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Abstract. Consider N particles moving independently, each one according to a subcritical continuous-time Galton–Watson process
unless it hits 0, at which time it jumps instantaneously to the position of one of the other particles chosen uniformly at random.
The resulting dynamics is called Fleming–Viot process. We show that for each N there exists a unique invariant measure for the
Fleming–Viot process, and that its stationary empirical distribution converges, as N goes to infinity, to the minimal quasi-stationary
distribution of the Galton–Watson process conditioned on non-extinction.

Résumé. Nous considérons N particules indépendantes. Chaque particule suit l’évolution d’un processus de Galton–Watson sous-
critique jusqu’au moment où elle touche 0. À cet instant, cette particule choisit uniformément au hasard la position d’une des
autres particules et y saute. Ce processus est appelé Fleming–Viot. Nous montrons que pour chaque entier N , il existe une unique
mesure invariante pour le processus de Fleming–Viot, et que la mesure empirique stationnaire converge vers la loi quasi-stationnaire
minimale d’un processus de Galton–Watson conditionné à ne pas mourir.

MSC: Primary 60K35; secondary 60J25
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1. Introduction

The concept of quasi-stationarity arises in stochastic modeling of population dynamics. In 1947, Yaglom [25] consid-
ers subcritical Galton–Watson processes conditioned to survive long times. He shows that as time is sent to infinity, the
conditioned process, started with one individual, converges to a law, now called a quasi-stationary distribution. For
any Markov process, and a subset A of the state space, we denote by μTt the law of the process at time t conditioned
on not having hit A up to time t , with initial distribution μ. A probability measure on Ac is called quasi-stationary
distribution if it is a fixed point of Tt for any t > 0.

In 1966, Seneta and Veres-Jones [23] realize that for subcritical Galton–Watson processes, there is a one-parameter
family of quasi-stationary distributions and show that the Yaglom limit distribution has the minimal expected time
of extinction among all quasi-stationary distributions. This unique minimal quasi-stationary distribution is denoted
here ν∗

qs. They also show that with an initial distribution μ with finite first moment, μTt converges to ν∗
qs as t goes to

infinity.
In 1978, Cavender [10] shows that for Birth and Death chains on the non-negative integers absorbed at 0, the

set of quasi-stationary measures is either empty or is a one parameter family. In the latter case, Cavender extends
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the selection principle of Seneta and Veres-Jones. He also shows that the limit of the sequence of quasi-stationary
distributions for truncated processes on {1, . . . ,L} converges to ν∗

qs as L is sent to infinity. This picture holds for a
class of irreducible Markov processes on the non-negative integers with 0 as absorbing state, as shown in 1995 by
Ferrari, Kesten, Martinez and Picco [13]. The main idea in [13] is to think of the conditioned process μTt as a mass
transport with refeeding from the absorbing state to each of the transient states with a rate proportional to the transient
state mass. More precisely, denoting N the set of positive integers, the Kolmogorov forward equation satisfied by
μTt(x), for each x ∈ N, reads

∂

∂t
μTt (x) =

∑
y:y �=x

(
q(x, y) + q(x,0)μTt (y)

)[
μTt(y) − μTt(x)

]
, (1.1)

where q(x, y) is the jump rate from x to y. The first term in the right-hand side represents the displacement of mass
due to the jumps of the process and the second term represents the mass going from each x to 0 and then coming
instantaneously to y.

In 1996, Burdzy, Holyst, Ingerman and March [9] introduce a genetic particle system called Fleming–Viot named
after models proposed in [15], which can be seen as a particle system mimicking the evolution (1.1). The particle
system can be built from a process with absorption Zt called the driving process; the position Zt is interpreted
as a genetic trait, or fitness, of an individual at time t . In the N -particle Fleming–Viot system, each trait follows
independent dynamics with the same law as Zt except when one of them hits state 0, a lethal trait: at this moment
the individual adopts the trait of one of the other individuals chosen uniformly at random. Leaving aside the genetic
interpretation, the empirical distribution of the N particles at positions ξ ∈ N

N is defined as a function m(·, ξ) :N →
[0,1] by

∀x ∈ N, m(x, ξ) := 1

N

N∑
i=1

1{ξ(i)=x}. (1.2)

The generator of the Fleming–Viot process with N particles applied to bounded functions f :NN →R reads

LNf (ξ) =
N∑

i=1

∞∑
y=1

[
q
(
ξ(i), y

)+ q
(
ξ(i),0

) N

N − 1
m(y, ξ)

][
f
(
ξ i,y

)− f (ξ)
]
, (1.3)

where ξ i,y(i) = y, and for j �= i, ξ i,y(j) = ξ(j) and q(x, y) are the jump rates of the driving process.
In a few special cases, where the driving process has a unique quasi-stationary distribution, denoted νqs, and where

the associated N -particle Fleming–Viot system has a unique invariant measure, denoted λN , it is established that the
law of the random measure m(·, ξ), where ξ has law λN , converges to νqs. These cases include diffusion processes on
a bounded domain of Rd , killed at the boundary [4,16,17,24], for jump processes under a Doeblin condition [14] and
for finite state jump processes [1].

The subcritical Galton–Watson process has infinitely many quasi-stationary distributions. Our theorem proves that
the stationary empirical distribution m(·, ξ) converges to ν∗

qs, the minimal quasi-stationary distribution. This phe-
nomenon is a selection principle.

Theorem 1.1. Consider a subcritical Galton–Watson process whose offspring law has some finite positive exponential
moment. Let ν∗

qs be the minimal quasi-stationary distribution for the process conditioned on non-extinction. Then, for
each N ≥ 1, the associated N -particle Fleming–Viot system is ergodic. Furthermore, if we call its invariant measure
λN , then

∀x ∈ N, lim
N→∞

∫ ∣∣m(x, ξ) − ν∗
qs(x)

∣∣dλN(ξ) = 0. (1.4)

As a consequence, we get propagation of chaos:
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Corollary 1.2. For any finite set S ⊂ N,

lim
N→∞

∫ ∏
x∈S

m(x, ξ)dλN(ξ) =
∏
x∈S

ν∗
qs(x). (1.5)

In the next section we show this corollary and the strategy for proving Theorem 1.1. Let us highlight two key steps
in the proof with interest of their own. First, we control the position of the rightmost particle. Let

R(ξ) := max
i∈{1,...,N}

ξ(i),

be the position of the rightmost particle of ξ and let ξ
ξ
t (1), . . . , ξ

ξ
t (N) be the positions at time t of the N Fleming–Viot

particles, initially at ξ(1), . . . , ξ(N).

Proposition 1.3. There is a time T and positive constants A,c1, c2,C and ρ, independent of N , such that for any
ξ ∈ N

N

E
(
exp

(
ρR

(
ξ

ξ
T

)))− exp
(
ρR(ξ)

)
< −c1eρR(ξ)1{R(ξ)>A} + NCe−c2R(ξ). (1.6)

Corollary 1.4. For each N there is a unique invariant measure λN for the Fleming–Viot system. Furthermore, there
is a constant κ > 0 such that for any N ,∫

exp
(
ρR(ξ)

)
dλN(ξ) ≤ κN. (1.7)

The proposition and its corollary imply that for each fixed N , the Fleming–Viot process converges to its invariant
distribution λN exponentially fast in time. Let us mention that the control of the maximum is obtained through a
coupling with a branching-type process whose population grows exponentially in time. The strong drift of the driving
process allows us to use the coupling until a convenient fixed finite time.

