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ON ANALYSIS OF INCOMPLETE FIELD FAILURE DATA
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Many commercial products are sold with warranties and indirectly
through dealers. The manufacturer-retailer distribution mechanism results in
serious missing data problems in field return data, as the sales date for an
unreturned unit is generally unknown to the manufacturer. This study con-
siders a general setting for field failure data with unknown sales dates and
a warranty limit. A stochastic expectation–maximization (SEM) algorithm is
developed to estimate the distributions of the sales lag (time between ship-
ment to a retailer and sale to a customer) and the lifetime of the product
under study. Extensive simulations are used to evaluate the performance of
the SEM algorithm and to compare with the imputation method proposed by
Ghosh [Ann. Appl. Stat. 4 (2010) 1976–1999]. Three real examples illustrate
the methodology proposed in this paper.

1. Introduction. Field failure data contain rich information about product re-
liability and the operating conditions in actual use. The information is important
for risk assessment of field failures, early detection of unanticipated reliability
problems [Wu and Meeker (2002)], and prediction of operation costs. Since many
commercial products are sold with warranties, field failure data usually come from
warranty claims. Alternatively, for noncommercial products such as military prod-
ucts, field data may be extracted from maintenance reports [Coit and Jin (2000)],
and this type of data is called field maintenance data.

The rich information contained in field failure data can be extracted by care-
ful data analysis. However, the analysis is difficult because field data are gener-
ally coarse and of poor quality. Compared with lab data that are collected under
well-controlled testing conditions, field data are collected from customers and are
contaminated by customer behaviors. For instance, the data are often contaminated
with heterogeneous use conditions [Ye, Hong and Xie (2013)], dormant period af-
ter purchase [Wu (2012)], delayed report after failure [Kalbfleisch, Lawless and
Robinson (1991)], customer rush near warranty expiration [Rai and Singh (2006)],
the failed-but-not-reported problem [Xie and Liao (2013)], and systematic error on
the cause and time of failures due to report error. To address these issues, a number
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of statistical models have been developed for warranty data analysis. See Blischke,
Karim and Murthy (2011) and Wu (2012) for a comprehensive overview.

Another important cause of the coarse data is the missing sales date of unre-
turned units. Nowadays, many products are sold to customers through multiple
channels of distribution instead of direct sale from the manufacturers. Under the
manufacturer-retailer distribution mechanism, if a product fails within warranty, it
will be returned to the manufacturer as a warranty claim. Then, the lifetime and the
sales lag, which is the time between shipment to a retailer and sale to a customer,
can be easily obtained from the warranty card. For an unreturned unit, however, the
sales date is generally unknown unless the product is expensive (e.g., cars). The
unit might still be in a retailer’s warehouse or it might have been sold to a customer
at some date unknown to the manufacturer. Ghosh (2010) presented such an exam-
ple, where residential furnace components were shipped to retailers in batches and
then sold to customers through retailers. Because of the retailers, the exact release
time of a furnace to a customer was generally masked unless a furnace was sold
and failed before a fixed end-of-study date.

A common approach to the unknown sales lag problem is to carry out a sensi-
tivity analysis by assuming that the sales lag is fixed [Lawless (1998)]. Another
method is to obtain the sales-lag distribution using survey or past experience, and
then this distribution is incorporated into the data analysis to improve estimation
accuracy [Hu and Lawless (1996), Wilson, Joyce and Lisay (2009)]. This method
does not make full use of the database, as the sales date for returned units can
be read from the warranty card and the sales-lag information is available from
these returned units. Some studies treat both the observed sales-lag data and the
observed lifetime as right censored so that the two types of data can be analyzed
separately [Akbarov and Wu (2013), Ion et al. (2007), Karim (2008)]. Given that
the sales date of an unreturned unit is unknown, however, the sales-lag data are
not right censored, and the lifetime data are neither left truncated nor right cen-
sored. To get an accurate estimate, the sales-lag data and the lifetime data have
to be jointly analyzed. In an interesting study, Ghosh (2010) analyzed field fail-
ure data with unknown sales lags. However, the inference procedure in that work
is not efficient. In addition, it does not allow for a warranty limit and, thus, it is
not applicable to warranty data. In addition, previous research assumes indepen-
dent sales lag and lifetime. This assumption is true for some products, for example,
light bulbs, televisions, computers, etc. For seasonal products such as heaters, fans,
and air purifiers, the sales lag and the lifetime are correlated due to the usage pat-
tern. For instance, a heater sold in summer will last longer than one sold in winter
due to the uneven usage. It is also possible that a longer sales lag introduces more
damage to the product [Akbarov and Wu (2013)]. Moreover, most research on field
data analysis emphasizes the field failure time distribution only. The sales-lag in-
formation reflects customer demand rate and is important in manufacturing and
inventory decisions.
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In this paper, we consider joint parametric inference of sales-lag and lifetime
in the presence of unknown sales dates. In contrast to the work by Ghosh (2010),
we allow for a warranty limit as well as dependency between sales lag and life-
time. In addition, we propose a more efficient algorithm for statistical inference.
Section 2 presents a simplified problem setting for field data with a warranty limit
and an end-of-study date. Section 3 proposes an inference framework based on the
stochastic expectation–maximization (SEM) algorithm. Section 4 discusses how
the SEM algorithm can be modified to handle more general situations. In Sec-
tion 5 a simulation study examines the performance of the proposed algorithm,
and we compare it with the imputation method proposed by Ghosh (2010). The
proposed algorithm is demonstrated using three examples with different missing
data patterns in Section 6. A concise conclusion is provided in Section 7.

