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Motivated by a practical need for the comparison of hemolysis curves at
various treatment levels, we propose a novel method for pairwise comparison
of mean functional responses. The hemolysis curves—the percent hemolysis
as a function of time—of mice erythrocytes (red blood cells) by hydrochloric
acid have been measured among different treatment levels. This data set fits
well within the functional data analysis paradigm, in which a time series is
considered as a realization of the underlying stochastic process or a smooth
curve. Previous research has only provided methods for identifying some dif-
ferences in mean curves at different times. We propose a two-level follow-up
testing framework to allow comparisons of pairs of treatments within regions
of time where some difference among curves is identified. The closure multi-
plicity adjustment method is used to control the family-wise error rate of the
proposed procedure.

1. Introduction. The use of nonsteroidal anti-inflammatory drugs (NSAIDs)
is widespread in the treatment of various rheumatic conditions [Nasonov and Kara-
teev (2006)]. Gastrointestinal symptoms are the most common adverse events
associated with the NSAID therapy [García Rodríguez, Hernández-Díaz and
de Abajo (2001)]. Holodov and Nikolaevski (2012) suggested oral administration
of a procaine (novocaine) solution in low concentration (0.25 to 1%) to reduce
the risk of upper gastrointestinal ulcer bleeding associated with NSAIDs. To val-
idate the effectiveness of the proposed therapy, an experiment was conducted to
study the effect of novocaine on the resistance of the red blood cells (erythro-
cytes) to hemolysis by hydrochloric acid as well as efficacy of novocaine dosage.
Hydrochloric acid is a major component of gastric juice and a lower rate of ery-
throcyte hemolysis should indicate a protective effect of novocaine.

Hemolytic stability of erythrocytes for the control and for three different
dosages of novocaine (4.9×10−6 mol/L, 1.0×10−5mol/L, and 2.01×10−5mol/L)
was measured as a percentage of hemolyzed cells. The data for the analysis were
curves of hemolysis (erythrograms) that were measured as functions of time. Fig-
ure 1 illustrates a sample of percent hemolysis curves. The goal of the statistical
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FIG. 1. Twenty hemolysis curves (erythrograms) of mice erythrocytes by hydrochloric acid with
superimposed estimated mean functions.

analysis was to summarize the associated evidence across time of the novocaine
effect including performing pairwise comparisons of novocaine dosages.

Most current approaches essentially evaluate differences among groups of
curves point-wise. These approaches treat data that are inherently functional (e.g.,
hemolysis is a smooth function of time) as a finite vector of observations over
time. A typical point-wise approach is to perform a one-way analysis of variance
(ANOVA) test at each time point. However, when testing is performed at a large
number of points simultaneously, the type I error rate is going to be inflated. Cox
and Lee (2008) carefully investigated this issue and proposed a method that uti-
lizes a point-wise ANOVA approach, while properly controlling the type I error
rate.

Alternatively, function-valued methods can be employed. A key advantage of
the functional approach over its close counterpart—the multivariate approach—is
that the former retains information of the ordering and spacing of observations over
time. By assuming that there is a true underlying functional response for each sub-
ject, function-valued methods explicitly incorporate information over time. Thus,
a method is “functional” if it approximates a finite vector of observations by a func-
tion (a nonparametric function is a typical choice) and then builds a test statistic
based on these functional estimates.

The functional analysis of variance (FANOVA) can be employed to perform
testing among k groups of curves. The overall functional testing methods, such
as the functional F of Shen and Faraway (2004) or the functional Vn of Cuevas,
Febrero and Fraiman (2004), can be utilized to test for associated evidence across
the entire functional domain (across all time). Vsevolozhskaya et al. (2013) de-
veloped a method for inferences in a FANOVA situation on subregions of the ini-
tial functional domain. However, none of these methods [including the point-wise
method of Cox and Lee (2008)] allows for pairwise comparisons of functional
means. Thus, the challenge for the current analysis was to determine differences
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among novocaine dosages within specific intervals of time, where significant dif-
ferences among hemolysis curves are present [these time intervals can be identified
based on the methods in Vsevolozhskaya et al. (2013)].

In this paper, we introduce a new function-valued two-step procedure: first, to
detect regions in time of significant differences among mean curves, and, second,
to perform a pairwise comparison of treatment levels within those regions. The
approach utilizes two ideas: (i) combining methods to map a test statistic of the
individual hypotheses, H1, . . . ,Hm, to the global one,

⋂m
i=1 Hi , and (ii) the closure

principle of Marcus, Peritz and Gabriel (1976) to control the family-wise error rate
(FWER), the probability of at least one false rejection. The rest of the article is
organized in the following manner. We give an overview of the FANOVA problem
and the existing methods for investigating the functional domain for regions where
significant differences occur. We discuss the proposed procedure for investigating
regions of time for significant differences and detail a computational shortcut that
allows isolation of individual significance even for a large number of tests. We
extend the proposed procedure to perform pairwise comparisons of the treatment
levels within identified functional regions of statistical significance. The protective
effect of novocaine is demonstrated based on the different patterns between groups
detected in certain regions of time.