The second result is that the ratio between the second and the first moment of the empirical distribution plays
the role of a Lyapunov functional, given that the position of the rightmost particle is not too large. For a particle
configuration ξ define

ψ(ξ) :=
∑

1≤i≤N ξ2(i)∑
1≤i≤N ξ(i)

. (1.8)

Recall LN is the Fleming–Viot generator given by (1.3).

Proposition 1.5. There are positive constants v,C1 and C2 independent of N such that

LNψ(ξ) ≤ −vψ(ξ) + C1
R2(ξ)

N
+ C2. (1.9)

Taking expectation in (1.9) under the invariant measure λN , and using (1.7) we obtain the following bound.

Corollary 1.6. There is a positive constant C such that for all N ,∫
ψ(ξ)dλN(ξ) ≤ C. (1.10)

There are several related works motivated by genetics. Brunet, Derrida, Mueller and Munier [7,8] introduce a model
of evolution of a population with selection. They study the genealogy of genetic traits, the empirical measure, and link
the evolution of the barycenter with F-KPP equation ∂tu = ∂xxu − u(1 − u) introduced in 1937 by R. A. Fisher to
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describe the evolution of an advantageous gene in a population. These authors also discover an exactly soluble model
whose genealogy is identical to those predicted by Parisi’s theory of mean-field spin glasses. Durrett and Remenik
[11] establish propagation of chaos for a related continuous-space and time model, and then show that the limit of the
empirical measure is characterized as the solution of a free-boundary integro-differential equation. Bérard and Gouéré
[2] establish a conjecture of Brunet and Derrida for the speed of the rightmost particle for still a third microscopic
model of F-KPP equation introduced in [5,6]. Maillard [19] obtains the precise behavior of the empirical measure of
an approximation of the same model, building on the results of Berestycki, Berestycki and Schweinsberg [3], which
establish the genealogy picture described in [5,6].

We now mention two open problems. The first is to solve the analogue of Theorem 1.1 for a random walk with a
constant drift toward the origin. The difficulty is that we have no candidate for the Lyapounov-type function. This is
a delicate issue without which we cannot even bound the barycenter of the Fleming–Viot process under the stationary
measure. The second problem is to obtain propagation of chaos directly on the stationary empirical measure, with a
bound of order 1/N .

In the next section, we describe our model, sketch the proof of our main result and describe the organization of the
paper.

2. Notation and strategy

Let σ > 0 and p be a probability distribution on N∪ {0} such that∑

≥0

p(
)eσ
 < ∞. (2.1)

Consider a Galton–Watson process Zt ∈ N ∪ {0} with offspring law p. Each individual lives an exponential time of
parameter 1, and then gives birth to a random number of children with law p. The Galton–Watson is subcritical: we
ask p to satisfy

−v :=
∑

≥−1


p(
 + 1) < 0. (2.2)

In other words, the drift when Zt = x is −vx < 0. This constant v > 0 is the one that appears in Proposition 1.5. For
distinct x, y ∈ N∪ {0}, the rates of jump are given by

q(x, y) :=
⎧⎨⎩

xp(0), if y = x − 1 ≥ 0,

xp(y − x + 1), if y > x ≥ 1,

0, otherwise.
(2.3)

The Galton–Watson process starting at x is denoted Zx
t . For a distribution μ on N, the law of the process starting with

μ conditioned on non-absorption until time t is given by

μTt (y) :=
∑

x∈N μ(x)pt (x, y)∑
x,z∈N μ(x)pt (x, z)

, (2.4)

where pt (x, y) = P(Zx
t = y).

Recall that ξ
ξ
t denotes the Fleming–Viot system with generator (1.3) and initial state ξ ; ξt (i) denotes the position

of the ith particle at time t . For a real α > 0 define K(α) as the subset of distributions on N given by

K(α) :=
{
μ:

∑
x∈N x2μ(x)∑
x∈N xμ(x)

≤ α

}
. (2.5)

Observe that μ ∈ K(α) implies
∑

xμ(x) ≤ α.

Proof of Theorem 1.1. The existence of the unique invariant measure λN for Fleming–Viot is given in Proposition 1.3
and Corollary 1.4.
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To show (1.4) we use the invariance of λN and perform the following decomposition.∫ ∣∣m(x, ξ) − ν∗
qs(x)

∣∣dλN(ξ)

=
∫

E
∣∣m(

x, ξ
ξ
t

)− ν∗
qs(x)

∣∣dλN(ξ)

≤ λN(ψ > α) +
∫

ψ≤α

E
∣∣m(

x, ξ
ξ
t

)− ν∗
qs(x)

∣∣dλN(ξ)

≤ λN(ψ > α) +
∫

ψ≤α

E
∣∣m(

x, ξ
ξ
t

)− m(·, ξ)Tt (x)
∣∣dλN(ξ) +

∫
ψ≤α

∣∣m(·, ξ)Tt (x) − ν∗
qs(x)

∣∣dλN(ξ)

≤ λN(ψ > α) + sup
ξ :ψ(ξ)≤α

∣∣m(·, ξ)Tt (x) − ν∗
qs(x)

∣∣+ sup
ξ :ψ(ξ)≤α

E
∣∣m(

x, ξ
ξ
t

)− m(·, ξ)Tt (x)
∣∣, (2.6)

where ψ is defined in (1.8). We bound the three terms of the last line of (2.6).

First term

Corollary 1.6 and Markov’s inequality imply that there is a constant C > 0 such that for any α > 0

λN(ψ > α) ≤ C

α
. (2.7)

Second term

Note that ψ(ξ) ≤ α if and only if m(·, ξ) ∈ K(α). The Yaglom limit converges to the minimal quasi-stationary distri-
bution ν∗

qs, uniformly in K(α) as we show later in Proposition 7.2:

lim
t→∞ sup

μ∈K(α)

∣∣μTt(x) − ν∗
qs(x)

∣∣= 0. (2.8)

Third term

We show in Proposition 8.1 that there exist positive constants C and c such that

sup
ξ∈NN

E
[
m
(
x, ξ

ξ
t

)− m(·, ξ)Tt

]2 ≤ Cect

N
, x ∈ N (2.9)

for all N . The issue here is a uniform bound for the correlations of the empirical distribution of Fleming–Viot at sites
x, y ∈N at fixed time t . This was carried out in [1].

To bound the bottom line of (2.6) choose α large and use (2.7) to make the first term small (uniform in N ). Use
(2.8) to choose t large to make the second term small. For this fixed time, take N large and use (2.9) to make the third
term small. �

Proof of Corollary 1.2. Writing λf instead of
∫

f (ξ)dλN(ξ) and ν instead of ν∗
qs, we get |λ∏x∈S m(x) −∏

x∈S ν(x)| ≤∑
x∈S λ|m(x) − ν(x)|. It suffices now to apply (1.4). �

The rest of the paper is organized as follows. In Section 3, we perform the graphical construction of Fleming–Viot
jointly with a branching-type process (coupling). In Section 4 we obtain large deviation estimates for the Galton–
Watson process. In Section 5 we prove Proposition 1.3. In Section 6 we study the Lyapunov-like functional ψ and
prove Proposition 1.5 and Corollary 1.6. Convergence of the conditional evolution uniformly on K(α) is proved in
Section 7. Finally, (2.9) is handled in Proposition 8.1 of Section 8.
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3. Embedding Fleming–Viot on a branching-type process

In this section we construct a coupling between the Fleming–Viot process and a branching-type process. Let FV-
particles refer to the N positions in the Fleming–Viot process, whereas BT-particles refer to a growing number of
positions in the branching process. Each BT-particle has a position in N and a type i ∈ {1, . . . ,N}.

