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Abstract. In (Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998) 637–686) a tree-valued Markov chain is derived by pruning
off more and more subtrees along the edges of a Galton–Watson tree. More recently, in (Ann. Probab. 40 (2012) 1167–1211),
a continuous analogue of the tree-valued pruning dynamics is constructed along Lévy trees. In the present paper, we provide a
new topology which allows to link the discrete and the continuous dynamics by considering them as instances of the same strong
Markov process with different initial conditions. We construct this pruning process on the space of so-called bi-measure trees,
which are metric measure spaces with an additional pruning measure. The pruning measure is assumed to be finite on finite trees,
but not necessarily locally finite. We also characterize the pruning process analytically via its Markovian generator and show that
it is continuous in the initial bi-measure tree. A series of examples is given, which include the finite variance offspring case where
the pruning measure is the length measure on the underlying tree.

Résumé. Dans (Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998) 637–686), les auteurs obtiennent une chaîne de Markov à
valeurs arbres en élaguant de plus en plus de sous-arbres le long des nœuds d’un arbre de Galton–Watson. Plus récemment dans
(Ann. Probab. 40 (2012) 1167–1211), un analogue continu de la dynamique d’élagage à valeurs arbres est construit sur des arbres
de Lévy. Dans cet article, nous présentons une nouvelle topologie qui permet de relier les dynamiques discrètes et continues en les
considérant comme des exemples du même processus de Markov fort avec des conditions initiales différentes. Nous construisons ce
processus d’élagage sur l’espace des arbres appelés bi-mesurés, qui sont des espaces métriques mesurés avec une mesure d’élagage
additionnelle. La mesure d’élagage est supposée finie sur les arbres finis, mais pas nécessairement localement finie. De plus, nous
caractérisons analytiquement le processus d’élagage par son générateur infinitésimal et montrons qu’il est continu en son arbre bi-
mesuré initial. Plusieurs exemples sont donnés, notamment le cas d’une loi de reproduction à variance finie où la mesure d’élagage
est la mesure des longueurs sur l’arbre sous-jacent.
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1. Introduction and motivation

Let G1 be a rooted Galton–Watson tree with an offspring generating function g. For 0 ≤ u ≤ 1, let Gu be the subtree
of G1 obtained by retaining each edge with probability u. Lyons [40] showed that Gu is again a Galton–Watson tree
which corresponds to the offspring generating function gu = g(1 −u+u·). As one can couple the pruning procedures
for several u ∈ [0,1] in such a way that Gu′ is a rooted subtree of Gu whenever u′ ≤ u, they give rise to a non-
decreasing tree-valued Markov process (Gu)u∈[0,1] which was further studied in Aldous and Pitman [12]. Recently,
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Abraham, Delmas and He consider in [4] another pruning procedure on Galton Watson trees where cut points fall on
the branch points to the effect that the subtree above is pruned. Here each node of the initial Galton–Watson tree is cut
independently with probability 1 − un−1 where n is the number of children of the node.

In the same spirit some authors consider continuum tree analogues of pruning dynamics. Compare, for example,
[8,11] for a pruning proportional to the length on the skeleton of a Brownian CRT, [43] for a pruning on the infinite
branch points of a stable Lévy tree, [1] for a pruning on the infinite branch points of a Lévy tree without Brownian
part, [2,7] for a combined pruning proportional to the length and on the infinite branch points of a general Lévy tree.

In [2] it is conjectured that the pruning procedure presented in the same paper is the continuous analogue of
a mixture of the pruning procedures suggested in [12] and [2], that is of pruning procedures on Galton–Watson
trees where cut points fall on edges as well as on nodes. However, no precise link between the discrete and the
continuum tree-valued dynamics has been given so far. The main goal of the present paper is to present ONE Markov
process, which in the following is referred to as THE pruning process. We shall give an analytic characterization via a
Markovian generator and provide with the so-called leaf-sampling weak vague topology a notion of convergence which
allows to state convergence of the discrete tree-valued dynamics to the associated continuous tree-valued dynamics.

It had been a long tradition to encode trees via continuous excursions, and to use uniform topology as a notion of
convergence. A more recent and conceptional approach is to think of trees as “tree-like” metric spaces, the so-called
R-trees, and to use the Gromov–Hausdorff topology as a notion of convergence (compare, for example, [22] for an
introduction into R-trees and [31,34] for details on the Gromov–Hausdorff distance). For a long time convergence of
suitably rescaled Galton–Watson processes were established for very particular offspring distributions only. To be in
a position to prove an invariance principle, Aldous developed in [9,10] a notion of convergence by encoding trees as
closed subsets of l1+, the space of summable sequences of positive numbers which were additionally equipped with a
sampling measure. Convergence was then proposed as the convergence of all subtrees spanned by finite samples from
the tree. Once more, this very neat and powerful idea had been generalized to the more conceptional encoding of trees
as metric probability measure spaces where the tree space was equipped with the so-called Gromov-weak topology
(compare [33,34]). Further developments which combine the Gromov–Hausdorff and Gromov-weak topology and
allow for sampling measures that are finite on bounded sets can be found, for example, in [5,30,44].

In the present paper, we provide a unified framework by regarding these pruning processes as the same Feller-
continuous Markov process on a (non-locally compact) space of R-trees with different initial conditions, and to es-
tablish convergence in Skorohod space whenever the initial distribution converges. For that purpose, we introduce
bi-measure R-trees, i.e., metric measure spaces (T , r,μ), which are additionally equipped with a so-called pruning
measure, ν. Here, the so-called sampling measure μ is a finite measure (allowing for a varying total mass), while the
pruning measure is only assumed to be finite on finite subtrees. As the pruning measure is already part of the state,
we are in a position to construct one (universal) pruning process. This process is a pure jump process which, given
a bi-measure R-tree, lets rain down successively more and more cut points according to a Poisson process whose
intensity measure is equal to the pruning measure. At each cut point, the subtree above is cut off and removed, and the
sampling and pruning measures are simultaneously updated by simply restricting them to the remaining, pruned part
of the tree.

A major difficulty is that important examples for the pruning measures, such as the length measure on the Brownian
CRT, are not locally finite. Therefore, we introduce with the leaf-sampling weak vague topology a new topology
on the spaces of bi-measure R-trees. We give equivalent characterizations of convergence and provide convergence
determining classes of functions.
Outline. The paper is organized as follows. In Section 2 we introduce the leaf-sampling weak-vague topology and give
a characterization of convergence. In Section 3 we construct the pruning process, calculate its Markovian generator
and verify that the law of the process on Skorohod space depends continuously on the initial condition. Finally, in
Section 4 we apply our main result to obtain convergence of various pruning processes that appeared in the literature.

2. Bi-measure R-trees and the LWV-topology

In this section we introduce the space of R-trees equipped with a finite sampling measure and a pruning measure
which is assumed to be finite on finite subtrees. Moreover, we define the leaf-sampling weak vague topology (LWV-
topology) on this space of bi-measure R-trees. The idea behind our topology is to first sample a finite number of points
from the tree according to the sampling measure. These points span a finite subtree. In many relevant examples they
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are actually the leaves of this subtree. Then we equip this finite subtree with the restriction of the pruning measure
and obtain a random metric measure tree. For convergence of bi-measure trees, we require that these random metric
measure trees converge together with the sampled points as n-pointed metric measure R-trees in the Gromov-weak
topology.

We therefore recall in Section 2.1 the notion of Gromov-weak topology on metric measure spaces and extend it to
the n-pointed Gromov-weak topology. In Section 2.2 we then define a stronger topology on n-pointed metric measure
R-trees, the subtree Gromov-weak topology. Finally, in Section 2.3 we define the LWV-convergence. It turns out that
it can be characterized by both the pointed as well as the subtree Gromov-weak convergence of samples from the
bi-measure R-tree and defines a separable, metrizable topology. In Section 2.4, we introduce classes of test functions
that induce the LWV-topology. One of them turns out to be convergence determining. Using these test functions, we
derive several convergence results.

2.1. The n-pointed Gromov-weak topology

Greven, Pfaffelhuber and Winter [33] define the space of metric probability measure spaces equipped with the
Gromov-weak topology. In this subsection, we define a slightly more general space using finite measures instead of
probability measures and considering n-pointed metric measure spaces. We do not give proofs, because the extension
is straightforward.

We start recalling basic notation. As usual, given a topological space X, we denote by C(X) (Cb(X)) the space of
(bounded) continuous, R-valued functions on X, and by M1(X) (Mf (X)) the space of probability (finite) measures,
defined on the Borel σ -algebra of X. For x ∈ X, δx ∈ M1(X) is the Dirac measure in the point x. “⇒” means weak
convergence in M1(X) or in Mf (X). Recall that the support of μ, supp(μ), is the smallest closed set X0 ⊆ X such
that μ(X0) = μ(X) =: ‖μ‖. For μ ∈ Mf (X), we denote the normalization by

μ◦ := μ

‖μ‖ ∈M1(X). (2.1)

The push forward of μ under a measurable map φ from X into another topological space Z is the finite measure
φ∗μ ∈ Mf (Z) defined by

φ∗μ(A) := μ
(
φ−1(A)

)
, (2.2)

for all measurable subsets A ⊆ Z. For the integral of an integrable function ϕ with respect to μ, we sometimes use
the notation

〈μ,ϕ〉 :=
∫

ϕ dμ. (2.3)

A metric measure space is a triple (X, r,μ), where (X, r) is a metric space such that (supp(μ), r) is complete and
separable and μ ∈ Mf (X) is a finite measure on (X,B(X)). If supp(μ) is separable but not complete, we simply
identify it with its completion.

Branching trees such as Galton–Watson trees and the CRT are often rooted. We therefore define a rooted metric
measure space (X, r, ρ,μ) as a metric measure space (X, r,μ) together with a distinguished point ρ ∈ X which
is referred to as the root. To avoid heavy notations, in the following we suppress the metric and the root, i.e. we
abbreviate, for example,

X = (X, r, ρ), (X,μ) = (X, r, ρ,μ). (2.4)

The definition of metric measure spaces given in [33] can easily be extended to rooted metric measure spaces. In the
context of metric spaces, rooted spaces are often referred to as pointed spaces (compare, for example, Section 8 in
[19]).