2. Problem statement. Suppose that N identical units are produced in a batch
and delivered to several retailers at the same time. The delivery time is set as the
time origin in the analysis. These units are then sold to customers with a warranty
of length τ , starting from the date of purchase. Let X be the sales lag (same as the
sales date in this setting) and T the lifetime of the product from the date of sale,
where both X and T are random. Let T0 be a fixed end-of-study date, which can be
viewed as the date the analysis is performed. If a unit fails before T0 and is within
warranty, we assume that a warranty claim is made to the manufacturer without
delay. Then both the sales date X and the lifetime T are known to us. Otherwise,
the sales date and the product lifetime are unavailable. Suppose that before T0, we
observe C claims, and so we have C realizations of (X,T ), denoted as (xi, ti),
i = 1,2, . . . ,C. For the remaining N − C units, the values of (X,T ) are missing.

This study focuses on parametric inference. Denote the joint probability density
function (PDF) of (X,T ) as fX,T (x, t) and the joint cumulative distribution func-
tion (CDF) as FX,T (x, t), where x, t > 0. Let � be the parameter vector. Given the
observed data (xi, ti), i = 1,2, . . . ,C, the likelihood function of � is given by

L(�) = [
1 − Pr(X + T < T0, T < τ)

]N−C
C∏

i=1

fX,T (xi, ti),(2.1)

where Pr(X + T < T0, T < τ) is the probability that a unit fails within warranty
and is observed within T0. This probability can be written as

Pr(X + T < T0, T < τ) =
∫ τ

0

∫ T0−t

0
fX,T (x, t) dx dt.

If X and T are independent, this probability simplifies to

Pr(X + T < T0, T < τ) =
∫ τ

0
FX(T0 − t) dFT (t).

In principle, the maximum likelihood estimator (MLE) of � can be obtained from
direct maximization of the likelihood (2.1). Nevertheless, numerical evaluation of
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the integral would introduce computation error, which is magnified by the factor
N − C in (2.1). Due to the high missing data rate in our problem (i.e., large N and
small C), the total computation error is significant, and the likelihood is flat near
the maximum. These two factors lead to unstable estimates if direct maximization
is used (i.e., convergence to values far from the optimal or failure to converge). The
instability is observed in our simulation study (see Section 5) and Ghosh (2010).
Therefore, alternative techniques are needed. In the next section we propose an
efficient and easy-to-implement procedure based on the SEM algorithm.

3. The stochastic expectation–maximization framework.

3.1. The SEM algorithm. The EM algorithm is an iterative procedure that re-
peatedly fills the missing data in the complete-data log-likelihood with their condi-
tional expected values (E-step) and maximizes the complete data log-likelihood to
update the parameter estimates (M-step). The EM algorithm is efficient in finding
the MLEs when computation of the expectation and the maximization are easy to
perform. See McLachlan and Krishnan (2008) for a book-length account. Unfortu-
nately, the E-step is intractable when the EM algorithm is applied to the problem in
Section 2. Alternatively, the expectation can be approximated through Monte Carlo
simulation, leading to the Monte Carlo EM (MCEM) algorithm. In our problem,
the approximation error of the expectation leads to a breakdown of the MCEM
algorithm because the likelihood is flat near the maximum.

The difficulty in executing the E-step can be efficiently addressed by the SEM
algorithm proposed by Celeux and Diebolt (1985). The SEM algorithm replaces
the E-step with a stochastic step (S-step), which is easy to implement as long as
the missing data are easy to impute. Compared with the MCEM algorithm, the
SEM algorithm completes the observed sample by replacing each missing datum
with a value randomly drawn from the distribution conditional on results from
the previous step. The SEM algorithm has been shown to be computationally less
burdensome than the MCEM algorithm. Because of the stochastic nature, it is free
of the saddle point problem, a serious problem for the EM algorithm [Bordes,
Chauveau and Vandekerkhove (2007), Cariou and Chehdi (2008)]. It was shown
by Diebolt and Celeux (1993), Chauveau (1995) and Nielsen (2000) that under
suitable regularity conditions the SEM estimators are efficient in the sense that
the variance approaches the Cramér–Rao lower bound. Some applications of the
algorithm suggest that it is insensitive to starting values and performs well for
small or moderate sample sizes. See, for example, Chauveau (1995), Cariou and
Chehdi (2008), and Svensson and Sjöstedt-de Luna (2010).

