to all cell lines j ∈ J (shown in Figure 3). Cancer
signaling is expected to differ with respect to wild type signaling, but a priori
we expect the differences to be small in number. In light of this observation, we
used subjective elicitation (Section 3.3) to set hyperparameters λ = 4, η = 5, cor-
responding to E(‖Gj − G‖) ≈ 5, E(‖G − G0‖) ≈ 2.

4.3.2. Validation. In order to test performance, we first considered the latent
network G, comparing estimates to the (causal) literature network shown in Fig-
ure 3. For a fair assessment we used an empty prior network G0. Inferred networks
are displayed in SFigure 7 (see supplementary material [Oates et al. (2014a)]). Re-
sults demonstrated good recovery of the literature network, with J-IDBN attaining
the highest AUR (0.67, p < 0.01, permutation test; Figure 4). As in the simulation
study, J-IDBN outperformed IDBN, with AJ-IDBN and Fixed IDBN representing
good alternative estimators and the remaining estimators performing poorly. This
suggests the conclusions drawn in Section 4.2 apply also to the analysis of biolog-
ical time series data. In particular, modeling of interventions appears to be crucial
in this setting, in line with the conclusions of Spencer, Hill and Mukherjee (2012).

4.3.3. Inference for cell line networks. We investigated inference for cell line-
specific networks Gj (Figure 5), taking the prior network G0 from the literature
(Figure 3). In order to assess results, we exploited the fact that cell lines AU565
and SKBR3 derive from the same patient. We would therefore expect these two
cell lines to be most similar at the network level. J-IDBN networks for AU565
and SKBR3 were indeed the most similar, maximizing the Pearson correlation
coefficient between corresponding posterior marginal inclusion probabilities over
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FIG. 4. Results from breast cancer cell line data, comparison with network based on literature. The
methods shown were used to estimate a latent network; AUR is with respect to the literature-based
network shown in Figure 3; the latter was not used to provide prior information in these experiments.
(Asterisks denote AUR scores which were significant at the 1% level under a permutation test with
AUR as the statistic and 10,000 samples used to obtain an empirical null distribution.)

all
(6
2

) = 15 pairs of cell lines. In contrast, standard IDBNs did not do so (Figure 6).
Figure 7 compares posterior inclusion probabilities (or analogous edge weights
for the non-Bayesian methods) for AU565 against SKBR3. We find posterior edge
probabilities from these two lines are closer under JNI estimators compared with
standard, independent estimators. However, a thorough assessment of the accuracy
of the individual cell line-specific networks requires additional experimental work
and is beyond the scope of this paper.

FIG. 5. Breast cancer data; cell line-specific networks inferred by J-IDBN. (Edge width and color
are proportional to posterior marginal inclusion probabilities. The layout of vertices is congruent to
Figure 3, which can be used as a key.)
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FIG. 6. Breast cancer data; pairwise similarity between cell line-specific networks inferred by
J-IDBN (left) and IDBN (right). J-IDBN identifies AU 565 and SKBR 3 as having the most similar
networks; these cell lines were originally derived from the same patient. In contrast, IDBN does
not do so. [Colors denote Bonferroni − log(p) values based on the Pearson correlation coefficient
of posterior inclusion probabilities for pairs of cell lines, so that red indicates a high degree of
similarity. For presentation the diagonal is set to zero.]

5. Discussion. We focused on three related structure learning problems aris-
ing in the context of a set of nonidentical but exchangeable units or individuals:

(1) Estimation of a shared network from the heterogeneous data.
(2) Estimation of networks for specific individuals.
(3) Learning features specific to individuals (“differential networks”).

Each problem may be of independent scientific interest; the joint approaches inves-
tigated here address all three problems simultaneously within a coherent statistical
framework. We considered simulated data, with and without model misspecifica-
tion, as well as proteomic data obtained from cancer cell lines. For all three prob-

FIG. 7. Comparison of posterior edge probabilities obtained from analysis of data from two breast
cancer cell lines (AU 565 and SKBR 3) that were originally derived from the same patient. The
joint estimators J-IDBN and J-DBN improve the Spearman correlation coefficient (“rho”) between
posterior edge probabilities compared to independent inference using IDBN and DBN.
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lems we demonstrated that a joint analysis performs at least as well as independent
or simpler aggregate analyses.