We want to extend these rooted metric measure spaces (X, r,μ) by fixing n additional points u1, . . . , un ∈ X, and
call (X, r, ρ, (u1, . . . , un),μ) a (rooted) n-pointed metric measure space. The support of an n-pointed metric measure
space (X, r, ρ, (u1, . . . , un),μ) is defined by

supp
((

X,r,ρ, (u1, . . . , un),μ
)) := supp(μ) ∪ {ρ,u1, . . . , un}. (2.5)
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In the following we identify two n-pointed metric measure spaces if there is a measure preserving isometry between
their supports that also preserves the root and the fixed points.

Definition 2.1 (The space Mn). Two n-pointed metric measure spaces X = (X, r, ρ, (u1, . . . , un),μ) and X ′ =
(X′, r ′, ρ′, (u′

1, . . . , u
′
n),μ

′) are called equivalent if there exists an isometry φ between supp(X ) and supp(X ′) such
that φ∗μ = μ′, φ(ρ) = ρ′ and φ(uk) = u′

k for all 1 ≤ k ≤ n. It is clear that this defines an equivalence relation.
We denote by Mn the set of equivalence classes of n-pointed metric measure spaces.

Remark 2.2. Notice that for a notion of equivalence of metric measure spaces (X, r,μ) and (X′, r ′,μ′) there are
two canonical choices. Either we insist that the metric spaces (X, r) and (X′, r ′) are isometric or we are satisfied
with their supports to be isometric thereby neglecting sets of measure zero (compare, for example, [46], Section 27).
Here we take the second approach which allows for a characterization of convergence in Mn through convergence
determining classes of functions. The gap between such a notion of (weak) convergence and a stronger topology which
also requires the convergence of supports of the measures is closed in [13].

To simplify notations, we do not distinguish between an n-pointed metric measure space and its equivalence class.
That is, we write

X = (
X, (x1, . . . , xn),μ

) ∈ Mn. (2.6)

Remark 2.3 (The space M0). M0 is the usual space of rooted metric measure spaces (with finite measures).

For a rooted metric space X, we define a map RX that associates to a sequence of points the matrix of their distances
to the root and to each other, i.e.,

RX:

{
XN → R

(N0
2

)
+ ,

(xi)i≥1 �→ (r(xi, xj ))0≤i<j with x0 := ρ.
(2.7)

The distance matrix distribution of an n-pointed metric measure space X = (X, (u1, . . . , un),μ) is then given by

υX := ‖μ‖ · (RX
)
∗

(
n⊗

k=1

δuk
⊗ (

μ◦)⊗N

)
∈Mf

(
R

(N0
2

)
+

)
, (2.8)

which obviously depends only on the equivalence class. Vershik’s proof of Gromov’s reconstruction theorem (see [34],
Subsection 3 1

2 .7) directly carries over to n-pointed metric measure spaces. Therefore, X ∈ Mn is uniquely determined
by its distance matrix distribution υX .

Definition 2.4 (pGw-topology). A sequence of n-pointed metric measure spaces XN ∈ Mn converges n-pointed
Gromov-weakly (pGw) to X ∈Mn if

υXN �⇒
N→∞υX (2.9)

in the weak topology on Mf (R

(N0
2

)
+ ).

We see directly from the definition that functions of the form Φ :Mn → R,X �→ 〈υX , f 〉 with f ∈ Cb(R

(N0
2

)
+ )

are continuous. If f depends only on finitely many coordinates, Φ is called a polynomial, and there exists m ∈ N,

ϕ ∈ Cb(R

( n+m+1
2

)
+ ) such that for X = (X,u,μ) ∈ Mn,

Φ(X ) = Φm,ϕ(X ) :=
∫

Xm

μ⊗m(dv)ϕ
(
RX(u, v)

)
, (2.10)
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where u = (u1, . . . , un), v = (v1, . . . , vm) and (u, v) := (u1, . . . , un, v1, . . . , vm). Note that

Φm,1(X ) = ‖μ‖m, (2.11)

and, in particular, Φ0,1 ≡ 1. Moreover, as polynomials are not bounded (compare (2.11)), we define a class Πn ⊆
Cb(Mn) of bounded test functions by

Πn :=
{
Φγ,m,ϕ(X ) := γ

(‖μ‖) · Φm,ϕ(X ):

Φm,ϕ is a polynomial, γ ∈ Cb(R+), lim
x→∞xkγ (x) = 0,∀k ∈ N

}
. (2.12)

Recall the Prohorov distance dPr between two finite measures μ,ν on a metric space (Z,d),

d
(Z,d)
Pr (μ, ν)

:= inf
{
ε > 0: μ

(
Aε

) + ε ≥ ν(A), ν
(
Aε

) + ε ≥ μ(A) ∀A closed
}
, (2.13)

where Aε := {x ∈ Z | d(x,A) < ε}.

Definition 2.5 (n-pointed Gromov–Prohorov distance). We define the n-pointed Gromov–Prohorov distance between
X = (X,u,μ) and Y = (Y, v, ν) in Mn by

dpGP(X ,Y) := inf
d

{
d

(X�Y,d)
Pr (μ, ν) + d(ρX,ρY ) +

n∑
k=1

d(uk, vk)

}
, (2.14)

where the infimum is taken over all metrics d on the disjoint union X � Y that extends rX and rY . If there is no
confusion, we simply write dPr for d

(X�Y,d)
Pr .

Recall that a set F ⊆ Cb(X) is convergence determining (on the topological space X) if, for probability measures
μN,μ on X, the weak convergence μN �⇒

N→∞μ is equivalent to
∫

f dμN −→
N→∞

∫
f dμ for all f ∈F .

Proposition 2.6 (Πn is convergence determining). Let X ,X 1,X 2, . . . ∈ Mn. The following conditions are equiva-
lent:

(i) XN
pGw−→ X , as N → ∞,

(ii) Φ(XN) −→
N→∞Φ(X ), for all polynomials Φ ,

(iii) dpGP(XN,X ) −→
N→∞ 0.

Furthermore, Mn is separable, dpGP is a complete metric on Mn, and the class Πn ⊆ Cb(Mn) is convergence deter-
mining on Mn.

Proof. The proof of the equivalences is an obvious modification of that of Theorem 5 in [33]. Notice that μ◦ in
the definition of the pGw-topology can be replaced by μ in the definition of polynomials because ‖μ‖ = Φ1,1(X ).
Separability and completeness follow in the same way as Proposition 5.6 in [33].

To see that Πn induces the pGw-topology, note that Φγ,0,1 ∈ Πn, and convergence of Φγ,0,1(XN) = γ (‖μN‖)
with γ (x) = e−x implies the convergence of ‖μN‖. Hence, the topology induced by Πn coincides with the topology
induced by the polynomials. Using the fact that Πn is multiplicatively closed, we see that it is convergence determining
with the same proof as for the set of polynomials on the space of metric probability measure spaces (see [21,39]), or
directly from Le Cam’s theorem (see [38], [35], Lem. 4.1). �
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2.2. Measure R-trees and subtree Gromov-weak topology

In this subsection we define the subtree Gromov-weak topology. As “tree-like” metric spaces are 0-hyperbolic,
throughout the paper we work with the subspaces

Hn := {X ∈ Mn: X is 0-hyperbolic} ⊆ Mn, (2.15)

and

H := H0 ⊆M0, (2.16)

where a metric measure space X ∈ Mn is called 0-hyperbolic iff

r(x1, x2) + r(x3, x4) ≤ max
{
r(x1, x3) + r(x2, x4), r(x1, x4) + r(x2, x3)

}
, (2.17)

for all x1, x2, x3, x4 ∈ supp(X ). It follows immediately from Theorem 2.5 in [31] that for each n ∈ N, (Hn, dpGP) is
complete.

Recall that a 0-hyperbolic space is called an R-tree if it is connected (see [23] for equivalent definitions and
background on R-trees). Given a (rooted) R-tree (T , r, ρ), we denote the unique path between two points x, y ∈ T by
[x, y], and [x, y[ := [x, y] \ {y}. The set of leaves of the tree is

Lf(T ) := T
∖ ⋃

x∈T

[ρ,x[. (2.18)

We also use the notation [[v]] for the tree spanned by the root ρ and the vector v ∈ T n, i.e.,

[[v]] :=
n⋃

i=1

[ρ,vi]. (2.19)

Here and in the following we refer to any R-tree of the form (2.19) as a finite tree.

Remark 2.7 (0-hyperbolic spaces are equivalent to R-trees). According to Theorem 3.38 of [29], every 0-hyperbolic
space can be isometrically embedded into an R-tree. Since our notion of equivalence of two n-pointed metric mea-
sure spaces X and X ′ requires only a (measure and point preserving) isometry between supp(X ) and supp(X ′), this
means that every n-pointed 0-hyperbolic metric measure space is equivalent to an n-pointed, measured R-tree. In the
following we assume, without loss of generality, that X ∈ Hn is an R-tree, by choosing a connected representative of
the equivalence class.

Also note that, given two R-trees (T , r), (T ′, r ′) with subsets A ⊆ T , A′ ⊆ T ′, and an isometry φ :A → A′, there
is a unique extension of φ to an isometry between the generated R-trees, φ : [[A]] → [[A′]]. Indeed, for v ∈ [[A]]
there exist (non-unique) x, y ∈ A with v ∈ [x, y], and a unique wv ∈ [φ(x),φ(y)] with r(x, v) = r ′(φ(x),wv). It is
straightforward to check that wv does not depend on the choice of x, y and φ(v) := wv is an isometry. In particular,
for X ∈ Hn, the R-tree [[supp(X )]] is unique up to isometry.

