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SPATIAL ACCESSIBILITY OF PEDIATRIC PRIMARY
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Although improving financial access is in the spotlight of the current
U.S. health policy agenda, this alone does not address universal and compre-
hensive healthcare. Affordability is one barrier to healthcare, but others such
as availability and accessibility, together defined as spatial accessibility, are
equally important. In this paper, we develop a measurement and modeling
framework that can be used to infer the impact of policy changes on dispari-
ties in spatial accessibility within and across different population groups. The
underlying model for measuring spatial accessibility is optimization-based
and accounts for constraints in the healthcare delivery system. The measure-
ment method is complemented by statistical modeling and inference on the
impact of various potential contributing factors to disparities in spatial acces-
sibility. The emphasis of this study is on children’s accessibility to primary
care pediatricians, piloted for the state of Georgia. We focus on disparities in
accessibility between and within two populations: children insured by Med-
icaid and other children. We find that disparities in spatial accessibility to
pediatric primary care in Georgia are significant, and resistant to many pol-
icy interventions, suggesting the need for major changes to the structure of
Georgia’s pediatric healthcare provider network.

1. Introduction. Starting in 2014, U.S. health policy will undergo a signif-
icant, albeit strongly debated, transformation through the Affordable Care Act.
This bill, like many of the recent initiatives in health policy, focuses on improv-
ing financial access to health coverage for all Americans, including the 50 mil-
lion uninsured. While health services can indeed be prohibitively expensive, many
other factors can also limit patients’ ability to participate in the healthcare system.
In addition to affordability, there are at least four other barriers to healthcare ac-
cess: availability, accessibility, acceptability and accommodation [Penchansky and
Thomas (1981)]. For policy makers to design effective strategies for improving all
patients’ access to healthcare, it is important that they understand and consider
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each of these dimensions. Affordability or financial access alone does not guaran-
tee universal and comprehensive access to healthcare.

In this paper our emphasis is on two dimensions of access, availability, or the
number of local service sites from which a patient can choose, and accessibil-
ity, which considers the time and distance impediments between patient locations
and service sites. These two potential barriers to healthcare are driven by differ-
ences in geographic access and are referred to as spatial accessibility in the exist-
ing literature [Joseph and Phillips (1984); Guagliardo et al. (2004); McGrail and
Humphreys (2009)]. Specifically, we develop a measurement and modeling frame-
work that can be used to infer the impact of policy changes on the equity of spatial
accessibility across different population groups. Unlike existing approaches, our
methods are mathematically founded using rigorous optimization and statistical
methodology.

A measurement framework of spatial accessibility must evaluate the geographic
variability of healthcare resources between and within communities while account-
ing for constraints in the healthcare delivery system. Specifically, measures of spa-
tial accessibility need to consider the number of local physicians from which pa-
tients can choose, the congestion at service sites due to the level and nature of
need of those seeking care, the distance or time impediments to these services, and
the ability of patients to overcome these barriers given their mobility and socio-
economic position [McGrail and Humphreys (2009); Odoki, Kerali and Santorini
(2001)].

The three approaches that have dominated measures of spatial accessibility are
as follows: distance/time to nearest service, population-to-provider ratios and grav-
ity models [McGrail and Humphreys (2009)]. Simple measures such as distance
to nearest service site or population-to-provider ratios are limited in their ability
to capture realistic accessibility patterns because they do not take into account the
trade-off between demand and supply, or patients’ decreased willingness to travel
to the further sites [Khan (1992)]. To address this, researchers have attempted to
refine the gravity model, which was inspired by objects’ interactions in Newto-
nian physics and has become widely used in econometric measurement studies to
model spatial interaction [Talen and Anselin (1998)]. Recent gravity-based models
account both for individuals’ decreasing willingness to travel as distances increase
and for the interaction between distance traveled and number of people (conges-
tion) at a facility.

All of these measures, including gravity-based models, suffer from one or more
drawbacks. They impose artificial boundaries on individuals’ willingness to travel
within catchment service areas, which can lead to over or underestimates of access
depending on the distribution of the population and regional boundaries. These
measures also generally double-count people and thus overestimate demand in
densely populated areas, or double-count facilities and have the potential to over-
estimate supply in areas with a dense network of facilities. Furthermore, none of
these existing methods are capable of measuring access separately for different
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populations while still accounting for the fact that all groups jointly contribute to
congestion. Most importantly, these measures are not well equipped to account
for important aspatial barriers to healthcare, including patients’ time constraints,
mobility and ability to pay for services.

Mathematically more advanced methods, such as optimization models, are
needed to address these shortcomings and assess the healthcare system’s sensi-
tivity to constraints. By using an optimization model to simulate the process of
patients selecting a physician, we can make assignments separately for various
groups of patients and use constraints to account for aspatial barriers to healthcare.
From the model’s output, we can construct multiple measures to describe various
facets of accessibility, including coverage, travel cost and congestion. Using the
proposed measurement model, we can also evaluate the implications of changes in
the system, like increased physician participation in Medicaid.

These novel aspects in measuring spatial accessibility are essential for policy
evaluation, the ultimate goal of studies of healthcare access. To further facili-
tate policy evaluation, we complement the measurement framework with statis-
tical modeling and inference. First, we estimate simultaneous confidence bands
[Krivobokova, Kneib and Claeskens (2010)] to test for statistical significance of
the difference in accessibility for population groups identified by nongeographic
factors, like insurance status. We then use space-varying coefficient regression
models to estimate the association of various potential explanatory factors to ac-
cessibility [Assuncao (2003); Gelfand et al. (2003); Waller et al. (2007)]. Finally,
we assess whether these associations are space varying and statistically significant
with simultaneous confidence bands [Serban (2011)].

When estimating a space-varying coefficient model to make inferences on spa-
tial accessibility, one challenge is that there are many spatially varying factors that
could potentially be associated with accessibility and we must consider their ef-
fects jointly. Furthermore, these socioeconomic factors are likely highly collinear.
Due to these difficulties, standard space-varying regression models are instable and
computationally expensive and, therefore, we need to employ advanced computa-
tional methods such as backfitting [Buja, Hastie and Tibshirani (1989)].

