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Abstract. In a general counting process setting, we consider the problem of obtaining a prognostic on the survival time adjusted on
covariates in high-dimension. Towards this end, we construct an estimator of the whole conditional intensity. We estimate it by the
best Cox proportional hazards model given two dictionaries of functions. The first dictionary is used to construct an approximation
of the logarithm of the baseline hazard function and the second to approximate the relative risk. We introduce a new data-driven
weighted Lasso procedure to estimate the unknown parameters of the best Cox model approximating the intensity. We provide
non-asymptotic oracle inequalities for our procedure in terms of an appropriate empirical Kullback divergence. Our results rely on
an empirical Bernstein’s inequality for martingales with jumps and properties of modified self-concordant functions.

Résumé. Dans le cadre général d’un processus de comptage, nous intéressons à la façon d’obtenir un pronostic sur la durée de
survie en fonction des covariables en grande dimension. Pour ce faire, nous construisons un estimateur de l’intensité conditionnelle.
Nous l’estimons par le meilleur modèle de Cox étant donné deux dictionnaires de fonctions. Le premier dictionnaire est utilisé
pour construire le logarithme du risque de base et le second, pour approximer le risque relatif. Nous introduisons une nouvelle
procédure Lasso pondéré avec une pondération basée sur les données pour estimer les paramètres inconnus du meilleur modèle de
Cox approximant l’intensité. Nous établissons une inégalité oracle non-asymptotique en divergence de Kullback empirique, qui est
la fonction de perte la plus appropriée à notre procédure. Nos résultats reposent sur une inégalité de Bernstein pour les martingales
à sauts et sur des propriétés des fonctions self-concordantes.
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1. Introduction

We consider one of the statistical challenges brought by the recent advances in biomedical technology to clinical
applications. For example, in Dave et al. [16], the considered data relate 191 patients with follicular lymphoma. The
observed variables are the survival time, that can be right-censored, clinical variables, as the age or the disease stage,
and 44,929 levels of gene expression. In this high-dimensional right-censored setting, there are two clinical questions.
One is to determine prognostic biomarkers, the second is to predict the survival from follicular lymphoma adjusted on
covariates. We focus our interest on the second (see Gourlay [20] and Steyerberg [33]). As a consequence, we consider
the statistical question of estimating the whole conditional intensity. To adjust on covariates, the most popular semi-
parametric regression model is the Cox proportional hazards model (see Cox [15]): the conditional hazard rate function
of the survival time T given the vector of covariates Z = (Z1, . . . ,Zp)T is defined by

λ0(t,Z) = α0(t) exp
(
βT

0 Z
)
, (1)
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where β0 = (β01 , . . . , β0p )T is the vector of regression coefficients and α0 is the baseline hazard function. The un-
known parameters of the model are β0 ∈ R

p and the function α0. To construct an estimator of λ0, one usually considers
the partial likelihood introduced by Cox [15] to derive an estimator of β0 and then plug this estimator to obtain the
well-known Breslow estimator of α0. We propose in this paper an alternative one-step strategy.

1.1. Framework

Before describing our strategy, let us clarify our framework. We consider the general setting of counting processes.
For i = 1, . . . , n, let Ni be a marked counting process and Yi a predictable random process with values in [0,1]. Let
(Ω,F,P) be a probability space and (Ft )t≥0 be the filtration defined by

Ft = σ
{
Ni(s), Yi(s),0 ≤ s ≤ t,Zi , i = 1, . . . , n

}
,

where Zi = (Zi,1, . . . ,Zi,p)T ∈R
p is the F0-measurable random vector of covariates of individual i. Let Λi(t) be the

compensator of the process Ni(t) with respect to (Ft )t≥0, so that Mi(t) = Ni(t) − Λi(t) is a (Ft )t≥0-martingale.

The process Ni satisfies the Aalen multiplicative intensity model: for all t ≥ 0,

Λi(t) =
∫ t

0
λ0(s,Zi )Yi(s)ds, (A1)

where λ0 is an unknown non-negative function called intensity.

This general setting, introduced by Aalen [1], embeds several particular examples as censored data, marked Poisson
processes and Markov processes (see Andersen et al. [2] for further details).

Remark 1.1 (Censoring case). In the specific case of right censoring, let (Ti)i=1,...,n be independent and iden-
tically distributed (i.i.d.) survival times of n individuals and (Ci)i=1,...,n their i.i.d. censoring times. We observe
{(Xi,Zi , δi)}i=1,...,n where Xi = min(Ti,Ci) is the event time, Zi = (Zi,1, . . . ,Zi,p)T is the vector of covariates
and δi = 1{Ti≤Ci } is the censoring indicator. The survival times Ti are supposed to be conditionally independent of
the censoring times Ci given some vector of covariates Zi = (Zi,1, . . . ,Zi,p)T ∈ R

p for i = 1, . . . , n. With these no-
tations, the (Ft )-adapted processes Yi and Ni are respectively defined as the at-risk process Yi(t) = 1{Xi≥t} and the
counting process Ni(t) = 1{Xi≤t,δi=1} which jumps when the ith individual dies.

We observe the i.i.d. data (Zi ,Ni(t), Yi(t), i = 1, . . . , n,0 ≤ t ≤ τ), where [0, τ ] is the time interval between the
beginning and the end of the study.

We assume that A0 = sup
1≤i≤n

{∫ τ

0
λ0(s,Zi )ds

}
< ∞. (A2)

This is the standard assumption in statistical estimation of intensities of counting processes, see Andersen et al. [2]
for instance. We also precise that, in the following, we work conditionally to the covariates and from now on, all
probabilities P and expectations E are conditional to the covariates. Our goal is to estimate λ0 non-parametrically in
a high-dimensional setting, i.e. when the number of covariates p is larger than the sample size n (p � n).

1.2. Previous results

In high-dimensional regression, the benchmarks for results are the ones obtained in the additive regression model.
In this setting, Tibshirani [35] has introduced the Lasso procedure, which consists in minimizing an 
1-penalized
criterion. The Lasso estimator has been widely studied for this model, with consistency results (see Meinshausen and
Bühlmann [31]) and variable selection results (see Zhao and Yu [42], Zhang and Huang [39]). Recently, attention has
been directed on establishing non-asymptotic oracle inequalities for the Lasso (see Bunea et al. [11,12], Bickel et al.
[7], Massart and Meynet [30], Bartlett [5] and Koltchinskii [23] among others).
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In the setting of survival analysis, the Lasso procedure has been first considered by Tibshirani [36] and applied
to the partial log-likelihood. More generally, other procedures have been introduced for the parametric part of the
Cox model: the adaptive Lasso, the smooth clipped absolute deviation penalizations and the Dantzig selector are
respectively considered in Zou [44], Zhang and Lu [40], Fan and Li [17] and Antoniadis et al. [3]. Non-parametric
approaches are considered in Letué [27], Hansen et al. [21] and Comte et al. [14]. Lasso procedures for the alternative
Aalen additive model have been introduced in Martinussen and Scheike [28] and Gaïffas and Guilloux [18].

All of the existing results in the Cox model are based on the partial log-likelihood, which does not answer the
clinical question associated with a prognosis. Antoniadis et al. [3] have established asymptotic estimation inequalities
in the Cox proportional hazard model for the Dantzig estimator (see Bickel et al. [7] for a comparison between these
two estimators in an additive regression model). In Bradic et al. [8], asymptotic estimation inequalities for the Lasso
estimator have also been obtained in the Cox model. More recently, Kong and Nan [24] and Bradic and Song [9] have
established non-asymptotic oracle inequalities for the Lasso in the generalized Cox model

λ0(t,Z) = α0(t) exp
(
f0(Z)

)
, (2)

where α0 is the baseline hazard function and f0 a function of the covariates. However, the focus in both papers is on
the Cox partial log-likelihood, the obtained results are either on f

β̂L
− f0 or on β̂L − β0 for f0(Z) = βT

0 Z and the
problem of estimating the whole intensity λ0 is not considered, as needed for the prediction of the survival time.

1.3. Our contribution

The first motivation of the present paper is to address the problem of estimating λ0 defined in (A1) regardless of an
underlying model. We use an agnostic learning approach, see Kearns et al. [22], to construct an estimator that mimics
the performance of the best Cox model, whether this model is true or not. More precisely, we will consider candidates
for the estimation of λ0 of the form

λβ,γ (t,Z) = αγ (t)efβ(Z) for (β,γ ) ∈R
M ×R

N,

where fβ and αγ are respectively linear combinations of functions of two dictionaries FM and GN . The estimator of λ0
is defined as the candidate which minimizes a weighted 
1-penalized total log-likelihood as opposed to the Cox partial
log-likelihood. The second motivation of the paper is to obtain non-asymptotic oracle inequalities for Lasso estimators
of the complete intensity λ0. Indeed, in practice, one cannot consider that the asymptotic regime has been reached, cf.
in Dave et al. [16] for example. In addition, Comte et al. [14] established non-asymptotic oracle inequalities for the
whole intensity but not in a high-dimensional setting and to the best of our knowledge, no non-asymptotic results for
the estimation of the whole intensity in high dimension exist in the literature.

Towards this end, we will proceed in two steps. In a first step, we assume that λ0 verifies Model (2), where α0 is
assumed to be known. In this particular case, the only non-parametric function to estimate is f0 and we estimate it by
a linear combination of functions of the dictionary FM . In this setting, we obtain non-asymptotic oracle inequalities
for the Cox model when α0 is supposed to be known. In a second step, we consider the general problem of estimating
the whole intensity λ0. We state non-asymptotic oracle inequalities both in terms of empirical Kullback divergence
and weighted empirical quadratic norm for our Lasso estimators, thanks to properties of modified self-concordant
functions (see Bach [4]).

These results are obtained via three ingredients: a new Bernstein’s inequality, a modified Restricted Eigenvalue
condition on the expectation of the weighted Gram matrix and modified self-concordant functions. Let us be more
precise. We establish empirical versions of Bernstein’s inequality involving the optional variation for martingales
with jumps (see Gaïffas and Guilloux [18] and Hansen et al. [21] for related results). This allows us to define a fully
data-driven weighted 
1-penalization. For the resulting estimator, we work under a modified Restricted Eigenvalue
condition according to which the expectation of a weighted Gram matrix fullfilled the Restricted Eigenvalue condition
(see Bickel et al. [7]). This new version of the Restricted Eigenvalue condition is both new and weaker than the
comparable condition in the Cox model. Finally, we extend the notion of self-concordance (see Bach [4]) to the
problem at hands in order to connect our weighted empirical quadratic norm and our empirical Kullback divergence.
In this context, we state the first fast non-asymptotic oracle inequality for the whole intensity.
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The paper is organized as follows. In Section 2, we describe the framework and the Lasso procedure for estimating
the intensity. The estimation risk that we consider and its associated loss function are presented. In Section 3, predic-
tion and estimation oracle inequalities in the particular Cox model with known baseline hazard function are stated. In
Section 4, non-asymptotic oracle inequalities with different convergence rates are given for a general intensity. Sec-
tion 5 is devoted to statement of empirical Bernstein’s inequalities associated with our processes. Proofs are gathered
in Section 6.