We now define a topology on Hn which requires that every subtree generated by a subset of the n distinguished
points converges. For that purpose, we define a projection map which sends a list u to the sublist indexed by I =
{i1, . . . , ik} for given 1 ≤ i1 < · · · < ik ≤ n. That is,

πn
I :

{
T n → T k,

u �→ (ui1, . . . , uik ).
(2.20)

The sublist (u1, . . . , uk) of u ∈ T n is simply denoted uk . With a slight abuse of notation, we also write

πn
I (T ,u,μ) := ([[

πn
I (u)

]]
,πn

I (u),μ
) := ([[

πn
I (u)

]]
,πn

I (u),μ�[[πn
I (u)]]

)
, (2.21)

where the measure μ in the middle expression is tacitly understood to be restricted to the appropriate space, [[πn
I (u)]].
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Definition 2.8 (sGw-topology). Consider n-pointed measure R-trees X , X 1,X 2, . . . ∈Hn. We say that (XN)N∈N con-

verges subtree Gromov-weakly (sGw) to X iff XN
pGw−→

N→∞X and

πn
I (XN)

pGw−→
N→∞πn

I (X ), ∀I ⊆ {1, . . . , n}. (2.22)

Put

H̃n := {
(T ,u,μ) ∈ Hn: supp(μ) ⊆ [[u]]} ⊆Hn, (2.23)

and note that H̃n consists only of finite trees with at most n leaves.

Remark 2.9 (Related topologies). The sGw-topology is strictly stronger than the pGw-topology. On H̃n, sGw-
convergence implies measured Gromov–Hausdorff convergence [32], also known as weighted Gromov–Hausdorff
convergence [30,44].

Lemma 2.10 (Sufficient condition for sGw-convergence). Consider random n-pointed measure R-trees X =
(T ,u,μ),XN = (TN,uN,μN) ∈ H̃n, N ∈ N (in particular TN = [[uN ]]). Assume that (XN)N∈N converges almost
surely (a.s.) to X in the n-pointed Gromov-weak topology, as N → ∞. Furthermore, assume that there is a strictly
increasing function ψ :R+ →R+ such that ψ(‖μ‖) is integrable and

E
[
ψ

(
μN

([[
πn

I (uN)
]]))] −→

N→∞E
[
ψ

(
μ

([[
πn

I (u)
]]))]

, ∀I ⊆ {1, . . . , n}. (2.24)

Then (XN)N∈N converges also subtree Gromov-weakly to X , a.s., as N → ∞.

To prepare the proof, we state the following:

Remark 2.11 (pGw-convergence yields a tree homomorphism). Consider a sequence of n-pointed measure R-
trees X = (T ,u,μ), X 1 = (T1, u1,μ1), X 2 = (T2, u2,μ2), . . . ∈ H̃n. Assume furthermore that (XN)N∈N converges
n-pointed Gromov-weakly to X , a.s., as N → ∞.

For sufficiently large N ∈ N, we can define a function fN :TN → T by sending the root to the root, letting
fN(uN,k) = uk and fN(uN,k ∧ uN,l) = uk ∧ ul , k, l = 1, . . . , n, and then stretching linearly. Here, as usual, u ∧ v

denotes the unique branch point such that [ρ,u ∧ v] = [ρ,u] ∩ [ρ,v].
By construction, dis(fN) −→

N→∞ 0 where

dis(f ) := sup
x,y∈T

∣∣r(x, y) − r ′(f (x), f (y)
)∣∣ (2.25)

denotes the distortion of a map f : (T , r) → (T ′, r ′).

Proof of Lemma 2.10. Assume that N is large enough, such that the function fN :TN → T from Remark 2.11 is a
tree homomorphism with fN(uN,k) = uk , k ∈ {1,2, . . . , n} and such that dis(fN) −→

N→∞ 0. We can therefore choose

a metric d on TN � T extending rN and r such that d(x,fN(x)) → 0 for all x ∈ TN (compare, for example, [19],
Corollary 7.3.28).

Thus dPr((fN)∗μN,μN) ≤ supx d(x,fN(x)) → 0, as N → ∞, and we obtain that

dPr
(
(fN)∗μN,μ

) ≤ dPr
(
(fN)∗μN,μN

) + dPr(μN,μ) −→
N→∞ 0. (2.26)

Fix now I ⊆ {1, . . . , n} and define the subtree

S := [[
πn

I (u)
]] ⊆ T . (2.27)
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Because S is closed in T , we have lim supN→∞(fN)∗μN(S) ≤ μ(S) by the Portmanteau theorem (see Theorem 2.1
in [16]). Because ψ is increasing, this implies

lim sup
N→∞

ψ
(
(fN)∗μN(S)

) ≤ ψ
(
μ(S)

)
. (2.28)

By assumption (2.24),

E
[
ψ

(
(fN)∗μN(S)

)] = E
[
ψ

(
μN

([[
πn

I (uN)
]]))] −→

N→∞E
[
ψ

(
μ(S)

)]
. (2.29)

(2.29) and (2.28) together yield ψ((fN)∗μN(S)) −→
N→∞ψ(μ(S)), almost surely. Because ψ is strictly increasing, also

(fN)∗μN(S) → μ(S). Using once more the Portmanteau theorem and closedness of S, we obtain that

(fN)∗μN �S �⇒
N→∞μ�S. (2.30)

The inequality

dpGw
(
πn

I

([[uN ]], uN,μN

)
,πn

I

([[u]], u,μ
))

≤ dPr
(
μN �[[πn

I (uN )]], (fN)∗μN �S

) + dPr
(
(fN)∗μN �S,μ�S

)
, (2.31)

then gives the sGw-convergence. �

As for the pGw-topology, we define an associated set of test functions Φ̃ :Hn →R by

Φ̃(T ,u,μ) :=
∏

I⊆{1,...,n}
ΦI

(
πn

I (T ,u,μ)
)
, (2.32)

where the ΦI are polynomials on H#I . Obviously, this class of test functions induces the sGw-topology on H̃n, and
together with the polynomials on Hn, the sGw-topology on Hn. We also define

Π̃n :=
{ ∏

I⊆{1,...,n}
Φ

γ,m,ϕ

I ◦ πn
I : Φ

γ,m,ϕ

I ∈ Π#I

}
. (2.33)

2.3. The LWV-topology

In this subsection we give the definition of bi-measure R-trees and equip the space of equivalence classes of bi-
measure R-trees with the leaf-sampling weak vague topology, in the following referred to as the LWV-topology.

Given a rooted measure R-tree (T ,μ), denote by

Skμ(T ) :=
⋃

v∈supp(μ)

[ρ,v[ ∪ {
v ∈ T : μ

({v}) > 0
}

(2.34)

the μ-skeleton of (T ,μ), and by

Lfμ(T ) := [[
supp(μ)

]] \ Skμ(T ) (2.35)

the set of μ-leaves of (T ,μ).
We call (T ,μ, ν) a (rooted) bi-measure R-tree if (T ,μ) is a (rooted) measure R-tree and ν is a (σ -finite) measure

on T which satisfies the following two conditions:

(i) ν([ρ,u]) is μ-a.s. finite for u ∈ T ,
(ii) ν vanishes on the set of μ-leaves, i.e., ν(Lfμ(T )) = 0.

Note that (i) implies that ν is finite on subtrees of T with a finite number of leaves sampled with μ, a.s., and that
ν�Skμ(T ) is σ -finite (because our definition of measure R-trees includes separability of supp(μ)). In many interesting
cases, however, ν is not locally finite.
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Definition 2.12 (The spaces Hf,σ and HK,σ ). Two bi-measure R-trees (T ,μ, ν) and (T ′,μ′, ν′) are called equivalent
if there exists an isometry φ : [[supp(μ)]] → T ′ preserving the root and μ and preserving ν on the μ-skeleton, i.e.,
φ∗(μ) = μ′ and φ∗(ν�Skμ(T )) = ν′�Skμ′ (T ′). In particular, (T ,μ, ν) is equivalent to (T ,μ, ν�Skμ(T )).

We denote by Hf,σ the space of equivalence classes of (rooted) bi-measure R-trees, and by HK,σ := {(T ,μ, ν) ∈
Hf,σ | ‖μ‖ ≤ K}, K > 0, the subspace where the total mass of the sampling measure is bounded by K .

Similar to the distance matrix distribution υ(T ,μ) introduced in (2.8), which characterizes n-pointed measure R-
trees and is used to define the pGw-topology, we want to characterize bi-measure R-trees by the so-called subtree-
vector-distribution. To introduce this, consider for a given bi-measure R-tree (T ,μ, ν) the function

τ(T ,μ,ν) :

{⋃
n∈N T n → ⋃

n∈NHn,

(u1, u2, . . . , un) �→ ([[u1, . . . , un]], (u1, . . . , un), ν),
(2.36)

which sends a vector of n points in T to the n-pointed R-tree spanned by these points and equipped with ν, which we
tacitly understand to be restricted to the appropriate space, i.e. [[u1, . . . , un]]. We also define the function

ς(T ,μ,ν) :

{
T N → ∏

n∈NHn,

u �→ (τ(T ,μ,ν)(u1), τ(T ,μ,ν)(u1, u2), . . .),
(2.37)

which sends a sequence of points to the sequence of pointed measure R-trees spanned and pointed by the first 1, 2,
etc. points and each of these is equipped with the appropriate restriction of ν. Note that τ(T ,μ,ν) does not depend on
the measure μ and is in general not continuous.

Lemma 2.13 (Measurability). Equip Hn with the n-pointed Gromov-weak topology, and
∏

n∈NHn with the product
topology. Then the function ςX is measurable for all X ∈Hf,σ .

Proof. It is enough to show that τX is measurable on T n for each n ∈ N. Fix therefore n ∈N.
Since Hn is separable (Proposition 2.6), and the space of all polynomials induces the n-pointed Gromov-weak

topology on Hn, it is enough to show that Φ ◦ τX is measurable for every polynomial Φ (compare (2.10)). As for each

m ∈N, ϕ ∈ Cb(R
(m+n+1

2 )
+ ) and X = (T ,μ, ν),

Φm,ϕ ◦ τX (u) =
∫

ν⊗m(dv)1{v1,...,vm∈[[u]]}ϕ
(
RT (u, v)

)
, (2.38)

this follows from joint measurability of (u, v) �→ 1{v1,...,vm∈[[u]]}(ϕ ◦ RT )(u, v). �

We are now in a position to define the subtree vector distribution, �X , of a bi-measure R-tree X = (T ,μ, ν) as

�X := ‖μ‖ · (ςX )∗
((

μ◦)⊗N) ∈Mf

(∏
n∈N

Hn

)
. (2.39)

Definition 2.14 (LWV-topology). We say that a sequence (XN)N∈N converges to X in Hf,σ in the leaf-sampling weak
vague topology (LWV-topology) if the corresponding subtree vector distributions converge, i.e.,

�XN �⇒
N→∞�X , (2.40)

where convergence is weak convergence of finite measures on
∏

n(Hn,pGw).