Our measurement and modeling framework is applicable to different types of
healthcare specialties and patient populations, and is scalable to different network
densities and varying geographic domains (e.g., state vs. national). To illustrate the
process of implementing this general framework to study a specific problem, in this
paper we focus on children’s accessibility to primary care pediatricians. Primary
care has been acknowledged as the most important form of healthcare for main-
taining population health because it is “relatively inexpensive, can be more easily
delivered than specialty and inpatient care, and if properly distributed is most ef-
fective in preventing disease progression on a broad scale” [Guagliardo (2004);
Luo and Qi (2009)]. Pediatric primary care offers health policy makers even more
opportunities, as “investments during the early years of life have the greatest po-
tential to reduce health disparities within a generation” [Marmot et al. (2008)].
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Because childhood poverty is associated with many health, economic and social
problems later in life, we study the disparities in accessibility between children in-
sured by Medicaid and other children [Drake and Rank (2009)]. We also intend to
understand associations between accessibility and other factors, including income
level, education, unemployment, race, segregation and healthcare infrastructure.
The end goal is to design and evaluate interventions for increasing spatial accessi-
bility in pediatric healthcare.

The remainder of the paper is organized as follows. We present the optimization
model for measuring accessibility along with its application to policy interventions
in Section 2. In Section 3 the measurement methodology is complemented with the
analysis of potential contributing factors to disparities in accessibility using spatial
modeling. The proposed framework for measurement of and inference on accessi-
bility is investigated in detail for the state of Georgia in Section 4. We summarize
our findings and conclusions of this study in Section 5. Some technical details and
additional simulation studies are deferred to the supplementary material.

2. Modeling framework for measuring accessibility. Given the geographic
nature of accessibility and availability, any study of these two dimensions of ac-
cess requires characterizing the patient populations and the provider network at
the community level. We represent communities through census tracts, which are
designed to identify homogeneous groups of 2000–8000 people, although some
may vary more widely in population size, particularly in urban areas. The location
of each census tract i = 1, . . . , S is taken to be the latitude and longitude point of
its center of population, which we denote si . We use the Environmental Systems
Research Institute’s (Esri) ArcGIS software to measure the distance dij along ma-
jor roads between each census tract i = 1, . . . , S and each physician j = 1, . . . , T .
The additional characteristics of communities and healthcare providers needed to
study patients’ accessibility will depend on the aspatial barriers to healthcare of
the patient groups under consideration.

We begin our study of accessibility by using a linear optimization model to de-
scribe patients’ interactions with the healthcare system. This model assumes a cen-
tralized planner’s perspective and assigns patients to physicians in a manner which
maximizes an overall measure of welfare. While centralized models often fail to
account for important aspects of individuals’ behavior, we address this shortcom-
ing by using constraints to ensure that assignments mimic families’ likely choices
given their barriers to healthcare. Because each group of patients must overcome a
unique set of obstacles to obtain healthcare, different groups are unlikely to make
the same decisions about physicians. To account for these differences and consider
their impact on accessibility, the proposed optimization model makes assignments
separately for each patient group under consideration.

2.1. Mathematical modeling of patient behavior. When considering pediatric
healthcare accessibility, the decision variables are nij , or the number of children
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from census tract i to assign to physician j . In this study, we make assignments
separately for children on Medicaid and for children with other types of insurance
and denote these as nM

ij and nO
ij , respectively. All assignments are nonnegative and

limited by each group’s population.
When making these assignments, we assume that families and policy makers

strongly value children having a primary care provider and that, all else equal, fam-
ilies prefer to visit nearby physicians. We therefore require that a given percentage
of all children are matched to a provider, and our model’s objective function mini-
mizes the total distance patients travel to reach their pediatrician. Specifically, we
make assignments that

min
S∑

i=1

T∑

j=1

dij

(
nM

ij + nO
ij

)
.

We use constraints to ensure that the model’s assignments allocate patients
among physicians in a realistic manner. For a physician to remain in practice, he or
she must maintain a sufficiently large number of patients. At the same time, physi-
cians have a maximum patient capacity (PC) based on the time they must spend
with patients to provide quality care. Assignments must thus satisfy

PC × LC ≤
S∑

i=1

(
nM

ij + nO
ij

) ≤ PC for any j = 1, . . . , T ,

where LC represents the lowest level of congestion a physician can experience
and remain in practice. Here, congestion refers to the ratio number of patients

PC . When
physicians have higher congestion, patients have more difficulty scheduling ap-
pointments, spend more time in the physician’s waiting room, and experience
shorter or rushed visits. Therefore, patients will likely distribute themselves evenly
among their local physicians to avoid high congestion. Some families will even
prefer to drive further away to experience lower congestion. To capture this behav-
ior, we require that

∑

j∈ci

S∑

i=1

(
nM

ij + nO
ij

) ≤ PC × CC × mdi for any census tract ci with mdi ≥ 2.

Here mdi is the number of physicians in census track i and CC represents the
maximum congestion likely to occur at the census tract level in areas with multiple
physicians.

We also use constraints to consider barriers to healthcare. Here, we focus on
two obstacles especially likely to affect children on Medicaid: patients’ mobility
and physicians’ willingness to accept new patients. We assume that there is a max-
imum distance, mimax, that any family is willing or able to travel to reach their
primary care physician. Because families without access to a vehicle either must
walk, use public transportation or rely on others to reach a physician, they are
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unlikely to be able to travel as far as other patients. We therefore enforce the fol-
lowing constraint, which limits families without cars to physicians within a given
small number (milimited

max ) of miles but allow other families to travel to any physician
within mimax:

T∑

j=1

nM
ij I

(
dij ≥ milimited

max
) ≤ mobM

i ∗ pM
i ,

T∑

j=1

nO
ij I

(
dij ≥ milimited

max
) ≤ mobO

i ∗ pO
i for any i = 1, . . . , S.

Here, pM
i and pO

i are the population of children in census tract i on Medicaid and
on other types of insurance, respectively. mobM

i and mobO
i denote the percentage

of Medicaid and other families in census tract i who own at least one vehicle.
We consider Medicaid and other patients’ mobility separately to account for the
correlation between income, qualification for Medicaid and car ownership.