The i-FV-particle performs jumps governed by the rates (q̃(x, y), x, y ∈ N) defined by q̃(x, y) := q(x, y)1{y �=0}
and “jumps to zero and then to the position of another FV-particle chosen uniformly at random” at rate q(x,0)/(N −
1).

The coupling has the following properties. There is always at least one i-BT-particle at the position of the
i-FV-particle. When the i-FV-particle performs a jump governed by q̃ , one of the i-BT-particles at the same posi-
tion performs the same jump. When the i-FV-particle (is absorbed and immediately) jumps to the position of the
j -FV-particle, a new i-BT-particle is created at the position of each j -BT-particle (that is, each j -BT-particle (dies
and) branches into a j -BT-particle and an i-BT-particle, both at the same position).

We perform a joint Harris construction of the processes. The state of each process at time t is defined as a function
of the initial configuration and a (multidimensional) Poisson process in the time interval [0, t]. The coupling emerges
naturally by taking the same initial configuration and the same Poisson process for both processes. The coupling holds
more generally when the driving process is a Markov process with rates {q(x, y), x, y ∈ N ∪ {0}} with 0 being the
absorbing state and q̄ := supx q(x,0) < ∞; the Galton–Watson is a particular case.

Spatial evolution

Each BT-particle has a position in N which evolves independently with transition rates q̃ so that there are no jumps
to zero. The spatial evolution of new BT-particles born at branching times are independent and with the same rates q̃ .
Under our coupling, each spatial jump performed by the i-FV-particle is also performed by some i-BT-particle.

The refeeding and branching

At rate q̄/(N − 1), each j -BT-particle branches into two new BT-particles, one of type j and one of type i; con-
sequently the total branching rate of each BT-particle is q̄N/(N − 1). Each new born i-BT-particle appears at the
position of the corresponding j -BT-particle and then evolves independently with rates q̃ . If the i-FV-particle is at x,
then at rate q(x,0)/(N − 1) it jumps to the position of the j -FV-particle and – under our coupling – simultaneously
each j -BT-particle branches into an i and a j -BT-particle. In this way, the i-FV-particle occupies always the site of
some i-BT-particle. This can be done because since q(x,0) ≤ q̄ , the Poisson process of rate q(x,0)/(N − 1) gov-
erning the jumps from x to 0 can be set as a thinning of the Poisson process with rates q̄/(N − 1) governing the
branchings.

The actual construction of the coupling requires more notation and definitions. The branching-type process has
state space

B :=
{

ζ ∈N
{1,...,N}×N:

N∑
i=1

∑
x∈N

ζ(i, x) < ∞
}

.

For i ∈ {1, . . . ,N}, x ∈ N, ζt (i, x) indicates the number of BT-particles of type i at site x at time t . Let δ(i,x) ∈ B be
the delta function on (i, x) defined by δ(i,x)(i, x) = 1 and δ(i,x)(j, y) = 0 for (j, y) �= (i, x). The rates corresponding
to the (independent) spatial evolution of the BT-particles at x are

b(ζ, ζ + δ(i,y) − δ(i,x)) = ζ(i, x)q̃(x, y), i ∈ {1, . . . ,N}, x, y ∈N,

and those corresponding to the branching of all j -individuals into an individual of type j and an individual of type i

are

b

(
ζ, ζ +

∑
x∈N

ζ(j, x)δ(i,x)

)
= q̄

N − 1
, i �= j ∈ {1, . . . ,N}.

Note that the new born i-BT-particles get the spatial position of the corresponding j -BT-particle.
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Harris construction of the branching process

Let (N (i, x, y, k), i ∈ {1, . . . ,N}, x, y ∈ N, k ∈ N) be a family of Poisson processes with rates kq̃(x, y) such that
N (i, x, y, k) ⊂ N (i, x, y, k + 1) for all k; we think of a Poisson process as a random subset of R. The process
N (i, x, y, k) is used to produce a jump of an i-BT-particle from x to y when there are k i-BT-particles at site x. The
families {(N (i, x, y, k), k ≥ 1), i ∈ {1,2, . . . ,N}, x, y ∈ N} are taken independent. Let (N (i, j), i �= j) be another
family of independent Poisson processes of rate q̄/(N − 1), these processes are used to branch each j -BT-particle
into an i-BT-particle and a j -BT-particle. The two families are taken independent.

Fix ζ0 = ζ ∈ B, assume the process is defined until time s ≥ 0 and proceed by recurrence.

1. Define τ(ζs, s) := inf{t > s: t ∈⋃
i,x,y N (i, x, y, ζs(i, x)) ∪⋃

i,j N (i, j)}.
2. For t ∈ [s, τ ) define ζt = ζs .
3. If τ ∈N (i, x, y, ζs(i, x)) then set ζτ = ζs + δ(i,y) − δ(i,x).
4. If τ ∈N (i, j) then set ζτ = ζs +∑

x∈N ζs(j, x)δ(i,x).

The process is then defined until time τ . Put s = τ and iterate to define ζt for all t ≥ 0. Denote ζ
ζ
t the process with

initial state ζ . We leave the reader to prove that ζ
ζ
t so defined is the branching-type process, that is, a Markov process

with rates b and initial state ζ .
Let |ζ | :=∑

i,x ζ(i, x) be the total number of BT-particles in ζ . Let

R(ζ ) := max

{
x:

∑
i

ζ(x, i) > 0

}
.

Let Z̃z
t be the process on N with rates q̃ and initial position z ∈ N.

Lemma 3.1. E|ζ ζ
t | = |ζ |eq̄t .

Proof. E|ζt | satisfies the equation

d

dt
E|ζt | = q̄

N − 1
E

(∑
i

∑
j :j �=i

∑
x

ζt (j, x)

)
= q̄

N − 1
(N − 1)E|ζt | = q̄E|ζt |, (3.1)

with initial condition E|ζ0| = |ζ |. �

Lemma 3.2. Let g :N → R
+ be non-decreasing. Then

Eg
(
R
(
ζ

ζ
t

))≤ E
∣∣ζ ζ

t

∣∣Eg
(
Z̃

R(ζ )
t

)
. (3.2)

Proof. Consider the following partial order on B:

ζ ≺ ζ ′ if and only if
∑
y≥x

ζ(i, y) ≤
∑
y≥x

ζ ′(i, y), for all i, x. (3.3)

The branching process is attractive: the Harris construction with initial configurations ζ ≺ ζ ′ gives ζ
ζ
t ≺ ζ

ζ ′
t almost

surely; we leave the proof to the reader. Let ζ ′ := ∑
i,x ζ(i, x)δ(i,R(ζ )) be the configuration having the same number

of BT-particles of type i as ζ for all i, but all are located at r := R(ζ ). Hence ζ ≺ ζ ′ and

Eg
(
R
(
ζ

ζ
t

))≤
∑
i,x

g(x)Eζ
ζ
t (i, x) ≤

∑
x

g(x)
∑

i

Eζ
ζ ′
t (i, x), (3.4)

because g is non-decreasing. Fix i and x and define

bt (r, x) :=
∑

i

Eζ
ζ ′
t (i, x), at := E

∣∣ζ ζ
t

∣∣, p̃t (r, x) := P
(
Z̃r

t = x
)
.
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Since bt (r, x) and at p̃t (r, x) satisfy the same Kolmogorov backwards equations and have the same initial condition,
the right-hand side of (3.4) coincides with the right-hand side of (3.2). This can be seen as an analogue of the many-
to-one lemma, see [18]. �

Harris construction of Fleming–Viot

Let N (i, j, x) ⊂N (i, j) be the Poisson process obtained by independently including each τ ∈N (i, j) into N (i, j, x)

with probability q(x,0)/q̄ (≤ 1, by definition of q̄). The processes (N (i, j, x), i, j ∈ {1, . . . ,N}, x ∈ N) are indepen-
dent Poisson processes of rate q(x,0)/(N − 1).