Remark 2.15. Obviously, HK,σ is closed in Hf,σ with LWV-topology, Hf,σ = ⋃
K∈NHK,σ , and for every compact

set K ⊆Hf,σ there exists K ∈ N with K ⊆HK,σ .
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Remark 2.16 (Relation with Gromov-weak topology).

(i) LWV-convergence of (TN,μN, νN)N∈N implies Gromov-weak convergence of (TN,μN)N∈N.
(ii) Gromov-weak convergence of (TN,μN)N∈N does not imply LWV-convergence of (TN,μN,μN)N∈N (compare

Example 2.21).

Recall from Definition 2.4 and Definition 2.8 the n-pointed Gromov-weak topology (pGw) and the subtree
Gromov-weak topology (sGw), respectively. Let (UN,k)k∈N be an i.i.d. sequence of μ◦

N -distributed random variables,
and Un

N := (UN,1, . . . ,UN,n). The definition of LWV-convergence requires, in addition to convergence of ‖μN‖, the
joint convergence in law with respect to the pGw-topology of τXN

(Un
N), n ∈ N. The next proposition shows that

we can, on one hand, weaken this requirement to individual convergence of all τXN
(Un

N), and, on the other hand,
strengthen it to require convergence in law with respect to the sGw-topology.

Proposition 2.17 (Characterization of LWV-convergence). Consider a sequence of bi-measure R-trees XN =
(TN,μN, νN) ∈ Hf,σ and another bi-measure R-tree X ∈ Hf,σ such that ‖μN‖ → ‖μ‖, as N → ∞. The three fol-
lowing statements are equivalent:

(i) XN
LWV−→ X , as N → ∞,

(ii) for all n ∈N,

(τXN
)∗

(
μ◦

N

)⊗n pGw�⇒
N→∞(τX )∗

(
μ◦)⊗n

, (2.41)

(iii) equipping
∏

n∈NHn with the product topology
∏

(sGw),

(ςXN
)∗

(
μ◦

N

)⊗N

∏
(sGw)�⇒

N→∞ (ςX )∗
(
μ◦)⊗N

. (2.42)

Proof. First remark that (iii) ⇒ (i) ⇒ (ii) is straightforward.
We prove that (ii) implies (iii). Fix therefore n ∈ N. By Skorohod’s representation theorem (Theorem 6.7 in

[16]), there exists a list Un = (U1, . . . ,Un) of n i.i.d. random variables with common distribution μ◦ and Un
N =

(UN,1, . . . ,UN,n) i.i.d. random variables with distribution μ◦
N such that

τXN

(
Un

N

) pGw−→
N→∞ τX

(
Un

)
, almost surely. (2.43)

In order to obtain sGw-convergence, by Lemma 2.10, it is sufficient to prove for all I ⊆ {1, . . . , n} that νN([[πn
I (Un

N)]])
converges weakly (as R+-valued random variable) to ν([[πn

I (Un)]]). Because πn
I (Un

N) has the same distribution as
U#I

N , and similarly for Un instead of Un
N , this follows from (2.41) for n = #I , where we use that the total mass of an

n-pointed measure R-tree is continuous in the pGw-topology. Finally, we conclude from Lemma 2.10 that

τXN

(
Un

N

) sGw−→ τX
(
Un

)
, as N → ∞, almost surely. (2.44)

In particular, the one-dimensional marginals of (ςXN
)∗(μ◦

N)⊗N0 converge as measures on (Hn, sGw). In order to
obtain convergence of laws on the product space, we have to show convergence of finite-dimensional marginals. This
comes directly from the definition of sGw-convergence. �

We are now in a position to show that the subtree vector distribution characterizes bi-measure R-trees uniquely.

Proposition 2.18 (Reconstruction theorem for Hf,σ ). If X ,X ′ ∈ Hf,σ are such that �X = �X ′
, then X = X ′.

Proof. Let X = (T ,μ, ν),X ′ = (T ′,μ′, ν′) ∈ Hf,σ with �X = �X ′
. It follows immediately that ‖μ‖ = ‖μ′‖. As-

sume w.l.o.g. that ‖μ‖ = ‖μ′‖ = 1.
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We will first adapt Vershik’s proof of Gromov’s reconstruction theorem for metric measure spaces to show that
(T ,μ) = (T ′,μ′) (compare [34], Subsection 3 1

2 .7). Recall that a sequence u = (un)n∈N in T is called μ-uniformly
distributed if

1

n

n∑
i=1

δui
�⇒
n→∞μ, (2.45)

and note that, due to separability of T , μ⊗N-almost every sequence is μ-uniformly distributed (see, for example, [25],
Theorem 11.4.1).

Of course, the corresponding statement is also true for μ′ instead of μ, and as �X = �X ′
, we can find a μ-

uniformly distributed sequence u = (un)n∈N in T , and a μ′-uniformly distributed sequence u′ = (u′
n)n∈N in T ′ with

ςX (u) = ςX ′(u′).
Put u0 := ρ, u′

0 := ρ′. Then f (uk) := u′
k , for all k ∈ N0, defines a root-preserving isometry from {u0, u1, . . .}

onto {u′
0, u

′
1, . . .}, which can be extended to an isometry (still denoted by f ) from [[supp(μ)]] onto [[supp(μ′)]] (see

Remark 2.7). Because the sequences are uniformly distributed and f∗ is continuous,

f∗(μ) = f∗

(
lim

n→∞
1

n

n∑
i=1

δui

)
= lim

n→∞f∗

(
1

n

n∑
i=1

δui

)

= lim
n→∞

1

n

n∑
i=1

δu′
i
= μ′. (2.46)

We still need to show that f∗(ν′) = ν (on the μ-skeleton), or equivalently, f∗(ν′)(S) = ν(S) for all finite trees
S ⊆ Skμ(T ). By definition of Skμ(T ) and the fact that (un)n∈N is uniformly distributed, we have S ⊆ [[un]] for
sufficiently large n. Because ([[un]], un, ν) and ([[u′n]], u′n, ν′) are equivalent as n-pointed metric measure spaces,
f∗(ν′)�[[un]] = ν�[[un]]. �

We can now immediately conclude that Hf,σ is separable and metrizable. We are not able to come up, however,
with a complete metric. “Polishness” of the state space will not be used throughout the paper.

Corollary 2.19 (Separability & metrizability). The space Hf,σ equipped with the LWV-topology is separable and
metrizable.

Proof. As the map which sends a bi-measure R-tree to its subtree vector distribution is injective, we can identify Hf,σ

with a subspace of Mf (
∏

n∈NHn). Hn is separable, metrizable according to Proposition 2.6, hence the same holds
for the countable product and the space of finite measures on it (with weak topology). �

It is important to note that μ and ν play different rôles in the LWV-topology, even if ν happens to be finite and μ is
supported on the skeleton. While the convergence is weak with respect to μ, it is vague with respect to ν in the sense
that the total ν-mass is not preserved under convergence, but mass may get lost in the limit. We give two examples of
this phenomenon.

Example 2.20. Consider the (finite) R-tree shown in Figure 1 and define the probability measures μN := (1− 1
N

)δy1 +
1
N

δy2 . Then (T ,μN) converges Gromov-weakly to ({ρ,y1}, δy1). We endow (T ,μN) with a constant measure ν := δw ,
then (T ,μN, δw) converges in the LWV-topology to ({ρ,y1}, δy1,0).

Example 2.21 (Figure 2). We define a sequence of R-trees

TN := {ρ, z, y, x1, x2, . . . , xN }
shown in Figure 2 where rN(ρ, z) = rN(z, y) = 1 and r(z, xi) = 1

N
, for all i = 1, . . . ,N . We define a probability

measure μN on the leaves of TN by μN = λδy + (1 − λ)
∑

i
1
N

δxi
, then (TN,μN) converges Gromov-weakly to
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Fig. 1. A constant mass of the pruning measure at w gets lost in the limit if the mass of the sampling measure at y2 tends to zero. The crosses ×
are μ-masses and the squares � are ν-masses.

Fig. 2. If N tends to ∞ and the distances from xi to z tend to zero, the masses of the pruning measure at xi get lost in the limit, while the masses
of the sampling measure at xi are preserved.

({ρ, z, y}, λδy + (1−λ)δz). If we endow this measure R-tree with the measure νN = μN , then (TN,μN, νN) converges
in the LWV-topology to ({ρ, z, y}, λδy + (1 − λ)δz, λδy).

2.4. Convergence determining classes for the LWV-topology

In this subsection, we introduce important classes of test functions and use them to obtain several convergence results.
Namely, we consider functions Ψ = Ψ γ,n,Φ :Hf,σ → R of the form

Ψ (X ) := Ψ γ,n,Φ(X ) := γ
(‖μ‖) ·

∫
T n

μ⊗n(du)Φ
(
τX (u)

)
, (2.47)

where γ ∈ Cb(R+) and Φ ∈ Cb(Hn).
Recall Πn and Π̃n from (2.12) and (2.33). As we will see later, the following subspaces of test functions are helpful

in characterizing LWV-convergence. Put

F := {
Ψ 1,n,Φ | Φ ∈ Πn

}
, (2.48)

and

F̃1 := {
Ψ 1,n,Φ̃ | Φ̃ ∈ Π̃n

}
, (2.49)

and

F̃ :=
{
Ψ γ,n,Φ̃

∣∣ Φ̃ ∈ Π̃n, lim
x→∞xkγ (x) = 0 ∀k ∈N

}
. (2.50)
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Lemma 2.22 (LWV-convergence via test functions). Both F and F̃ induce the LWV-topology, i.e., for a sequence
of bi-measure R-trees XN ∈ Hf,σ and another bi-measure R-tree X ∈Hf,σ , the following statements are equivalent:

(i) XN
LWV−→ X , as N → ∞,

(ii) Ψ (XN) → Ψ (X ), as N → ∞, for all Ψ ∈ F ,
(iii) Ψ̃ (XN) → Ψ̃ (X ), as N → ∞, for all Ψ̃ ∈ F̃ .