Many physicians limit their participation in Medicaid programs due to the ex-
cessive paperwork demands or relatively low reimbursement rates [Berman et al.
(2002)]. While all patients must consider the availability of physicians, Medicaid
patients therefore must choose from a smaller pool of physicians. In particular, the
model requires that for each physician,

S∑

i=1

nM
ij ≤ PC × MCj × pamj for any j = 1, . . . , T .

Here, pamj is the probability that physician j accepts any Medicaid patients, and
MCj is the maximum percentage of physician j ’s caseload that he or she is willing
to devote to Medicaid patients.

2.2. Evaluating policy change. While there are many policies that could con-
ceivably improve accessibility, in this paper we consider the effect of interventions
that eliminate or reduce the unique obstacles to healthcare experienced by Medi-
caid patients. For example, Medicaid patients’ mobility almost always improves as
their rate of car ownership approaches that of other patients. To consider the effect
of policies that improve Medicaid patients’ mobility through public transportation,
dial a ride programs or other means, we evaluate accessibility when

mobM′
i = mobM

i + λ × (
mobO

i − mobM
i

)
for each λ = 0,0.05,0.1, . . . ,1.

Here, mobM′
i represents Medicaid patients’ mobility in census tract i’s after a sim-

ulated policy change.
To evaluate the impact of increasing physician participation in Medicaid pro-

grams, we consider two types of policies that we dub as follows: thresholding and
scaling. Thresholding and scaling policies can affect values of pam or values of
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MC. Both types of policies modify the extent of physician participation in Medi-
caid programs, but thresholding policies target areas where Medicaid patients are
unserved while scaling policies affect regions where Medicaid patients are un-
derserved. While it is difficult to design a policy that would exclusively have a
thresholding or scaling effect, considering the types of changes separately is use-
ful for analyzing the sources of limited accessibility for Medicaid populations, and
for evaluating the likely success of interventions. These types of structural changes
may be achieved through policies that increase Medicaid payment levels or pro-
mote Medicaid managed care contracts that allow physicians greater flexibility
[Perloff, Kletke and Fossett (1995)].

We simulate these policies with our optimization model by changing the values
of pamj and MC as follows:

Thresholding:

pam′
j = min{λ,pamj } for any λ = 0,0.05,0.1, . . . ,1,

MC′
j = min{λ,MCj } for any λ = 0,0.05,0.1, . . . ,1.

Scaling:

pam′
j = min{λ × pamj ,1} for any λ = 0.5,0.55,0.6, . . . ,1, . . . ,2,

MC′
j = min{λ × MCj ,1} for any λ = 0.5,0.55,0.6, . . . ,1, . . . ,2.

Here, pam′
j and MC′

j represent the values of pamj and MCj after the simulated
policy changes.

2.3. Measuring accessibility. After simulating patient behavior under current
and policy-effected conditions, we use our models’ results to construct three mea-
sures that describe important dimensions of children’s accessibility. Under each
set of conditions and for each census tract, we evaluate the following:

Coverage describing children’s ability to find physicians who will serve them
and derived as follows, Ci = 1

pi

∑T
j=1(n

M
ij + nO

ij );
Travel Cost defining the average distance children must travel to reach their

physician and derived as follows, TCi = 1
pi

∑T
j=1 dij (n

M
ij +nO

ij )+mimax ∗(1−Ci);
Congestion measuring the average congestion that patients experience for their

physician and derived as follows, CGi = 1
pi

[∑T
j=1(n

M
ij +nO

ij )

∑S
i=1(n

M
ij +nO

ij )

PC ]+ (1−
Ci).

Here pi is the total child population in census tract i, so pi = pO
i + pM

i . Note
that because children who are not served by a pediatrician have the worst possi-
ble accessibility, regions where Ci = 0 are assumed to experience a travel cost of
mimax miles and 100% congestion. We adjust these formulas to separately evaluate
Medicaid and non-Medicaid patient’s accessibility.
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Evaluating these various dimensions can help policy makers determine a strat-
egy that best suits their objectives. To estimate a policy’s impact, we consider
how each group’s population-based accessibility changes as the policy is grad-
ually implemented. The changes are evaluated for each of the three dimensions
(coverage, travel cost and congestion) and at different aggregation levels (census
tract variations vs. state wide). A given policy can improve accessibility for the
overall population or it can improve accessibility for one group at the expense of
another. Policies may reduce congestion and increase travel times or vice versa.
Some policies will have a small impact in many areas, while others will have a
more substantial effect on a smaller number of regions. In this research, we tar-
get policies that are (approximately) Pareto optimal in the sense that they improve
some dimensions of accessibility for some groups without significantly reducing
the accessibility of other populations [Marsh and Schilling (1994)].

3. The equity of healthcare accessibility. Our second primary research focus
is developing a framework for understanding the equity of healthcare accessibil-
ity as it relates to geographic, demographic, socioeconomic and healthcare infras-
tructure variables. Following Braveman and Gruskin (2003), we define equity as
the absence of systematic disparities in accessibility between different groups of
people, distinguished by different levels of social advantage/disadvantage. More
specifically, equity is achieved when the expectation of accessibility given poten-
tial contributing factors to inequities is (approximately) equal to the expected ac-
cessibility in the population unconditional of any contributing factor [Fleurbaey
and Schokkaert (2009)]. Mathematically speaking, if Y is the spatial accessibil-
ity and X is the set of observed contributing factors, equity is achieved when the
expectation of the conditional distribution Y |X is equal to the expectation of the
marginal distribution of Y . Practically speaking, in an equitable system, no sys-
tematic association will be found between spatial accessibility and the independent
factors. We use statistical models to estimate the associative relationships between
the dependent variable, accessibility and the potential contributing factors, and to
test if these associations are statistically significant. Importantly, statistically sig-
nificant and spatially nonrandom association patterns between a particular factor
and the accessibility metric indicate potential inequities with respect to that vari-
able.