Fix ξ0 = ξ ∈ N
{1,...,N}, assume the process is defined until time s ≥ 0 and proceed iteratively from s = 0 as follows.

1. Define τ(ξs, s) = inf{t > s: t ∈⋃
i,y N (i, ξs(i), y,1) ∪⋃

i,j N (i, j, ξs(i))}.
2. For t ∈ [s, τ ) define ξt = ξs .
3. If τ ∈N (i, ξs(i), y,1), then set ξτ (i) = y and for i′ �= i set ξτ (i

′) = ξs(i
′).

4. If τ ∈N (i, j, ξs(i)), then set ξτ (i) = ξs(j) and for i′ �= i set ξτ (i
′) = ξs(i

′).

The process is then defined until time τ . Put s = τ and iterate to define ξt for all t ≥ 0. We leave the reader to prove
that ξ

ξ
t is a Markov process with generator LN and initial configuration ξ and the following lemma.

Lemma 3.3. The Fleming–Viot i-particle coincides with the position of a branching i-BT-particle at time t if this
happens at time zero for all i. More precisely,

ζ0
(
i, ξ0(i)

)≥ 1 for all i implies ζt

(
i, ξt (i)

)≥ 1 for all i, a.s. (3.5)

Corollary 3.4. Assume ζ0(i, ξ0(i)) ≥ 1 for all i. Then,

R(ξt ) ≤ R(ζt ), a.s. (3.6)

4. Galton–Watson estimates

We show now that for ρ small enough the functions eρ· belong to the domain of the generator of Galton–Watson,
that is, the Kolmogorov equations hold for these functions. The total number of births of the Galton–Watson process
(Zx

t , t ≥ 0), is a random variable Hx := x + ∑
t>0(Z

x
t − Zx

t−)+. Theorem 2 in [20] says that (2.1) and (2.2) are
equivalent to the existence of a σ ′ > 0 such that E(exp(σ ′H 1)) < ∞. We assume σ ′ ≤ σ (introduced just before
(2.1)). Let

F :=
{
f :N∪ {0} →R:

∑

≥0

e−ρ

∣∣f (
)

∣∣< ∞ for some ρ < σ ′
}
. (4.1)

Note that if f ∈ F, then there exist ρ < σ ′ and C > 0 such that |f (
)| ≤ Ceρ
, 
 ≥ 0. For f ∈ F define the Galton–
Watson semigroup by Stf (x) := E(f (Zx

t )) < ∞, since Zx
t ≤ Hx for all t ≥ 0. The generator Q of Galton–Watson

applied on functions f is given by

Qf (x) :=
∞∑


=−1

xp(
 + 1)
(
f (x + 
) − f (x)

)
, x ≥ 0, (4.2)

if the right-hand side is well defined.

Lemma 4.1. Under the assumption (2.1), for f ∈ F, Qf (x) is well defined and the Kolmogorov equations hold:

d

dt
Stf = QStf = StQf. (4.3)
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Proof. Since |f (x)| ≤ C exp(ρx) for all x ∈N,∣∣Qf (x)
∣∣≤ Cxeρx

(∑

≥−1

p(
 + 1)eρ
 + 1

)
. (4.4)

This shows the first part of the lemma. Consider f ∈ F and define the local martingale (see [22], Section IV-20, pp.
30–37)

Mx
t := f

(
Zx

t

)− f (x) −
∫ t

0
Qf

(
Zx

s

)
ds.

Using (4.4), for all s ≤ t∣∣M1
s

∣∣≤ eρ + exp
(
ρH 1)+ tCH 1 exp

(
ρH 1)≤ C̃ exp

(
ρ̃H 1),

with ρ < ρ̃ < σ ′. Hence E sups∈[0,t] |M1
s | < ∞ and M1

t is a martingale by dominated convergence. Since for ρ ≤ σ ′,
E exp(ρHx) = (E exp(ρH 1))x , the same reasoning shows that Mx

t is a martingale and

Ef
(
Zx

t

)= f (x) + E

∫
Qf

(
Zx

s

)
ds,

which is equivalent to (4.3) for f ∈ F. �

The generator of the reflected Galton–Watson process Z̃t reads

Q̃f (x) :=
∞∑


=−1

xp(
 + 1)1{x+
≥1}
(
f (x + 
) − f (x)

)
, x ∈ N, (4.5)

if the right-hand side is well defined. The reflected process can be thought of as an absorbed process regenerated at
position 1 each time it gets extinct. Since the absorbed process can terminate only when it is at state 1 and jumps to
0 at rate p(0), the number of regenerations until time t is dominated by a Poisson random variable Nt of mean tp(0)

and

E
(
exp

(
ρZ̃1

t

))≤ E exp

(
ρ

Nt∑
n=1

H 1
n

)
,

where H 1
n are i.i.d. random variables with the same distribution as H 1 and Nt is independent of (H 1

n , n ≥ 1). Hence,
for some C(ρ) > 0

E
(
exp

(
ρZ̃1

t

))≤ exp
(
tp(0)C(ρ)

)
.

Let S̃t be the semigroup of the reflected Galton–Watson process. Using the same reasoning as before, we obtain

Corollary 4.2. Any f ∈ F satisfies the Kolmogorov equations for Q̃:

d

dt
S̃t f = Q̃S̃tf = S̃t Q̃f. (4.6)

Large deviations

We study Z̃t , the reflected Galton–Watson process with generator Q̃ given by (4.5). Since p satisfies (2.1), for ρ <

σ ′ ≤ σ ,

Γ (ρ) := p(0) +
∞∑


=1

p(
 + 1)
2eρ
 < ∞. (4.7)
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Recall that v is defined in (2.2) and define β as

β = sup
{
ρ > 0: ρΓ (ρ) ≤ v

}
, (4.8)

which is well defined thanks to the exponential moment of p.

Lemma 4.3. For any ρ < min{β,σ ′}, and x ∈N,

E exp
(
ρZ̃x

t

)≤ e−ρv/2teρx + teρ. (4.9)

Proof. Since ρ < σ ′ ≤ σ , the reflected Galton–Watson generator (4.5) applied to eρ· is well defined and gives

Q̃
(
eρ·)(x) =

∞∑

=−1

xp(
 + 1)eρx
(
eρ
 − 1

)− p(0)1{x=1}
(
1 − eρ

)

= xeρx

(
−ρv +

∞∑

=−1

p(
 + 1)
(
eρ
 − 1 − ρ


))+ p(0)1{x=1}
(
eρ − 1

)
.

Since for a ≥ 0, ea − (1 + a) ≤ a2

2 ea ,

Q̃
(
eρ·)(x) ≤ ρxeρx

(
−v + ρ

2
Γ (ρ)

)
+ p(0)1{x=1}eρ

≤ −vρ

2
eρx + eρ, (4.10)

using ρ < β and βΓ (β) ≤ v. Since ρ < σ ′, Corollary 4.2 and Gronwall’s inequality give (4.9). �

We obtain now a large deviation estimate.