We considered modular priors (that factorize over nodes) that facilitated effi-
cient computation. However, it may be useful to consider richer priors for joint es-
timation. One possibility that is pertinent to applications in cancer biology would
be hierarchical regularization that allows entire pathways to be either active or
inactive. However, we note that this would require revisiting hyperparameter elic-
itation since the heuristics we described are specific to SHD priors. We restricted
the joint model to have equal inverse temperatures λ1 = · · · = λJ := λ. Relaxing
this assumption may improve robustness to batch effects that target single indi-
viduals, since then weak informativeness (λj ≈ 0) may be learned from data. It
would also be interesting to distinguish between G \ Gj (“loss of function”) and
Gj \ G (“gain of function”) features. In this work we did not explore information
sharing through parameter values θ j , yet this may yield more powerful estima-
tors of network structure in settings where individuals’ parameters θ j , θk are not
independent.

The case of exchangeable networks that we considered here represents the sim-
plest of a more general class of models for related networks. In a sequel to the
present paper [Oates and Mukherjee (2014)], we discuss the case where multiple
individuals are related according to a known tree structure. In this more general
setting, efficient algorithms based on belief propagation continue to apply, since
the tree constraint ensures that the corresponding factor graph is acyclic and so the
sum-product lemma continues to hold [Kschischang, Frey and Loeliger (2001)].
Still more general (and challenging) is the case where both the networks and the
hierarchical structure that relate them to one another are unknown. Oates et al.
(2014a, 2014b) present a first step in this direction, in the context of MAP estima-
tion for nonexchangeable DAGs.

APPENDIX A: PROOF OF THEOREM

The following Lemma shows that, under the joint regularity assumption, JNI is
a consistent estimator of the true latent network G in the limit J → ∞:

LEMMA. Let η = 0. Then under the joint regularity assumption there exists
0 < ε < 1 such that EY,G,G1,...,GJ |η,λ

p(G|Y) > 1 − |G|εJ .

PROOF. Since we are using a flat prior (η = 0) on G, we have, suppressing
dependence upon λ,

p(G|Y) = p(Y|G)∑
G∈G p(Y|G)

,(12)



1912 OATES, KORKOLA, GRAY AND MUKHERJEE

so from Jensen’s inequality

EY,G1,...,GJ |G,λ
p(G|Y) ≥

EY,G1,...,GJ |G,λ
p(Y|G)∑

G∈G EY,G1,...,GJ |G,λ
p(Y|G)

(13)

=
[
1 + ∑

G∈G
G�=G

EY,G1,...,GJ |G,λ
p(Y|G)

EY,G1,...,GJ |G,λ
p(Y|G)

]−1

(14)

> 1 − ∑
G∈G
G�=G

EY,G1,...,GJ |G,λ
p(Y|G)

EY,G1,...,GJ |G,λ
p(Y|G)

(15)

= 1 − ∑
G∈G
G�=G

∏
j∈J

EYj ,Gj |G,λ
p(Yj |G)

EYj ,Gj |G,λ
p(Yj |G)

.(16)

The joint regularity assumption is equivalent to the requirement that
EYj ,Gj |G,λ

p(Yj |G) has a unique maximum at G = G, since

EYj ,Gj |G,λ
p

(
Yj |G) = E

Gj |G,λ
EYj |Gj

∑
Gj∈G

p
(
Yj |Gj )

p
(
Gj |G)

(17)

= ∑
Gj∈G

p
(
Gj |G) ∑

Gj∈G

[
EYj |Gj p

(
Yj |Gj )]

p
(
Gj |G)

(18)

= ∑
Gj∈G

∑
Gj∈G

(
RT )

G,Gj (S)
Gj ,Gj (R)

Gj ,G
(19)

= (
RT SR

)
G,G = (RSR)G,G,(20)

where we have used that R is symmetric. It follows that

ε := max
G∈G
G�=G

EYj ,Gj |G,λ
p(Yj |G)

EYj ,Gj |G,λ
p(Yj |G)

< 1.(21)

We therefore conclude that

EY,G1,...,GJ |G,λ
p(G|Y) > 1 − |G|εJ .(22)

Since equation (22) is independent of G, the result follows. �

PROOF OF THEOREM. Since no observables are available on the first individ-
ual (Y1 =∅), we have

A1
JNI = ∑

G∈G
p(G|Y)

∑
G1∈G

p
(
G1|G)

G1.(23)
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We also require the “oracle” estimator (O-JNI); this is simply JNI but with G fixed
and known, that is,

A1
O-JNI = ∑

G1∈G
p

(
G1|G)

G1.(24)