2. Estimation procedure

2.1. The estimation criterion and the loss function

To estimate the intensity λ0, we consider the total empirical log-likelihood. By Jacod’s formula (see Andersen et al.
[2]), the log-likelihood based on the data (Zi ,Ni(t), Yi(t), i = 1, . . . , n,0 ≤ t ≤ τ) is given by

Cn(λ) = −1

n

n∑
i=1

{∫ τ

0
logλ(t,Zi )dNi(t) −

∫ τ

0
λ(t,Zi )Yi(t)dt

}
.

Our estimation procedure is based on the minimization of this empirical risk. To this empirical risk, we associate the
empirical Kullback divergence defined by

K̃n(λ0, λ) = 1

n

n∑
i=1

∫ τ

0

(
logλ0(t,Zi ) − logλ(t,Zi )

)
λ0(t,Zi )Yi(t)dt

− 1

n

n∑
i=1

∫ τ

0

(
λ0(t,Zi ) − λ(t,Zi )

)
Yi(t)dt . (3)

We refer to van de Geer [37] and Senoussi [32] for close definitions. We notice in addition, that this loss function is
closed to the Kullback–Leibler information considered in the density framework (see Stone [34] and Le Pennec and
Cohen [25]). The following proposition justifies the choice of this criterion.

Proposition 2.1. The empirical Kullback divergence K̃n(λ0, λ) is non-negative and equals zero if and only if λ = λ0

almost surely on the interval [0, τ ∧ sup{t : ∃i ∈ {1, . . . , n}, Yi(t) 	= 0}].

Remark 2.2 (Censoring case). In the specific case of right censoring, the proposition holds true on [0, τ ∧
max1≤i≤n Xi]. In this case, we can specify that P([0, τ ] ⊂ [0,max1≤i≤n Xi]) = 1 − (1 − ST (τ ))n(1 − SC(τ))n,
where ST and SC are the survival functions of the survival time T and the censoring time C respectively. From (A2),
ST (τ ) > 0 and if τ is such that SC(τ) > 0, then P([0, τ ] ⊂ [0,max1≤i≤n Xi]) is large. See Gill [19] for a discussion
on the role of τ .

In the following, we consider that we estimate λ0(t) for t in [0, τ ∧sup{t : ∃i ∈ {1, . . . , n}, Yi(t) 	= 0}]. Let introduce
the weighted empirical quadratic norm defined for all function h on [0, τ ] ×R

p by

‖h‖n,Λ =
√√√√1

n

n∑
i=1

∫ τ

0

(
h(t,Zi )

)2 dΛi(t), (4)

where Λi is defined in (A1). Notice that, in this definition, the higher the intensity of the process Ni is, the higher the
contribution of individual i to the empirical norm is. This norm is connected to the empirical Kullback divergence, as
it will be shown in Proposition 6.4. Finally, for a vector b in R

M , we define, ‖b‖1 =∑M
j=1 |bj | and ‖b‖2

2 =∑M
j=1 b2

j .
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2.2. Weighted Lasso estimation procedure

The estimation procedure is based on the choice of two finite sets of functions, called dictionaries. Let FM =
{f1, . . . , fM} where fj :Rp → R for j = 1, . . . ,M , and GN = {θ1, . . . , θN } where θk :R+ → R for k = 1, . . . ,N ,
be two dictionaries. Typically the size of the dictionary FM used to estimate the function of the covariates in a high-
dimensional setting is large, i.e. M � n, whereas to estimate a function on R+, we consider a dictionary GN with size
N of the order of n. The sets FM and GN can be collections of functions such as wavelets, splines, step functions, co-
ordinate functions etc. They can also be collections of several estimators computed using different tuning parameters.
To make sure that no identification problems appear by using two dictionaries, it is assumed that only the dictionary
GN = {θ1, . . . , θN } can contain the constant function, not FM = {f1, . . . , fM}. The candidates for the estimator of λ0

are of the form

λβ,γ (t,Zi ) = αγ (t)efβ(Zi ) with logαγ =
N∑

k=1

γkθk and fβ =
M∑

j=1

βjfj ,

where (β,γ ) ∈R
M ×R

N .
The dictionaries FM and GN are chosen such that the two following assumptions are fulfilled:

For all j in {1, . . . ,M}, ‖fj‖n,∞ = max
1≤i≤n

∣∣fj (Zi)
∣∣< ∞. (A3)

For all k in {1, . . . ,N}, ‖θk‖∞ = max
t∈[0,τ ]

∣∣θk(t)
∣∣< ∞. (A4)

We consider a weighted Lasso procedure for estimating λ0.

Estimation procedure 2.3. The Lasso estimator of λ0 is defined by λ
β̂L,γ̂L

, where

(β̂L, γ̂ L) = arg min
(β,γ )∈RM×RN

{
Cn(λβ,γ ) + pen(β) + pen(γ )

}
,

with

pen(β) =
M∑

j=1

ωj |βj | and pen(γ ) =
N∑

k=1

δk|γk|.

The positive data-driven weights ωj = ω(fj , n,M,ν, x), j = 1, . . . ,M and δk = δ(θk, n,N, ν̃, y), k = 1, . . . ,N

are defined as follows. Let x > 0, y > 0, ε > 0, ε̃ > 0, c = 2
√

2(1 + ε), c̃ = 2
√

2(1 + ε̃) and (ν, ν̃) ∈ (0,3)2 such that
ν > Φ(ν) and ν̃ > Φ(ν̃), where Φ(u) = exp(u) − u − 1. With these notations, the weigths are defined by

ωj = c

√
Ŵ ν

n (fj )(x + logM)

n
+ 2

x + logM

3n
‖fj‖n,∞, (5)

δk = c̃

√
T̂ ν̃

n (θk)(y + logN)

n
+ 2

y + logN

3n
‖θk‖∞, (6)

for

Ŵ ν
n (fj ) = ν/n

ν/n − Φ(ν/n)
V̂n(fj ) + x/n

ν/n − Φ(ν/n)
‖fj‖2

n,∞, (7)

T̂ ν̃
n (θk) = ν̃/n

ν̃/n − Φ(ν̃/n)
R̂n(θk) + y/n

ν̃/n − Φ(ν̃/n)
‖θk‖2∞, (8)
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where V̂n(fj ) and R̂n(θk) are the “observable” empirical variance of fj and θk respectively, given by

V̂n(fj ) = 1

n

n∑
i=1

∫ τ

0

(
fj (Zi )

)2 dNi(s) and R̂n(θk) = 1

n

n∑
i=1

∫ τ

0

(
θk(s)

)2 dNi(s).

Remark 2.4. The general Lasso estimator for β is classically defined by

β̂L = arg min
β∈RM

{
Cn(λβ) + Γ

M∑
j=1

|βj |
}

,

with Γ > 0 a smoothing parameter. Usually, Γ is of order
√

logM/n (see Massart and Meynet [30] for the usual
additive regression model and Antoniadis et al. [3] for the Cox model among other). The Lasso penalization for β
corresponds to the simple choice ωj = Γ where Γ > 0 is a smoothing parameter. Our weights could be compared
with those of Bickel et al. [7] in the case of an additive regression model with a gaussian noise. They have considered
a weighted Lasso with a penalty term of the form Γ

∑M
j=1 ‖fj‖n|βj |, with Γ of order

√
logM/n and ‖ · ‖n the usual

empirical norm. We can deduce from the weights ωj defined by (5) higher suitable weights that can be written Γ 1
n,Mω̃j

with ω̃j =
√

Ŵ ν
n (fj ) defined by (7), which is of order

√
V̂n(fj ) and

Γ 1
n,M = c

√
x + logM

n
+ 2

x + logM

3n
max

1≤j≤M

‖fj‖n,∞√
Ŵ ν

n (fj )

.

The regularization parameter Γ 1
n,M is still of order

√
logM/n. The weights ω̃j correspond to the estimation of the

weighted empirical norm ‖ · ‖n,Λ that is not observable and play the same role than the empirical norm ‖fj‖n in
Bickel et al. [7]. These weights are also of the same form as those of van de Geer [38] for the logistic model.

The idea of adding some weights in the penalization comes from the adaptive Lasso, although it is not the same
procedure. Indeed, in the adaptive Lasso (see Zou [43]) one chooses ωj = |β̃j |−a where β̃j is a preliminary estimator
and a > 0 a constant. The idea behind this is to correct the bias of the Lasso in terms of variables selection accuracy
(see Zou [43] and Zhang [41] for regression analysis and Zhang and Lu [40] for the Cox model). The weights ωj can
also be used to scale each variable at the same level, which is suitable when some variables have a large variance
compared to the others.

Remark 2.5 (Towards practical issues). The actual computation of the estimator λ
β̂L,γ̂ L

, although of the greatest
interest, is beyond the scope of the present paper. However, we give here the principal steps to get it. Two types of
algorithms could be considered: the cyclical coordinate descent or the proximal gradient descent. As far as we know,
maximal algorithms have not yet been implemented for the Cox model (neither for the partial likelihood nor for the
total likelihood). On the other hand, cyclical coordinate descent is implemented for the Cox model, e.g., in the R
function glmnet, but only for the partial likelihood. In addition, our sum of weighted 
1-penalizations is not usual and
require attention when applying the proximal operator in both cyclical coordinate descend and proximal algorithm.
Finally, the cross validation procedure will have to consider regularization parameters on a squared grid. This done,
we would be able to compare unweighted to weighted procedures in terms of selection, estimation or prediction
accuracies. Following the example in an other context of Hansen et al. [21], we shall expect our weighted procedure
to outscore the unweighted one.

3. Oracle inequalities for the Cox model when the baseline hazard function is known

As a first step, we suppose that the intensity satisfies the generalization of the Cox model (2) with a known baseline
function α0. In this context, only f0 has to be estimated and λ0 is estimated by

λ
β̂L

(t,Zi ) = α0(t)e
f

β̂L
(Zi ) and β̂L = arg min

β∈RM

{
Cn(λβ) + pen(β)

}
. (9)
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In this section, we state non-asymptotic oracle inequalities for the prediction loss of the Lasso in terms of the Kullback
divergence. These inequalities allow us to compare the prediction error of the estimator and the best approximation of
the regression function by a linear combination of the functions of the dictionary in a non-asymptotic way.

3.1. A slow oracle inequality

In the following theorem, we state an oracle inequality in the Cox model with slow rate of convergence, i.e. with a rate
of convergence of order

√
logM/n. This inequality is obtained under a very light assumption on the dictionary FM .

Proposition 3.1. Consider model (2) with known α0. Let x > 0 be fixed, ωj be defined by (5) and for β ∈R
M ,

pen(β) =
M∑

j=1

ωj |βj |.

Let Aε,ν(x) be some numerical positive constant depending only on ε, ν and x. Under assumption (A3), with a
probability larger than 1 − Aε,ν(x)e−x , then

K̃n(λ0, λβ̂L
) ≤ inf

β∈RM

(
K̃n(λ0, λβ) + 2 pen(β)

)
. (10)

This theorem states a non-asymptotic oracle inequality in prediction on the conditional hazard rate function in the
Cox model. The ωj are the order of

√
logM/n and the penalty term is of order ‖β‖1

√
logM/n. This variance order

is usually referred as a slow rate of convergence in high dimension (see Bickel et al. [7] for the additive regression
model, Bertin et al. [6] and Bunea et al. [13] for density estimation).