3.1. Determining the effect of participation in Medicaid. We begin our study
of inequities in accessibility by using statistical hypothesis testing to consider the
association between spatial accessibility and participation in Medicaid programs.
Here, we denote the ith census tract’s accessibility measures for the Medicaid and
other population as M(si) and O(si), respectively. Because M(·) and O(·) are
spatial processes that are measured for the same set of units, we can take their
difference Z(si) = M(si) − O(si) for i = 1, . . . , S. If there is not a significant
difference between these populations’ accessibilities, Z(s) is approximately zero
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regardless of the spatial location. We translate this as a hypothesis testing problem
where the null hypothesis is H0 :Z = 0 across the geographic domain and the al-
ternative hypothesis is H1 :Z(s) �= 0 for some areas within the geographic domain.
We use nonparametric methods to derive our decision rule for this test. If we re-
ject the null hypothesis, we conclude that there are regions where accessibility for
Medicaid patients differs from that of other patients. Based on this procedure, we
can also create a significance map that identifies specific locations where the dif-
ference in the two populations’ accessibility is statistically different from zero. We
provide details on how to proceed with this inference method in Supplementary
Material A.

3.2. Determining the effect of geographic location. This type of statistical hy-
pothesis testing can also be used to consider the association between patients’
accessibility and the location of their homes. To identify locations where accessi-
bility is statistically significantly different than that of the overall region, we test
the null hypothesis that H0 :Y = μ0Y across the geographic domain vs. the alterna-
tive hypothesis that H1 :Y(s) �= μ0Y for some areas within the geographic domain.
Here, Y(si) is a measure of spatial accessibility for census tract i, and μ0Y is some
equity threshold. For example, in this paper μ0Y is the population-weighted aver-
age of Y(si) across locations i = 1, . . . , S. While the resulting significance map
identifies the most underserved locations, further interpretation of these results is
challenging because setting μ0Y is quite subjective. We therefore turn our focus to
statistical methods that can more precisely characterize the association between a
wide set of geographic and socio-economic factors and spatial accessibility.

3.3. Contributing potential factors to spatial accessibility. While there are an
unlimited number of factors that could potentially affect accessibility, we focus
on factors that have been previously linked to limited accessibility, especially for
vulnerable populations, like Medicaid patients.

Economic and racial factors are commonly cited in the literature as predicting
physician participation in Medicaid, which impacts all groups’ accessibility [Ham-
bidge et al. (2007); Wang and Luo (2005)]. We use three factors to consider the
economic climate of the census tract: the median household income, the unem-
ployment rate and the percentage of adults who have an associate, bachelor or
graduate degree. We use the percent of the population that is nonwhite to evaluate
the racial composition of the tract. Some papers argue that the amount of segre-
gation in a community has more impact on physician participation in Medicaid
than race [Fiscella and Williams (2004); Williams and Mohammed (2009)]. We
therefore also consider a segregation measure that compares the diversity in local
neighborhoods to diversity in broader communities as suggested by Reardon et al.
(2008). Further details on this segregation measure are given in Supplementary
Material A.
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The structure of the provider network may also affect patients’ accessibility.
Because an area’s distance to hospitals and its population density affect its market
size, these factors may influence where physicians choose to practice. To measure
census tract i’s distance to hospitals, we take the average distance from si to all
hospitals within 25 miles, weighted by the size of the hospital as measured by its
number of beds. Traditional measures of population density are estimated by divid-
ing the population of a census tract by its land area. This type of density measure
does not account for the irregular shapes and sizes of census tracts, and ignores the
spatial dispersion of the population from a census tract to its neighbors. A more
appropriate method is to assume that the population forms a point process with
a spatially varying rate and estimate its density using nonparametric density esti-
mation. As we describe in Supplementary Material A [Nobles, Serban and Swann
(2014)], we use the classical Kernel Density Estimation (KDE) method, which
is one of the most widely used methods for this purpose [Diggle (1985)] and is
known to be a consistent estimator [Parzen (1962)].

In our subsequent statistical models, the independent variables will be chosen
from the seven factors described in this section.

3.4. The space-varying coefficient model. One difficulty in estimating the as-
sociation between accessibility and the potential explanatory factors is that these
factors may vary over the geographic space systematically, that is, they may dis-
play nonrandom geographic patterns. Furthermore, the unknown relationship be-
tween accessibility and the explanatory factors may also vary with the geographic
space in a nonrandom fashion. This suggests spatially varying coefficients in a
regression setting. Varying coefficient regression models have been applied to lon-
gitudinal data to estimate time-dependent effects of a response variable [Fan and
Zhang (2000); Hastie and Tibshirani (1993); Hoover et al. (1998); Wu and Liang
(2004)] and to spatial data [Assuncao (2003); Gelfand et al. (2003); Waller et al.
(2007)]. Because our spatial domain is densely sampled, we can apply this model
to estimate spatial association maps between accessibility and the explanatory vari-
ables.

A second difficulty, as highlighted in the previous section, is that models which
evaluate sources of inequities will include a large number of explanatory variables.
To address this challenge, we employ an estimation algorithm that uses partial
residual fitting or backfitting [Buja, Hastie and Tibshirani (1989)]. Furthermore,
spatial collinearity among the explanatory variables leads us to view each model
as an approximation to an unknown, true model and to conjecture that multiple
models can capture the associative relationships to the accessibility measure. We
therefore do not focus on selecting a single, best model, and instead develop a pro-
cedure for systematically evaluating multiple models, where each model includes
a different set of factors that can each take a constant or nonconstant shape. We
seek consistency in the statistical significance and the shape of the regression co-
efficients across these models to capture the essential relationships between the
factors and accessibility.
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3.5. Estimation. Space-varying coefficient models assume that the response
variable Yi = Y(si), i = 1, . . . , S observed at location si is explained by a set of
covariates (Xr,i = Xr(si); r = 1, . . . ,R) such that

E[Yi |X] = β1(si)X1,i + · · · + βR(si)XR,i,

where βr(s) for r = 1, . . . ,R are smooth coefficient functions over a geographic
space s ∈ S . For example, in our studies, the locations {si} correspond to the pop-
ulation centers of the 1618 census tracts in Georgia and {Xr,i; r = 1, . . . ,7} is the
set of geographic and socioeconomic factors described in Section 3.3.