Proposition 4.4. Let T ≥ 1
4p(0)

and δ ≥ 4Tp(0) ≥ 1. Then, there is a constant κ , independent of x, such that

P
(

sup
s<T

(
Z̃x

s − e−vsx
)≥ δ

)
≤ exp

(
− κ

T

δ2

max{x, δ}
)

. (4.11)

Proof. Set zx
t = e−vtx and introduce the process

εx
t := Z̃x

t − x + v

∫ t

0
Z̃x

s ds

= (
Z̃x

t − zx
t

)+ v

∫ t

0

(
Z̃x

s − zx
s

)
ds. (4.12)

To stop Z̃x
t when it crosses 2 max{x, δ} define

τ := inf
{
t ≥ 0: Z̃x

t ≥ 2 max{x, δ}}. (4.13)

Note that if τ < ∞, then Z̃x
τ − zx

τ ≥ 2 max{x, δ} − x ≥ δ. Thus,{
Z̃x

t − zx
t ≥ δ

}⊂ {
Z̃x

t∧τ − zx
t∧τ ≥ δ

}
. (4.14)

For functions g1, g2 :R→ R verifying

g1(t) = g2(t) + v

∫ t

0
g2(s)ds, v ≥ 0,
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it holds

sup
t≤T

∣∣g1(t)
∣∣≤ δ

2
�⇒ sup

t≤T

∣∣g2(t)
∣∣≤ δ.

Hence,{
sup
t≤T

∣∣Z̃x
t∧τ − zx

t∧τ

∣∣≥ δ
}

⊂
{

sup
t≤T

∣∣εx
t∧τ

∣∣≥ δ

2

}
. (4.15)

Note that{
sup
t≤T

∣∣εx
t∧τ

∣∣≥ δ

2

}
=
{

sup
t≤T

εx
t∧τ ≥ δ

2

}
∪
{

inf
t≤T

εx
t∧τ ≤ − δ

2

}
.

The treatment of the two terms on the right-hand side of the previous formula is similar, and we only give the simple
argument for the first of them. For ρ < σ ′, the following functional is a local martingale (see [12], page 66)

Mt := exp

(
ρZ̃x

t − ρx −
∫ t

0

(
e−ρ·Q̃

(
eρ·))(Z̃x

s

)
ds

)
. (4.16)

Using the bounds of Lemma 4.1 we obtain that Mt is in fact a martingale. Observe that

e−ρxQ̃
(
eρ·)(x) = x

∞∑

=−1

p(
 + 1)
(
eρ
 − 1

)+ p(0)1{x=1}
(
eρ − 1

)
≤ −ρvx + ρp(0) + ρ2

2
xΔ(ρ) + p(0)

(
eρ − 1 − ρ

)
, (4.17)

with

Δ(ρ) := 2

ρ2

∞∑

=−1

p(
 + 1)
(
eρ
 − 1 − ρ


)≥ 0. (4.18)

We have already seen that Δ(ρ) ≤ Γ (ρ). Then, we bound the martingale Mt as follows

Mt ≥ exp

(
ρ
(
Z̃x

t − x
)−

(
−ρv + ρ2

2
Δ(ρ)

)∫ t

0
Z̃x

s ds − ρp(0)t − p(0)t
(
eρ − 1 − ρ

))
≥ exp

(
ρεx

t − ρp(0)t − ρ2

2
Γ (ρ)

∫ t

0
Z̃x

s ds − p(0)t
(
eρ − 1 − ρ

))
. (4.19)

By stopping the process at τ , and using that δ ≥ 1, we obtain for t ≤ T

exp
(
ρεx

t∧τ

)≤ Mt∧τ exp

(
ρp(0)T + ρ2

2
Tp(0)max{x, δ}

(
Γ (ρ)

p(0)
+ eρ − 1 − ρ

ρ2/2

))
.

Now, define α > 0 (which is always possible) such that

α

(
Γ (α)

p(0)
+ eα − 1 − α

α2/2

)
= 1, (4.20)

and for ρ ∈]0, α[, and p(0)T ≤ δ/4, we have

exp
(
ρεx

t∧τ

)≤ Mt∧τ exp

(
ρδ

4
+ ρ2

2α
Tp(0)max{x, δ}

)
. (4.21)
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We use (4.14), (4.15) and (4.21), with ρ ∈]0, α[, and Doob’s martingale inequality.

P
(

sup
s≤T

(
Z̃x

s − zx
s

)≥ δ
)

≤ P

(
sup
s≤T

Ms∧τ ≥ exp

(
ρδ

4
− p(0)Tρ2

2α
max{x, δ}

))

≤ exp

(
−ρδ

8
+ p(0)Tρ2

2α
max{x, δ}

)
. (4.22)

We finally obtain an optimal 0 < ρ∗ < α

ρ∗ := α

4p(0)T

δ

max{x, δ} . (4.23)

The result follows now from (4.22) and (4.23) with κ = α/8p(0) which depends only on the offspring’s law. �

5. Bounds for the rightmost Fleming–Viot-particle

In this section, we bound small exponential moments of the rightmost Fleming–Viot-particle. We first define a thresh-
old A, such that with very small probability, the rightmost particle’s position does not decrease when it is initially
larger than A. Define

γ := 1

2

(
1 − exp

(
− v

4p(0)

))
∈ (0,1).

Choose

ρ0 := min{β,σ ′, γ κp(0)}
4

,

where κ is the constant given by Proposition 4.4. Define

A := 2κp(0)

ρ0
> 1

(
and note that γ ≥ 1

A

)
. (5.1)

Define the time and the error δ entering in the large deviation estimate of Proposition 4.4 as follows. For an arbitrary
initial condition ξ ,

T := 1

4p(0)
and δ := max

{
1,

R(ξ)

A

}
, (5.2)

recall here that R(ξ) = maxi≤N ξ(i), and set VL(ξ) = exp(ρ min(R(ξ),L)) for L > A which will be taken to infinity
later. We use the notation [F(ξt )]T0 := F(ξT ) − F(ξ0).

Proof of Proposition 1.3. We use the construction in Section 3 to couple the Fleming–Viot process ξ
ξ
t and the

branching process ζ
ζ
t with ζ = ∑

i δ(i,ξ(i)), so that ζ(i, ξ(i)) = 1 for all i. Then, by (3.6) R(ξt ) ≤ R(ζt ) and it is
sufficient to prove an inequality like (1.6) for R(ζt ). Notice that for the initial configurations ξ and ζ , R(ξ) = R(ζ ).
We drop the superscripts ξ and ζ in the remainder of this proof.

Define the event

G = G(ξ, T ) := {
R(ζT ) − e−vT R(ξ) ≤ δ

}
, (5.3)

and for a positive real c, we define the set

Kc := {
ξ : R(ξ) ≤ c

}
.
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On Kc
A, δ = R/A < R, and on Kc

A ∩ G,

R(ζT ) ≤
(

1

A
+ e−vT

)
R(ξ) ≤ (1 − γ )R(ξ). (5.4)

Hence,

1Kc
A∩G

[
VL(ζt )

]T
0 ≤ VL(ξ)

(
e−γρR(ξ) − 1

)
1Kc

A∩KL∩G ≤ −VL(ξ)
(
1 − e−γρA

)
1Kc

A∩KL∩G . (5.5)

Since A > 1, on KA ∩ G, R(ζT ) ≤ Ae−vT + 1 ≤ 2A so that

1KA∩G
[
eρR(ζt )

]T
0 ≤ e2ρA1KA∩G .

Thus [
VL(ζt )

]T
0 ≤ −(

1 − e−γρA
)
eρR(ξ)1Kc

A∩KL∩G + e2ρA1KA∩G + [
eρR(ζ )

]T
0 1Gc

≤ −(
1 − e−γρA

)
VL(ξ)1Kc

A∩KL
+ e2ρA1KA

+ 2eρR(ζT )1Gc , (5.6)

where we used that

1Kc
A∩KL

− 1Kc
A∩KL∩G ≤ 1Gc .