3.2. Implementation. Let � and � be the sets of observed and missing data,
respectively. Here, � includes the C observed values of (xi, ti) and the information
that N − C observations are missing. Given the parameter values �(k) of � from
the kth SEM cycle, the (k + 1)st cycle for the problem described in Section 2
evolves as follows:
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S-step. Draw a random sample �(k) = {(x(k)
j , y

(k)
j ); j = 1,2, . . . ,N − C} from

the conditional distribution of {�|�,�(k)} to update the pseudo Q-function

Q(�;�,�) =
C∑

i=1

lnfX,T (xi, ti) +
N−C∑
j=1

lnfX,T

(
x

(k)
j , t

(k)
j

)
.(3.1)

M-step. Maximize the pseudo Q-function (3.1), which is a complete data log-
likelihood, to obtain �(k+1) for the next cycle.

The M-step deals with a complete-data log-likelihood. It is easy to implement
through direct optimization or with the help of statistical software if some com-
mon distributions are used for X and T , for example, independent exponential,
Weibull, or bivariate lognormal. Under suitable regularity conditions, the sequence
�(k) converges to a random variable whose mean is an asymptotically efficient es-
timator of �. These conditions typically are satisfied if the complete data model
and the missing data model are sufficiently smooth [Nielsen (2000), Section 2.3].
The simulation results in Section 5 support this argument for commonly used life-
time distributions. To obtain an estimate of �, we run the SEM algorithm to obtain
�(k), k = 1,2, . . . ,K , discard the first few iterations for burn-in, and average over
the estimates from the remaining iterations to get �̂. According to some reports
[e.g., Marschner (2001)] as well as our experience, a burn-in period of 100 cy-
cles is long enough under moderate missing data rates, while an additional 1000
iterations are sufficient to estimate �. Nevertheless, we suggest a trace plot of the
{�(k)} sequence versus the iterations for checking the sufficiency of the burn-in,
and determining a more appropriate burn-in duration, if necessary.

There are several ways to impute the missing data in the S-step. The standard
method is based on the conditional distribution of the unobserved (X,T ), which is

gX,T (x, t) = fX,T (x, t)

1 − Pr(X + T < T0, T < τ)

(
1 − I {x + t < T0, t < τ }),(3.2)

where I {·} is the indicator function. Direct sampling from this conditional PDF
is difficult. We might resort to the Markov chain Monte Carlo (MCMC) method.
However, it is inefficient to imbed an iterative algorithm (MCMC) into another one
(SEM). Due to the extremely high missing data rate in our problem, we impute
missing data in a natural way, which is somewhat brute force, yet very straightfor-
ward, easy to implement, and efficient.

Recall that a unit is observed only when X + T < T0 and T < τ , while the
probability of being observed is typically low. This motivates us to impute the
missing data �(k) by using a simple acceptance-rejection method: an imputation
(x, t) from fX,T (x, t |�(k)) is rejected only when x + t < T0 and t < τ . It can be
easily shown that (X,T ) imputed from this sampling scheme follows the distribu-
tion given in (3.2). To use this imputation scheme, a starting point �(0) that leads
to a large mean value of X or T is strongly recommended in order to avoid a high
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rejection rate at the outset of the SEM algorithm. According to our comprehen-
sive simulation trials, this scheme is very efficient because the missing data rate,
which approximately equals 1 minus the rejection rate, is high in our setting. The
rejection rate should be low as long as �(k) is not too far away from the true value.
Therefore, the brute-force imputation is expected to be effective in the sense that
the computational time for each SEM iteration is relatively small.

3.3. Confidence intervals. The log-likelihood based on full data D = � ∪ �
is the same as (3.1). Because of the simple structure of the full data likelihood,
the score function and the observed information matrix based on full data can
be easily obtained by taking the first and second derivatives of (3.1) with respect
to the parameters �. Denote the first and the negative of the second derivatives
as S(�,D) and B(�,D), respectively. The observed information matrix based
on incomplete data can be computed based on the missing information principle
[Louis (1982)] as

I(�) = E
[
B(�,D)|�] − E

[
S2(�,D)|�] + {

E
[
S(�,D)|�]}2

,(3.3)

where v2 = v · v′ when v is an m × 1 vector. To evaluate (3.3), we first impute M

samples �(i), i = 1,2, . . . ,M , for the missing data � conditional on the observed
data and �. Let D(i) = �∪�(i). Then, the incomplete data information matrix can
be approximated by [Wei and Tanner (1990)]

Î(�)
.= 1

M

M∑
i=1

B
(
�,D(i)) − 1

M

M∑
i=1

[
S
(
�,D(i))]2

(3.4)

+
[

1

M

M∑
i=1

S
(
�,D(i))]2

.