Proof. The equivalence of (i) and (ii) is clear, as by Proposition 2.17, LWV-convergence is equivalent to the conver-
gence of ‖μN‖ → ‖μ‖ together with 〈(τXN

)∗(μ◦
N)⊗n, f 〉 → 〈(τX )∗(μ◦)⊗n, f 〉, as N → ∞, for all n ∈ N and for a

class of functions f which determine the n-pointed Gromov-weak convergence. Moreover, by Proposition 2.6, Πn is
such a convergence determining class. As Ψ (XN) = 〈(τXN

)∗(μN)⊗n,Φ〉, the claim follows.
By Proposition 2.17, F̃ contains only functions which are continuous with respect to the LWV-topology, and thus

(i) clearly implies (iii). To see that (iii) implies (ii), note that for γ (x) := e−x , convergence of Ψ γ,0,1(XN) = γ (‖μN‖)
implies convergence of ‖μN‖. Hence convergence of Ψ̃ (XN), for all Ψ̃ ∈ F̃ , implies convergence of Ψ (XN), for all
Ψ ∈ F . �

Proposition 2.23 (Convergence determining classes). The following hold:

(i) The class of test functions F̃ is convergence determining on Hf,σ .
(ii) The class of test functions F̃1 is convergence determining on HK,σ for all K > 0.

Proof. We apply Theorem 6 from [17], a slight extension of Le Cam’s theorem (see [38]) in the separable, metrizable
case: if a set of bounded real-valued functions is multiplicatively closed and induces a separable, metrizable topology,
then it is a convergence determining class with respect to this topology. By Lemma 2.22, F̃ induces the LWV-topology,
which is separable, metrizable by Corollary 2.19. We therefore need to verify that if Ψ̃1, Ψ̃2 ∈ F̃ , then Ψ̃1 · Ψ̃2 ∈ F̃ .
Let Ψ̃i = Ψ γi,ni ,Φ̃i for some ni ∈ N0, γi ∈ Cb(R+) with limx→∞ xkγi(x) = 0, for all k ∈ N, and Φ̃i ∈ Π̃n, i = 1,2.
Then

Ψ γ1,n1,Φ̃1 · Ψ γ2,n2,Φ̃2(X )

= (γ1γ2)
(‖μ‖) ·

∫
T n1+n2

μ⊗(n1+n2)(du1,du2)Φ̃1
([[u1]], u1, ν

)
Φ̃2

([[u2]], u2, ν
)
. (2.51)

For u = (u1, u2), let Φ̃([[u]], u, ν) := Φ̃1([[u1]], u1, ν) · Φ̃2([[u2]], u2, ν). As u1 and u2 are sublists of u, Φ̃ ∈ Π̃n and
therefore Ψ̃1 · Ψ̃2 ∈ F̃ .

To get the second statement in the same way, note that functions Ψ 1,n,Φ̃ ∈ F̃1 are bounded on HK,σ . �

An important fact about the LWV-topology is that Gromov-weak convergence of measure R-trees implies LWV-
convergence if the trees are additionally equipped with their respective length measures (see Example 2.24 for a
definition of length measure and Proposition 2.25 for the statement). We obtain the same also for a slightly more
general class of measures. Given a family (Ti,μi)i∈I of measure R-trees, we say that a family (νi)i∈I of measures on

respective Ti depends continuously on the distances if, for all n ∈N, there exists a continuous mapping Fn :R
( n+1

2
)
→

Hn, where Hn is endowed with the pGw-topology, such that([[u]], u, νi

) = Fn

(
RTi (u)

)
, ∀u ∈ T n

i ,∀i ∈ I. (2.52)

Example 2.24 (Length measure). The length measure, λT , on a separable 0-hyperbolic and connected metric space
T generalizes the Lebesgue measure on R in an obvious way (compare [31]). Recall the set of leaves of T from (2.18).
The length measure can be defined by the following two requirements:

∀x, y ∈ T : λT

([x, y]) = r(x, y) and λT

(
Lf(T )

) = 0. (2.53)

Obviously, the family of length measures (λT )T ∈{R-trees} depends continuously on the distances. The same is true if
we replace λT by νT = fT · λT , where fT is a density that depends only on the height, i.e., fT (v) := h(r(ρ, v)) for a
bounded measurable function h (which does not depend on T ).
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We can relax the continuity of the Fn, n ∈N, a little. Let (T ,μ) ∈H. We say that a family (νi)i∈I as above depends
υ(T ,μ)-almost continuously on the distances if it satisfies (2.52) with functions Fn that are not necessarily continuous,
but where the set of discontinuity points is a null set with respect to the distance matrix distribution induced by (T ,μ),
i.e. (RT )∗μ⊗n(Discont(Fn)) = 0.

Proposition 2.25 (LWV-convergence from Gromov-weak convergence). Consider a sequence (XN)N∈N :=
(TN,μN, νN)N∈N and X∞ := (T∞,μ∞, ν∞) in Hf,σ such that the measures ν∞, ν1, ν2, . . . depend υ(T∞,μ∞)-almost
continuously on the distances.

If (TN,μN)
Gw−→

N→∞(T∞,μ∞), then

(TN,μN, νN)
LWV−→

N→∞(T∞,μ∞, ν∞). (2.54)

In particular, the embedding defined by

H→ Hf,σ ,
(2.55)

(T ,μ) �→ (T ,μ,λT ),

where λT is the length measure, is a homeomorphism onto its image.

Proof. Given n ∈ N, fix a function Fn :R
(n+1

2 )
+ → Hn as in (2.52), such that the set of discontinuity points of Fn is a

zero set with respect to (RT∞)∗(μ⊗n∞ ). For N ∈ N∪ {∞}, let UN be a random vector in T n
N with distribution (μ◦

N)⊗n.
Then the assumed Gromov-weak convergence means that ‖μN‖ → ‖μ∞‖ and

RTN (UN)
L�⇒

N→∞RT∞(U∞), (2.56)

where
L⇒ denotes convergence in law. By the continuous mapping theorem (see Theorem 5.1 in [16]), we obtain([[UN ]],UN, νN

) = Fn

(
RTN (UN)

) L�⇒
N→∞Fn

(
RT∞(U∞)

) = ([[U∞]],U∞, ν∞
)
. (2.57)

Using that ([[UN ]],UN, νN) has law (τXN
)∗((μ◦

N)⊗n) for N ∈N∪ {∞}, the claimed LWV-convergence XN
LWV−→ X∞

now follows from Proposition 2.17. That (2.55) defines a homeomorphism onto its image is now obvious, because the
length measure depends continuously on the distances (see Example 2.24). �

Corollary 2.26 (Sampling measure perturbation). Consider two sequences of bi-measure R-trees X i
N :=

(TN,μi
N , νN), i = 1,2 that differ by their sampling measures μ1

N and μ2
N . Assume that X 1

N

LWV−→
N→∞X , and that the

pruning measures (νN)N∈N depend υ(T ,μ)-almost continuously on the distances. If dPr(μ
1
N,μ2

N) −→
N→∞ 0, then also

X 2
N

LWV−→
N→∞X .

Proof. As X 1
N

LWV−→
N→∞X , implies that (TN,μ1

N) −→
N→∞(T ,μ) in the Gw-topology, we get dpGP((TN,μ1

N), (T ,μ)) −→
N→∞ 0

by Proposition 2.6. Since μ1
N and μ2

N are defined on the same space TN , the latter implies that also

lim
N→∞dpGP

((
TN,μ2

N

)
, (T ,μ)

) = 0 (2.58)

(compare (2.14)). Proposition 2.25 allows us to endow these metric measure spaces with the associated measures νN

and some ν∞ on T , defined by (2.52). Because of uniqueness of LWV-limits, we have (T ,μ, ν∞) = (T ,μ, ν). �
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Fig. 3. The tree TN with the two sequences x1
N

and x2
N

that converge to x.

Example 2.27 (Counterexample). We cannot extend the result of Corollary 2.26 to pruning measures which do not
depend only on the distances.

As illustrated in Figure 3, we consider a constant rooted metric space T and two fixed points x, y ∈ T such that
x ∈ [ρ,y]. We construct two sequences of points (x1

N)N∈N and (x2
N)N∈N that converge to x, the first from above, the

second from below; i.e. x1
N ∈ [x, y] and x2

N ∈ [ρ,x] for all N ∈N, and r(xi
N , x) −→

N→∞ 0 for i = 1,2. We then define the

two sequences of measures μi
N := 1

2δxi
N

+ 1
2δy for i = 1,2 and a constant measure νN = ν = δx . Clearly, X 1

N

LWV−→
N→∞X

and dPr(μ
1
N,μ2

N) −→
N→∞ 0, but the sequence (T ,μ2

N, ν) does not converge, since the subtree [ρ,x2
N ] never contains the

point x, except at the limit. Thus ([ρ,x2
N ], {x2

N }, ν) does not converge pointed Gromov-weakly.