3.2. A fast oracle inequality

Now, we are interested in obtaining a non-asymptotic oracle inequality with a fast rate of convergence of order
logM/n and we need further assumptions in order to prove such result. In this subsection, we shall work locally,
for μ > 0, on the set ΓM(μ) = {β ∈ R

M : ‖ logλβ − logλ0‖n,∞ ≤ μ}, simply denoted Γ (μ) to simplify the notations
and we consider the following assumption:

There exists μ > 0, such that Γ (μ) contains a non-empty open set of RM. (A5)

This assumption has already been considered by van de Geer [38] or Kong and Nan [24]. Roughly speaking, it
means that one can find a set where we can restrict our attention for finding good estimator of f0. This assumption is
needed in order to connect, via the notion of self-concordance (see Bach [4]), the weighted empirical quadratic norm
and the empirical Kullback divergence (see Proposition 6.2).

The weighted Lasso estimator becomes

β̂
μ

L = arg min
β∈Γ (μ)

{
Cn(λβ) + pen(β)

}
. (11)

By definition, this weighted Lasso estimator is obtained on a ball centered around the true function λ0. However
in assumption (A5), we can always consider a large radius μ, which weakens it. This could not change the rate of
convergence in the oracle inequalities (∼ logM/n) but only the range of a constant. In the particular case in which
logλβ for all β ∈ R

M and logλ0 are bounded, there exists μ > 0 such that ‖ logλβ − logλ0‖n,∞ ≤ ‖ logλβ‖n,∞ +
‖ logλ0‖n,∞ ≤ μ.

To achieve a fast rate of convergence, one needs an additional assumption on the Gram matrix. See Bühlmann and
van de Geer [10] and Bickel et al. [7] for detailed discussions on the different assumptions required for fast oracle
inequalities. One of the weakest assumption is the Restricted Eigenvalue condition introduced by Bickel et al. [7]. We
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choose to work under this Restricted Eigenvalue condition. Let us first introduce further notations:

Δ = D
(
β̂

μ

L − β
)

with β ∈ Γ (μ) and D = (diag(ωj )
)

1≤j≤M
,

X = (fj (Zi )
)
i,j

, with i ∈ {1, . . . , n} and j ∈ {1, . . . ,M},

Gn = 1

n
XT CX with C = (diag

(
Λi(τ)

))
1≤i≤n

. (12)

In the matrix Gn, the covariates of individual i are re-weighted by its cumulative risk Λi(τ), which is consistent with
the definition of the empirical norm in (4). Let also J (β) be the sparsity set of vector β ∈ Γ (μ) defined by J (β) = {j ∈
{1, . . . ,M}: βj 	= 0}, and the sparsity index is then given by |J (β)| = Card{J (β)}. For J ⊂ {1, . . . ,M}, we denote by
βJ the vector β restricted to the set J : (βJ )j = βj if j ∈ J and (βJ )j = 0 if j ∈ J c where J c = {1, . . . ,M} \ J .

Usually, in order to obtain a fast oracle inequality, we need to assume a Restricted Eigenvalue condition on the
Gram matrix Gn. However, since Gn is random in our case, we impose the Restricted Eigenvalue condition to E(Gn),
where the expectation is taken conditionally to the covariates.

For some integer s ∈ {1, . . . ,M} and a constant a0 > 0, the following condition holds:

0 < κ0(s, a0) = min
J⊂{1,...,M},

|J |≤s

min
b∈RM\{0},

‖bJc ‖1≤a0‖bJ ‖1

(bT
E(Gn)b)1/2

‖bJ ‖2
. (RE(s, a0))

The integer s here plays the role of an upper bound on the sparsity |J (β)| of a vector of coefficients β , so that the
square submatrices of size less than 2s of the expectation of the weighted Gram matrix are positive definite.

This assumption is weaker than the classical one and the following lemma implies that if the Restricted Eigenvalue
condition is verified for E(Gn), then the empirical version of the Restricted Eigenvalue condition applied to Gn holds
true with large probability. This modified Restricted Eigenvalue condition is new and this is the first time to our best
knowledge that a fast-non-asymptotic oracle inequality has been established under such a condition.

Lemma 3.2. Let L > 0 such that max1≤j≤M max1≤i≤n |fj (Zi )| ≤ L. Under assumptions (A2) and (RE(s, a0)), we
have

0 < κ = min
J⊂{1,...,M},

|J |≤s

min
b∈RM\{0},

‖bJc ‖1≤a0‖bJ ‖1

(bT Gnb)1/2

‖bJ ‖2
and κ = (1/

√
2A0)κ0(s, a0), (13)

with probability larger than 1 − πn, where

πn = 2M2 exp

[
− nκ4

2L2(1 + a0)2s(L2(1 + a0)2s + κ2/3)

]
.

Lemma 3.2 assures that the empirical Restricted Eigenvalue condition holds true on an event of large probability,
on which we establish a fast non-asymptotic oracle inequality.

Remark 3.3 (Censoring case). In the particular case of the right censoring (see Remark 1.1), we obtain a better
version of Lemma 3.2. Indeed, in this case, Λi([0, τ ]) is exponentially distributed with rate parameter 1 and since
Λi([0, τ ]) ≤ Λi([0,∞]) almost surely, its expectation is then just less than 1, so that we obtain (13) with probability
larger than

1 − 2M2 exp

(
− nκ4

2L2(1 + a0)2s(L2(1 + a0)2s + κ2)

)
with κ = (1/

√
2)κ0(s, a0).

Theorem 3.4. Consider model (2) with known α0 and for x > 0, let ωj be defined by (5) and β̂
μ

L be defined by (11).
Let Aε,ν(x) > 0 be a numerical positive constant only depending on ε, ν and x, ζ > 0 and s ∈ {1, . . . ,M} be fixed.
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Let assumptions (A2), (A3), (A5) and (RE(s, a0)) be satisfied with a0 = (3 + 4/ζ ) and let κ = (1/
√

2A0)κ0(s, a0).
Then, with a probability larger than 1 − Aε,ν(x)e−x − πn, the following inequality holds

K̃n(λ0, λβ̂
μ
L
) ≤ (1 + ζ ) inf

β∈Γ (μ)

|J (β)|≤s

{
K̃n(λ0, λβ) + C(ζ,μ)

|J (β)|
κ2

(
max

1≤j≤M
ωj

)2
}
, (14)

where C(ζ,μ) > 0 is a constant depending on ζ and μ.

This result allows to compare the prediction error of the estimator and the best sparse approximation of the regres-
sion function by an oracle that knows the truth, but is constrained by sparsity. The Lasso estimator approaches the best
approximation in the dictionary with a fast error term of order logM/n.

Thanks to Proposition 6.2, which states a connection between the empirical Kullback divergence (3) and the
weighted empirical quadratic norm (4), we deduce from Theorem 3.4 a non-asymptotic oracle inequality in weighted
empirical quadratic norm.

Corollary 3.5. Under the assumptions of Theorem 3.4, with a probability larger than 1 − Aε,ν(x)e−x − πn,

‖ logλ
β̂

μ
L

− logλ0‖2
n,Λ ≤ (1 + ζ ) inf

β∈Γ (μ)

|J (β)|≤s

{
‖ logλβ − logλ0‖2

n,Λ + c̃(ζ,μ)
|J (β)|

κ2

(
max

1≤j≤M
ωj

)2
}
,

where c̃(ζ,μ) is a positive constant depending on ζ and μ.

Note that for α0 supposed to be known, this oracle inequality is also equivalent to

‖f
β̂

μ
L

− f0‖2
n,Λ ≤ (1 + ζ ) inf

β∈Γ (μ)

|J (β)|≤s

{
‖fβ − f0‖2

n,Λ + c̃(ζ,μ)
|J (β)|

κ2

(
max

1≤j≤M
ωj

)2
}
.

3.3. Particular case: Variable selection in the Cox model

We now consider the case of variable selection in the Cox model (2) with f0(Zi) = βT
0 Zi . In this case, M = p and

the functions of the dictionary are such that for i = 1, . . . , n and j = 1, . . . , p

fj (Zi ) = Zi,j and fβ(Zi ) =
p∑

j=1

βjZi,j = βT
0 Zi .

Let X = (Zi,j )1≤i≤n,1≤j≤p be the design matrix and for β̂L defined by (9), let

Δ0 = D(β̂L − β0), D = (diag(ωj )
)

1≤j≤M
, J0 = J (β0) and |J0| = Card{J0}.

We now state non-asymptotic inequalities for prediction on Xβ0 and for estimation on β0. In this subsection, we
do not need to work locally on the set Γ (μ) to obtain Proposition 6.3 and instead of considering assumption (A5),
we only have to introduce the following assumption to connect the empirical Kullback divergence and the weighted
empirical quadratic norm:

Let R be a positive constant, such that max
i∈{1,...,n}

‖Zi‖2 ≤ R. (A6)

We consider the Lasso estimator defined with the regularization parameter Γ1 > 0:

β̂L = arg min
β∈Rp

{
Cn(λβ) + Γ1

p∑
j=1

ωj |βj |
}

,
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Theorem 3.6. Consider model (1) with known α0. For x > 0, let ωj be defined by (5) and denote κ ′ =
(1/

√
2A0)κ0(s,3). Let Aε,ν(x) be some numerical positive constant depending on ε, ν and x. Under assumptions

(A2), (A3), (A6) and (RE(s, a0)) with a0 = 3, for all Γ1 such that

Γ1 ≤ 1

48Rs

min1≤j≤M ω2
j

max1≤j≤M ω2
j

κ ′2

max1≤j≤M ωj

,

with a probability larger than 1 − Aε,ν(x)e−Γ1x − πn, then

∥∥X(β̂L − β0)
∥∥2

n,Λ
≤ 4

ξ2

|J0|
κ ′2 Γ 2

1

(
max

1≤j≤p
ωj

)2
(15)

and

‖β̂L − β0‖1 ≤ 8
max1≤j≤p ωj

min1≤j≤p ωj

|J0|
ξκ ′2 Γ1 max

1≤j≤p
ωj . (16)

This theorem gives non-asymptotic upper bounds for two types of loss functions. Inequality (15) gives a non-
asymptotic bound on prediction loss with a rate of convergence in logM/n, while Inequality (16) states a bound on
β̂L − β0.

4. Oracle inequalities for general intensity

In the previous section, we have assumed α0 known and have obtained results on the relative risk. Now, we consider
a general intensity λ0 that does not rely on an underlying model. Oracle inequalities are established under different
assumptions with slow and fast rates of convergence.

4.1. A slow oracle inequality

The slow oracle inequality for a general intensity is obtained under light assumptions that concern only the construc-
tion of the two dictionaries FM and GN .