The SEM estimate, �̂, is plugged into (3.4) to obtain Î(�̂), which is then used to
obtain the asymptotic variances of �̂ as well as the confidence intervals. To ensure
the accuracy of the simulation approximation, the number of samples M should be
carefully chosen. The magnitude depends on the missing data rate.

4. Some further considerations. Usually, products are manufactured and
shipped to retailers intermittently, meaning that the shipment dates for distinct
units may differ. Under this circumstance, we can still observe (X,T ) for a re-
turned unit. For an unreturned unit, we can subtract the date of shipment from the
end-of-study date to obtain the censored time for X + T . Then, the framework
discussed in Section 3 applies.

In some situations, direct sale from the manufacturer is possible. The sales dates
for units sold directly to customers are available in the database. The data do not
have sales lag and the lifetimes are simply right censored. The contribution of an
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observed unit to the likelihood is exactly the PDF of T , while if a unit is cen-
sored, say, at time Tc, the missing value can be easily imputed in the S-step as
t = F−1

T (u+ (1 −u)FT (Tc|�(k))), where F−1
T (·) is the quantile function of FT (·),

while u is a random draw from the uniform distribution on (0,1).
Wilson, Joyce and Lisay (2009) considered a nonnegligible report delay after

failure (denoted as Y ) in addition to the sales lag X. When information about Y

for a returned unit is available, we can work on the random vector (X,Y,T ). In the
S-step, the missing (X,Y,T ) can be imputed similar to the acceptance-rejection
method discussed in Section 3.2, after which the pseudo Q-function can be easily
specified. The M-step can be implemented based on standard estimation proce-
dures established for complete multivariate data. Analysis of such data will be
demonstrated in Section 6.3.

5. Simulation study. In the simulation the number of units in a batch is as-
sumed to be N = 200. Both dependent and independent (X,T ) are examined. We
first assume a bivariate lognormal distribution for (X,T ):

(lnX, lnT ) ∼ N
(
μ =

(
μ1
μ2

)
,� =

(
σ11 σ12
σ12 σ22

))
.

The biases and root mean square errors (RMSEs) of the SEM estimators under
different parameter values and different combinations of (τ,T0) are estimated us-
ing 5000 MC replications, as shown in Table 1. We then consider independent
T and X, each conforming to either an exponential distribution or a Weibull distri-
bution. Different settings have been examined. The estimated biases and RMSEs
are presented in Table 2. Code in Matlab® is presented in the supplementary mate-
rials [Ye and Ng (2014)]. From Tables 1 and 2, we can see that the SEM algorithm
effectively estimates the model parameters in both dependent and independent
cases. We can also observe that, on average, a longer warranty period leads to
higher accuracy of the estimator. This observation agrees with our intuition as the
missing data rate decreases with τ .

TABLE 1
Estimated biases and RMSEs of the SEM estimator when (lnX, lnT ) ∼N (μ,�) with the

consideration of a warranty period (τ ) and a batch size N = 200

True values

Scenario τ T0 μ � μ1 μ2 σ11 σ22 σ12

S1 4 6
(

1
1

) (
1 0.3

0.3 1

)
Bias (×102)
RMSE (×10)

−0.22
1.68

−0.21
1.61

1.51
2.27

1.19
2.19

−2.57
1.47

S2 3 4
(

1
1

) (
1 0.3

0.3 1

)
Bias (×102)
RMSE (×10)

−2.97
3.16

−4.40
2.96

15.48
3.82

10.33
3.55

−17.94
3.11

S3 3 4
(

1
1.3

) (
1 0.4

0.4 1

)
Bias (×102)
RMSE (×10)

−0.50
3.98

−3.03
3.34

6.13
4.15

1.36
4.10

−6.24
3.15
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TABLE 2
Estimated biases and RMSEs of the parameter estimates obtained from the SEM algorithm when

(X,T ) are independent with the consideration of a warranty period (τ )

Setting λ θ β

τ T0 (λ, θ,β) Bias (×102) RMSE (×10) Bias (×102) RMSE (×10) Bias (×102) RMSE (×10)

X ∼ Exp(λ), T ∼ Weibull(θ,β)
5 6 (0.7, 5, 2) −0.02 1.17 −4.90 3.52 5.82 2.03
3 4 (0.7, 5, 2) −5.79 2.71 −42.62 10.18 20.45 4.45
4 6 (0.7, 5, 2) −0.06 1.25 −5.74 3.81 6.60 2.29

X ∼ Weibull(θ,β), T ∼ Exp(λ)
5 6 (0.5, 4, 1.5) −0.03 0.77 −4.78 3.39 4.76 1.54
3 4 (0.5, 4, 1.5) −0.89 1.46 −20.12 7.16 10.80 2.26
4 6 (0.5, 4, 1.5) 0.02 0.81 −4.11 3.84 4.28 1.53