Lemma 2.28 (Sum of pruning measures). Let X i
N = (TN,μN, νi

N ) ∈ Hf,σ with (TN,μN, νi
N )

LWV−→ X i = (T ,μ,

νi) ∈Hf,σ , as N → ∞, for i = 1,2. If (ν1
N)N∈N depends υ(T ,μ)-almost continuously on the distances, we obtain(

TN,μN, ν1
N + ν2

N

) LWV−→
N→∞

(
T ,μ, ν1 + ν2). (2.59)

Proof. Fix n ∈ N. Because (ν1
N)N∈N depends υ(T ,μ)-almost continuously on the distances, we can choose Fn as

in (2.52). Let UN , U be random variables with distribution μ⊗n
N , μ⊗n, respectively. By the LWV-convergence and

the Skorohod representation theorem, we can couple them such that τX2
N
(UN)

pGw−→
N→∞ τX2(U), a.s., which implies

RTN (UN) −→
N→∞RT (U). Because RT (U) is a.s. a continuity point of Fn, we also have

τX1
N
(UN) = Fn ◦ RTN (UN)

pGw−→
N→∞Fn ◦ RT (U) = τX1(U), a.s. (2.60)

As explained in Remark 2.11, we can define functions fN : [[UN ]] → [[U ]] such that a.s. fN(UN) = U for
large enough N , dis(fN) −→

N→∞ 0, and (fN)∗(νi
N ) �⇒

N→∞νi . Then also fN∗(ν1
N + ν2

N) �⇒
N→∞ν1 + ν2, which im-

plies ([[UN ]],UN, ν1
N + ν2

N)
pGw−→

N→∞([[U ]],U, ν1 + ν2), a.s. By Proposition 2.17, this implies the claimed LWV-

convergence. �

Remark 2.29 (Assumption on υ(T ,μ)-almost continuity is important). In Lemma 2.28, we cannot drop the assumption
that one of the measures depends υ(T ,μ)-almost continuously on the distances, because then we cannot use the same
coupling of UN to get almost sure convergence of τX i

N
(UN) for i = 1 and for i = 2.

If we get LWV-convergence of a sequence of bi-measure R-trees, the following lemma asserts that the limit is
stable under a small perturbation of νN in a certain sense.

Lemma 2.30 (Pruning measure perturbation). Consider two sequences of bi-measure R-trees X i
N := (TN,μN,

νi
N ), i = 1,2 that differ by their pruning measures ν1

N and ν2
N . If the two pruning measures are Prohorov merging on

subtrees sampled by μ⊗n
N , i.e.,

lim
N→∞dPr

(
ν1
N �[[Un

N ]], ν2
N �[[Un

N ]]
) = 0, μ⊗n

N -a.s.,∀n ∈ N, (2.61)

then X 1
N

LWV−→
N→∞X , for some X = (T ,μ, ν), implies X 2

N

LWV−→
N→∞X .
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Proof. Let UN and U be sequences of independent μN - and μ-distributed random variables in TN and T , respectively.
Because ν1 and ν2 are defined on the same measure R-tree, the Prohorov distance in (2.61) is an upper bound for the
pGP-distance, and we obtain

dpGP
(
τX2

N

(
Un

N

)
, τX

(
Un

))
≤ dPr

(
ν1
N �[[Un

N ]], ν2
N �[[Un

N ]]
) + dpGP

(
τX1

N

(
Un

N

)
, τX

(
Un

)) −→
N→∞ 0, (2.62)

almost surely, for all n ∈ N. This implies (τX2
N
)∗(μ◦

N)⊗n pGw�⇒ (τX )∗(μ◦)⊗n for all n ∈ N, and Proposition 2.17 gives
the LWV-convergence. �

We conclude this section by giving a simple, sufficient (but far from necessary) condition for relative compactness
of a set K ⊆Hf,σ . Assume that for all X ′ = (T ′,μ′, ν′) ∈ K, there is an isometric embedding of T ′ into some common
R-tree T , and there are measures μ and ν on T dominating all the (push forwards of) μ′ and ν′, respectively. Further
assume that X := (T ,μ, ν) ∈Hf,σ . In other words,

K⊆ SX := {(
T ,μ′, ν′) ∈ Hf,σ | μ′ ≤ μ,ν′ ≤ ν

}
. (2.63)

Then K is relatively compact, as the following lemma shows.

Lemma 2.31 (Compactness of SX ). Let X = (T ,μ, ν) ∈ Hf,σ . Then SX , defined in (2.63), is compact in the LWV-
topology.

Proof. Consider measures μN ≤ μ, νN ≤ ν, N ∈ N. We have to find a subsequence of XN := (T ,μN, νN) that
converges in SX . Fix finite subtrees Tn ⊆ T , n ∈N, with Tn ⊆ Tn+1 and

⋃
n∈N Tn ⊇ Skμ(T ).

Because the family (μN)N∈N is uniformly σ -additive and norm bounded, there exists a setwise convergent subse-
quence [18], Thm. 4.7.25. Assume w.l.o.g. that there is μ∞ ∈ Mf (T ) with μN(A) −→

N→∞μ∞(A) for all measurable

A ⊆ T . Similarly, using Cantor’s diagonalization argument, we may assume that νN �Tn
converges setwise to some

ν̂n ∈Mf (Tn), for every n ∈ N. Define

ν∞(A) := sup
n∈N

ν̂n

(
Tn ∩ A ∩ Skμ∞(T )

)
. (2.64)

Because ν̂n�Tn−1
= ν̂n−1, we can easily check that ν∞ is a measure on T and X∞ := (T ,μ∞, ν∞) ∈ SX . Further-

more, for measurable A ⊆ Skμ∞(T ) ⊆ Skμ(T ) ⊆ ⋃
n∈N Tn, we obtain

ν∞(A) = sup
n∈N

lim
N→∞νN(A ∩ Tn)

{≤ lim infN→∞ νN(A),

≥ lim supN→∞ νN(A) − supn∈N ν(A \ Tn).
(2.65)

Using A ⊆ ⋃
n∈N Tn, this implies

ν∞(A) = lim
N→∞νN(A). (2.66)

We shall show that XN
LWV−→

N→∞X∞. By Lemma 2.22, it is enough to show that Ψ (XN) → Ψ (X∞) for all Ψ ∈ F . Let

G := {
u ∈ T n: ν

([[u]] \ Skμ∞(T )
) = 0

}
. (2.67)

Fix Ψ = Ψ n,Φ ∈F . Then (2.66) implies

Φ ◦ τXN
(u) −→

N→∞Φ ◦ τX∞(u) ∀u ∈ G, (2.68)
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and with B := T n \ G we estimate

∣∣Ψ (XN) − Ψ (X∞)
∣∣ ≤ μ⊗n

N (B)2‖Φ‖∞ +
∫

G

|Φ ◦ τXN
− Φ ◦ τX∞|dμ⊗n

N

+
∫

|Φ ◦ τX∞|d
(
μ⊗n

N − μ⊗n∞
)
. (2.69)

The last term converges to zero because of the setwise convergence of μN to μ∞, and the second term is bounded
by

∫
G

|Φ ◦ τXN
− Φ ◦ τX∞|dμ⊗n, which converges to zero according to (2.68), using the dominated convergence

theorem.
For every (u1, . . . , un) ∈ supp(μ∞)n \ G, there is an index k ∈ {1, . . . , n} with uk ∈ At(ν) \ At(μ∞), where At

denotes the set of atoms of a measure. Because At(ν) is countable, this implies that B is a μ∞-null set. Again using
setwise convergence of μN , we obtain

lim
N→∞μ⊗n

N (B) = μ⊗n∞ (B) = 0. �

3. The pruning process

In this section, we present the construction of the bi-measure valued pruning process, (Xt )t≥0. In Section 3.1, we
carry out an explicit construction given a realization of the Poisson point process which gives rise to a càdlàg path. We
continue the construction in Section 3.2 by adding randomness and establishing that the stochastic process obtained
this way has the strong Markov property. In Section 3.3, we establish the Feller property from which we can conclude
that the law of the pruning process on Skorohod space is weakly continuous in the initial distribution on bi-measure
R-trees. Finally, in Section 3.4 we give an analytic characterization via the infinitesimal generator.

3.1. Getting the construction started: Pruning moves

It is convenient to introduce randomness later and work initially in a setting where the cut times and cut points are
fixed. Given a bi-measure R-tree, (T ,μ, ν) ∈ Hf,σ , consider a subset π ⊆ R+ × T . Although π is associated with a
particular class representative, it corresponds, of course, to a similar set for any representative of the same equivalence
class by mapping across using the appropriate root invariant isometry. Then the set of cut points up to time t is the
projection of π ∩ ([0, t] × T ) onto the tree, i.e.

πt := {
v ∈ T | ∃s ≤ t : (s, v) ∈ π

}
. (3.1)

For every v ∈ T , the tree pruned at v is defined by

T v := {
w ∈ T | v /∈ [ρ,w]}. (3.2)

The pruned tree at the set πt ⊆ T , T πt , is the intersection of the trees T v pruned at v ∈ πt , i.e.,

T πt :=
⋂
v∈πt

T v. (3.3)

We equip the pruned tree T πt with the restrictions of the measures μ and ν. As always, we write (T πt ,μ, ν) instead
of (T πt ,μ�T πt , ν�T πt ) and easily verify (T πt ,μ, ν) ∈Hf,σ .

Lemma 3.1 (Càdlàg paths). Fix X = (T ,μ, ν) ∈ Hf,σ and a set π ⊆ R+ × T . The map t �→ X t := (T πt ,μ, ν) is
càdlàg with respect to the LWV-topology.



The pruning process 1359

Proof. Let 0 < s < t . As T πt ⊆ T πs , we obtain for all Ψ = Ψ 1,n,Φ ∈ F ,∣∣Ψ (X s) − Ψ (X t )
∣∣ =

∣∣∣∣∫
(T πs )n\(T πt )n

Φ ◦ τX dμ⊗n

∣∣∣∣ ≤ ‖Φ‖∞ · μ⊗n
((

T πs
)n \ (

T πt
)n)

≤ ‖Φ‖∞ · n · ‖μ‖n−1 · μ(
T πs \ T πt

)
. (3.4)

For fixed s,
⋂

t>s T πs \ T πt = ∅, which implies that μ(T πs \ T πt ) → 0, as t → s from the right. Because F induces
the LWV-topology, this implies right continuity.