2. Methods. Functional analysis of variance involves testing for some differ-
ence among k functional means. In functional data analysis, t is used to denote
a real-valued variable (usually of time) and y(t) denotes a continuous outcome,
which is a function of t . Then, the FANOVA model is written as

yij (t) = μi(t) + εij (t),(1)

where μi(t) is the mean function of group i at time t , i = 1, . . . , k, j indexes a
functional response within a group, j = 1, . . . , ni , and εij (t) is the residual func-
tion. Each εij (t) is assumed to be a mean zero and independent Gaussian stochastic
process. The FANOVA hypotheses are written as

H0 : μ1(t) = μ2(t) = · · · = μk(t),

Ha : μi(t) �= μi′(t) for at least one t and i �= i ′.
The alternative hypothesis considers any difference anywhere in t among k popu-
lation means of yij (t).

In recent years two different general approaches have emerged to perform the
FANOVA test. In Shen and Faraway (2004), as well as many other papers [see
Cuevas, Febrero and Fraiman (2004), Ramsay, Hooker and Graves (2009) and
Cuesta-Albertos and Febrero-Bande (2010)], a global test statistic has been de-
veloped to perform the FANOVA test. The statistic is “global” because it is used
to detect differences anywhere in the entire functional domain (anywhere in t). An
alternative approach [Ramsay and Silverman (2005) and Cox and Lee (2008)] is to
use a point-wise (or individual) test statistic to perform inference across t , that is,
identify specific regions of t with significant difference among functional means.
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2.1. “Global” approach. Suppose the domain [a, b] of functional responses
can be split into m prespecified mutually exclusive and exhaustive intervals
such that [a, b] = ⋃m

i=1[ai, bi]. For instance, in the novocaine experiment the
researchers were interested in the effect of novocaine during specific time in-
tervals associated with hemolysis of different erythrocyte populations: hemol-
ysis of the least stable population ([a2, b2] = 61–165 sec), general population
([a3, b3] = 166–240 sec), and most stable ([a4, b4] = over 240 sec). For each in-
terval [ai, bi], i = 1, . . . ,m, an individual functional statistic of Shen and Faraway
(2004), Fi , i = 1, . . . ,m, can be calculated as

Fi =
∫
[ai ,bi ]

∑k
j=1 nj (μ̂j (t) − μ̂(t))2 dt/(k − 1)∫

[ai ,bi ]
∑k

j=1
∑n

s=1(yjs(t) − μ̂j (t))2 dt/(n − k)
,(2)

where n is the total number of functional responses and k is the number of groups.
The numerator of the F statistic accounts for “external” variability among func-
tional responses and the denominator for the “internal” variability. Cuevas, Febrero
and Fraiman (2004) argue that the null hypothesis should be rejected based on the
measure of the differences among groups, that is, the “external” variability. Hence,
Cuevas, Febrero and Fraiman (2004) proposed a statistic Vn based on the numera-
tor of F :

Vn =
k∑

i<j

ni

∥∥μ̂i(t) − μ̂j (t)
∥∥2

,(3)

where ‖ · ‖ is the L2 norm calculated over the [ai, bi] interval. Gower and
Krzanowski (1999) also argue that in a permutation setting a test can be based
just on the numerator of the test statistic. That is, if only the numerator of the
functional F is used, the changes to the test statistic are monotonic across all per-
mutations and, thus, probabilities obtained are identical to the ones obtained from
the original F . Delicado (2007) points out that for a balanced design, the numera-
tor of the functional F and Vn differ by only a multiplicative constant, reinforcing
how they provide the same results in a permutation setting. Vsevolozhskaya et al.
(2013) fully extended this testing approach by allowing identification of the time
interval, [ai, bi], i = 1, . . . ,m, within the time domain, [a, b], while having proper
control of at least one false rejection.

2.2. Point-wise approach. Suppose that a set of smooth functional responses
is evaluated on a dense grid of points, t1, . . . , tm. For instance, the percentage of
hemolyzed cells can be evaluated every second. Cox and Lee (2008) propose a
test for differences in the mean curves from several populations, that is, perform
functional analysis of variance, based on these discretized functional responses.
First, at each of the m evaluation points, the regular one-way analysis of variance
test statistic, Fi, i = 1, . . . ,m, is computed. For each test the p-value is calculated
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based on the parametric F -distribution and then the Westfall–Young randomiza-
tion method [Westfall and Young (1993)] is applied to correct the p-values for
multiplicity. The implementation of the method can be found in the multtest
[Pollard et al. (2011)] R package [R Development Core Team (2012)].

Certain criticisms may be raised for both the “global” and the point-wise ap-
proaches. First, the point-wise approach can determine regions of the functional
domain with a difference in the means, but there is no clear way to extend this
approach to determine which pairs of populations are different. Second, for the
Cox and Lee (2008) procedure, the p-value for the global test cannot be obtained,
which is an undesirable property since the method might be incoherent between the
global and point-wise inference. The global approach does not provide the time-
specific detail that the point-wise methods provide and the subregion inferences in
Vsevolozhskaya et al. (2013) require specification of the subregions which may be
arbitrarily defined in some applications. We suggest a procedure that overcomes
the majority of these issues. By using a combining function along with the closure
principle of Marcus, Peritz and Gabriel (1976), we are able to obtain the p-value
for the overall test as well as adjust the individual p-values for multiplicity. Ad-
ditionally, the proposed procedure allows us to perform a pairwise comparison of
the group’s functional means and therefore determine which populations show ev-
idence of differences in each time region. However, the proposed procedure still
requires prespecification of these time regions, which in some applications can be
vague.