Choose ρ := min(ρ0,
κ

4T A2 ) and observe that by Lemma 3.2,

E
[
e2ρR(ζT )

]≤ E|ζT |E[
exp

(
2ρZ̃

R(ξ)
T

)]≤ Nep(0)T
(
e−ρvT e2ρR(ξ) + T e2ρ

)
,

by Lemma 3.1 for the bound of the first factor and Lemma 4.3 for the bound of the second factor. Also, Proposition 4.4
implies

P
(
Gc
)≤ E|ζT |P

(
sup
s<T

(
Z̃R(ξ)

s − e−vsR(ξ)
)
> δ

)
≤ Nep(0)T

(
e−(κ/T A)1R(ξ)≤A + e−(κR(ξ)/T A2)1R(ξ)>A

)
.

Taking expectation on (5.6) we bound the last term as follows. For constants C1,C2, C̃1, and C̃2

E
[
eρR(ζT )1{Gc}

] ≤ (
P
(
Gc
)
E
[
e2ρR(ζT )

])1/2

≤ Nep(0)T

(
C11KA

+ C2 exp

(
−κR(ξ)

2T A2

)
1Kc

A

)1/2

≤ C̃1N1KA
+ C̃2N exp

(
−κR(ξ)

4T A2

)
1Kc

A
. (5.7)

Gathering (5.7) and (5.6) we obtain, for any L > A,

EVL

(
ξ

ξ
T

)− VL(ξ) < −c1VL(ξ)1{L>R(ξ)>A} + C1N1{R(ξ)≤A} + C2Ne−ρc̃2R(ξ)

≤ −c1VL(ξ)1{L>R(ξ)>A} + CNe−c2R(ξ) (5.8)

which completes the proof of inequality (1.6), as one takes L to infinity in (5.8). �

Proof of Corollary 1.4. Take C̃ > 0 and observe that the set of ξ such that the right-hand side of (5.8) is larger than
−C̃ is finite. Foster’s criteria (Theorem A.1 in the Appendix) implies that the process ξt is ergodic with an invariant
measure that we call λN .

Now, consider again (5.8) for a fixed L. Note that VL is bounded, so that by integrating (5.8) with this invariant
measure, and then taking L to infinity, we obtain (1.7). �
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6. The empirical moments of Fleming–Viot

In this section we prove Proposition 1.5 and Corollary 1.6. Introduce the occupation numbers η :N×N
N → N defined

as

η(x, ξ) :=
N∑

i=1

1{ξ(i)=x},

for which we often drop the coordinate ξ . Notice that m(x, ξ) = η(x, ξ)/N .
For any integer k, define the kth moment of the N particles’ positions as

Mk(ξ) :=
N∑

i=1

ξk(i) =
∞∑

x=1

xkη(x, ξ).

As there are only N particles, Mk is well defined. Observe that ψ = M2/M1. Note the inequalities

1 ≤ M1(ξ)

N
≤ ψ(ξ) ≤ R(ξ). (6.1)

The function ψ is not compactly supported (nor bounded). Even though LNψ is well defined, we need to use later
that

∫
LNψ dλN = 0. We do so by approximating ψ by a function ψL for which we have∫
LNψL dλN = 0 and lim

L→∞LNψL = LNψ pointwise, (6.2)

where

ψL(ξ) := ML
2 (ξ)

ML
1 (ξ)

, with ML
k (ξ) :=

N∑
i=1

min
(
ξk(i),Lk

)=
L∑

x=1

xkη(x, ξ) + Lk
∑
x>L

η(x, ξ). (6.3)

Observe that ML
k and ψL depend only on (η(1), . . . , η(L)). It is easy, and we omit the proof, to see that there exist a

positive constant C such that∣∣LNψ −LNψL
∣∣≤ ∣∣LNψ

∣∣+ ∣∣LNψL
∣∣≤ Cψ ≤ CR, (6.4)

where we recall that R(ξ) = maxi ξ(i). We have established in Proposition 1.3 that R(ξ) is integrable with respect to
λN , so that (6.2) implies that∫

LNψ dλN = 0. (6.5)

Proof of Proposition 1.5. We decompose the generator (1.3) into two generators, one governing the refeed part and
the other the spatial evolution of the particles: LN = LN

drift +LN
refeed, which applied to functions depending on ξ only

through η(·, ξ), read

LN
refeed = p(0)η(1)

∞∑
x=1

η(x)

N − 1

(
A−

1 A+
x − 1

)
, with A±

x (η)(y) =
{

η(y), y �= x,
η(x) ± 1, y = x,

(6.6)

LN
drift =

∞∑
x=2

xη(x)p(0)
(
A−

x A+
x−1 − 1

)+
∞∑

x=1

xη(x)

∞∑
i=1

p(i + 1)
(
A−

x A+
x+i − 1

)
. (6.7)

It is convenient to introduce a boundary term

B = −η(1)p(0)
(
A−

1 A+
0 − 1

)
and call LN

0 = LN
drift − B, (6.8)
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which applied on ψ yield

Bψ = −p(0)η(1)

(
M2 − M1

M1(M1 − 1)

)
; (6.9)

LN
0 ψ =

∞∑
x=1

xη(x)

∞∑
i=−1

p(i + 1)

(
M2 + 2ix + i2

M1 + i
− M2

M1

)

=
∞∑

x=1

xη(x)

{ ∞∑
i=−1

ip(i + 1)

(
2xM1 − M2 + iM1

M1(M1 + i)

)}

= −p(0)
M2 − M1

M1 − 1
+
( ∞∑

i=1

p(i + 1)i
M1

M1 + i

)
× M2

M1
+

∞∑
i=1

p(i + 1)i2 M1

M1 + i

≤ −vψ + p(0)
M1

M1 − 1
+

∞∑
i=1

p(i + 1)i2 ≤ −vψ + C0, (6.10)

for some positive constant C0. Finally, for the jump term

LN
refeedψ = p(0)η(1)

∞∑
x=1

η(x)

N − 1

(
M2 + x2 − 1

M1 + x − 1
− M2

M1

)

= p(0)η(1)

∞∑
x=1

η(x)

N − 1

M1(x
2 − 1) − M2(x − 1)

M1(M1 − 1)
× 1

1 + x/(M1 − 1)
. (6.11)

If we set Δ(x) = 1/(1 + x) − (1 − x), for x ∈ [0,1], then

Δ(x) = x2

1 + x
and 0 ≤ Δ(x) ≤ x2. (6.12)

We apply (6.12) to expand the last term in (6.11), with x/(M1 − 1) ≤ 1 for x ≤ R(ξ), and obtain

LN
refeedψ = p(0)η(1)

∞∑
x=1

η(x)

N − 1

M1(x
2 − 1) − M2(x − 1)

M1(M1 − 1)
×
(

1 − x

M1 − 1
+ Δ

(
x

M1 − 1

))
. (6.13)

Note that
∞∑

x=1

η(x)
(
M1x

2 − M2x
)= 0 and

∞∑
x=1

η(x)
(
M1x

2 − M2x
)
(−x) = −M3M1 + (M2)

2.

Also,

∞∑
x=1

η(x)

N − 1
(M2 − M1)

(
1 − x

M1 − 1

)
=
(

N − M1

M1 − 1

)
(M2 − M1)

N − 1

=
(

1 − 1

(N − 1)(M1 − 1)

)
(M2 − M1)

= (M2 − M1) − M2 − M1

(N − 1)(M1 − 1)
.