To construct the left limit, define Tt− := ⋂
0≤s<t T

πs ⊇ T πt for each t > 0, and define Y t := (Tt−,μ, ν), which is
obviously an element of Hf,σ . Similarly as before, for all 0 < s < t and Ψ ∈ F , there exists a constant C = CΨ such
that ∣∣Ψ (X s) − Ψ (Y t )

∣∣ ≤ C · μ(
T πs \ Tt−

)
. (3.5)

As, for fixed t ,
⋂

s<t T
πs \ Tt− = ∅, Y t is indeed the left limit. �

3.2. Continuing the construction: Adding randomness

In this subsection we define, given a bi-measure R-tree X = (T ,μ, ν), the pruning process of X , where π is now the
(random) Poisson point measure with intensity λ ⊗ ν on R+ × T . Here, we identify an atomic measure m on T with
the set At(m) of its atoms and define

T m := T At(m) =
⋂

v∈At(m)

T v. (3.6)

Definition 3.2 (The pruning process). Fix a bi-measure R-tree X := (T ,μ, ν) ∈ Hf,σ . Let πX be the Poisson point
measure on R+ × T with intensity measure λ ⊗ ν, where λ is the Lebesgue measure on R+. We define the pruning
process, X := (Xt )t≥0, as the bi-measure R-tree-valued process obtained by pruning X0 := X at the points of the
Poisson point process πt (·) := πX

t (·) := πX ([0, t] × ·), i.e.,

Xt := (
T πt ,μ, ν

) := (
T πt ,μ�T πt , ν�T πt

)
. (3.7)

EX , or E if there is no confusion, denotes the distribution of the process X starting from X0 = X .

Lemma 3.3 (Strong Markov property). The pruning process X is a strong Markov process.

Proof. Denote by (At )t≥0 the filtration generated by the Poisson point process (πt )t≥0. Note that X is adapted to
this filtration. Using the strong Markov property of the Poisson process, we get for every t ≥ 0, stopping time σ , and
u ∈ T n, n ∈N,

P
(
πσ+t

([[u]]) = 0 | Aσ

) = 1{πσ ([[u]])=0}P
(
πt

([[u]]) = 0
)
. (3.8)

For every Ψ̃ = Ψ 1,n,Φ̃ ∈ F̃1, this implies

E
[
Ψ̃ (Xσ+t ) | Aσ

] =
∫

T n

μ⊗n(du)P
(
πσ+t

([[u]]) = 0 |Aσ

) · Φ̃(
τX (u)

)
=

∫
(T πσ )n

μ⊗n(du)e−tν([[u]]) · Φ̃(
τX (u)

)
. (3.9)

On the other hand, we also have

EXσ
[
Ψ̃ (Xt )

] =
∫

(T πσ )n
μ⊗n(du)e−tν([[u]]) · Φ̃(

τX (u)
)
. (3.10)

Because Xt ∈H‖μ‖,σ , for all t ≥ 0, and F̃1 is a separating class on this space, we obtain the strong Markov property. �
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3.3. Continuity of the pruning process

In this subsection we show that the law of Xt under PX is weakly continuous in the initial value X for each t ≥ 0.
This property is sometimes referred to as the Feller property of the corresponding semigroup (St )t≥0, although this
terminology is often restricted to the case of a locally compact state space and transition operators that map the space
of continuous functions that vanish at infinity into itself. In the latter, more restrictive case, the Feller property implies
that the law of the whole process (as random variable on Skorohod space) depends continuously on the initial value.
If St maps only Cb into itself, this is no longer the case in general, and one needs an extra argument. The pruning
process (Xt )t≥0, however, does depend continuously on the initial condition (Theorem 3.6).

Let (St )t≥0 be the semi-group associated to the pruning process (Xt )t≥0, i.e. for t ≥ 0 and a bounded measurable
function G :Hf,σ → R,

StG(X ) := EX [
G(Xt)

]
. (3.11)

Proposition 3.4 (Feller continuity). The process X := (Xt )t≥0 is Feller continuous, i.e., St (Cb(H
f,σ )) ⊆ Cb(H

f,σ ).

Proof. Consider the convergence of bi-measure R-trees XN
LWV−→ X . Write K := sup{‖μN‖,N ∈ N}, then the se-

quence converges in HK,σ . Because F̃1 is convergence determining on HK,σ (see Proposition 2.23), it is enough to
prove for all Ψ̃ ∈ F̃1, t > 0 that

EXN
[
Ψ̃ (Xt )

] −→
N→∞EX [

Ψ̃ (Xt )
]
. (3.12)

Fix therefore Ψ̃ = Ψ 1,n,Φ̃ ∈ F̃1. Then

EXN
[
Ψ̃ (Xt )

] = EXN

[∫
(T

πt
N )n

Φ̃ ◦ τXN
dμ⊗n

N

]

=
∫

T n
N

μ⊗n
N (du)P

(
π

XN
t

([[u]]) = 0
) · Φ̃([[u]], u, νN

)
. (3.13)

Using P(π
XN
t ([[u]]) = 0) = exp(−tνN([[u]])), we see that EXN [Ψ̃ (Xt )] = Ψ̃ ′(XN) for some Ψ̃ ′ ∈ F̃1. The conver-

gence follows therefore from the LWV-convergence of (XN)N∈N. �

Consider a separable, metrizable space E and a contraction semigroup S = (St )t≥0 on Cb(E). We define

D(S) :=
{
f ∈ Cb(E): lim

t→0
‖Stf − f ‖∞ = 0

}
. (3.14)

Note that D(S) is uniformly closed, St maps D(S) into itself, and the restriction of (St )t≥0 to D(S) is a strongly
continuous contraction semigroup. In particular, the restricted semigroup has a generator ΩS :D(ΩS) → D(S) with
dense domain D(ΩS) ⊆D(S).

Lemma 3.5. Let E be a separable, metrizable space, and Yx = (Y x
t )t≥0, x ∈ E, an E-valued, Feller-continuous

(time-homogeneous) Markov process with càdlàg paths and semigroup S = (St )t≥0 on Cb(E). Assume that there is a
set G ⊆D(S) that is multiplicatively closed and induces the topology of E. Then the map

M1(E) →M1
(
DE(R+)

)
,

(3.15)
η �→ L

(
Yη

)
is continuous, where DE(R+) is the space of càdlàg paths with Skorohod topology, L is the law of a process, and Yη

is the process with initial condition L(Y
η
0 ) = η, i.e., L(Y η) = ∫

L(Y x)η(dx).
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Proof. It is sufficient to prove that L(Y xN ) �⇒
N→∞L(Y x) for every convergent sequence xN −→

N→∞x in E. Because G
induces the topology of E, it strongly separates points (see Lemma 1 in [17]). According to Theorem 10 of [17], it is
therefore enough to prove that for all f1, . . . , fk ∈ G,(

f1
(
Y

xN
t

)
, . . . , fk

(
Y

xN
t

))
t≥0

L�⇒
N→∞

(
f1

(
Yx

t

)
, . . . , fk

(
Yx

t

))
t≥0 (3.16)

in Skorohod space as Rk-valued processes. The assumed Feller continuity implies f.d.d. convergence, hence it is
enough to prove tightness.

To this end, we apply Theorem 3.9.4 of [28]. The linear span Ca := span(G) of G is an algebra contained in D(S),
and the domain D(ΩS) of the generator ΩS of S is dense in D(S). For every f ∈D(ΩS), we define ZN

t := ΩSf (Y
xN
t ).

Then the following hold:

(i) the processes (f (Y
xN
t ) − ∫ t

0 ZN
s ds)t≥0 are martingales,

(ii) for all T ≥ 0, supN∈NE[ess sup0≤t≤T |ZN
t |] ≤ ‖ΩSf ‖∞ < ∞.

Now tightness of the processes (f1(Y
xN
t ), . . . , fk(Y

xN
t ))t≥0, N ∈ N, for every fixed f1, . . . , fk ∈ Ca ⊇ G follows from

[28], Thm. 3.9.4. �

Theorem 3.6 (Continuity in the initial distribution). The law of X on the Skorohod space depends continuously on
the initial condition.

Proof. It is sufficient to prove continuity for deterministic initial conditions. Every convergent sequence XN
LWV−→

N→∞X

in Hf,σ is contained in HK,σ for some K > 0, and the pruning process stays a.s. in that subspace. We verify the
conditions of Lemma 3.5 for the HK,σ -valued pruning process. It has càdlàg paths (Lemma 3.1), is Feller-continuous
(Proposition 3.4), and F̃1 ⊆ Cb(H

K,σ ) is multiplicatively closed and induces the LWV-topology. It remains to show
that F̃1 ⊆D(S), where S is the Cb(H

K,σ )-semigroup.
For Φ̃ ∈ Π̃n, x ∈R+, we define

γΦ̃(x) := sup
(T ,u,ν)∈Hn,‖ν‖=x

∣∣Φ̃(T ,u, ν)
∣∣ (3.17)

and note that limx→∞ γΦ̃(x) = 0. Using Fubini’s theorem, we obtain for Ψ̃ = Ψ 1,n,Φ̃ ∈ F̃1 and X = (T ,μ, ν) ∈HK,σ

St Ψ̃ (X ) =
∫

PX (
πX

t

([[u]]) = 0
) · Φ̃(

τX (u)
)
μ⊗n(du)

=
∫

e−tν([[u]]) · Φ̃(
τX (u)

)
μ⊗n(du). (3.18)

Therefore,

sup
X∈HK,σ

∣∣St Ψ̃ (X ) − Ψ̃ (X )
∣∣ ≤ Kn sup

x∈R+
γΦ̃(x)

(
1 − e−tx

)−→
t→0

0.
�

3.4. The infinitesimal generator

In this subsection we calculate the action of the generator on the test functions Ψ̃ ∈ F̃1. For these functions to be
bounded, we have to work on the space HK,σ . Note that HK,σ is a good state space for the pruning process, as once
started in HK,σ , it will never leave the space. In the following we write(

Ω,D(Ω)
)

and
(
ΩK,D(ΩK)

)
(3.19)

for the infinitesimal generators of the pruning process with state spaces Hf,σ and HK,σ respectively.
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Proposition 3.7 (Infinitesimal generator). For every K > 0, we have F̃1 ⊆D(ΩK). Furthermore, for Ψ̃ = Ψ 1,n,Φ̃ ∈
F̃1 and X = (T ,μ, ν) ∈ HK,σ ,

ΩΨ̃ (X ) =
∫

ν(dv)
[
Ψ̃

((
T v,μ, ν

)) − Ψ̃ (X )
]