Note that EG|η,λ‖A1
O-JNI − G1‖ = E

G1,G|λ‖G − G1‖ = P 2(1 − hλ). We begin by
showing that JNI approximates O-JNI:

A1
O-JNI − A1

JNI = (
1 − p(G|Y)

) ∑
G1∈G

p
(
G1|G)

G1

(25)
− ∑

G∈G
G�=G

p(G|Y)
∑

G1∈G
p

(
G1|G)

G1

and, by the triangle inequality,

∥∥A1
O-JNI − A1

JNI
∥∥ ≤

∥∥∥∥(
1 − p(G|Y)

) ∑
G1∈G

p
(
G1|G)

G1
∥∥∥∥

+
∥∥∥∥

∑
G∈G
G�=G

p(G|Y)
∑
G1

p
(
G1|G)

G1
∥∥∥∥(26)

≤ (
1 − p(G|Y)

)
sup

G1∈G

∥∥G1∥∥ + (
1 − p(G|Y)

)
sup

G1∈G

∥∥G1∥∥(27)

≤ 2
(
1 − p(G|Y)

)
P 2.(28)

Again, by the triangle inequality,
∥∥A1

JNI − G1
∥∥ ≤ ∥∥A1

JNI − A1
O-JNI

∥∥ + ∥∥A1
O-JNI − G1

∥∥.(29)

Taking expectations and applying the Lemma produces

EY,G|η,λ

∥∥A1
JNI − G1

∥∥ ≤ 2P 2|G|εJ−1 + P 2(1 − hλ),(30)

as required. �

APPENDIX B: DYNAMIC BAYESIAN NETWORKS

For the DBNs used here, an edge (p, q) from p ∈ P to q ∈ P in Gj ∈ G im-
plies that Y

j
q (t), the observed value of variable q in individual j at time t , depends

directly upon Y
j
p (t − 1), the observed value of p in individual j at time t − 1 [Fig-

ure 8(a); note that t indexes the sample index rather than actual sampling time].
Let Yj denote a vector containing all observations for individual j . Then Yj (t)

is conditionally independent of {Yj (t − τ) : τ ≥ 2} given Yj (t − 1), θ j , Gj and
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FIG. 8. Dynamic Bayesian networks (DBNs). (a) An “unrolled” dynamic Bayesian network (DBN)
showing each variable at successive time points. (b) The corresponding “static” representation of
DBN (a) with exactly one vertex for each variable.

Zj (first-order Markov assumption). These conditional independence relations are
conveniently summarized as a (static) network Gj with exactly P vertices [Fig-
ure 8(b)]; note that this latter network need not be acyclic.

Hill et al. (2012) describe a DBN rooted in the Bayesian linear model. Specifi-
cally, the response Y

j
p (t) is predicted by covariates Yj (t − 1), that is,

Yj
p = X0α + Xj

π
j
p

β + ε,(31)

where ε ∼ N(0n×1, σ
2In×n). In many cases multiple time series will be available.

In this case the vector Yj
p contains the concatenated time series. The matrix X0 =

[1{t=1} 1{t>1}]n×2 contains a term for the initial time point in each experiment.

The elements of Xj

π
j
p

corresponding to initial observations Y
j
p (1) are simply set to

zero. Parameters θ j
p = {α,β, σ } are specific to model π

j
p , variable p and individual

j . In the simplest case, given data Y = y, the model-specific component Xj

π
j
p

of

the design matrix consists of the raw predictors yj

π
j
p

(t − 1), where yj
Z denotes the

elements of the vector yj (t −1) belonging to the set A, though more complex basis
functions may be used, including interaction terms. For experiments performed
in this paper, interaction terms were taken to be all possible products of parent
variables, following Hill et al. (2012).

Spencer, Hill and Mukherjee (2012) modeled interventional data by modifica-
tion to the DAG using ideas from causal inference [Pearl (2000)]. We mention
briefly some of the key ideas and refer the interested reader to the references for full
details. A “perfect intervention” corresponds to 100% removal of the target’s activ-
ity with 100% specificity. In the context of protein phosphorylation, kinases may
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be intervened upon using chemical agents. Spencer, Hill and Mukherjee (2012)
make the simplifying assumptions that these interventions are perfect [the “per-
fect out fixed effects” (POFE) approach]. We refer the reader to Spencer, Hill and
Mukherjee (2012) for an extended discussion of POFE. This changes the DAG
structure to model the intervention and also estimates an additional fixed effect pa-
rameter to model the change under intervention in the log-transformed data. When
generating data for the simulation study in Section 4.2 we take fixed effects to
equal zero.