2.3. Proposed methodology. Once again, suppose the domain [a, b] is split
into m prespecified mutually exclusive and exhaustive intervals. We propose to
use the numerator of the functional F as the test statistic Ti , i = 1, . . . ,m, for each
[ai, bi], and then utilize a combining function to obtain the test statistic for the
entire [a, b]. Typical combining functions have the same general form: the global
statistic is defined as a weighted sum, T = ∑

wiTi , of the individual statistics with
some wi weights [see Pesarin (1992) and Basso et al. (2009)]. A p-value for the
overall null hypothesis (that all individual null hypotheses are true) is based either
on the distribution of the resulting global statistic T or on a permutation approxi-
mation. If the unweighted sum combining function is applied to the proposed Ti ,
then

T =
∫
[a,b]

k∑
j=1

nj

(
μ̂j (t) − μ̂(t)

)2
dt/(k − 1)

=
m∑

i=1

∫
[ai ,bi ]

k∑
j=1

nj

(
μ̂j (t) − μ̂(t)

)2
dt/(k − 1)

=
m∑

i=1

Ti.
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The closure procedure is then applied to perform the overall test based on these
combining functions as well as to adjust the individual p-values for multiplicity.
The closure method is based on testing all nonempty intersections of the set of m

individual hypotheses, which together form a closure set. The procedure rejects a
given hypothesis if all intersections of hypotheses that contain it as a component
are rejected. Hochberg and Tamhane (1987) show that the closure procedure con-
trols the family-wise error rate (FWER) at a strong level, meaning that the type I
error is controlled under any partial configuration of true and false null hypotheses.

When the number of individual tests m is relatively large, the use of the closure
method becomes computationally challenging. For example, setting m = 15 results
in 215 − 1 = 32,767 intersections of hypotheses. Hochberg and Tamhane (1987)
described a shortcut for the T = max{Ti} combining function, where Ti stands
for the ith test statistic for i in the set of Hi pertinent to a particular intersection
hypothesis. For this combining function they showed that the significance for any
given hypothesis in the closure set can be determined using only m individual tests.
Zaykin et al. (2002) described a shortcut for the closure principle in the application
of their truncated p-value method (TPM) that uses an unweighted sum combining
function. In the next section we exploit the shortcut described by Zaykin et al.
(2002) and show that for the T = ∑

Ti combining function the required number of
evaluations is m(m + 1)/2.

2.3.1. The shortcut version of the closure procedure. The shortcut version of
the closure method for the unweighted sum combining function should be im-
plemented as follows. First, order the individual test statistics from minimum to
maximum as T(1) ≤ T(2) ≤ · · · ≤ T(m), where

Ti =
∫
[ai ,bi ]

k∑
j=1

nj

(
μ̂j (t) − μ̂(t)

)2
dt/(k − 1).(4)

Let H(1),H(2), . . . ,H(m) be the corresponding ordered individual hypotheses of no
difference among functional means on the interval [a(i), b(i)], i = 1, . . . ,m. Now,
among intersection hypotheses of size two,

T(1) + T(2) ≤ T(1) + T(3) ≤ · · · ≤ T(1) + T(m),

T(2) + T(3) ≤ T(2) + T(4) ≤ · · · ≤ T(2) + T(m),

· · ·
Here, the statistic T(i)+T(j) corresponds to intersection hypotheses H(ij) of no sig-
nificant difference on both intervals [a(i), b(i)] ∪ [a(j), b(j)]. Among intersections
of size three,

T(1) + T(2) + T(3) ≤ T(1) + T(2) + T(4) ≤ · · · ≤ T(1) + T(2) + T(m),

T(2) + T(3) + T(4) ≤ T(2) + T(3) + T(5) ≤ · · · ≤ T(2) + T(3) + T(m),

· · ·
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Thus, significance for the hypothesis H(m) can be determined by looking for the
largest p-value among m tests,

T(m), T(m) + T(1), . . . ,

m∑
i=1

T(i).

For the hypothesis H(m−1), the significance can be determined by investigating the
p-values corresponding to (m − 1) tests

T(m−1), T(m−1) + T(1), . . . ,

m−1∑
i=1

T(i),

along with the p-value for the test
∑m

i=1 T(i) which is already found. Finally, for
the first ordered hypothesis H(1), the significance can be determined by evaluating
a single test T(1) and then looking for the largest p-value among it and the p-values
of the hypotheses H(12), H(123), . . . ,H(12···m), which are already evaluated. Thus,
significance of any individual hypothesis H(i) is determined using m p-values,
but the number of unique evaluations to consider is m + (m − 1) + · · · + 1 =
m(m + 1)/2.