Setting λ δ

τ T0 (λ, δ) Bias (×102) RMSE (×10) Bias (×102) RMSE (×10)

X ∼ Exp(λ), T ∼ Exp(δ)
5 6 (0.2, 0.2) 1.47 0.63 1.57 0.63
4 5 (0.2, 0.2) 2.40 0.87 2.61 0.87
5 6 (0.5, 0.2) 0.74 0.82 0.50 0.26
3 4 (0.5, 0.2) 1.31 1.41 1.91 0.57
5 6 (0.4, 0.7) 0.41 0.37 0.68 0.72
3 4 (0.4, 0.7) 1.11 0.57 1.04 1.07

The proportional imputation method proposed by Ghosh (2010) does not allow
for a warranty limit and it can only handle independent X and T . In order to com-
pare the SEM algorithm with it, we let X and T be independent and τ > T0 (i.e.,
no warranty consideration). The biases and RMSEs of the estimators computed
from the proportional imputation approach and the SEM algorithm are presented
in Table 3. The SEM estimator has much smaller biases and RMSEs. A possible
explanation is that the stratified sampling scheme in the proportional imputation
algorithm might introduce biases in the imputing samples. Another finding from
our comparative study is that the computation time required by the SEM algorithm
is much shorter compared to that of the proportional imputation algorithm. Over-
all, the SEM algorithm is statistically and computationally more efficient than the
imputation method. More importantly, the SEM algorithm is able to handle a more
general scenario with a warranty limit and dependent X and T . It also allows for
construction of confidence intervals for the parameters. These advantages make
the SEM algorithm attractive for the problem.

To demonstrate the advantage of the SEM algorithm over direct optimiza-
tion, further simulation is conducted by assuming X ∼ Exp(λ = 0.7), T ∼



INCOMPLETE FIELD FAILURE DATA 1721

TABLE 3
The estimated biases and RMSEs of Ghosh’s estimators [Ghosh (2010)] and the SEM estimators:

(X,T ) are independent and τ = ∞

Setting Bias (×102) RMSE (×10)

(T0,λ, θ,β) Impute SEM Impute SEM

X ∼ Exp(λ), T ∼ Weibull(θ,β)
(6, 0.7, 5, 2) λ −4.54 −0.22 1.13 1.09

θ −14.95 −1.35 3.83 3.50
β 8.46 3.30 2.16 1.97

(4, 0.7, 5, 2) λ −16.65 −2.29 2.54 2.33
θ −69.54 −9.81 10.21 8.64
β 21.61 8.75 3.73 3.32

X ∼ Weibull(θ,β), T ∼ Exp(λ)
(6, 0.5, 4, 1.5) λ −2.93 −0.01 0.60 0.75

θ −21.39 −0.75 2.87 3.80
β 2.47 2.59 1.36 1.44

(4, 0.5, 4, 1.5) λ −8.53 −0.94 3.13 1.50
θ −47.19 −3.41 26.86 8.33
β 5.31 6.62 3.91 2.29

Setting Bias (×102) RMSE (×10)

(T0,λ, θ, δ) Impute SEM Impute SEM

X ∼ Exp(λ), T ∼ Exp(δ)
(5, 0.2, 0.2) λ −3.45 0.58 1.59 0.70

δ −2.09 1.83 0.94 0.76

(4, 0.4, 0.7) λ −3.52 0.44 1.36 0.51
δ −2.64 0.42 1.19 1.01

Weibull(θ, β = 2), and N = 2000. Different missing data rates are achieved by
varying θ . We find that direct maximization breaks down very quickly (i.e., fails
to converge) when the missing data rate is high, say, >80%. On the other hand,
the SEM algorithm performs well under much larger missing data rates. The rel-
ative biases (bias ÷ true value) and relative RMSEs (RMSE ÷ true value) of the
SEM estimators are computed from 1000 MC replications, as shown in Figure 1.
When the missing data rate is extremely high, say, 97% in Figure 1, the RMSE
for θ is large, which can be seen as a breakdown of the SEM algorithm. For a fixed
missing data rate, nevertheless, the bias and RMSE can be significantly reduced
if the sample size N is increased. For illustration, given the missing data rate of
94.7%, the respective relative biases (RMSEs) for λ, θ and β decrease from −6.5%
(32.2%), −5.3% (26.1%), 1.25% (18.2%) to −2.0% (15.1%), −1.8% (13.2)%,
0.15% (6.0%), respectively, when N is increased to 20,000.
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FIG. 1. Relative biases and relative RMSEs of the SEM estimates under the Exp–Weibull setting.
(a) Is for λ, (b) is for θ , and (c) is for β .

6. Examples. The developed algorithm is applied to three real data sets with
different missing data patterns. The first example is from an industrial firm that
produces residential furnace components [Ghosh (2010)]. There is an unobserved
sales lag for an unreturned unit but there is no warranty limit. The second example
comes from warranty claims for an automobile component with both a sales lag
and a warranty limit. The third example concerns a telecommunications product
[Wilson, Joyce and Lisay (2009)] where both the sales lag and report delay ex-
ist. The times in these examples are in months. These data are presented in the
supplementary materials [Ye and Ng (2014)].