APPENDIX C: EXACT MARGINAL LIKELIHOOD FOR DBN AND IDBN

Hill et al. (2012) employed an exact Bayesian approach to capture the suitability
of the candidate parent set π

j
p . In brief, a Jeffreys prior p(α, σ |πj

p,φj ,Zj ) ∝ 1/σ

for σ > 0 was placed over the common parameters. Prior to inference, the noninter-
ventional components of the design matrix are orthogonalized using the transfor-
mation (Xj

π
j
p

)ik �→ ∑
l(In − P0)il(X

j

π
j
p

)lk , where P0 = X0(XT
0 X0)

−1XT
0 [Bayarri

et al. (2012)]. A g-prior was placed on regression coefficients [Zellner (1986)],
given by

β|α, σ,πj
p,φj ,Zj ∼ N

(
0b×1, φ

jσ 2(
XT

π
j
p

X
π

j
p

)−1)
,(32)

where b = dim(β). Using these priors alongside either DBNs or IDBNs as outlined
above, the marginal likelihood can be obtained in closed-form:

P
(
yj
p|πj

p,φj ,Zj )
(33)

∝ 1

(φj + 1)b/2

(
yjT
p

(
In×n − P0 − φj

φj + 1
P

π
j
p

)
yj
p

)−(n−a)/2

,

where P
π

j
p

= X
π

j
p
(XT

π
j
p

X
π

j
p
)−1XT

π
j
p

, a = dim(α) and b = dim(β). Empirical inves-

tigations have previously demonstrated good results for network inference based
on the above marginal likelihood [Hill et al. (2012), Spencer, Hill and Mukherjee
(2012)].

The hyperparameter φj , that is related to the weight of the parameter prior
p(β|α, σ ) relative to the data yj

p , was selected in this paper using the conditional
empirical Bayes procedure outlined in George and Foster (2000), corresponding to

φ̂j (
πj

p

) = arg maxgP
(
yj
p|πj

p, g,Zj )
.(34)

For computational efficiency, we evaluated the argument over a set of eight candi-
date values corresponding to prior weights of 0, 10, 20, 30, 40, 50% and (100/n)%
(the unit information prior). Alternative strategies for eliciting g-priors are dis-
cussed in Bayarri et al. (2012), Liang et al. (2008).
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Algorithm 1 Belief propagation for JNI
1: for p ∈P do

Phase 0:
2: Compute and cache P(yj

p|πj
p) [∀j ∈J ] [∀πp ∈ Gp]

Phase I:
3: Compute and cache [∀j ∈J ] [∀πp ∈ Gp]
4: P(yj

p|πp) = ∑
π

j
p∈Gp

P(yj
p|πj

p)p(π
j
p |πp) [O(M)]

Phase II:
5: Compute and cache [∀j ∈J ] [∀πp,π

j
p ∈ Gp]

6: p(πp|yp,π0
p) ∝ p(πp|π0

p)
∏

j∈J P(yj
p|πp) [O(J )]

7: p(π
j
p |yp,π0

p) ∝ ∑
πp∈Gp

p(πp|π0
p)P(yj

p|πj
p)p(π

j
p |πp)

∏
k∈J \{j} P(yk

p|πp)[O(MJ)]
Phase III:

8: Compute and cache [∀j ∈J ] [∀i ∈P]
9: p(i ∈ πp|y,G0) = ∑

πp∈Gp
1i∈πpp(πp|yp,π0

p) [O(M)]

10: p(i ∈ π
j
p |y,G0) = ∑

π
j
p∈Gp

1
i∈π

j
p
p(π

j
p |y,π0

p) [O(M)]

11: end for

APPENDIX D: BELIEF PROPAGATION FOR JNI

Exact inference for JNI is based on belief propagation [Pearl (2000)]. Algo-
rithm 1 displays pseudocode for exact joint model averaging. We also indicate
computational complexity in terms of the number M = |Gp| of possible parent
sets and the number J of individuals. Computational complexity of calculating
marginal likelihoods P(yj

p|πj
p) will partly depend upon sample size n; scaling ex-

ponents shown here assume O(n) = O(1). Algorithm 1 contains pseudocode for
computation of posterior marginal inclusion probabilities for edges in both the la-
tent network G and individual-specific networks Gj . For simplicity, we suppress
dependence upon ancillary data Zj throughout.
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