Thus

LN
refeedψ = −p(0)

η(1)

N − 1

M3M1 − (M2)
2

M1(M1 − 1)2
+ p(0)η(1)

M2 − M1

M1(M1 − 1)
+ Rest,
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where

Rest = − p(0)η(1)(M2 − M1)

(N − 1)M1(M1 − 1)2
+ p(0)η(1)

∞∑
x=1

η(x)

N − 1

M1(x
2 − 1) − M2(x − 1)

M1(M1 − 1)
× Δ

(
x

M1 − 1

)
. (6.14)

Using that M2 − M1 ≥ 0,

Rest ≤ p(0)
η(1)

N − 1

∞∑
x=1

η(x) × x2

(M1 − 1)2

(
M1x

2 + M2x

(M1 − 1)2
+ M2 − M1

(M1 − 1)2

)
(6.15)

≤ 3p(0)

(
M1

M1 − 1

)4
η(1)

N − 1

M2

(M1)2

R2

M1
≤ 24p(0)

R2

N
. (6.16)

Observe that

LN
refeedψ + Bψ = −p(0)

η(1)

N − 1

M3M1 − (M2)
2

M1(M1 − 1)2
+ Rest ≤ Rest.

Thus, we reach that for C0 independent of N ,

LNψ ≤ −vψ + 24p(0)
R2

N
+ C0. (6.17)

This is Proposition 1.5. We now integrate (6.17) with respect to the invariant measure, and use that
∫
LNψ dλN = 0

to obtain for constants C1, and C2 (independent of N )∫
ψ dλN ≤ C1 + C2

∫
R2 dλN

N
. (6.18)

�

7. Uniform convergence to the Yaglom limit

In this section we show a uniform convergence for μ ∈ K(α) of the generating functions of μTt to the generating
function of the quasi-stationary distribution ν, where the generating function of a distribution μ on N is defined by

G(μ; z) :=
∑
x∈N

μ(x)zx, z ∈R, |z| < 1. (7.1)

We invoke a key result of Yaglom [25]. The continuous time version can be found in Zolotarev [26].

Lemma 7.1 (Yaglom [25], Zolotarev [26]). There is a probability measure ν such that

lim
t→∞G(δ1Tt ; z) = G(ν; z), (7.2)

and the generating function of ν is given by

G(ν; z) = 1 − exp

(
−v

∫ z

0

du∑

≥0 p(
)u
 − z

)
, z ∈ [0,1). (7.3)

The measure ν is in fact ν∗
qs, the minimal QSD. We do not use the explicit expression (7.3) of the generating function

of ν; we only use (7.2). Recall that μTt is the law of Zt with initial distribution μ conditioned on survival until t and
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that K(α) is defined in (2.5). The next result says that the Yaglom limit holds uniformly for all initial measures in
K(α).

Proposition 7.2. For any α > 0, and z ∈ [0,1]
lim

t→∞ sup
μ∈K(α)

∣∣G(μTt ; z) − G
(
ν∗

qs; z
)∣∣= 0. (7.4)

As a consequence, for each x ∈ N, we obtain (2.8).

Proof. Recall that St is the semigroup of the Galton–Watson process and observe that for any 
 ∈ N, G(δ
St ; z) =
G
(δ1St ; z). We set, for simplicity,

g(z) := 1 − G(δ1St ; z) ∈ [0,1],
for z ∈ [0,1]. The following inequalities are useful. For z ∈ [0,1],

1 − 
g(z) ≤ (
1 − g(z)

)
 ≤ 1 − 
g(z) + 
2g2(z). (7.5)

The generating function of μTt reads as follows.

G(μTt ; z) = G(μSt ; z) − G(μSt ;0)

1 − G(μSt ;0)

=
∑


≥1 μ(
)(G(δ
St ; z) − G(δ
St ;0))∑

≥1 μ(
)(1 − G(δ
St ;0))

=
∑


≥1 μ(
)((1 − g(z))
 − (1 − g(0))
)∑

≥1 μ(
)(1 − (1 − g(0))
)

. (7.6)

Also,

1 − G(δ1Tt ; z) = 1 − G(δ1St ; z)
1 − G(δ1St ;0)

= g(z)

g(0)
.

We now produce upper and lower bounds for G(μTt ; z) − G(ν∗
qs; z). We start with the upper bound. Using first (7.6)

and then (7.5),

G(μTt ; z) − G
(
ν∗

qs; z
) =

∑

≥1 μ(
)((1 − g(z))
 − 1 + (1 − (1 − g(0))
)(1 − G(ν∗

qs; z)))∑

≥1 μ(
)(1 − (1 − g(0))
)

≤
∑


 
μ(
)(−g(z) + 
g2(z) + g(0)(1 − G(ν∗
qs; z)))∑


 
μ(
)(g(0) − 
g2(0))

≤
∑


 
μ(
)((1 − G(ν∗
qs; z)) − g(z)/g(0)) +∑


 
2μ(
)(g(z)/g(0))g(z)∑

 
μ(
)(1 − 
g(0))

≤ G(δ1Tt ; z) − G(ν∗
qs; z) + (M2(μ)/M1(μ))(1 − G(δ1Tt ; z))g(z)

1 − (M2(μ)/M1(μ))g(0)
, (7.7)

where Mk(μ) :=∑

 
kμ(
), k ∈N. Thus,

sup
μ∈K(α)

G(μTt ; z) − G
(
ν∗

qs; z
)≤ |G(δ1Tt ; z) − G(ν∗

qs; z)| + (1 − G(δ1Tt ; z))g(z)α

1 − αg(0)
. (7.8)
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Now, for the lower bound, we use similar arguments to reach

G(μTt ; z) − G
(
ν∗

qs; z
) ≥

∑

 
μ(
)(−g(z) + g(0)(1 − G(ν∗

qs; z)) − 
g2(0)(1 − G(ν∗
qs; z)))∑


 
μ(
)g(0)

≥ G(δ1Tt ; z) − G
(
ν∗

qs; z
)− M2(μ)

M1(μ)
g(0)

(
1 − G

(
ν∗

qs; z
))

. (7.9)

Thus,

inf
μ∈K(α)

G(μTt ; z) − G
(
ν∗

qs; z
)≥ −∣∣G(δ1Tt ; z) − G

(
ν∗

qs; z
)∣∣− αg(0)

(
1 − G

(
ν∗

qs; z
))

. (7.10)

Since g(z) goes to 0 as the implicit t goes to infinity, both (7.8) and (7.10) go to 0. This proves (7.4). The proof of
(2.8) follows from (7.4) and Lemma 7.3 below on convergence of probability measures. �

Lemma 7.3. Let {μγ
n ,n ∈ N, γ ∈ Γ } be a family of probability measures. Assume that for each z ∈ [0,1] we have

lim
n→∞ sup

γ∈Γ

∣∣G(
μ

γ
n , z

)− G(ν, z)
∣∣= 0. (7.11)

Then, for each x ∈N we have

lim
n→∞ sup

γ∈Γ

∣∣μγ
n (x) − ν(x)

∣∣= 0.

Proof. Let f = 1{x}. We consider the one-point compactification of N, which we denote N̄ = N ∪ {∞} and extend
f : N̄ → R by f (∞) = 0. Since f is a continuous function on N̄, the Stone–Weierstrass approximation theorem
yields a function h, which is a linear combination of functions of the form {y �→ ay,0 ≤ a ≤ 1} (finite linear combi-
nations of these functions form an algebra that separates points and contains the constants), such that for any ε > 0,
supy∈N |f (y) − h(y)| < ε. Then

sup
γ

∣∣μγ
n (x) − ν(x)

∣∣= sup
γ

∣∣μγ
nf − νf

∣∣≤ sup
γ

∣∣μγ
nf − μ

γ
nh

∣∣+ sup
γ

∣∣μγ
nh − νh

∣∣+ |νh − νf |.