Since the regression coefficients βr(s) for r = 1, . . . ,R are unknown functions,
we use nonparametric methods to estimate them. Specifically, we decompose

βr(s) =
Kr∑

k=1

θrkφk(s),(1)

where {φ1(s), φ2(s), . . .} is an orthogonal basis of functions in L2(S) and θrk, k =
1, . . . ,Kr are unknown parameters. The number of basis functions used in the de-
composition, Kr , controls the smoothness of the function βr(s). If Kr is small, the
estimated function is very smooth, resulting in a larger estimation bias, whereas if
it is large, the estimated function is highly variable, resulting in overfitting. There-
fore, the selection of Kr is important; if we do not use an optimal value, the esti-
mated association patterns may reveal spurious associations.

To address the challenge of selecting the Kr ’s without increasing the compu-
tational effort, we estimate the space-varying coefficients using penalized splines
[Ruppert, Wand and Carroll (2003)]. In penalized spline regression, Kr is chosen
to be sufficiently large to ensure a small modeling bias [Li and Ruppert (2008)],
but constraints are imposed on the coefficients θrk, k = 1, . . . ,Kr through a penalty
function J (βr(s)) = J ({θrk}k=1,...,Kr ) to limit the influence of θrk, k = 1, . . . ,Kr

and control the smoothness of the regression coefficients. As further described in
Supplementary Material B, this is equivalent to estimating the coefficients using
penalized regression [Nobles, Serban and Swann (2014)].

Because of difficulties in evaluating space-varying coefficient models with
many predictors, we also borrow an estimation idea that has been previously used
in the generalized additive model and other fitting algorithms [Buja, Hastie and
Tibshirani (1989); Hastie and Tibshirani (1990)]. These algorithms rely on partial
residual fitting and are conceptually similar to the Newton Raphson algorithm that
successfully fits a large number of nonlinear equations by iteratively solving one
equation or parameter at a time until the solution converges. We mimic this pro-
cedure and estimate the association coefficients using the Backfitting algorithm
described in Supplementary Material B [Nobles, Serban and Swann (2014)].
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3.6. Inference and policy implications. To interpret our results, we first assess
the significance and shape of the estimated association coefficients. Coefficients
have two possible shapes: constant and nonconstant. Factors with constant shaped
coefficients influence accessibility in the same manner in all locations, while fac-
tors with nonconstant shaped coefficients have an association with accessibility
that varies across regions.

In regression models, hypothesis testing is the common procedure for assessing
the significance and shape of the coefficients. Specifically, we are interested in the
results of the following hypothesis test for each of the r coefficients:

Hr0 :βr(s) = c vs. Hr1 :βr(s) nonconstant,

where c is a constant value. If the null hypothesis is not rejected, it is plausible that
the corresponding coefficient is constant and further tests should be conducted to
determine if this coefficient is statistically significant, that is, c �= 0.

Inspired by Serban (2011), we propose identifying the shape of the coefficients
using confidence bands rather than hypothesis testing. Specifically, if CBα is a 1 −
α simultaneous confidence band for the coefficient βr(s), then P(βr(s) ∈ CBα, s ∈
S) ≥ 1 − α where S is the space domain. We decide that the coefficient is not
constant if there does not exist a constant plane p(s) = c, ∀s such that p(s) ∈ CBα .

Based on the confidence bands, we also examine the statistical significance of
the coefficients and construct positive and negative significance maps. A positive
(negative) significance map consists of spatial regions that have a statistically sig-
nificant positive (negative) association between access and the corresponding ex-
planatory variable. The presence of broad regions of positive or negative signifi-
cance in such a map is an indication of potential inequities for the corresponding
explanatory variable.

The shape and significance of socioeconomic or geographic factors’ associa-
tion coefficients should be considered when policy makers design interventions to
combat inequities. If a factor has a nonconstant effect on accessibility, an interven-
tion that reduces accessibility in some areas may increase accessibility in others,
and so the instrument that policy makers use should vary across locations. Fur-
thermore, while all variables that have a nonconstant effect on accessibility have a
significant impact in at least one location, there are often many areas where there is
no significant relationship between the nonconstant factor and accessibility. While
devising policies around constant factors is simpler, this is also not without chal-
lenges. For example, these policies should not necessarily be applied uniformly
across the state because regions with large populations of the given demographic
may offer policy makers more “bang for their buck.”

3.7. Model evaluation. We evaluate the full model and a large number of re-
duced models, which each include four or more variables. Models that perform
well meet three criteria: (1) a small AIC value, (2) a small correlation between
residuals and the accessibility measure and (3) a small Moran I statistic value on
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model residuals. The second criterion is used as a measure of how well we explain
the accessibility measure with the explanatory factors included in the model. For
example, Tibshirani and Knight (1999) relate this measure to the coefficient of de-
termination. We estimate the spatial correlation between two processes similarly
to Jiang (2010). The third criterion is a measure of how much spatial dependence
is left in the residuals. From the large set of models considered, we selected only
those that simultaneously show an improvement over all three criteria.

As mentioned earlier, because our factors are spatially collinear, we do not at-
tempt to identify a single, best model, but instead analyze the consistency of many
models’ results. To describe the relationship of a specific predictor with the acces-
sibility measure, we focus on three characteristics of the corresponding association
coefficient: its shape, its significance and the range of its values. If these properties
are consistent across many models, we conclude that our models have captured the
underlying relationship between this factor and accessibility. Consistency across
models also suggests that the full set of factors collectively explains patterns of
accessibility. Conversely, wide variations across the models’ results may indicate
that there are important determinants of access that are not included in the model.

4. Pediatric accessibility in Georgia. We pilot the previous sections’
methodology on pediatric primary care for Georgia, one of the 10 worst states
for many measures of child health [Kids Count National Indicators (2010)]. To
implement our models, we need a broad and detailed set of data to describe the
characteristics of patients and physicians in Georgia. Demographic information
about Georgia’s population was acquired from many sources, including the Cen-
sus Bureau. The addresses of the primary care pediatricians located in Georgia
were acquired from the Centers of Medicare and Medicaid Services’ (CMS’) Na-
tional Provider Identifier (NPI) Registry.