Theorem 4.1. For x > 0 and y > 0, let ωj and δk be defined by (5) and (6) respectively and (β̂L, γ̂ L) be de-
fined in Estimation procedure 2.3. Let Aε,ν(x) and Bε̃,ν̃ (y) > 0 be two positive numerical constants depending
on ε, ν, x and ε̃, ν̃, y respectively and assumptions (A2), (A3), (A4) be satisfied. Then, with probability larger than
1 − Aε,ν(x)e−x − Bε̃,ν̃ (y)e−y

K̃n(λ0, λβ̂L,γ̂L
) ≤ inf

(β,γ )∈RM×RN

{
K̃n(λ0, λβ,γ ) + 2 pen(β) + 2 pen(γ )

}
. (17)

We have chosen to estimate the complete intensity, which involves two different parts: the first part is the baseline
function αγ :R → R and the second part is the function of the covariates fβ :Rp → R. The double 
1-penalization
considered here is tuned to concurrently estimate the function f0 depending on high-dimensional covariates and the
non-parametric function α0. As f0 and α0 are estimated at once, the resulting rate of convergence is the sum of the
two expected rates in both situations considered separately (∼√

logM/n + √
logN/n). Nevertheless, from Bertin

et al. [6], we expect that a choice of N of order n would suitably estimate α0. As a consequence, in a very high-
dimensional setting the leading error term in (17) would be of order

√
logM/n, which again is the classical slow rate

of convergence in a regression setting.
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4.2. A fast oracle inequality

We are now interested in obtaining the fast non-asymptotic oracle inequality and as usual, we need to introduce further
notations and assumptions. In this subsection, we shall again work locally for ρ > 0 on the set Γ̃M,N(ρ) = {(β,γ ) ∈
R

M ×R
N : ‖ logλβ,γ − logλ0‖n,∞ ≤ ρ}, simply denoted Γ̃ (ρ) and we consider the following assumption:

There exists ρ > 0, such that Γ̃ (ρ) contains a non-empty open set of RM ×R
N. (A7)

On Γ̃ (ρ), we define the weighted Lasso estimator as(
β̂

ρ

L, γ̂
ρ
L

)= arg min
(β,γ )∈Γ̃ (ρ)

{
Cn(λβ,γ ) + pen(β) + pen(γ )

}
.

Let us give the additional notations. Set Δ̃ be

Δ̃ = D̃
(

β̂L − β

γ̂ L − γ

)
∈ R

M+N with (β,γ ) ∈ Γ̃ (ρ) and D̃ = diag(ω1, . . . ,ωM, δ1, . . . , δN ).

Let 1n×N be the matrix n × N with all coefficients equal to one,

X̃(t) = [ (fj (Zi ))1≤i≤n,1≤j≤M 1n×N(diag(θk(t)))1≤k≤N ] =
⎡⎢⎣ θ1(t) · · · θN(t)

X
...

...

θ1(t) · · · θN(t)

⎤⎥⎦ ∈R
n×(M+N)

and

G̃n = 1

n

∫ τ

0
X̃(t)T C̃(t)X̃(t)dt with C̃(t) = (diag

(
λ0(t,Zi )Yi(t)

))
1≤i≤n

, ∀t ≥ 0.

Let also J (β) and J (γ ) be the sparsity sets of vectors (β,γ ) ∈ Γ̃ (ρ) respectively defined by

J (β) = {j ∈ {1, . . . ,M}: βj 	= 0
}

and J (γ ) = {k ∈ {1, . . . ,N}: γk 	= 0
}
,

and the sparsity indexes are then given by

∣∣J (β)
∣∣= M∑

j=1

1{βj 	=0} = Card
{
J (β)

}
and

∣∣J (γ )
∣∣= N∑

k=1

1{γk 	=0} = Card
{
J (γ )

}
.

To obtain the fast non-asymptotic oracle inequality, we consider the Restricted Eigenvalue condition applied to the
matrix E(G̃n).

For some integer s ∈ {1, . . . ,M + N} and a constant r0 > 0, we assume that G̃n satisfies:

0 < κ̃0(s, r0) = min
J⊂{1,...,M+N},

|J |≤s

min
b∈RM+N\{0},

‖bJc ‖1≤r0‖bJ ‖1

(bT
E(G̃n)b)1/2

‖bJ ‖2
. (R̃E(s, r0))

The condition on the matrix E(G̃n) is rather strong because the block matrix involves both functions of the covari-
ates of FM and functions of time which belong to GN . This is the price to pay for an oracle inequality on the full
intensity. If we had instead considered two restricted eigenvalue assumptions on each block, we would have estab-
lished an oracle inequality on the sum of the two unknown parameters α0 and f0 and not on λ0. As in Lemma 3.2, we
can show that under assumption (R̃E(s, r0)), we have an empirical Restricted Eigenvalue condition on the matrix G̃n.
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Lemma 4.2. Let L defined as in Lemma 3.2. Under assumptions (A2) and (R̃E(s, r0)), we have

0 < κ̃ = min
J⊂{1,...,M},

|J |≤s

min
b∈RM\{0},

‖bJc ‖1≤r0‖bJ ‖1

(bT G̃nb)1/2

‖bJ ‖2
and κ̃ = (1/

√
2A0)κ̃0(s, r0), (18)

with probability larger than 1 − π̃n, where

π̃n = 2M2 exp

[
− nκ̃4

2L2(1 + r0)2s(L2(1 + r0)2s + κ̃2/3)

]
.

Theorem 4.3. For x > 0 and y > 0, let ωj and δk be defined by (5) and (6) respectively. Let Aε,ν(x) >

0 and Bε̃,ν̃ (y) > 0 be two numerical positive constants depending on ε, ν, x and ε̃, ν̃, y respectively, ζ > 0 and
s ∈ {1, . . . ,M + N} be fixed. Let assumptions (A2), (A3), (A4), (A7) and (R̃E(s, r0)) be satisfied with

r0 = (3 + 8 max
(√∣∣J (β)

∣∣,√∣∣J (γ )
∣∣)/ζ ),

and let κ̃ = (1/
√

2A0)κ̃0(s, r0). Then, with probability larger than 1 − Aε,ν(x)e−x − Bε̃,ν̃ (y)e−y − π̃n

K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
)

≤ (1 + ζ ) inf
(β,γ )∈Γ̃ (ρ)

max(|J (β)|,|J (γ )|)≤s

{
K̃n(λ0, λβ,γ ) + C̃(ζ, ρ)

max(|J (β)|, |J (γ )|)
κ̃2

max
1≤j≤M

1≤k≤N

{
ω2

j , δ
2
k

}}
, (19)

and

‖ logλ0 − logλ
β̂

ρ
L,γ̂

ρ
L
‖2
n,Λ

≤ (1 + ζ ) inf
(β,γ )∈Γ̃ (ρ)

max(|J (β)|,|J (γ )|)≤s

{
‖ logλ0 − logλβ,γ ‖2

n,� + C̃′(ζ, ρ)
max(|J (β)|, |J (γ )|)

κ̃2
max

1≤j≤M

1≤k≤N

{
ω2

j , δ
2
k

}}
, (20)

where C̃(ζ, ρ) > 0 and C̃′(ζ, ρ) > 0 are constants depending only on ζ and ρ.

We obtain a non-asymptotic fast oracle inequality in prediction. Indeed, the rate of convergence of this oracle
inequality is of order(

max
1≤j≤M

1≤k≤N

{ωj , δk}
)2 ≈ max

{
logM

n
,

logN

n

}
,

namely, if we choose GN of size n, the rate of convergence of this oracle inequality is then of order logM/n (see
Section 4.1 for more details). While Estimation procedure 2.3 allows to derive a prediction for the survival time
through the conditional intensity, Theorem 4.3 measures the accuracy of this prediction. In that sense, the clinical
problem of establishing a prognosis has been addressed at this point. To our best knowledge, this oracle inequality is
the first non-asymptotic oracle inequality in prediction for the whole intensity with a fast rate of convergence of order
logM/n.

For the part depending on the covariates, recent results establish non-asymptotic oracle inequalities for the Lasso
estimator of f0 in the usual Cox model (see Bradic and Song [9] and Kong and Nan [24]). We cannot compare our
results to theirs, since we estimate the whole intensity with the total empirical log-likelihood whereas both of them
consider the partial log-likelihood.

The remaining part of the paper is devoted to the technical results and proofs.
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5. An empirical Bernstein’s inequality

The main ingredient of Proposition 3.1 and Theorems 3.4, 4.1 and 4.3 are Bernstein’s concentration inequalities that
we present in this section. To clarify the relation between the stated oracle inequalities and the Bernstein’s inequality,
we sketch here the proof of Theorem 4.1. Using the Doob–Meyer decomposition Ni = Mi + Λi , we can easily show
that for all β ∈ R

M and for all γ ∈R
N

Cn(λβ̂L,γ̂L
) − Cn(λβ,γ ) = K̃n(λ0, λβ̂L,γ̂L

) − K̃n(λ0, λβ,γ ) + (γ̂ L − γ )T νn,τ + (β̂L − β)T ηn,τ , (21)

where

ηn,τ = 1

n

n∑
i=1

∫ τ

0

�f(Zi )dMi(t) and νn,τ = 1

n

n∑
i=1

∫ τ

0

�θ(t)dMi(t), (22)

with �f = (f1, . . . , fM)T and �θ = (θ1, . . . , θN)T . By definition of the Lasso estimator, we have for all (β,γ ) in
R

M ×R
N

Cn(λβ̂L,γ̂L
) + pen(β̂L) + pen(γ̂ L) ≤ Cn(λβ,γ ) + pen(β) + pen(γ ),

and we finally obtain

K̃n(λ0, λβ̂L,γ̂L
) ≤ K̃n(λ0, λβ,γ ) + (γ̂ L − γ )T νn,τ + (β̂L − β)T ηn,τ + pen(β) − pen(β̂L) + pen(γ ) − pen(γ̂ L).

Consequently, K̃n(λ0, λβ̂L,γ̂L
) is bounded by

K̃n(λ0, λβ,γ ) +
M∑

j=1

(β̂L,j − βj )ηn,τ (fj ) +
M∑

j=1

ωj

(|βj | − |β̂L,j |
)

+
N∑

k=1

(γ̂L,k − γk)
T νn,τ (θk) +

N∑
k=1

δk

(|γk| − |γ̂L,k|
)
,

with

ηn,t (fj ) = 1

n

n∑
i=1

∫ t

0
fj (Zi )dMi(s) and νn,t (θk) = 1

n

n∑
i=1

∫ t

0
θk(s)dMi(s).