The first and the third term on the right-hand side are smaller than ε while the second one goes to zero as n goes to
infinity by assumption. �

8. Closeness of the two semi-groups

In this section we show how propagation of chaos implies the closeness of Em(x, ξ
ξ
t ) and m(·, ξ)Tt uniformly in

ξ ∈ ΛN . The arguments are similar to those used in [1,14]. The key is a control of the correlations that we state below.
For a signed measure μ in N we will need to work with the 
2 norm given by ‖μ‖2 =∑

x∈N(μ(x))2.

Proposition 8.1. There exist constants c and C such that,

sup
ξ∈NN

∥∥E[
m
(
x, ξ

ξ
t

)]− m(·, ξ)Tt

∥∥≤ Cect

N
. (8.1)

As a consequence,

sup
ξ∈NN

∣∣E[
m
(
x, ξ

ξ
t

)]− m(·, ξ)Tt (x)
∣∣≤ Cect

N
, x ∈N. (8.2)
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Furthermore

sup
ξ∈NN

E
(∣∣m(

x, ξ
ξ
t

)− m(·, ξ)Tt

∣∣2)≤ Cect

N
, x ∈N. (8.3)

Proposition 8.2 (Proposition 2 of [1]). For each t > 0, and any x, y ∈N

sup
ξ∈NN

∣∣E[
m
(
x, ξ

ξ
t

)
m
(
y, ξ

ξ
t

)]− E
[
m
(
x, ξ

ξ
t

)]
E
[
m
(
y, ξ

ξ
t

)]∣∣≤ 2p(0)e2p(0)t

N
. (8.4)

This proposition is proved in [1] for processes with bounded rates; the extension to our case is straightforward, and
we omit its proof.

Proof of Proposition 8.1. Fix ξ ∈ N
N and introduce the simplifying notations

u(t, x) := Em
(
x, ξ

ξ
t

)
and v(t, x) := m(·, ξ)Tt (x). (8.5)

Define δ(t, x) = u(t, x) − v(t, x). We want to show that for any t > 0,

∂

∂t

∥∥δ(t)∥∥2 ≤ 5

2

∥∥δ(t)∥∥2 + 4p(0)e2p(0)t

N
. (8.6)

Recall the definition (2.3) of the rates q and the evolution equations satisfied by v(t, x) and u(t, x). The equation for
v is written in (1.1), while the one for u comes from ∂tu(t, x) = E[LNm(x, ξ

ξ
t )] with LN given in (1.3).

∂

∂t
v(t, x) =

∑
z �=x,z>0

q(z, x)v(t, z) −
(∑

z �=x

q(x, z)

)
v(t, x) + p(0)v(t,1)v(t, x), (8.7)

∂

∂t
u(t, x) =

∑
z �=x,z>0

q(z, x)u(t, z) −
(∑

z �=x

q(x, z)

)
u(t, x) + p(0)u(t,1)u(t, x) + W(ξ ; t, x). (8.8)

Here,

W(ξ ; t, x) = p(0)

(
N

N − 1
E
[
m
(
x, ξ

ξ
t

)
m
(
1, ξ

ξ
t

)]− E
[
m
(
1, ξ

ξ
t

)]
E
[
m
(
x, ξ

ξ
t

)])
. (8.9)

Proposition 8.2 implies that

sup
ξ

∣∣W(ξ ; t, x)
∣∣≤ 2p(0)e2p(0)t

N
. (8.10)

Observe two simple facts. First, set D = {(x, z): x ≥ 1, z ≥ 1, x �= z}, and for any function f :N→R∑
(x,z)∈D

(
q(x, z) + q(z, x)

)
f 2(x) − 2

∑
(x,z)∈D

q(x, z)f (x)f (z) =
∑

(x,z)∈D

q(z, x)
(
f (x) − f (z)

)2
. (8.11)

The second observation is specific to our rates. For x > 0∑
z �=x

q(z, x) ≤
∑
z �=x

q(x, z) + p(0). (8.12)
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Observation (8.11) is obvious and we omit its proof. Observation (8.12) is done in details.∑
z �=x

q(z, x) =
∑

z≥0,z �=x

zp(x − z + 1) = x
∑

z≥0,z �=x

p(x − z + 1) +
∑

z≥0,z �=x

(z − x)p(x − z + 1)

= x
(
p(0) + p(1) + · · · + p(x + 1)

)+ (
p(0) − p(2) − · · · − xp(x + 1)

)
≤ x

∑
i≥0

p(i) + p(0) =
∑
z �=x

q(x, z) + p(0). (8.13)

Now, we have

∑
x>0

δ(t, x)
∂

∂t
δ(t, x) =

∑
(x,z)∈D

(
q(z, x)δ(t, x)δ(t, z) − q(x, z)δ2(t, x)

)
+ p(0)

∑
x>0

(
u(t, x)u(t,1) − v(t, x)v(t,1)

)
δ(t, x) +

∑
x>0

δ(t, x)W(ξ ; t, x). (8.14)

Let us deal with each term of the right-hand side of (8.14). For the first term we use (8.11) and (8.12).∑
(x,z)∈D

(
q(z, x)δ(t, x)δ(t, z) − q(x, z)δ2(t, x)

)
≤

∑
(x,z)∈D

q(z, x)δ(t, x)δ(t, z) − 1

2

∑
x>0

(∑
z �=x

q(x, z) +
∑
z �=x

q(z, x) − p(0)

)
δ2(t, x)

≤ −1

2

∑
(x,z)∈D

q(z, x)
(
δ(t, x) − δ(t, z)

)2 + p(0)

2

∥∥δ(t)∥∥2

≤ p(0)

2

∥∥δ(t)∥∥2
. (8.15)

To deal with the second term, first note that

sup
x>0

∣∣δ(t, x)
∣∣≤√∑

x>0

δ2(t, x) = ∥∥δ(t)∥∥.
Then,∑

x>0

(
u(t, x)u(t,1) − v(t, x)v(t,1)

)
δ(t, x) ≤

∑
x>0

(
δ(t, x)u(t,1) + v(t, x)δ(t,1)

)
δ(t, x)

≤
∑
x>0

δ2(t, x) + ∣∣δ(t,1)
∣∣ sup
x>0

∣∣δ(t, x)
∣∣∑
x>0

v(t, x) ≤ 2
∥∥δ(t)∥∥2

. (8.16)

For the last term, we have∣∣∣∣∑
x>0

δ(t, x)W(ξ ; t, x)

∣∣∣∣≤ sup
x>0

∣∣W(ξ ; t, x)
∣∣×∑

x>0

∣∣δ(t, x)
∣∣≤ 2 sup

x>0

∣∣W(ξ ; t, x)
∣∣. (8.17)

Thus, we obtain (8.6). Gronwall’s inequality allows to conclude (8.1), which implies (8.2) easily. Statement (8.3) is
obtained using triangle inequality, (8.2) and (8.4) with y = x. �
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Appendix: Foster’s criterion

Theorem A.1 (Foster’s criteria, [21], Thm 8.13). Let (ξt ) be a Markov process with countable state space Λ. If
there exist a function V :Λ → R+ and constants T ,K, ε > 0 such that for V (ξ) > K ,

E
(
V (ξT )

)− V (ξ) ≤ −ε,

with {ξ :V (ξ) ≤ K} a finite subset and E(ξ
ξ
T ) < ∞ for ξ ∈ Λ, then (ξt ) is ergodic.
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