We also use data to select appropriate values for the parameters in the acces-
sibility measurement model. Because we assume that all patients are entitled to
the same level of care, some of these parameters should be constant across all
patients or all physicians. For example, the U.S. Department of Health and Hu-
man Services defines Medically Underserved Areas (MUA) as regions with no
primary care providers within 25 miles. To follow these guidelines, we assume
that mimax, or the maximum distance any patient is willing to travel, is 25 miles.
While we believe that families living in rural areas may currently travel close to
this distance or even slightly further to reach a pediatrician, we do not consider
different maximum travel distances for various populations. Doing so would re-
sult in inequitable estimates and distort our conclusions. Similarly, we assume that
milimited

max , or the maximum distance patients without cars are willing to travel, is
the same for all populations. Other parameters that should remain constant are PC,
physicians’ maximum patient capacity, LC, the lowest level of congestion a physi-
cian can experience and remain in business, and CC, the maximum congestion
level likely to occur in census tracts with multiple physicians.
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TABLE 1
The variability, values and data sources for the seven parameters used in our model of accessibility

Parameter Variable Value(s) Data source

maxmi No 25 U.S. DHHS
maxlimited

mi No 10 –
PC No 2500 U.S. DHHS
LC No 0.25 –
CC No 0.70 –
pamj Yes, [0,1] Georgia Board

by county of Physicians
MC Yes, 0.74 if in public hospital American Academy

by practice setting 0.64 if in community health clinic of Pediatrics
0.32 in other setting

While these parameters reflect the ease and quality of patient’s access to care,
other parameters describe the more basic structure of the existing healthcare
provider network. Two such parameters are pamj and MCj . These parameters
describe the probability that physician j accepts any Medicaid patients and the
maximum percent of physician j ’s caseload that he or she is willing to devote
to Medicaid patients, respectively. These parameters will vary across physicians
and our model should reflect this in order to capture accurate information about
the medical services available to children enrolled in Medicaid programs. Table 1
gives further detail on the values of the parameters in our model, and a more in
depth description of our data sources is provided in Supplementary Material C
[Nobles, Serban and Swann (2014)].

4.1. Implementing the accessibility measurement model given limited data.
Table 1 highlights the fact that there are limited data available to describe many
aspects of our accessibility model. To compensate for these shortcomings, we per-
form sensitivity analysis to determine if the model’s results are heavily dependent
on the value of each parameter. Figures 2–5 in the supplementary material show
that the population-weighted average, state-wide accessibility, is not highly sen-
sitive to subtle changes in PC, LC, CC and milimited

max [Nobles, Serban and Swann
(2014)]. Furthermore, as these parameters vary across reasonable levels, Medicaid
and other patients’ accessibility change at similar rates. More details on these re-
sults are given in Supplementary Material D [Nobles, Serban and Swann (2014)].
Given these conclusions, we are comfortable proceeding with our assumed values
for these parameters.

A second tool for addressing data limitations is a simulation study. This is an
especially useful method when a parameter is expected to vary across populations
and only the parameter’s (estimated) distribution over the population is available.
In this case, we sample from the expected distribution to simulate the parameter
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value for each population or region. We then repeat this process multiple times and
consider the mean and variance of the resulting accessibility measures. In some
sense, this simulation algorithm uses the idea of Monte Carlo uncertainty analysis
in Bayesian estimation, where the estimated distribution plays the role of the prior
distribution entering in the accessibility measurement model.

An example of the application of the simulation idea is in the specification of
pamj parameter values. Realistically, this parameter will vary by physician and
only takes two possible values: one if the physician participates in Medicaid pro-
grams, and zero if he does not participate in Medicaid programs. This level of
detail is not present in publicly available data, which only specify the county-level
percentage of physicians accepting any Medicaid patients. We use these percent-
ages to specify the Bernoulli distribution from which we draw samples for pamj .
We repeat this process twenty times and find that the variability in the resulting
accessibility measures across trials is very small in most regions. This implies that
subtle changes in the network of physicians participating in Medicaid programs
will likely not have a significant impact on accessibility in most regions. Supple-
mentary Material D presents figures and further discussion of these results [Nobles,
Serban and Swann (2014)]. In our regression models, the dependent variables are
the means of these simulated measures of accessibility.

4.2. Evaluating the current state of accessibility. Figure 1 shows the current
state of accessibility for the overall population of children in Georgia. Coverage
is nearly 100% in broad regions surrounding the most populated cities and towns,
but is nearly 0% in many rural areas, especially in the southern portion of the state.
We find that travel cost tends to be very high in these regions where coverage is
low. On the other hand, in areas with high coverage, the distance families must
travel to reach their pediatrician is often below 5 miles and rarely above 15 miles.
Together, these observations suggest a dichotomy in these two dimensions of ac-
cessibility: either a family is served by a pediatrician located close to their home
or they struggle to find any pediatrician that meets the minimum standards for
accessibility.

With the exception of Atlanta, the state’s largest metro area, and Augusta, the
location of the state’s medical school, there are only a handful of regions in the
state with excellent accessibility across all three measures. Many of the rural and
suburban areas that benefit from high coverage and low travel distances encounter
high congestion, which highlights the importance of considering multiple dimen-
sions of accessibility. High congestion can occur in rural areas if the region has
a low supply of physicians relative to its population, or if the region is classified
as a medically underserved area (MUA) and assumed to have the worst possible
accessibility.

4.3. Evaluating policy interventions. Of the potential changes to the health-
care system that we consider, reductions in physicians’ participation in Medicaid
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(a) Coverage (b) Travel cost

(c) Congestion

FIG. 1. Estimated accessibility of children to primary care pediatricians, as measured by coverage
rates, travel costs and congestion. Each measure of accessibility is derived using the proposed op-
timization approach. The maps show estimated accessibility in 2010 in census tracts in the state of
Georgia.

programs have the most significant effect on patients’ accessibility. Table 2 and
Figure 2 show that policies that reduce the number of physicians accepting Medi-
caid patients and policies that limit pediatricians’ Medicaid caseloads have similar
impacts on Medicaid patients’ average accessibility. Both policies cause Medi-
caid patients’ average travel cost to increase by nearly 20%. Reducing pam has a
slightly positive effect on Medicaid patients’ congestion, and reducing MC has a
more substantial positive effect. One interpretation of these seemingly counterintu-
itive finding is that these policies reduce physicians’ total caseloads by restricting
Medicaid patients’ access. Indeed, Medicaid patients’ coverage rates decrease by
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TABLE 2
This table shows the estimated effect of policies that reduce physicians’ participation in Medicaid

programs. These polices and the interpretation of λ are described in more detail in Section 3.2. For
each policy, the first row shows the change in Georgia’s Medicaid patients’ state-wide,

population-weighted average coverage rate, travel cost and congestion as one moves from the status
quo to the maximum simulated reduction. The second row gives the percent change of these values