We will control ηn,τ (fj ) and νn,τ (θk) respectively by ωj and δk . More precisely, the weights ωj (respectively δk) will
be chosen such that |ηn,τ (fj )| ≤ ωj (respectively |νn,τ (θk)| ≤ δk) and P(|ηn,τ (fj )| > ωj) (respectively P(|νn,τ (θk)| >
δk) large. As ηn,t (fj ) and νn,t (θk) involve martingales, we could directly apply classical Bernstein’s inequalities for
martingales with x > 0 and y > 0

P

[
ηn,t (fj ) ≥

√
2Vn,t (fj )x

n
+ x

3n

]
≤ e−x and P

[
νn,t (θk) ≥

√
2Rn,t (θk)y

n
+ y

3n

]
≤ e−y,

where the predictable variations Vn,t (fj ) and Rn,t (θk) of ηn,t (fj ) and νn,t (θk) are respectively defined by

Vn,t (fj ) = n
〈
ηn(fj )

〉
t
= 1

n

n∑
i=1

∫ t

0

(
fj (Zi )

)2
λ0(t,Zi )Yi(s)ds,

Rn,t (θk) = n
〈
νn(θk)

〉
t
= 1

n

n∑
i=1

∫ t

0

(
θk(t)

)2
λ0(t,Zi )Yi(s)ds,
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see, e.g., van de Geer [37]. Applying these inequalities, the weights of Estimation procedure 2.3 would have the forms
ωj = √

2Vn,t (fj )x/n + x/3n and δk = √
2Rn,t (θk)y/n + y/3n. As Vn,t (fj ) and Rn,t (θk) both depend on λ0, this

would not result a statistical procedure. We propose to replace in the Bernstein’s inequality the predictable variations
by the optional variations of the processes ηn,t (fj ) and νn,t (θk) defined by

V̂n,t (fj ) = n
[
ηn(fj )

]
t
= 1

n

n∑
i=1

∫ t

0

(
fj (Zi )

)2
dNi(s) and R̂n,t (θk) = n

[
νn(θk)

]
t
= 1

n

n∑
i=1

∫ t

0

(
θk(t)

)2
dNi(s).

This ensures that the weights ωj and δk will depends on V̂n,t (fj ) and R̂n,t (θk) respectively. Equivalent strategies in
different models have been considered in Gaïffas and Guilloux [18] or Hansen et al. [21]. The following theorem
states the resulting Bernstein’s inequalities.

Theorem 5.1. Let assumption (A2) be satisfied. For any numerical constant ε > 0, ε̃ > 0, c = √
2(1 + ε) and c̃ =√

2(1 + ε̃), the following holds for any x > 0, y > 0:

P

[∣∣ηn,t (fj )
∣∣≥ c

√
Ŵ ν

n (fj )x

n
+ x

3n
‖fj‖n,∞

]
≤
(

2

log(1 + ε)
log

(
2 + A0(ν/n + Φ(ν/n))

x/n

)
+ 1

)
e−x, (23)

P

[∣∣νn,t (θk)
∣∣≥ c̃

√
T̂ ν̃

n (θk)y

n
+ y

3n
‖θk‖∞

]
≤
(

2

log(1 + ε̃)
log

(
2 + A0(ν̃/n + Φ(ν̃/n))

y/n

)
+ 1

)
e−y, (24)

where

Wν
n (fj ) = ν/n

ν/n − Φ(ν/n)
V̂n(fj ) + x/n

ν/n − Φ(ν/n)
‖fj‖2

n,∞, (25)

T ν̃
n (θk) = ν̃/n

ν̃/n − Φ(ν̃/n)
R̂n(θk) + y/n

ν̃/n − Φ(ν̃/n)
‖θk‖2∞, (26)

for real numbers (ν, ν̃) ∈ (0,3)2 such that ν > Φ(ν) and ν̃ > Φ(ν̃), where Φ(u) = exp(u) − u − 1.

We deduce the weights ωj and δk defined in (5) and (6) respectively, from Theorem 5.1. These empirical Bernstein’s
inequalities hold true for martingales with jumps, when the predictable variation is not observable.

Remark 5.2. Theorem 5.1 is closed to Theorem 3 in Hansen et al. [21], although in our version the event bounding
Ŵ ν

n (fj ) and T̂ ν̃
n (θk) has been removed from the probability (see the proof of Theorem 5.1).

Other weights can also be obtained from empirical Bernstein’s inequalities that are closer to those obtained by
Gaïffas and Guilloux [18] in Theorem 3. We refer to an other version of the paper (see [26]), in which these weights
appear. Their forms are less simple than those defined in (5) and (6), but they do not depend on tuning parameters
ν and ν̃ to determine for the applications. An interesting perspective would be to determine which one of those two
forms of weights gives the best results in the applications.

Remark 5.3 (Censoring case). In the specific case of right censoring, since max1≤i≤n|Ni(τ)| ≤ 1, we can directly
apply the Bernstein type inequality for martingales of Hansen et al. [21] to get quite simpler right term in Inequality
(23). Indeed in this case, for real numbers (u, v) ∈ (0,3)2 such that u > φ(u) and v > φ(v), where φ(z) = exp(z) −
z − 1, and c1,ε = √

2(1 + ε), we would get

P

[
ηn,t (fj ) ≥ c

√
Ŵu

n (fj )x

n
+ x

3n
‖fj‖n,∞

]
≤ 4

(
log(1 + u/x)

log(1 + ε)
+ 1

)
e−x. (27)
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6. Technical results

In this section, we present the technical results, that are not useful for a first reading of the paper but useful for a better
understanding of the theory and used in the proofs of Section 7. Associated proofs are in Appendices A and B.

6.1. Bernstein concentration inequality

We recall here the classical Bernstein concentration inequality (see Proposition 2.9 in Massart [29]).

Theorem 6.1. Let ζ1, . . . , ζn be n independent real valued random variables. Assume that there exist some positive
numbers v and c such that for all integers m ≥ 2

n∑
i=1

E
[|ζi |m

]≤ m!vcm−2. (28)

For any positive x we have

P

(
n∑
i

(
ζi −E(ζi)

)≥ x

)
≤ exp

(
− x2

2(v + cx)

)
. (29)

Note that if the variables ζi are bounded, |ζi | ≤ b for all i in {1, . . . , n}, then assumption (28) is satisfied with

v =
n∑

i=1

E
[
ζ 2
i

]
and c = b/3.

6.2. Connection between the weighted empirical norm and the empirical Kullback divergence

The following propositions connect the empirical Kullback divergence (3) to the weighted empirical norm (4) in the
different cases considered in the paper.

Proposition 6.2 holds true when the intensity verifies model (2) with a known baseline hazard function α0.

Proposition 6.2. Under assumption (A5), for all β ∈ Γ (μ),

μ′‖ logλβ − logλ0‖2
n,Λ ≤ K̃n(λ0, λβ) ≤ μ′′‖ logλβ − logλ0‖2

n,Λ,

where μ′ = φ(μ)/μ2, μ′′ = φ(−μ)/μ2 and φ(t) = e−t + t − 1.

Proposition 6.2 can be rewriten in the particular case of variable selection in the Cox model as follows:

Proposition 6.3. Under assumptions (A6) and (RE(s, a0)) with a0 = 3, there exist two positive numerical constants ξ

and ξ ′ such that

ξ
∥∥(β̂L − β0)

T X
∥∥2

n,Λ
≤ K̃n(λ0, λβ̂L

) ≤ ξ ′∥∥(β̂L − β0)
T X
∥∥2

n,Λ
.

In the general case, when the intensity does not rely on an underlying model, the connection between the weighted
empirical norm (4) and the empirical Kullback divergence (3) is given by the following proposition.

Proposition 6.4. Under assumption (A7), for all (β,γ ) ∈ Γ̃ (ρ),

ρ′‖ logλβ,γ − logλ0‖2
n,Λ ≤ K̃n(λ0, λβ,γ ) ≤ ρ′′‖ logλβ,γ − logλ0‖2

n,Λ,

where ρ′ = φ(ρ)/ρ2, ρ′′ = φ(−ρ)/ρ2 and φ(t) = e−t + t − 1.
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7. Proofs

7.1. Proof of Proposition 2.1

Following the proof of Theorem 1 in Senoussi [32], we rewrite the empirical Kullback divergence (3) as

K̃n(λ0, λ) = 1

n

n∑
i=1

∫ τ

0

[
logλ0(t,Zi ) − logλ(t,Zi ) −

(
1 − λ(t,Zi )

λ0(t,Zi )

)]
λ0(t,Zi )Yi(t)dt

= 1

n

n∑
i=1

∫ τ

0

[
exp

(
log

λ(t,Zi )

λ0(t,Zi )

)
− log

λ(t,Zi )

λ0(t,Zi )
− 1

]
λ0(t,Zi )Yi(t)dt .

Since t → et − t − 1 > 0, except for t = 0, we deduce that, except for λ = λ0,

exp

(
log

λ(t,Zi )

λ0(t,Zi )

)
− log

λ(t,Zi )

λ0(t,Zi )
− 1 > 0.

Thus K̃n(λ0, λ) is positive and vanishes only if (logλ0 − logλ)(t,Zi ) = 0 almost surely, namely if λ0 = λ almost
surely.

7.2. Proof of Proposition 3.1

According to the definition (9) of β̂L, for all β in R
M , we have

Cn(λβ̂L
) + pen(β̂L) ≤ Cn(λβ) + pen(β).

Here α0 is assumed to be known. Hence applying (21), we obtain

K̃n(λ0, λβ̂L
) ≤ K̃n(λ0, λβ) + (β̂L − β)T ηn,τ + pen(β) − pen(β̂L). (30)

It remains to control the term (β̂L − β)T ηn,τ . For ωj defined in (5), set

A =
M⋂

j=1

{∣∣ηn,τ (fj )
∣∣≤ ωj

2

}
. (31)

On A, we have

∣∣(β̂L − β)T ηn,τ

∣∣≤ M∑
j=1

ωj

∣∣(β̂L − β)j
∣∣. (32)

The result (10) follows since pen(β) =∑M
j=1 ωj |βj |. It remains to bound up P(Ac). By applying Theorem 5.1

P
(
Ac
)≤

M∑
j=1

P

(∣∣ηn,τ (fj )
∣∣> ωj

2

)
≤ Aε,ν(x)e−x,

with

Aε,ν(x) = 2

log(1 + ε)
log

(
2 + A0(ν/n + Φ(ν/n))

x/n

)
+ 1. (33)

We conclude that P(A) ≥ 1 − Aε,ν(x)e−x , which ends up the proof of Theorem 3.1.
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7.3. Proof of Lemma 3.2

We show with high probability, that under (RE(s, a0)), for all J ⊂ {1, . . . ,M} such that |J | ≤ s and for all b ∈ R
M \{0}

such that ‖bJc‖1 ≤ a0‖bJ ‖1,

bT Gnb

‖bJ ‖2
2

> κ2, with κ = (1/
√

2A0)κ0(s, a0) and A0 defined in assumption (A2).

Let consider the set ΩGn,t = {|(Gn − E(Gn))j,k| ≤ t,∀(j, k) ∈ {1, . . . ,M}2}, with a fixed t ≥ 0. Under (RE(s, a0)),
on ΩGn,t , for all J ⊂ {1, . . . ,M} such that |J | ≤ s and for all b ∈ R

M \ {0} such that ‖bJc‖1 ≤ a0‖bJ ‖1, we have

bT Gnb = bT
(
Gn −E(Gn)

)
b + bT

E(Gn)b ≥ bT
(
Gn −E(Gn)

)
b + κ2

0‖bJ ‖2
2.

On ΩGn,t , under (RE(s, a0)) we deduce that

bT Gnb ≥ −
∑
i,j

t |bi‖bj | + κ2
0‖bJ ‖2

2 ≥ (−2t (1 + a0)
2s + κ2

0

)‖bJ ‖2
2.