6.1. Installation failure data of a furnace. This data set is from an industrial
firm producing residential furnace components during one week in May 2001. It
consists of N = 400 furnace components and C = 133 returns, denoted as (xi, ti)

for i = 1, . . . ,C. The components are sold with life warranty, that is, τ = ∞. In
keeping with Ghosh (2010), suppose the sales lag is exponential, X ∼ Exp(λ),
and the failure time is Weibull, T ∼ Weibull(θ, β). Ghosh (2010) obtained esti-
mates of the model parameters as λ̂ = 0.57, θ̂ = 14.47, and β̂ = 0.81 by using
his imputation algorithm. Here, we reanalyze the data using the SEM algorithm.
We use 100 iterations for burn-in and another 900 iterations to obtain the SEM
estimates. The evolution paths of the parameters are shown in Figure 2. The paths
reveal no obvious trend in the simulation. The computation time for the SEM al-
gorithm is 12.28 seconds on a laptop with an Intel® Core i5 CPU, which is faster
than that required by the proportional imputation method (72.12 seconds on the
same computer). We then invoke the procedure in Section 3.3 to compute the in-
formation matrix and thus the standard deviations of the estimators. To ensure an
accurate approximation for the information matrix, we use M = 100,000 imputa-
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FIG. 2. Parameter evolutions in the SEM algorithm when there is no warranty: the dashed-dotted
line represents the average of the last 900 iterations.

tions in (3.4). The estimates (standard errors) of the model parameters are λ̂ = 0.57
(0.053), θ̂ = 19.59 (2.420), and β̂ = 0.95 (0.078), respectively.

6.2. Warranty data for an automobile component. The data analyzed here are
warranty claims for a specific automobile component produced over a three-year
period. The component is sold with an 18-month warranty. When a component
fails within warranty and is returned as a claim, the date of manufacture, date of
sale, date of claim, failure mode, and some other related information are recorded.
The end-of-study date for this study is T0 = 54 months. We focus on the 589 com-
ponents manufactured in the first month (month 0) of the production. During the
observation window, 66 claims were observed.

Based on previous experience, we use a lognormal distribution for the sales
lag and Weibull for the lifetime, that is, X ∼ lnN (μ,σ ) and T ∼ Weibull(θ, β).
To ensure convergence of the SEM algorithm, 100,000 iterations are used. The
running time is about 10 minutes. The evolution paths of the parameter estimates
versus the SEM iterations are presented in the supplementary materials [Ye and
Ng (2014)]. The estimates (standard errors) of the four model parameters are
μ̂ = 1.66 (0.107), σ̂ = 0.84 (0.081), θ̂ = 59.5 (10.0), and β̂ = 1.79 (0.224), respec-
tively. The estimated lifetime distribution and the corresponding 95% pointwise
confidence band are depicted in Figure 3. One can also obtain estimates of relia-
bility characteristics [e.g., mean time to failure (MTTF), quantiles, etc.], which are
useful in improving product reliability as well as determining the optimal warranty
period.

To check the parametric model assumption, we consider different combinations
of the distributions for (X,T ). The log-likelihood at the estimated values of the
model parameters and the AIC are presented in Table 4. A lognormal distribu-
tion for the sales lag and a Weibull distribution for the component lifetime seems
reasonable.
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FIG. 3. Estimated CDF and 95% pointwise confidence band for the failure time T for the automo-
bile component.

6.3. Field data for a telecommunications product. Wilson, Joyce and Lisay
(2009) reported field failure data for a product installed in a telecommunications
network. The data consist of 1838 units in total, out of which 26 units were returned
within T0 = 18 months after the shipment. The failure data are grouped by month
so that we only observe the number of failures for each month. All the remaining
1812 units are missing and the missing proportion is about 98.6%. In this data set
the recorded time for each of the 26 returned units is the time in between the unit
being shipped and being returned for repair. The recorded time includes the sales
lag X, failure time T , and report delay Y . This means that a failure is recorded only
when X + T + Y < T0. But if a failure is recorded, we only observe X + T + Y .
In order to decouple these three random variables, Wilson, Joyce and Lisay (2009)
collected additional sales-lag data and report-delay data from an old product in
the same family, for which the sales lag and the return delay are assumed to be
the same as the product under study. In total, there are 100 extra installation-lag
data and 100 extra report-delay data records. These two data sets are also interval

TABLE 4
Values of the likelihood and Akaike’s information criterion (AIC) under different parametric models

in Example 6.2

X ∼ Exp, X ∼ Weibull, X ∼ Logn,

Model T ∼ Weibull T ∼ Weibull (X,T ) ∼ Bivariate Logn T ∼ Weibull

No. of parameter 3 4 5 4
Likelihood −586.5 −584.2 −578.1 −578.5
AIC 1179.0 1176.4 1166.2 1165.0



INCOMPLETE FIELD FAILURE DATA 1725

censored and grouped by month. More details about the data can be found in the
original paper.