Coverage rate Travel cost Congestion
Policy λ of Medicaid patients of Medicaid patients of Medicaid patients

MC scaling 1 → 0.5 85.0% → 78.8% 7.5 → 8.8 66.9% → 64.7%
(−7.2%) (17.6%) (−3.2%)

pam scaling 1 → 0.5 85.3% → 79.6% 7.4 → 8.9 67.2% → 66.7%
(−6.7%) (19.2%) (−0.6%)

approximately 6 percentage points under these policies. This result also suggests
that the burden of these policies may be unequally distributed among Medicaid pa-
tients, with some Medicaid patients experiencing little change in their accessibility
and others finding that they now have no options for accessible medical care.

Table 1 and Figures 6–8 in Supplementary Material D show that none of the
initiatives designed to improve Medicaid patients’ accessibility deliver on their
promise [Nobles, Serban and Swann (2014)]. The inability of these policies to
create significant change in access to healthcare indicates that spatial accessibil-

(a) Effect of changing pam (b) Effect of changing MC

FIG. 2. The impact of scaling policies on children’s state-wide, population-weighted average dis-
tance traveled to reach primary care pediatricians in Georgia. (a) shows the effects of policies that
change the percentage of physicians accepting any Medicaid patients, while (b) shows the effects
of policies that change the proportion of physicians’ caseloads that they are willing to devote to
Medicaid patients.
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ity may be limited by the current distribution of pediatricians. Among the 159
counties in Georgia, approximately 1/3 have no pediatrician. Given this network
of pediatricians, unless policies succeed in sending medical professionals to un-
derserved areas, they are unlikely to accomplish substantial change. Examples of
such policies include programs which forgive physicians’ graduate medical edu-
cation loans in exchange for their practice in rural areas for a given period of time
(http://gbpw.georgia.gov/loan-repayment-programs). Physicians may also be able
to serve patients with limited accessibility through telemedicine initiatives [Marcin
et al. (2004)]. Measuring the effects of these types of policies on accessibility is an
interesting direction for future research.

4.4. Determining the effect of Medicaid participation on accessibility in Geor-
gia. Figure 3 shows locations where one population has statistically significantly
better accessibility than the other. As we would expect a priori, in many rural cen-
sus tracts, other patients have significantly higher coverage and lower travel costs
than Medicaid patients. Furthermore, there are no areas where Medicaid patients
experience these advantages. We find that the direction of advantage is reversed for
congestion, and there are many urban census tracts where Medicaid patients expe-
rience significantly lower congestion than other patients. Many physicians prefer
privately insured patients to Medicaid patients and may be less likely to accept
Medicaid patients if they can afford to only serve patients with private insurance.
In regions where there is a high supply of physicians relative to the population,
congestion is likely to be low and physicians may have greater incentive to accept
all types of patients [Perloff, Kletke and Fossett (1995)]. Therefore, if Medicaid
patients are able to be served by a physician, they may be more likely to experi-
ence lower congestion. Our results suggest that this theory holds true in Georgia.

Figure 9 in Supplementary Material D shows how these maps would change if
physicians were to reduce their Medicaid caseload (MC) by fifty percent [Nobles,
Serban and Swann (2014)]. Under current conditions, there are 263 census tracts
in Georgia where Medicaid patients experience statistically significantly higher
travel costs than other patients. If policy changes prompt physicians to make these
reductions in their Medicaid caseloads, this number would increase to 360. While
this increase is considerable, there are also many communities whose access is
unaffected by this shift in physicians’ attitudes. These findings further support our
analysis in Section 4.3.

4.5. Factors associated with spatial accessibility in Georgia. Figure 10 in
Supplementary Material D shows that accessibility is likely to be significantly
higher than the population-weighted state-wide average in urban areas of Georgia,
and significantly lower in rural regions of Georgia [Nobles, Serban and Swann
(2014)]. This is especially true for coverage and travel cost. To determine if there
are factors associated with these geographical disparities in accessibility, we apply
the regression approach described in Section 3. Here, we run two sets of models:

http://gbpw.georgia.gov/loan-repayment-programs
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(a) Locations where other population (b) Locations where Medicaid population
has significantly higher coverage has significantly higher coverage

(c) Locations where other population (d) Locations where Medicaid population
has significantly lower travel cost has significantly lower travel cost

(e) Locations where other population (f) Locations where Medicaid population
has significantly lower congestion has significantly lower congestion

FIG. 3. The points on these maps are the centroids of census tracts where there is a statistically
significant difference in the accessibility of Medicaid patients and other patients.
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TABLE 3
The consistency, shape (constant vs. nonconstant), statistical significance and coefficient values

observed across multiple models of the overall population’s travel cost in Georgia. These models
each contain different combinations of the seven explanatory factors considered in the association

analysis

Factor Consistent Significant Shape Range

Median household Yes Yes Constant [0.09, 0.37]
Income
Percent with higher education No Yes Constant & [−0.29,−0.26]

nonconstant N/A
Unemployment rate Yes No Constant [0.026, 0.21]
Percent of nonwhite population Yes No Constant [−0.18,0.63]
Population density Yes Yes Nonconstant N/A
Distance to hospitals No Yes Constant & [0.14, 0.16]

nonconstant N/A
Diversity ratio Yes Yes Constant & [−0.23,−0.19]

nonconstant N/A

one where the dependent variable is the travel cost of the overall population and
one where the dependent variable is the travel cost of the Medicaid population.
The independent variables are chosen from the set of seven factors described in
Section 3.3. Table 3 summarizes the results for the overall population based on the
estimation of multiple models, each with four or more independent variables.

While the results in Table 3 confirm that most factors commonly cited in the
literature do indeed have a significant relationship with both populations’ spatial
accessibility, there are two noteworthy exceptions: unemployment and race. We
find more support for the emerging line of research which argues that the amount
of racial diversity in a community is likely to be more strongly correlated with
accessibility than race itself. Our diversity ratio measure is large when the amount
of segregation in the immediate area is smaller than the amount of segregation
in the greater surrounding region. In Georgia, this measure tends to be largest in
small towns. When this measure has a constant effect on the overall population’s
accessibility, the coefficient takes on a negative value, which implies that relatively
diverse locations experience smaller travel costs.