The described shortcut assumes that all distributions corresponding to the test
statistics are the same and the magnitude of the test statistic has a monotonic re-
lationship with its p-value. If the p-values for the individual tests are determined
from permutational distributions (as in our situation), a bias will be introduced.
The bias is caused by a mismatch between the minimum value of the test statis-
tics and the maximum p-value. That is, the minimum statistic is not guaranteed
to correspond to the maximum p-value. The procedure becomes liberal since the
individual p-values are not always adjusted adequately. To reduce and possibly
eliminate the bias, we made the following adjustment to the shortcut. First, we ad-
justed the individual p-values according to the shortcut protocol described above
and obtained a set of adjusted individual p-values, p1,p2, . . . , pm. Then, we or-
dered the individual test statistics based on the ordering of the unadjusted individ-
ual p-values. That is, we order the unadjusted p-values from maximum to min-
imum and get a corresponding ordering of the test statistics T ∗

(1), T
∗
(2), . . . , T

∗
(m).

Now the inequality T ∗
(1) ≤ T ∗

(2) ≤ · · · ≤ T ∗
(m) will not necessarily hold. We applied

the shortcut based on this new ordering and obtained another set of adjusted in-
dividual p-values, p∗

1,p∗
2, . . . , p∗

m. Finally, the adjusted individual p-values were
computed as max{pi,p

∗
i }, i = 1, . . . ,m. This correction to the shortcut increases

the number of the required computations by a factor of two but still is of the order
m2 instead of 2m.

A small simulation study was used to check whether this version of the correc-
tion provides results comparable to adjustments generated by the entire set of in-
tersection hypotheses. For the four multiplicity adjustment schemes: (i) correction
based on the ordered test statistics shortcut, (ii) correction based on the ordered
unadjusted p-values shortcut, (iii) correction based on max{pi,p

∗
i } [combination
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of both corrections (i) and (ii)], and (iv) the full closure method, we obtained p-
values under the global null based on 1000 permutations, m = 5, and conducted
1000 simulations, providing 5000 corrected p-values. First, we were interested in
how many times the p-values adjusted by various shortcuts were “underestimated”
(not corrected enough) relative to the full closure method. The p-values adjusted
by a shortcut based on the ordered test statistics, p1,p2, . . . , pm, were underesti-
mated 554 out of 5000 times. The p-values adjusted by a shortcut based on the
ordered unadjusted p-values, p∗

1,p∗
2, . . . , p∗

m, were underestimated 60 out of 5000
times. The p-values adjusted using both corrections, max{pi,p

∗
i }, i = 1, . . . ,m,

were underestimated 38 out of 5000 times. Second, we compared type I error rates
under the max{pi,p

∗
i } shortcut and the full closure method and found that they

were exactly the same. The above results allowed us to conclude that the multi-
plicity adjustment based on the max{pi,p

∗
i } shortcut is adequate.

2.3.2. Proposed methodology for pairwise comparison of functional means.
Above, we provided details on how to implement the proposed methodology to
isolate regions of the functional domain with statistically significant differences
and showed that with a computational shortcut the closed testing scheme is com-
putable even for a large number of individual tests m. Now, we show how to further
use the proposed methodology to find pairs of functional means that are different
within the regions where statistical significance was identified. The procedure is
implemented as follows:

(i) Within an interval [ai, bi] with a statistically significant difference among
functional means, set the p-value for the “global” null of no difference among
functional means to the adjusted individual p-value corresponding to that interval.

(ii) Compute the pairwise statistic as well as statistics for the intersection hy-
potheses as in (4).

(iii) Find the p-values based on the permutation algorithm and adjust them
using the closure principle.

Figure 2 illustrates the closure set for pairwise comparison of four populations. The
p-value of the top node hypothesis, HABCD , of no significant difference among the
four population means would be set equal to the adjusted p-value of the interval
level individual hypothesis of interest Hi , i = 1, . . . ,m. The bottom node individ-
ual hypotheses, HAB, . . . ,HCD , correspond to no significant pairwise difference
between groups AB , AC, . . . ,CD in this interval. Note that now the indexing of
the hypotheses corresponds to population means instead of intervals in the func-
tional domain. The closure principle is used to adjust the individual p-values.

Certain issues may arise with a test of pairwise comparisons conducted by
global randomization. Petrondas and Gabriel (1983) noted that for the overall
equality hypothesis all permutations are assumed to be equally probable, that is,
the exchangeability among all treatment groups is assumed. However, for the hy-
pothesis of equality of a particular subset of treatments, the global permutation
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FIG. 2. Example of the closure set for the pairwise comparison of four groups.

distribution cannot be used because differences in variability among the treatment
groups can cause bias in the statistical tests. The results of the simulation study,
presented in the next section, did not reveal any noticeable bias in the permutation
test. In the case of the pairwise comparison, our method maintained good control
of the type I error rate as well as had enough power to correctly identify groups of
unequal treatments. The minimal bias observed might be due to a relatively small
(three) number of treatments that we chose to consider in our simulation study.
Petrondas and Gabriel (1983) and Troendle and Westfall (2011) provide ways to
perform permutation tests correctly in the case of the pairwise comparison. We
leave implementation of these solutions for future research.

3. Simulations. Before proceeding to the description of our simulation study,
we would like to note that all functional data methods, including the one proposed
in this article, are affected by how well the estimated functions approximate data.
A failure to adequately approximate data with smooth functions may result in a
loss of statistical power. An “adequate” approximation is a subjective decision,
however, below we outline some choices that are intended to aid fitting particular
data at hand.