We choose t = A0κ
2/(1 + a0)

2s with κ = κ0/
√

2A0 to get bT Gnb ≥ κ2
0‖bJ ‖2

2.
It remains to calculate P(ΩGn,t ). The coefficient (j, k) of the matrix Gn −E(Gn) is given by

1

n

n∑
i=1

(
Λi −E(Λi)

)
fj (Zi )fk(Zi ).

For sake of simplicity, we put ζ
j,k
i = Λifj (Zi )fk(Zi ) for i = 1, . . . , n and (j, k) ∈ {1, . . . ,M}2 fixed. Under assump-

tions (A2) and (A3), we can apply Bernstein’s inequality (29) to get

P

(∣∣(Gn −E(Gn)
)
i,j

∣∣> A0κ
2

(1 + a0)2s

)
≤ 2 exp

(
− nκ4

2(1 + a0)2sL2(L2(1 + a0)2s + κ2/3)

)
.

So the probability of Ωc
Gn,t with t = A0κ

2/(1 + a0)
2s is given by

P
(
Ωc

Gn,t

)≤ 2M2 exp

(
− nκ4

2(1 + a0)2sL2(L2(1 + a0)2s + κ2/3)

)
,

via an union bound and by denoting

πn = 2M2 exp

(
− nκ4

2(1 + a0)2sL2(L2(1 + a0)2s + κ2/3)

)
,

we finally get (13) with probability larger than 1 − πn.

7.4. Proof of Theorem 3.4

Let us introduce the event

ΩREn(s,a0)(κ) =
{

0 < κ = min
J⊂{1,...,M},

|J |≤s

min
b∈RM\{0},

‖bJc ‖1≤a0‖bJ ‖1

(bT Gnb)1/2

‖bJ ‖2

}
. (34)

From Inequality (30), on A defined by (31), for β ∈ Γ (μ), it follows that

K̃n(λ0, λβ̂
μ
L
) +

M∑
j=1

ωj

2

∣∣(β̂μ
L − β

)
j

∣∣≤ K̃n(λ0, λβ) +
M∑

j=1

ωj

(∣∣(β̂μ
L − β

)
j

∣∣+ |βj | −
∣∣(β̂μ

L

)
j

∣∣).
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On J (β)c , |(β̂μ
L − β)j | + |βj | − |(β̂μ

L)j | = 0, so on A we obtain

K̃n(λ0, λβ̂
μ
L
) +

M∑
j=1

ωj

2

∣∣(β̂μ
L − β

)
j

∣∣≤ K̃n(λ0, λβ) + 2
∑

j∈J (β)

ωj

∣∣(β̂μ
L − β

)
j

∣∣. (35)

We apply Cauchy–Schwarz inequality to the second right-hand side of (35) to get

K̃n(λ0, λβ̂
μ
L
) +

M∑
j=1

ωj

2

∣∣(β̂μ
L − β

)
j

∣∣≤ K̃n(λ0, λβ) + 2
√∣∣J (β)

∣∣√ ∑
j∈J (β)

ω2
j

∣∣β̂μ
L − β

∣∣2
j
. (36)

With the notations Δ = D(β̂
μ

L −β) and D = (diag(ωj ))1≤j≤M introduced in Section 3.2, Inequalities (35) and (36)
become respectively

K̃n(λ0, λβ̂
μ
L
) + 1

2
‖Δ‖1 ≤ K̃n(λ0, λβ) + 2‖ΔJ (β)‖1, (37)

and

K̃n(λ0, λβ̂
μ
L
) ≤ K̃n(λ0, λβ) + 2

√∣∣J (β)
∣∣‖ΔJ (β)‖2. (38)

We fix some ζ > 0 and we consider the following set

A1 = {ζ K̃n(λ0, λβ) ≤ 2‖ΔJ (β)‖1
}
. (39)

Here, we could take ζ = 1, but this parameter ζ allows to have more freedom. The smaller ζ is, the higher P(A1)

is, but the smaller P(ΩREn(s,a0)(κ)) is. So ζ realizes a compromise between these two probabilities. On A ∩Ac
1, the

result of the theorem follows immediately from (37). As soon as, ‖ΔJ (β)c‖1 ≤ (3 + 4/ζ )‖ΔJ (β)‖1, on ΩREn(s,a0)(κ),
with a0 = (3 + 4/ζ ) and κ = (1/

√
2A0)κ0(s, a0) we get

κ2‖ΔJ (β)‖2
2 ≤ ΔT GnΔ.

So, initially we will assume that ‖ΔJ (β)c‖1 ≤ (3 + 4/ζ )‖ΔJ (β)‖1, and we will verify later that this inequality holds.
Since

ΔT GnΔ ≤
(

max
1≤j≤M

ωj

)2‖ logλ
β̂

μ
L

− logλβ‖2
n,Λ.

Inequality (38) becomes on A∩ ΩREn(s,a0)(κ)

K̃n(λ0, λβ̂
μ
L
) ≤ K̃n(λ0, λβ) + 2

√∣∣J (β)
∣∣( max

1≤j≤M
ωj

)
κ−1(‖ logλ

β̂
μ
L

− logλ0‖n,Λ + ‖ logλ0 − logλβ‖n,Λ

)
.

Now, applying Proposition 6.2 to connect the weighted empirical norm to the empirical Kullback divergence, it follows
that

K̃n(λ0, λβ̂
μ
L
) ≤ K̃n(λ0, λβ) + 2

√∣∣J (β)
∣∣( max

1≤j≤M
ωj

) κ−1

√
μ′
(√

K̃n(λ0, λβ̂
μ
L
) +

√
K̃n(λ0, λβ)

)
.

We now use the elementary inequality 2uv ≤ bu2 + v2

b
with b > 0, u = √|J (β)|(max1≤j≤M ωj )κ

−1 and v being

either
√

1
μ′ K̃n(λ0, λβ̂

μ
L
) or

√
1
μ′ K̃n(λ0, λβ). Consequently

K̃n(λ0, λβ̂
μ
L
) ≤ K̃n(λ0, λβ) + 2b

∣∣J (β)
∣∣( max

1≤j≤M
ωj

)2
κ−2 + 1

bμ′ K̃n(λ0, λβ̂
μ
L
) + 1

bμ′ K̃n(λ0, λβ).
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Hence,

K̃n(λ0, λβ̂
μ
L
) ≤ bμ′ + 1

bμ′ − 1
K̃n(λ0, λβ) + 2

b2μ′

bμ′ − 1

∣∣J (β)
∣∣( max

1≤j≤M
ωj

)2
κ−2.

We take bμ′+1
bμ′−1 = 1 + ζ and C(ζ,μ) = 2 b2μ′

bμ′+1 a constant depending on ζ and μ. It follows that for any β ∈ Γ (μ):

K̃n(λ0, λβ̂
μ
L
) ≤ (1 + ζ )

{
K̃n(λ0, λβ) + C(ζ,μ)

∣∣J (β)
∣∣( max

1≤j≤M
ωj

)2
κ−2

}
.

Finally, taking the infimum over all β ∈ Γ (μ) such that |J (β)| ≤ s, we obtain (14).
We have now to verify that ‖ΔJ (β)c‖1 ≤ (3 + 4/ζ )‖ΔJ (β)‖1. On A∩A1, applying (37) we get that

‖Δ‖1 ≤ 4

(
1 + 1

ζ

)
‖ΔJ (β)‖1,

so by splitting Δ = ΔJ (β) + ΔJ (β)c , we finally obtain

‖ΔJ (β)c‖1 ≤
(

3 + 4

ζ

)
‖ΔJ (β)‖1.

Finally, Lemma 3.2 ensures that P(Ac ∪ Ωc
REn(s,a0)

(κ)) ≤ Aε,ν(x)e−x + πn, which achieves the proof of Theo-
rem 3.4.

7.5. Proof of Theorem 3.6

To prove Inequality (15) of Theorem 3.6, we start from (35) with β = β0 and β̂L defined by (9). Consequently

K̃n(λ0, λβ) = 0. Applying Proposition 6.3 with λ0(t,Zi ) = α0(t)eβT
0 Zi and λ

β̂L
(t,Zi ) = α0(t)eβ̂

T

LZi , we obtain that,

on AΓ1 =⋂p

j=1{|ηn,τ (fj )| ≤ Γ1
ωj

2 }

ξ
∥∥(β̂L − β0)

T X
∥∥2

n,Λ
+ Γ1

p∑
j=1

ωj

2
|β̂L − β0|j ≤ 2Γ1

∑
j∈J0

ωj |β̂L − β0|j . (40)

From this inequality, we deduce

ξ
∥∥X(β̂L − β0)

∥∥2
n,Λ

≤ 2Γ1

∑
j∈J0

ωj |β̂L − β0|j ≤ 2
√|J0|Γ1‖Δ0,J0‖2. (41)

From (40), we also have

p∑
j=1

ωj |β̂L − β0|j ≤ 4
∑
j∈J0

ωj |β̂L − β0|j

and we obtain ‖Δ0‖1 ≤ 4‖Δ0J0‖1. We then split ‖Δ0‖1 = ‖Δ0J0‖1 + ‖Δ0J c
0
‖1 to get

‖Δ0J c
0
‖1 ≤ 3‖Δ0J0‖1. (42)

On ΩREn(s,a0)(κ
′), defined by (34), with a0 = 3 and κ ′ = (1/

√
2A0)κ0(s,3) we get

‖XΔ0‖2
n,Λ ≥ κ ′2‖Δ0,J0‖2

2. (43)
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According to (41), we conclude that on AΓ1 ∩ ΩREn(s,a0)(κ
′)

ξ
∥∥X(β̂L − β0)

∥∥2
n,Λ

≤ 2
√|J0|Γ1 max

1≤j≤p
ωj

‖X(β̂L − β0)‖n,Λ

κ ′ ,

which entails that∥∥X(β̂L − β0)
∥∥2

n,Λ
≤ 4|J0|

ξ2κ ′2 Γ 2
1

(
max

1≤j≤p
ωj

)2
,

with P(AΓ1 ∩ ΩREn(s,a0)(κ
′)) ≥ 1 − Aε,ν(x)e−Γ1x − πn.

Let us come to the proof of Inequality (16) in Theorem 3.6. On AΓ1 ∩ ΩREn(s,a0)(κ
′), with a0 = 3, Inequality (41)

becomes

ξ
κ ′2

max1≤j≤M ω2
j

‖Δ0,J0‖2
2 ≤ 2

√|J0|Γ1‖Δ0,J0‖2. (44)

According to (42) and thanks to Cauchy–Schwarz inequality, we have

‖Δ0‖1 = ‖Δ0J0‖1 + ‖Δ0J c
0
‖1 ≤ 4‖Δ0J0‖1 ≤ 4

√|J0|‖Δ0J0‖2.

From (44), we get

‖Δ0‖1

4
√|J0| ≤ 2

√|J0|
ξκ ′2 Γ1 max

1≤j≤p
ω2

j ,

and finally

‖β̂L − β0‖1 ≤ 8
|J0|
ξκ ′2 Γ1

max1≤j≤p ω2
j

min1≤j≤p ωj

,

with P(AΓ1 ∩ ΩREn(s,a0)(κ
′)) ≥ 1 − Aε,ν(x)e−Γ1x − πn.