Several variables have nonconstant effects on the overall population’s accessi-
bility in some of the estimated models. Population density has a consistent non-
constant effect, while our measures of the education level, distance to hospitals
and diversity ratio have constant effects in some models and nonconstant effects in
others. Figure 4 shows a sample of these variables’ nonconstant association maps.

While the inconsistency of these variables’ coefficients make interpretation
more difficult, when these variables have a constant effect on travel cost, the direc-
tion of association is as expected: regions in Georgia with higher education levels,
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(a) Percent of population with higher education (b) Population density measurement

(c) Distance to hospitals measurement (d) Diversity ratio measurement

FIG. 4. Association map between the listed explanatory factor and the overall population’s travel
cost to primary care pediatricians in Georgia.

higher population density and smaller distances to hospitals travel shorter distances
to primary care pediatricians. The median household income has a significant and
positive constant association with accessibility, but our selection criteria are often
superior in models where income is not included.

The consistency, significance and shape of the coefficients are identical in mod-
els of the overall population’s travel cost and in models of Medicaid patients’ travel
cost. The range of the constant coefficients’ values are also very similar in the two
sets of models. More detailed results are provided in Supplementary Material D
[Nobles, Serban and Swann (2014)]. The consistency of these results is striking,
and implies that the characteristics of vulnerable populations may not vary with
insurance status.

In all of our models there is some variation in accessibility that remains un-
explained. For the overall and Medicaid populations, the amount of spatial cor-
relation in the models’ residuals ranges from 16.2% to 42.7%, and from 34.3%
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to 43.7%, respectively. There are several plausible explanations. First, researchers
may have overlooked other factors that are the true drivers of accessibility. Alter-
natively, these factors may not identify locations where accessibility is superior to
that of other regions with similar demographics, risk factors and resources. These
anomalies are often the result of local community interventions. The fact that there
is more unexplained variation in models of the Medicaid population’s accessibility
suggests that local interventions which focus on improving Medicaid patients’ ac-
cessibility may be effective in changing the odds for these patients. While the con-
cept of “positive deviance” has been explored in health outcomes [Pearce (2002);
Walker et al. (2007)], there is little work on this with respect to accessibility and
exploring this hypothesis would be an interesting direction for future research.

5. Conclusions. This paper introduces a comprehensive approach for mak-
ing inferences about disparities in spatial accessibility. We develop and implement
methodology for modeling accessibility that accounts for various constraints in
the delivery system, including physicians’ characteristics and capacity. We simul-
taneously estimate multiple measures of accessibility including congestion, travel
distance and coverage. By using an optimization-based approach, we can evaluate
the implications of changes in the system, like those caused by policies which af-
fect physician participation in Medicaid. Our measurement procedure is general,
applicable to different types of care and scalable to varying geographic domains
(e.g., state vs. national) and different network densities.

Our focus is on pediatric primary care accessibility. Using the models intro-
duced in this paper, we find that there is a strong association between a commu-
nity’s coverage rate and travel cost, but that there is more variability in congestion.
The healthcare system is sensitive to reductions in physicians’ Medicaid caseload
capacity, but resistant to many policies designed to improve accessibility. Popula-
tion density, distance to hospitals, education and segregation levels are the factors
most strongly associated with patients’ travel costs in Georgia.

One limitation of our optimization models is that the assignment solution is not
unique. For example, we found five different ways to assign children to pediatri-
cians in Georgia and satisfy our models’ constraints. Furthermore, our search was
not exhaustive and there may be many more solutions. However, if two alterna-
tive solutions make small adjustments or trade-offs between immediate neighbors,
the average accessibility in the community will not depend on the particular so-
lution which is used. Indeed, we compared different solutions derived from our
optimization model using statistical hypothesis testing, and we found that the dif-
ference between solutions is not statistically significant. We therefore conclude
that our results will not be affected by the solution that we choose.

The precision of our results is also limited by the available data. Ideally, when
implementing our models we would have data on each physician’s caseload and
the extent of his or her participation in Medicaid programs. However, due to the
sensitive nature of medical records and data, we only have aggregate estimates of
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this information. More detailed data on patient behavior, including their tolerance
for congestion and the mobility of patients without access to cars, would also elim-
inate the need for several additional assumptions in our model. Finally, because we
do not consider physicians located in neighboring states near the Georgia border,
our results may suffer from edge effects. Therefore, our estimates of accessibility
may be too low in census tracts close to the state line.

As mentioned throughout the paper, there are many avenues for future research
related to accessibility measurement and inference. Interesting work could be done
to model the effects of public transportation on patients’ accessibility, especially
in urban areas. It is also important to consider the impact on accessibility of poli-
cies that would change the structure of the provider network. Furthermore, in this
paper, we do not explore policies’ impact on health outcomes, like the number
of emergency department visits. Addressing this question and further determin-
ing the relationship between accessibility to healthcare and health outcomes is an
important extension of this work. Methods capable of evaluating the association
between accessibility and a very large number of factors, including those not al-
ready highlighted by the literature, may also improve upon our regression models.
Finally, studies should be done to consider accessibility in different states, for dif-
ferent types of healthcare and for many additional population groups. While this
paper provides a basis for analyzing patients’ accessibility to healthcare, there is
still much work to be done.

SUPPLEMENTARY MATERIAL

Supplement to “Spatial accessibility of pediatric primary healthcare: Mea-
surement and inference” (DOI: 10.1214/14-AOAS728SUPP; .pdf). Supplemen-
tary Materials A, B, C and D contain four sections [Nobles, Serban and Swann
(2014)]. In Supplementary Material A we describe methods that we utilized in our
study but which are not essential components of our measurement and inference
approach. In Supplementary Material B we give further details about the estima-
tion of our space-varying coefficient model. In Supplementary Material C we pro-
vide additional details on the data sources we used to implement our models. In
Supplementary Material D we present further results on children’s accessibility to
primary care pediatricians in Georgia.
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