3.1. Estimation of functional responses. Use of functional data methods re-
quires a “guess” of a function, μ(t), underlying each response. Since this function
is generally unknown, nonparametric methods are used to approximate it. Non-
parametric methods represent a function as a linear combination of K “basis func-
tions.” A potential shortcoming of all testing procedures based on nonparametric
methods is ambiguity in the choice of basis functions (e.g., splines, Fourier series,
Legendre polynomials, etc.) and the number of basis functions, K . An incautious
choice might lead to over- or under-fit and the resulting loss of statistical power.
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The current consensus regarding the choice of basis functions, supported,
among others, by Horváth and Kokoszka (2012), Storey et al. (2005), Ramsay
and Silverman (2005), is that a good choice should mimic the general features of
the data. Specifically, the Fourier basis is recommended for periodic, or nearly pe-
riodic, data and the B-spline basis for nonperiodic locally smooth data. Since it is
known that hemolytic responses have a smooth “S” shape, the B-spline basis was
a natural choice in our application.

Rice and Wu (2001) and Griswold, Gomulkiewicz and Heckman (2008) inves-
tigated the impact of the number of basis functions, K , on the quality of fit to
the data. More specifically, Rice and Wu (2001) showed that the result of a func-
tional fit is rather insensitive to the specification of the number of basis functions
for the B-spline basis. Griswold, Gomulkiewicz and Heckman (2008) provided
general recommendations for the number of basis functions with an arbitrary ba-
sis. They showed that if the data result from (i) an erratically changing stochastic
process or (ii) a smoothly varying process with a small measurement error, the
recommended number of basis terms required to fit the data is close to the num-
ber of observations per subject. We chose the number of basis functions to be
close to the number of observations which coincides with the recommendations
provided by Griswold, Gomulkiewicz and Heckman (2008). During the course
of the novocaine experiment the percent of hemolysis was obtained by convert-
ing the spectrophotometric readings. These readings—the measurements of the
spectral transmittance—were made with a spectrophotometer PE-5400 VI, which
has a low measurement error of ±0.5% (details of the registration certificate are
at http://www.promecolab.ru/images/stories/Spektr/5400b-5400UF.pdf). Thus, we
had an underlying process that is smooth with a small measurement error so a
higher number of basis functions was an appropriate choice.

3.2. Simulations setup. Now, we describe a simulation study that we carried
out in order to evaluate the performance of our approach. A nonparametric fit to
the data was achieved by employing the B-spline basis functions with a “knot” at
each observation over t . The number of basis functions, K , is equal to the number
of knots plus two. The simulations scenarios were inspired by a Monte Carlo study
in Cuesta-Albertos and Febrero-Bande (2010). We considered

(M1) fi(t) = 30(1 − t)t − 3β| sin(16πt)|I{0.325<t<0.3575} + εi(t),
(M2) fi(t) = 30(1 − t)t − β| sin(πt/4)| + εi(t),

where t1 = 0, . . . , t101 = 1, β ∈ {0.000,0.045,0.091,0.136,0.182,0.227,0.273,

0.318,0.364,0.409,0.455,0.500}, and random errors εi(t) are independently nor-
mally distributed with mean zero and variance 0.3. Case M1 (illustrated in Fig-
ure 3) corresponds to a situation where a small set of observations was generated
under HA to create a spike. In M2 (illustrated in Figure 4), a large number of obser-
vations were generated under HA but the differences are less apparent [a deviation
along the entire range of t that gradually increases from min(t) to max(t)]. The

http://www.promecolab.ru/images/stories/Spektr/5400b-5400UF.pdf


A FOLLOW-UP TEST FOR FUNCTIONAL LINEAR MODELS 915

FIG. 3. Plot of the data for one simulation replicate under the M1 case and 12 different
values of β . The functions that have the mean value, μ3(t), deviating from the overall mean
(μ1(t) = μ2(t) ≡ μ(t)) are highlighted in a color.

parameter β controls the strength of the deviation from the global null. The reason
for considering these two cases was to check the performance of our method for
different ranges of false null hypotheses.

FIG. 4. Plot of the data for one simulation replicate under the M2 case and 12 different values
of β . The functions that have the mean value deviating from the overall mean are highlighted in a
color.



916 O. VSEVOLOZHSKAYA, M. GREENWOOD AND D. HOLODOV

FIG. 5. The probability of rejecting the null hypothesis H0 :μ1(t) = μ2(t) = μ3(t) for m = 5
intervals.

In each case (M1 and M2), we generated three samples of functional data with
5 observations from each group. The first two samples had the same mean (β = 0)
and the third sample’s mean was deviating (β �= 0). Once the functional data were
generated for different values of β �= 0, we split the functional domain into dif-
ferent numbers of equal-length intervals (m = 5 and m = 10) and evaluated the
power of rejecting the null hypotheses H0 :μ1(t) = μ2(t) = μ3(t) at the 5% level.
We used 1000 simulations to obtain a set of power values for each combination
of β and m values. We used a permutation test to obtain the p-values. This was
achieved by randomly permuting the original observations for each t across groups
1000 times, and for each new grouping, refitting the functional means and recal-
culating the value of the test statistic. The p-value was found as the proportion of
1000 recalculated test statistics greater than the observed statistic.