7.6. Proof of Theorem 4.1

The proof is very similar to the one of Theorem 3.1. We start from (21) and (22), and write

K̃n(λ0, λβ̂L,γ̂L
) ≤ K̃n(λ0, λβ,γ ) + (γ̂ L − γ )T νn,τ + pen(γ ) − pen(γ̂ L)

+ (β̂L − β)T ηn,τ + pen(β) − pen(β̂L). (45)

Consider the set A defined by (31) and let define similarly the set B such that

B =
N⋂

k=1

{∣∣νn,τ (θk)
∣∣≤ δk

2

}
. (46)

Applying Theorem 5.1, we obtain that P(Ac) ≤ Aε,ν(x)e−x and P(Bc) ≤ Bε̃,ν̃ (y)e−y , with Aε,ν(x) defined by (33)
and

Bε̃,ν̃ (y) = 2

log(1 + ε̃)
log

(
2 + A0(ν̃/n + Φ(ν̃/n))

y/n

)
+ 1,

and thus

P
[
(A∩B)c

]= P
(
Ac ∪Bc

)≤ P
(
Ac
)+ P

(
Bc
)≤ Aε,ν(x)e−x + Bε̃,ν̃ (y)e−y. (47)

On A∩B arguing as in the proof of Theorem 3.1, with probability larger than 1−Aε,ν(x)e−x −Bε̃,ν̃ (y)e−y , we finish
the proof by writing (17).
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7.7. Proof of Theorem 4.3

Let introduce the event ΩR̃En(s,r0)
(κ̃) = {0 < κ̃ = minJ⊂{1,...,M},|J |≤s minb∈RM\{0},‖bJc ‖1≤r0‖bJ ‖1

(bT G̃nb)1/2

‖bJ ‖2
}. From

Inequality (45), on A∩B defined in (31) and (46), for (β,γ ) ∈ Γ̃ (ρ), we obtain

K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
) +

M∑
j=1

ωj

2

∣∣(β̂ρ
L − β

)
j

∣∣+ N∑
k=1

δk

2

∣∣(γ̂ ρ
L − γ

)
k

∣∣
≤ K̃n(λ0, λβ,γ ) + 2

∑
j∈J (β)

ωj

∣∣(β̂ρ
L − β

)
j

∣∣+ 2
∑

k∈J (γ )

δk

∣∣(γ̂ ρ
L − γ

)
k

∣∣. (48)

We then apply Cauchy–Schwarz inequality to the second right-term of (48) and obtain

K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
) +

M∑
j=1

ωj

2

∣∣(β̂ρ
L − β

)
j

∣∣+ N∑
k=1

δk

2

∣∣(γ̂ ρ
L − γ

)
k

∣∣
≤ K̃n(λ0, λβ,γ ) + 2

√∣∣J (β)
∣∣√ ∑

j∈J (β)

ω2
j

∣∣β̂ρ
L − β

∣∣2
j
+ 2

√∣∣J (γ )
∣∣√ ∑

k∈J (γ )

δ2
k

∣∣γ̂ ρ
L − γ

∣∣2
k
. (49)

With the notations of Section 4.2, Inequality (48) is rewritten as:

K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
) + 1

2
‖Δ̃‖1 ≤ K̃n(λ0, λβ,γ ) + 2‖Δ̃J (β),J (γ )‖1, (50)

where Δ̃J (β),J (γ ) = D̃
( (β̂

ρ

L−β)J (β)

(γ̂
ρ
L−γ )J (γ )

)
. In the same way, Inequality (49) becomes:

K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
) ≤ K̃n(λ0, λβ,γ ) + 4 max

(√∣∣J (β)
∣∣,√∣∣J (γ )

∣∣)‖Δ̃J (β),J (γ )‖2. (51)

Consider

Ã1 = {ζ K̃n(λ0, λβ,γ ) ≤ 2‖Δ̃J (β),J (γ )‖1
}
. (52)

On A ∩ B ∩ Ã1, Inequality (19) in Theorem 4.3 follows immediately from (50). As soon as, ‖Δ̃J (β)c,J (γ )c‖1 ≤
(3 + 8 max(

√|J (β)|,√|J (γ )|)/ζ )‖Δ̃J (β),J (γ )‖1, on ΩR̃En(s,r0)
(κ̃), with

κ̃ = (1/
√

2)κ̃0(s, r0) and r0 = (3 + 8 max
(√∣∣J (β)

∣∣,√∣∣J (γ )
∣∣)/ζ ),

we get that

κ̃2‖Δ̃J (β),J (γ )‖2
2 ≤ Δ̃T G̃nΔ̃ with Δ̃T G̃nΔ̃ ≤ max

1≤j≤M

1≤k≤N

{ωj , δk}‖ logλ
β̂

ρ
L,γ̂

ρ
L

− logλβ,γ ‖2
n,Λ.

On A∩B ∩ ΩR̃En(s,r0)
(κ̃), from Equation (51) and applying Proposition 6.4 to connect the weighted empirical norm

to the empirical Kullback divergence, we obtain that K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
) is less than

K̃n(λ0, λβ,γ ) + 4 max
(√∣∣J (β)

∣∣,√∣∣J (γ )
∣∣) max

1≤j≤M

1≤k≤N

{ωj , δk} κ̃−1

√
ρ′
(√

K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
) +

√
K̃n(λ0, λβ,γ )

)
.
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Using again 2uv ≤ bu2 + v2

b
with b > 0, u = 2 max(

√|J (β)|,√|J (γ )|)max1≤j≤M,1≤k≤N {ωj , δk}κ̃−1 and v being

either
√

1
ρ′ K̃n(λ0, λβ̂

ρ
L,γ̂

ρ
L
) or

√
1
ρ′ K̃n(λ0, λβ,γ ), we obtain

K̃n(λ0, λβ̂
ρ
L,γ̂

ρ
L
) ≤ bρ′ + 1

bρ′ − 1
K̃n(λ0, λβ,γ ) + 8

b2ρ′

bρ′ − 1
max

(∣∣J (β)
∣∣, ∣∣J (γ )

∣∣)( max
1≤j≤M

1≤k≤N

{ωj , δk}
)2 κ̃−2

ρ′ . (53)

Finally, taking bρ′+1
bρ′−1 = 1 + ζ and C̃(ζ, ρ) = 8 b2ρ′

bρ′+1 a constant depending on ζ and ρ, and taking the infimum over all

(β,γ ) ∈ Γ̃ (ρ) such that max(|J (β)|, |J (γ )|) ≤ s, we obtain Inequality (19).
Inequality (20) follows by applying Proposition 6.2 with b = (1+ζ )ρ′+ρ′′

(1+ζ )ρ′−ρ′′ in (53).

We have now to verify that ‖Δ̃J (β)c,J (γ )c‖1 ≤ (3 + 8 max(
√|J (β)|,√|J (γ )|)/ζ )‖Δ̃J (β),J (γ )‖1. We deduce from

(50) that, on A∩B ∩ Ã1, by splitting Δ̃ = Δ̃J (β),J (γ ) + Δ̃J (β)c,J (γ )c

‖Δ̃J (β)c,J (γ )c‖1 ≤
(

3 + 8

ζ
max

(√∣∣J (β)
∣∣,√∣∣J (γ )

∣∣))‖Δ̃J (β),J (γ )‖1.

To achieve the proof of Theorem 4.3, we combine Equation (47) with Lemma 4.2 to conclude

P
[(
A∩B ∩ ΩR̃En(s,r0)

(κ̃)
)c]≤ Aε,ν(x)e−x + Bε̃,ν̃ (y)e−y + π̃n.

7.8. Proof of Theorem 5.1

The proofs of (23) and (24) are quite similar, so we only present the one of (23). To prove (24), it suffices to replace
ηn,t (fj ) by the process νn,t (θk) throughout the following. Denote by Un,t and Hi(fj ) the quantities

Un,t (fj ) = 1

n

n∑
i=1

∫ t

0
Hi(fj )dMi(s) and Hi(fj ) := fj (Zi )

max1≤i≤n |fj (Zi )| .

Since Hi(fj ) is a bounded predictable process with respect to Ft , Un,t (fj ) is a square integrable martingale. Its
predictable variation is given by

ϑn,t (fj ) = n
〈
Un(fj )

〉
t
= 1

n

n∑
i=1

∫ t

0

(
Hi(fj )

)2
dΛi(s)

and the optional variation of Un,t (fj ) is

ϑ̂n,t (fj ) = n
[
Un(fj )

]
t
= 1

n

n∑
i=1

∫ t

0

(
Hi(fj )

)2 dNi(s).

We also define

Ŵν
n (fj ) = ν/n

ν/n − Φ(ν/n)
ϑ̂n,t (fj ) + x/n

ν/n − Φ(ν/n)
, (54)

for ν ∈ (0,3) such that ν > Φ(ν) with Φ(u) = eu − u − 1.
From Inequality (7.12) in Hansen et al. [21], for any 0 < v < ω < +∞, we have

P

(
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n
, v ≤ Ŵν

n (fj ) ≤ ω

)
≤ 2

(
log(ω/v)

log(1 + ε)
+ 1

)
e−x. (55)
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We focus now on removing the event {v ≤ Ŵν
n (fj ) ≤ ω} in (55). Let us consider the martingale given Ft

ϑ̂n,t (fj ) − ϑn,t (fj ) = 1

n

n∑
i=1

∫ t

0

(
Hi(fj )

)2(dNi(s) − dΛi(s)
)= 1

n

n∑
i=1

∫ t

0

(
Hi(fj )

)2 dMi(s),

and let

Sν,t (fj ) =
n∑

i=1

∫ t

0
Φ

(
ν

n
H 2

i (fj )

)
dΛi(s).

From van de Geer [37], we know that

exp
(
ν
(
ϑ̂n,t (fj ) − ϑn,t (fj )

)− Sν,t (fj )
)

is a supermartingale. Now from Markov inequality, for any ν, x > 0, we obtain that

P

[∣∣ϑ̂n,t (fj ) − ϑn,t (fj )
∣∣≥ Sν,t (fj )

ν
+ x

n

]
≤ 2e−x. (56)

For any 0 < h < 1 and x > 0, Φ(xh) ≤ h2Φ(x). This combined with the fact that 0 < H 2
i (fj ) < 1, we get

Sν,t (fj ) ≤ Φ(ν/n)

n∑
i=1

∫ t

0
H 4

i (fj )dMi(s) ≤ Φ(ν/n)nϑn,t (fj ). (57)

Combining (56) and (57), we deduce that

P

[∣∣ϑ̂n,t (fj ) − ϑn,t (fj )
∣∣≥ Φ(ν/n)

ν/n
ϑn,t (fj ) + x

ν

]
≤ 2e−x. (58)

Now, under assumption (A2), we have ϑn,t (fj ) ≤ A0, so the events

Ων
n =

{
x/n

ν/n − Φ(ν/n)
≤ Ŵν

n (fj )

}
∩ {ϑn,t (fj ) ≤ A0

}
is of probability one and thus

P

(
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n

)
≤ P

({
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n

}
∩ Ων

n

)
. (59)

From (58), we have

P

[
ϑ̂n,t (fj ) ≥ ϑn,t (fj )

(
1 + Φ(ν/n)

ν/n

)
+ x

ν

]
≤ e−x,

and if we denote Eν
n the event

Eν
n =

{
ϑ̂n,t (fj ) ≤ ϑn,t (fj )

(
1 + Φ(ν/n)

ν/n

)
+ x

ν

}
,

we get

P

[
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n

]

≤ e−x + P

[{
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n

}
∩ Ων

n ∩ Eν
n

]
.
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On the event Eν
n ∩ Ων

n , from the definition of Ŵν
n (fj ) given by (54), we have

Ŵν
n (fj ) ≤ ν/n

ν/n − Φ(ν/n)

(
ϑn,t (fj )

(
1 + Φ(ν/n)

ν/n

)
+ x

ν

)
+ x/n

ν/n − Φ(ν/n)

≤ A0
ν/n + Φ(ν/n)

ν/n − Φ(ν/n)
+ 2

x/n

ν/n − Φ(ν/n)
. (60)

From (60), we obtain

P

[{
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n

}
∩ Ων

n ∩ Eν
n

]

≤ P

[
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n
,

x/n

ν/n − Φ(ν/n)
≤ Ŵν

n (fj ) ≤ A0
ν/n + Φ(ν/n)

ν/n − Φ(ν/n)
+ 2

x/n

ν/n − Φ(ν/n)

]
.