Wilson, Joyce and Lisay (2009) pointed out that direct maximum likelihood es-
timation is difficult. They developed a Bayesian inference procedure to fit the data.
The Gibbs sampling was adopted to resemble the posterior distribution. Here, we
apply the SEM algorithm. Following Wilson, Joyce and Lisay (2009), we assume
X ∼ Gamma(k1, λ1), where k1 is the shape parameter and λ1 is the scale param-
eter. The failure time is assumed to be Weibull, that is, T ∼ Weibull(θ, β), and
the report delay is gamma, that is, Y ∼ Gamma(k2, λ2). We fit the additional 100
installation-lag data and the additional 100 report-delay data to obtain an initial
estimate of k1, λ1 and k2, λ2. These values are used as initial values for the SEM
algorithm. In the SEM iterations, we impute the missing X, T , and Y based on
the fact that X and Y in the additional data sets and X + Y + T in the original
data set are interval censored or right censored. The imputation can be done by the
acceptance-rejection method with acceptance only when the imputed value falls
inside the desired interval. Since the missing proportion is high, we use 100,000
iterations in the SEM algorithm. The first 10,000 iterations are discarded for burn-
in purposes and the remaining 90,000 iterations are averaged for estimation. The
parameter estimates are k̂1 = 2.264 (0.40), λ̂1 = 1.714 (0.35), θ̂ = 720.7 (683),
β̂ = 1.153 (0.37), k̂2 = 2.779 (0.49), and λ̂2 = 0.080 (0.015). The evolution paths
of the six parameters are presented in the supplementary materials [Ye and Ng
(2014)]. The traces for the parameters related to the lifetime T are very unstable.
This can be viewed as an indication of large bias/variance in the estimation or an
indicator of insufficient information for T , which might lead to the breakdown of
SEM. With these results, one can decide whether a longer observation window is
needed. In summary, the SEM algorithm serves well as a tool for checking whether
there is sufficient information for inference.

7. Conclusions. The common problem of unknown sales dates in field failure
data has posed a challenge. Direct maximization of the likelihood is difficult due
to the excessive flatness of the likelihood and numerical error when evaluating
the function. We have proposed an SEM framework for parametric inference. The
algorithm allows for a warranty limit and possible dependence between the sales
lag and the product lifetime. It is easy to implement and computationally efficient.
Our examples with different missing data patterns demonstrate the flexibility of
the proposed framework.
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SUPPLEMENTARY MATERIAL

Additional discussions, graphs, Matlab code, and data (DOI: 10.1214/14-
AOAS752SUPP; .pdf). We provide additional discussions on the effect of model
misspecification and evolution paths of parameter estimates in SEM for Sec-
tions 6.2 and 6.3. We also provide the Matlab code for simulation and the data
used in the examples.

REFERENCES

AKBAROV, A. and WU, S. (2013). Warranty claims data analysis considering sales delay. Qual.
Reliab. Eng. Int. 29 113–123.

BLISCHKE, W., KARIM, M. and MURTHY, D. (2011). Warranty Data Collection and Analysis.
Springer, Berlin.

BORDES, L., CHAUVEAU, D. and VANDEKERKHOVE, P. (2007). A stochastic EM algorithm for a
semiparametric mixture model. Comput. Statist. Data Anal. 51 5429–5443. MR2370882

CARIOU, C. and CHEHDI, K. (2008). Unsupervised texture segmentation/classification using 2-d
autoregressive modeling and the stochastic expectation–maximization algorithm. Pattern Recogn.
Lett. 29 905–917.

CELEUX, G. and DIEBOLT, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived
from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2 73–82.

CHAUVEAU, D. (1995). A stochastic EM algorithm for mixtures with censored data. J. Statist. Plann.
Inference 46 1–25. MR1342674

COIT, D. W. and JIN, T. (2000). Gamma distribution parameter estimation for field reliability data
with missing failure times. IIE Trans. 32 1161–1166.

DIEBOLT, J. and CELEUX, G. (1993). Asymptotic properties of a stochastic EM algorithm for esti-
mating mixing proportions. Comm. Statist. Stochastic Models 9 599–613. MR1249140

GHOSH, S. (2010). An imputation-based approach for parameter estimation in the presence of am-
biguous censoring with application in industrial supply chain. Ann. Appl. Stat. 4 1976–1999.
MR2829943

HU, X. J. and LAWLESS, J. F. (1996). Estimation of rate and mean functions from truncated recur-
rent event data. J. Amer. Statist. Assoc. 91 300–310. MR1394085

ION, R. A., PETKOVA, V. T., PEETERS, B. H. and SANDER, P. C. (2007). Field reliability predic-
tion in consumer electronics using warranty data. Qual. Reliab. Eng. Int. 23 401–414.