3.3. Simulation results. Figure 5 presents results of power evaluation for
model M1 and five intervals (m = 5). Under this model, a set of observations gen-
erated under HA fell into the second interval. That is, the functional mean of the
third sample had a spike deviation from the functional mean of the first two sam-
ples over the second interval. The magnitude of the spike increased monotonically
as a function of β . The plot shows that the proportion of rejections reveals a peak
over the region of the true deviation, while being conservative over the locations
with no deviations. Thus, we conclude that the proposed methodology provides
satisfactory power over the region with true differences, while being conservative
over the regions where the null hypothesis is true.

Once we identified the region of the functional domain with differences in
means (i.e., the second interval), we used the extension of the proposed methodol-
ogy to perform a pairwise comparison and determine which populations are differ-
ent. Figure 6 provides the results of power evaluation of the pairwise comparisons
at the 5% significance level. In the case of HAB (where the null μ1 = μ2 is true),
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FIG. 6. The probability of rejecting individual pairwise hypotheses HAB :μ1(t) = μ2(t),
HAC :μ1(t) = μ3(t), and HBC :μ2(t) = μ3(t).

the simulation output tells us that the procedure is a bit conservative, maintaining
the type I error rate right below the 5% level for the higher values of β . In the case
of HAC and HBC (where the null is false), it can be seen that the power of the
pairwise comparison is satisfactory.

The results for the M2 case, where the number of true effects is large and the
magnitude of the effect gradually increases from min(t) to max(t), are provided in
Tables 1–5 and Figure 7. The plot shows that for a fixed value β , the proportion of
rejections of the hypothesis H0 :μ1(t) = μ2(t) = μ3(t) gradually increases with
the magnitude of the effect. Across different values of β , power values are also
increasing, attaining the value of 1 for the fifth interval and β = 0.5. The results
of the pairwise comparisons are provided in Tables 1–5. Power is the highest for
the highest value of β (0.5), but overall the method does a good job of picking out
the differences between μ1 and μ3, and μ2 and μ3, while maintaining control of
spurious rejections for μ1 and μ2.

Results based on m = 10 intervals are similar to those based on m = 5 intervals
and can be found in the supplementary material [Vsevolozhskaya, Greenwood and

TABLE 1
Power of the pairwise comparison assuming common means μ1 and μ2 over the 1st interval

β HAB :μ1 = μ2 HAC :μ1 = μ3 HBC :μ2 = μ3

0.318 0.027 0.021 0.026
0.364 0.029 0.024 0.028
0.409 0.031 0.034 0.038
0.455 0.036 0.041 0.047
0.500 0.036 0.049 0.054
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TABLE 2
Power of the pairwise comparison assuming common means μ1 and μ2 over the 2nd interval

β HAB :μ1 = μ2 HAC :μ1 = μ3 HBC :μ2 = μ3

0.273 0.018 0.049 0.057
0.318 0.025 0.074 0.086
0.364 0.031 0.104 0.116
0.409 0.037 0.145 0.164
0.455 0.041 0.214 0.224
0.500 0.045 0.298 0.323

Holodov (2014)]. A careful consideration of these results, however, reveals that
the procedure tends to lose power as the number of intervals increases but gains
power as the number of curves per group increases.

4. Analysis of hemolysis curves. In this section we illustrate the proposed
methodology by applying it to a study of the effect of novocaine conducted by
Holodov and Nikolaevski (2012). The motivation behind the study was to investi-
gate pharmaceutical means of preventing the formation of stomach erosive and ul-
cerative lesions caused by a long-term use of nonsteroidal anti-inflammatory drugs
(NSAIDs). Internal use of a novocaine solution was proposed as a preventative
treatment for NSAID-dependent complications.

During the course of the experiment, blood was drawn from male rats to ob-
tain an erythrocyte suspension. Then, four different treatments were applied: con-
trol, low (4.9 × 10−6 mol/L), medium (1.0 × 10−5 mol/L), and high (2.01 × 10−5

mol/L) dosages of procaine. After treatment application, the erythrocyte suspen-
sion was incubated for 0, 15, 30, 60, 120 or 240 minutes. At the end of each
incubation period, hemolysis was initiated by adding 0.1 M of hydrochloric acid
to the erythrocyte suspension. The percent of hemolysis or the percent of red blood

TABLE 3
Power of the pairwise comparison assuming common means μ1 and μ2 over the 3rd interval

β HAB :μ1 = μ2 HAC :μ1 = μ3 HBC :μ2 = μ3

0.182 0.015 0.038 0.040
0.227 0.021 0.077 0.084
0.273 0.027 0.160 0.155
0.318 0.037 0.289 0.275
0.364 0.041 0.437 0.434
0.409 0.048 0.610 0.600
0.455 0.048 0.731 0.735
0.500 0.049 0.839 0.835
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TABLE 4
Power of the pairwise comparison assuming common means μ1 and μ2 over the 4th interval

β HAB :μ1 = μ2 HAC :μ1 = μ3 HBC :μ2 = μ3

0.182 0.017 0.082 0.080
0.227 0.023 0.207 0.196
0.273 0.030 0.375 0.365
0.318 0.036 0.618 0.611
0.364 0.039 0.817 0.807
0.409 0.041 0.920 0.915
0.455 0.041 0.971 0.971
0.500 0.041 0.993 0.993

cells that had broken down was measured every 15 seconds for 12 minutes. The
experiment was repeated 5 times for each dosage/incubation combination using
different rats. Therefore, the data set consists of 120 separate runs with 49 dis-
cretized observations per run and involves four experimental conditions with six
incubation times, replicated 5 times for each treatment/incubation combination.
For more details see Holodov and Nikolaevski (2012).