We now apply Inequality (55) with v = x/n
ν/n−Φ(ν/n)

and ω = A0
ν/n+Φ(ν/n)
ν/n−Φ(ν/n)

+ 2 x/n
ν/n−Φ(ν/n)

,

P

[
Un,t (fj ) ≥

√
2(1 + ε)Ŵν

n (fj )x

n
+ x

3n

]
≤
(

2

log(1 + ε)
log

(
2 + A0(ν/n + Φ(ν/n))

x/n

)
+ 1

)
e−x. (61)

Now it suffices to multiply both sides of the inequality inside the probability by ‖fj‖n,∞ = max1≤i≤n |fj (Zi )| to end
up the proof of Theorem 5.1.

Appendix A: Proof of Proposition 6.4

The proofs of Propositions 6.2 and 6.4 are similar. So we only prove Proposition 6.4 which corresponds to the general
case. To compare the empirical Kullback divergence (3) and the weighted empirical norm (4), we use Lemma 1 in
Bach [4], that we recall here:

Lemma A.1. Let g be a convex three times differentiable function g :R→ R such that for all t ∈R, |g′′′(t)| ≤ Sg′′(t),
for some S ≥ 0. Then, for all t ≥ 0:

g′′(0)

S2
φ(St) ≤ g(t) − g(0) − g′(0)t ≤ g′′(0)

S2
φ(−St) with φ(u) = e−u + u − 1.

This lemma gives upper and lower Taylor expansions for some convex and three times differentiable function. It has
been introduced to extend tools from self-concordant functions (i.e., which verify |g′′′(t)| ≤ 2g′′(t)3/2) and provide
simple extensions of theoretical results for the square loss for logistic regression.

Let h be a function on [0, τ ] ×R
p and define

G(h) = −1

n

n∑
i=1

∫ τ

0
h(s,Zi )dΛi(s) + 1

n

n∑
i=1

∫ τ

0
eh(s,Zi )Yi(s)ds.
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Consider the function g :R → R defined by g(t) = G(h + tk), where h and k are two functions defined on Rp . By
differentiating G with respect to t we get:

g′(t) = −1

n

n∑
i=1

∫ τ

0
k(s,Zi )dΛi(s) + 1

n

n∑
i=1

∫ τ

0
k(s,Zi )e

h(s,Zi )+tk(s,Zi )Yi(s)ds,

g′′(t) = 1

n

n∑
i=1

∫ τ

0

(
k(s,Zi )

)2eh(s,Zi )+tk(s,Zi )Yi(s)ds,

g′′′(t) = 1

n

n∑
i=1

∫ τ

0

(
k(s,Zi )

)3eh(s,Zi )+tk(s,Zi )Yi(s)ds.

It follows that∣∣g′′′(t)
∣∣≤ ‖k‖n,∞g′′(t).

Applying Lemma A.1 with S = ‖k‖n,∞, we obtain for all t ≥ 0,

g′′(0)

‖k‖2
n,∞

φ
(
t‖k‖n,∞

)≤ g(t) − g(0) − g′(0)t ≤ g′′(0)

‖k‖2
n,∞

φ
(−t‖k‖n,∞

)
.

Take t = 1, h(s,Zi ) = logλ0(s,Zi ) and for (β,γ ) ∈ Γ̃ (ρ), k(s,Zi ) = logλβ,γ (s,Zi ) − logλ0(s,Zi ). We obtain

g′′(0)
φ(‖ logλβ,γ − logλ0‖n,∞)

‖ logλβ,γ − logλ0‖2
n,∞

≤ G(logλβ,γ ) − G(logλ0) − g′(0)

≤ g′′(0)
φ(−‖ logλβ,γ − logλ0‖n,∞)

‖ logλβ,γ − logλ0‖2
n,∞

. (A.1)

Now straightforward calculations show that g′(0) = 0 and g′′(0) = ‖ logλβ,γ − logλ0‖2
n,Λ. Replacing g′(0) and g′′(0)

by their expressions in (A.1) and noting that G(logλβ,γ ) − G(logλ0) = K̃n(λ0, λβ,γ ), we get

φ(‖ logλβ,γ − logλ0‖n,∞)

‖ logλβ,γ − logλ0‖2
n,∞

‖ logλβ,γ − logλ0‖2
n,Λ ≤ K̃n(λ0, λβ,γ )

and

K̃n(λ0, λβ,γ ) ≤ φ(−‖ logλβ,γ − logλ0‖n,∞)

‖ logλβ,γ − logλ0‖2
n,∞

‖ logλβ,γ − logλ0‖2
n,Λ.

According to assumption (A5) for (β,γ ) ∈ Γ̃ (ρ), ‖ logλβ,γ − logλ0‖n,∞ ≤ ρ. Since φ(t)/t2 is decreasing and
bounded below by 0, we can deduce that

φ(‖ logλβ,γ − logλ0‖n,∞)

‖ logλβ,γ − logλ0‖2
n,∞

≥ φ(ρ)

ρ2

and

φ(−‖ logλβ,γ − logλ0‖n,∞)

‖ logλβ,γ − logλ0‖2
n,∞

≤ φ(−ρ)

ρ2
.

Take ρ′ := φ(ρ)/ρ2 > 0 and ρ′′ := φ(−ρ)/ρ2 > 0 to finish the proof.
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Appendix B: Proof of Proposition 6.3

Similarly to the proof of Proposition 6.4, under assumption (A6), when considering

G(β) = −1

n

n∑
i=1

∫ τ

0
log
(
α0(s)e

βT Zi
)

dΛi(s) + 1

n

n∑
i=1

∫ τ

0
α0(s)e

βT Zi Yi(s)ds and g(t) = G(β + tη),

we obtain

∥∥(β̂L − β0)
T X
∥∥2

n,Λ

φ(R‖β̂L − β0‖2)

R2‖β̂L − β0‖2
2

≤ K̃n(λ0, λβ̂L
) ≤ ∥∥(β̂L − β0)

T X
∥∥2

n,Λ

φ(−R‖β̂L − β0‖2)

R2‖β̂L − β0‖2
2

. (B.1)

Now, we will show that R‖β̂L − β0‖2 is bounded. From Equation (37) with β̂
μ

L = β̂L and β = β0, we can deduce
that

K̃n(λ0, λβ̂L
) ≤ 3

2
Γ1‖Δ0‖1,

where Δ0 = D(β̂L − β0) and D = (diag(ωj ))1≤j≤M . From (B.1), we have

K̃n(λ0, λβ̂L
) ≥ ‖(β̂L − β0)

T X‖2
n,Λ

R2‖(β̂L − β0)‖2
2

φ
(
R
∥∥(β̂L − β0)

∥∥
2

)
.

We apply assumption (RE(s, a0)) with a0 = 3 and κ ′ = κ ′(s,3) and we infer that

κ ′2‖Δ0,J0‖2
2 ≤ ∥∥ΔT

0 X
∥∥2

n,Λ
.

So we have,

κ ′2‖Δ0,J0‖2
2

max1≤j≤M ω2
j

φ(R‖β̂L − β0‖2)

R2‖β̂L − β0‖2
2

≤ 3

2
Γ1‖Δ0‖1.

We can now use, with s = |J0|, ‖Δ0‖2 ≤ ‖Δ0‖1 ≤ 4‖Δ0,J0‖1 ≤ 4
√

s‖Δ0,J0‖2 to get

κ ′2φ
(
R‖β̂L − β0‖2

) ≤ 3

2
Γ1

max1≤j≤M ω2
j

min1≤j≤M ω2
j

max
1≤j≤M

ωj

(4
√

s‖(β̂L − β0)J0‖2)
2R2‖β̂L − β0‖2

‖(β̂L − β0)J0‖2
2

≤ 24Γ1
max1≤j≤M ω2

j

min1≤j≤M ω2
j

max
1≤j≤M

ωjsR
2‖Δ0‖2.

A short calculation shows that for all k ∈ (0,1]:
e−2k(1−k)−1 + (1 − k)2k(1 − k)−1 − 1 ≥ 0,

(see Bach [4] for more details). So by taking 2k(1 − k)−1 = R‖β̂L − β0‖2, we have

e−R‖β̂L−β0‖2 + R‖β̂L − β0‖2 − 1 ≥ R2‖β̂L − β0‖2
2

2 + R‖β̂L − β0‖2

and we deduce that

κ ′2R2‖β̂L − β0‖2
2

2 + R‖β̂L − β0‖2
≤ 24Γ1

max1≤j≤M ω2
j

min1≤j≤M ω2
j

max
1≤j≤M

ωj sR
2‖β̂L − β0‖2.
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This implies that

R‖β̂L − β0‖2 ≤ (48Γ1Rs)/κ ′2(max1≤j≤M ω2
j /min1≤j≤M ω2

j )max1≤j≤M ω2
j

1 − (24Γ1Rs)/κ ′2(max1≤j≤M ω2
j /min1≤j≤M ω2

j )max1≤j≤M ω2
j

≤ 2

as soon a Γ1 ≤ 1

48Rs

min1≤j≤M ω2
j

max1≤j≤M ω2
j

κ ′2

max1≤j≤M ωj

.

Since φ(t)/t2 is decreasing and bounded below by 0, we can deduce that

φ(R‖β̂L − β0‖2)

R2‖β̂L − β0‖2
2

≥ φ(2)

4

and

φ(−R‖β̂L − β0‖2)

R2‖β̂L − β0‖2
2

≤ φ(−2)

4
.

Take ξ := φ(2)/4 > 0 and ξ ′ := φ(−2)/4 > 0 and conclude that

ξ
∥∥(β̂L − β0)

T X
∥∥2

n,Λ
≤ K̃n(λ0, λβ̂L

) ≤ ξ ′∥∥(β̂L − β0)
T X
∥∥2

n,Λ
.
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