KALBFLEISCH, J. D., LAWLESS, J. F. and ROBINSON, J. A. (1991). Methods for the analysis and
prediction of warranty claims. Technometrics 33 273–285.

KARIM, M. R. (2008). Modelling sales lag and reliability of an automobile component from war-
ranty database. Int. J. Reliab. Qual. Saf. Eng. 2 234–247.

LAWLESS, J. F. (1998). Statistical analysis of product warranty data. Int. Stat. Rev. 66 41–60.
LOUIS, T. A. (1982). Finding the observed information matrix when using the EM algorithm. J. Roy.

Statist. Soc. Ser. B 44 226–233. MR0676213
MARSCHNER, I. C. (2001). On stochastic versions of the EM algorithm. Biometrika 88 281–286.

MR1841275
MCLACHLAN, G. J. and KRISHNAN, T. (2008). The EM Algorithm and Extensions, 2nd ed. Wiley,

Hoboken, NJ. MR2392878
NIELSEN, S. F. (2000). The stochastic EM algorithm: Estimation and asymptotic results. Bernoulli

6 457–489. MR1762556
RAI, B. and SINGH, N. (2006). Customer-rush near warranty expiration limit, and nonparametric

hazard rate estimation from known mileage accumulation rates. IEEE Trans. Reliab. 55 480–489.

http://dx.doi.org/10.1214/14-AOAS752SUPP
http://www.ams.org/mathscinet-getitem?mr=2370882
http://www.ams.org/mathscinet-getitem?mr=1342674
http://www.ams.org/mathscinet-getitem?mr=1249140
http://www.ams.org/mathscinet-getitem?mr=2829943
http://www.ams.org/mathscinet-getitem?mr=1394085
http://www.ams.org/mathscinet-getitem?mr=0676213
http://www.ams.org/mathscinet-getitem?mr=1841275
http://www.ams.org/mathscinet-getitem?mr=2392878
http://www.ams.org/mathscinet-getitem?mr=1762556
http://dx.doi.org/10.1214/14-AOAS752SUPP


INCOMPLETE FIELD FAILURE DATA 1727

SVENSSON, I. and SJÖSTEDT-DE LUNA, S. (2010). Asymptotic properties of a stochastic EM algo-
rithm for mixtures with censored data. J. Statist. Plann. Inference 140 111–127. MR2568126

WEI, G. C. G. and TANNER, M. A. (1990). A Monte Carlo implementation of the EM algorithm
and the poor man’s data augmentation algorithms. J. Amer. Statist. Assoc. 85 699–704.

WILSON, S., JOYCE, T. and LISAY, E. (2009). Reliability estimation from field return data. Lifetime
Data Anal. 15 397–410. MR2519721

WU, S. (2012). Warranty data analysis: A review. Qual. Reliab. Eng. Int. 28 795–805.
WU, H. and MEEKER, W. Q. (2002). Early detection of reliability problems using information from

warranty databases. Technometrics 44 120–133. MR1951722
XIE, W. and LIAO, H. (2013). Some aspects in estimating warranty and post-warranty repair de-

mands. Naval Res. Logist. 60 499–511. MR3100810
YE, Z.-S., HONG, Y. and XIE, Y. (2013). How do heterogeneities in operating environments affect

field failure predictions and test planning? Ann. Appl. Stat. 7 2249–2271. MR3161721
YE, Z.-S. and NG, H. K. T. (2014). Supplement to “On analysis of incomplete field failure data.”

DOI:10.1214/14-AOAS752SUPP.

DEPARTMENT OF INDUSTRIAL

AND SYSTEM ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

1 ENGINEERING DRIVE 2
SINGAPORE 117576
REPUBLIC OF SINGAPORE

E-MAIL: yez@nus.edu.sg

DEPARTMENT OF STATISTICAL SCIENCE

SOUTHERN METHODIST UNIVERSITY

DALLAS, TEXAS 75275-0332
USA
E-MAIL: ngh@mail.smu.edu

http://www.ams.org/mathscinet-getitem?mr=2568126
http://www.ams.org/mathscinet-getitem?mr=2519721
http://www.ams.org/mathscinet-getitem?mr=1951722
http://www.ams.org/mathscinet-getitem?mr=3100810
http://www.ams.org/mathscinet-getitem?mr=3161721
http://dx.doi.org/10.1214/14-AOAS752SUPP
mailto:yez@nus.edu.sg
mailto:ngh@mail.smu.edu

	Introduction
	Problem statement
	The stochastic expectation-maximization framework
	The SEM algorithm
	Implementation
	Conﬁdence intervals

	Some further considerations
	Simulation study
	Examples
	Installation failure data of a furnace
	Warranty data for an automobile component
	Field data for a telecommunications product

	Conclusions
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