We fit the data with smoothing cubic B-splines with 49 equally spaced knots
at times t1 = 0, . . . , t49 = 720 seconds to generate the functional data. The rea-
soning behind these choices is provided in Section 3.1. A smoothing parameter
was selected by generalized cross-validation (GCV) for each functional observa-
tion with an increased penalty for each effective degree of freedom in the GCV, as
recommended in Wood (2006).

To keep the analysis as simple as possible, each incubation data set was ana-
lyzed for treatment effects separately. Our initial test was to check for a signifi-
cant difference in mean erythrograms (mean hemolysis curves) anywhere in time

TABLE 5
Power of the pairwise comparison assuming common means μ1 and μ2 over the 5th interval

β HAB :μ1 = μ2 HAC :μ1 = μ3 HBC :μ2 = μ3

0.136 0.012 0.044 0.042
0.182 0.020 0.164 0.160
0.227 0.030 0.380 0.383
0.273 0.038 0.640 0.645
0.318 0.041 0.858 0.859
0.364 0.042 0.955 0.957
0.409 0.042 0.986 0.988
0.455 0.042 0.997 1.000
0.500 0.042 1.000 1.000
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FIG. 7. The probability of rejecting the null hypothesis H0 :μ1(t) = μ2(t) = μ3(t) in the case of
the M2 model and 5 intervals.

among novocaine dosages. A Bonferroni correction was applied to these initial p-
values to adjust for multiplicity at this level. The results indicated strong evidence
of differences for the 15 and 30 minute incubation times (p-valueBonf = 0.006 and
p-valueBonf = 0.018, resp.). Figure 8 illustrates the results for these incubation
times. For the rest of the incubation times, we found no evidence against the null
hypothesis that the four erythrogram means coincided, so no further analysis was
conducted.

Next, we examined the 15 and 30 minute incubation results in more detail to
asses the nature of the differences. For both incubation times, four time intervals
of interest were prespecified: (i) the latent period (0–60 sec), (ii) hemolysis of
the population of the least stable red blood cells (61–165 sec), (iii) hemolysis of
the general red blood cell population (166–240 sec), and (iv) the plateau (over
240 sec). The latent period is associated with erythrocytes spherulation and occurs
between addition of the hemolytic agent and initiation of hemolysis. The names
of the next two periods are self-explanatory. The plateau period is associated with
deterioration of the population of the most stable erythrocytes.

We applied our method to determine if statistical significance is present in each
of the four time intervals. In the application of our method, we set the p-values
for the global hypotheses H1234 of no significant difference on all four intervals to
the Bonferroni adjusted p-values obtained on the previous step. For the 15 minute
incubation time, no statistical significance was found during the latent period (p-
value = 0.806), and statistically significant results were found during hemolysis
of the least stable red blood cell population (p-value = 0.022), general red blood
cell population (marginal significance with the p-value = 0.060) and plateau (p-
value = 0.006). The same results were obtained from the 30 minute incubation,
that is, no statistical significance during the latent period (p-value = 0.892) and
statistical significance for the rest of the time intervals with p-values of 0.018,
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FIG. 8. Erythrogram means for the control group and the treatment groups for 15 (top graph)
and 30 (bottom graph) minute incubation times.

0.029 and 0.018 for the periods of hemolysis of the least stable population, general
population and plateau, respectively.

Finally, we were interested in pairwise comparison of treatment levels within
the time intervals of statistical significance. Once again, similar results were found
for both incubation times, although the p-values were often larger for the 15
minute incubation time. During the hemolysis of the least stable red blood cell
population, at least some evidence was found of a difference between low dosage
and control (p-value15 = 0.020, p-value30 = 0.018), medium dosage and control
(p-value15 = 0.060, p-value30 = 0.039), and low dosage and high dosage (p-
value15 = 0.057, p-value30 = 0.030). During the hemolysis of the general pop-
ulation, at least some evidence of a significant difference was found between
the low dose and control (p-value15 = 0.060, p-value30 = 0.029). During the
plateau interval, there was a significant difference between low dose and control
(p-value15 = 0.001, p-value30 = 0.018), medium dose and control (p-value15 =
0.016, p-value30 = 0.029), and high dose and control (p-value15 = 0.030, p-
value30 = 0.029).

The results of the analysis can be summarized as follows. The rate of hemoly-
sis increases with the dosage of novocaine. That is, the structural and functional
modifications in the erythrocyte’s membrane induced by novocaine are dosage de-
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pendent. The results also indicate the distribution of erythrocytes into subpopu-
lations with low, medium and high resistance to hemolysis. These populations
modified by novocaine react differently with the hemolytic agent. After 15 and
30 minutes of incubation, the “old” erythrocytes (least stable) modified by low
(4.9 × 10−6 mol/L) and medium (1.0 × 10−5 mol/L) doses of procaine react faster
to the hemolytic agent than those under the control or the high (2.01×10−5 mol/L)
dose. However, reaction of the general and “young” (most stable) erythrocyte pop-
ulation modified by the same (low and medium) dosages is characterized by higher
stability of the membrane and thus have higher resistance to the hemolytic agent.
Thus, novocaine in low and medium doses has a protective effect on the general
and “young” erythrocyte populations. However, an increase in procaine dosage
does not lead to an increase of erythrocyte resistance to the hemolytic agent. The
effect of the high dose of novocaine (2.01 × 10−5 mol/L) does not differ signifi-
cantly from the control and thus is destructive rather than protective.

Conclusions of our statistical analysis confirm certain findings reported in a
patent by Holodov and Nikolaevski (2012). Specifically, our analysis confirms that
novocaine in low dosages tends to have a protective effect. However, Holodov and
Nikolaevski (2012) reported a significant difference among erythrograms for all
incubation times but zero minutes. This inconsistency is due to a failure to properly
adjust the number of tests performed in the original analysis. The findings reported
in the current paper have a higher assurance that a replication experiment will be
able to detect the same differences reported here.

5. Discussion. We have suggested a procedure which allows researchers to
find regions of significant difference in the domain of functional responses as well
as to determine which populations are different over these regions. To the best
of our knowledge, there are no existing competing procedures to the proposed
methodology. Thus, our numerical results reported in Section 3 do not include a
comparison of the proposed method to other alternatives. Nevertheless, the sim-
ulations revealed that our procedure has satisfactory power and does a good job
of picking out the differences between population means. Also, in our simulation
study, a relatively small number of regions (m = 5 and m = 10) were considered.
A higher number of individual tests (intervals) can be easily implemented with the
described shortcut to the closure principle.

The relative efficiency of all nonparametric functional approaches depends on
the “adequate” representation of data by smooth functions. In Section 3.1 we pro-
vided some general recommendations that should help a reader to choose an ef-
fective basis and a number of basis functions for a particular application. A valid
point raised by one of the reviewers was that if power of any function-valued sta-
tistical procedure depends on the accuracy of the estimates of individual curves,
they, in turn, might depend on the number of observed time points per subject.
Griswold, Gomulkiewicz and Heckman (2008) studied this issue and showed that
as the number of measurements per subject increased from 10 to 20, the power of
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a functional approach remained relatively constant or improved. Berk, Ebbels and
Montana (2011) used as little as 10 observations per subject to estimate the func-
tional responses. Thus, we expect statistical power to be rather insensitive to the
number of time points at hand as long as researchers have at least 10 observations
and are producing reasonable functional estimates.

Another important issue is that the nonparametric approaches based on the B-
spline basis might suffer from a phenomenon termed “edge effect”—a bias in the
estimation at the endpoints. Thus, power of the procedure to detect differences
among functional responses might be affected at the intervals near the edges if the
estimated smooth functions have boundary artifacts (e.g., unexpected behavior).
This was not the case in our simulation study nor in our application. If a researcher
encounters functional boundary artifacts while fitting particular data of interest,
s/he might consider correcting for this effect [e.g., see Masri and Redner (2005)].

We also note that for the procedure presented in this article, the regions of inter-
est in the functional domain should be prespecified prior to the analysis. However,
in our experience researchers have never had a problem with a priori region iden-
tification. From previous research, expected results as well as specific regions of
interest are typically known. We also mention that in the application of our method
the intervals should be mutually exclusive and exhaustive. If researchers are inter-
ested in a test over overlapping intervals, the solution is to split the functional do-
main into smaller mutually exclusive intervals for individual tests (terminal nodes
of the hypotheses tree). The decision for the overlapping region would be provided
by a test of an intersection hypothesis (“higher” node in the hypotheses tree). We
also expect the intervals to be exhaustive since it would be unexpected for re-
searchers to collect data over time periods that they have no interest in. Finally, if
for some reason distinct regions cannot be prespecified, a large number of equal
sized intervals can easily be employed, however, this might result in loss of power.

The present work has two open issues that suggest a direction for future re-
search. First, the method is conservative and so a more powerful approach may be
possible. Second, the permutation strategy for the pairwise comparison test may
lead to biased inference. Solutions to the latter problem were suggested both by
Petrondas and Gabriel (1983) and Troendle and Westfall (2011). We leave im-
plementation of these solutions for future research, as this seems to be a minor
issue with a small number of treatment groups as are most often encountered in
FANOVA applications.

SUPPLEMENTARY MATERIAL

Additional simulation results (DOI: 10.1214/14-AOAS723SUPP; .pdf). Ad-
ditional simulation results for the two models (M1 or M2), two different number
of intervals (m = 5 or m = 10), and either 5 or 20 subjects per group are summa-
rized in the tables below. Overall, these results indicate that the procedure tends to
lose power as the number of intervals increases but gains power as the number of
subjects per group increases.

http://dx.doi.org/10.1214/14-AOAS723SUPP
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