(3.20)

= −
∫

μ⊗n(du)ν
([[u]])Φ̃(

τX (u)
)
. (3.21)

Proof. Using Formula (3.18), we obtain for Ψ̃ = Ψ 1,n,Φ̃ ∈ F̃1, X ∈HK,σ ,

1

t

(
St Ψ̃ (X ) − Ψ̃ (X )

) = −1

t

∫
μ⊗n(du)

(
1 − e−tν([[u]]))Φ̃(

τX (u)
)
. (3.22)

Note that |1 − e−x − x| ≤ x2, for all x ≥ 0 and recall the definition of γΦ̃ from (3.17). Comparing (3.22) to (3.21), we
see that

sup
X∈HK,σ

∣∣∣∣1

t

(
St Ψ̃ (X ) − Ψ̃ (X )

) +
∫

μ⊗n(du)ν
([[u]])Φ̃(

τX (u)
)∣∣∣∣

≤ sup
X∈HK,σ

t ·
∫

μ⊗n(du)ν
([[u]])2∣∣Φ̃(

τX (u)
)∣∣ ≤ tKn sup

x∈R+
x2γΦ̃(x). (3.23)

Due to our assumptions on Φ̃ ∈ Π̃n, x2γΦ̃(x) is bounded, and we obtain uniform convergence of 1
t
(St Ψ̃ − Ψ̃ ) on

HK,σ for t → 0. Hence F̃1 ⊆D(ΩK) and Formula (3.21) are proven.
We next prove Formula (3.20). Notice that for all u ∈ T n,

ν
([[u]]) =

∫
T

1{v∈[[u]]}ν(dv) =
∫

T

1 − 1{u∈(T v)n}ν(dv). (3.24)

Inserting the latter into (3.21) and using Fubini’s theorem yields

ΩΨ̃ (X ) =
∫

T

ν(dv)

(∫
(T v)n

μ⊗n(du)Φ̃
(
τX (u)

) −
∫

T n

μ⊗n(du)Φ̃
(
τX (u)

))
, (3.25)

which gives (3.20). �

4. Examples

In this section we want to apply Theorem 3.6 to obtain convergence of various pruning processes that appear in the
literature. We first recall the excursion representation of a measure R-tree. We denote by

E := {
e : [0,1] →R+ | e is l.s.c., e(0) = e(1) = 0

}
(4.1)

the set of lower semi-continuous excursions on [0,1]. From each excursion e ∈ E , we can define a measure R-tree in
the following way:

• re(x, y) := e(x) + e(y) − 2 inf[x,y] e is a pseudo-distance on [0,1],
• x, y ∈ [0,1] are said to be equivalent, x ∼e y, if re(x, y) = 0,
• the image of the projection πe : [0,1] → [0,1]/∼e endowed with the push forward of re (again denoted re), i.e.

Te := (Te, re, ρe) := (πe([0,1]), re,πe(0)), is a 0-hyperbolic space (for example, [30], Lemma 3.1),
• we endow this space with the probability measure μe := πe∗λ[0,1] which is the push forward of the Lebesgue

measure on [0,1].
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We denote by g :E → Hρ the resulting “glue function”,

g(e) := (Te,μe), (4.2)

which sends an excursion to a rooted probability measure R-tree. The map g is continuous if Hρ is endowed with the
Gromov-weak topology, and E with the uniform topology (see [6], Prop. 2.9 for the case of continuous excursions)
or, more generally, with the weaker excursion topology introduced in [39] (see Theorem 4.8 there).

Example 4.1 (An approach via excursions). Consider a sequence of random excursions eN = (eN(s), s ∈ [0,1]) ∈ E ,
N ∈ N, that converges in distribution (with respect to the uniform, respectively the excursion topology) to e ∈ E . For
each N ∈ N, we denote by (XN

t )t≥0 the pruning process started in the bi-measure tree X eN
:= (TeN

,μeN
,λTeN

) ∈
Hf,σ , where λTeN

is the length measure on TeN
, and similarly for (Xt )t≥0 and X e .

Due to continuity of g, we have that g(eN) converges Gromov-weakly in distribution to g(e). By Proposition 2.25,
we obtain the LWV-convergence in distribution of X eN

to X e , and by Theorem 3.6, we get the Skorohod convergence(
XN

t

)
t≥0

Sk�⇒(Xt )t≥0

as Hf,σ -valued processes with LWV-topology. Note that this, in particular, implies Skorohod convergence of the prun-
ing processes (T

πt
eN

,μeN
)t≥0 as measure R-tree-valued processes in the usual Gromov-weak topology, where we do

not keep track of the pruning measure.

We shall apply this example to Galton–Watson trees. Consider a critical or sub-critical Galton–Watson tree G
with offspring distribution η on N0, i.e., every node in the discrete tree has a random number of children given
independently by the distribution η, where E[η] ≤ 1. Encode G as a rooted R-tree with unit length edges. For each
N ∈N, let GN be the tree G conditioned to have N nodes (in addition to the root). We consider two different sampling
measures μ on GN : one is the normalized length measure

μske
N := 1

N
λGN

, (4.3)

and the second is the uniform measure on the nodes,

μnod
N := 1

N

N∑
i=1

δxi
, (4.4)

where {x1, . . . , xN } are the nodes of GN . Notice that

μnod
N (A) =

∑
x∈nod(A)

μske
N

([x−, x]) ≤ μske
N

({
v ∈ GN | rGN

(v,A) < 1
})

, (4.5)

where nod(A) is the set of nodes in A and x− is the parent of x.
In order to obtain convergence, we rescale the tree GN to have edge lengths aN > 0, i.e., we leave the set unchanged

and multiply the metric by aN . We denote the rescaled tree by aNGN . As

d
aNGN

Pr

(
μske

N ,μnod
N

) ≤ aN (4.6)

on the rescaled tree by (4.5), μnod
N and μske

N become arbitrary close whenever aN converges to zero, as N → ∞.
We also consider two different pruning measures ν: one is the length measure on the rescaled tree,

νske
N := λaNGN

= aN · N · μske
N , (4.7)

and the second is a suitably rescaled uniform measure on the nodes,

νnod
N := aN · N · μnod

N . (4.8)
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In order to be in a position to apply Example 4.1, we associate the conditioned and rescaled bi-measure Galton–
Watson tree with an excursion. That is, by the depth-first search algorithm we obtain a graph-theoretic path
ρ = y0, y1, . . . , y2N−1, y2N = ρ in the discrete tree, which traverses each edge exactly twice. The contour process
(CN(t),0 ≤ t ≤ 1) of GN is the linear interpolation of CN( k

2N
) := h(yk) := rGN

(ρ, yk), k = 0, . . . ,2N . Note that in
our definition of CN , the domain is normalized to [0,1], and we obtain that

g(CN) = (
GN,μske

N

)
. (4.9)

Example 4.2 (Brownian CRT). Let the variance σ 2 of η be finite and choose

aN := σ√
N

. (4.10)

We know from Theorem 23 in [10] that (aNCN(t),0 ≤ t ≤ 1) converges uniformly in distribution to (2B(t),0 ≤
t ≤ 1), where B is the standard Brownian excursion. We now apply Example 4.1 and get the LWV-convergence in
distribution of the bi-measure R-trees(

σ√
N
GN,μske

N , νske
N

)
LWV−→

N→∞(CRT,μ,λCRT), (4.11)

where (CRT,μ) = g(2B) is the R-tree called Brownian continuum random tree, and λCRT is the length measure on
the Brownian CRT.

By Corollary 2.26 and Lemma 2.30, we also have the convergence(
σ√
N
GN,μN, νN

)
LWV−→

N→∞(CRT,μ,λCRT) (4.12)

for all choices of μN ∈ {μske
N ,μnod

N } and νN ∈ {νske
N , νnod

N }. Finally we have the convergence of the pruning processes
in Skorohod space:(

σ√
N
Gπt

N ,μN, νN

)
t≥0

Sk�⇒
LWV

(
CRTπt ,μ,λCRT

)
t≥0. (4.13)

In particular,(
σ√
N
Gπt

N ,μnod
N

)
t≥0

Sk�⇒
Gw

(
CRTπt ,μ

)
t≥0. (4.14)

Notice that for νN = νske
N , the pruning process (Gπt

N )t≥0 is, up to the time transformation u = e−t/
√

N , the same as the
pruning process (GAP

u )u∈[0,1] uniformly on the edges of Aldous and Pitman in [12]. The process on the right hand side
is the one considered by Aldous and Pitman [11] and by Abraham and Serlet [8] for example.

Example 4.3 (α-stable Lévy tree). We know from Theorem 3.1 of [26] that if η is in the domain of attraction of
an α-stable distribution with α ∈ (1,2], then there exists a sequence aN such that (aNCN(t),0 ≤ t ≤ 1) converges
uniformly in distribution to (H(t),0 ≤ t ≤ 1), where H is a continuous excursion that codes an α-stable Lévy tree,
(LTα,μ) := g(H). More precisely, for η(k) ∼k→∞ Ck1−α , we have aN = N−ᾱ(

α(α−1)
C�(2−α)

)−1/α with ᾱ = 1 − 1/α (see
Section 1.2 in [20]). As in Example 4.2, we obtain(

aNGπt

N ,μN, νN

)
t≥0

Sk�⇒
LWV

(
LTπt

α ,μ,λLTα

)
t≥0 (4.15)

or more precisely(
1

Nᾱ
Gπt

N ,μN, νN

)
t≥0

Sk�⇒
LWV

((
α(α − 1)

C�(2 − α)

)1/α

LTπt
α ,μ,λLTα

)
t≥0

, (4.16)

where μN = μske
N or μnod

N and νN = νske
N or νnod

N .
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Example 4.4 (Pruning at a height). As before we consider the Gromov-weak convergence (aNGN,μN)
Gw−→

(LTα,μ). For a ≥ 0, we define the pruning measure

νa
N :=

∑
x∈Ga

N

δx, (4.17)

where Ga
N = {x ∈ GN | rN(ρ, x) = a}, and the corresponding measure

νa∞ :=
∑

x∈LTa
α∩Skμ(LTα)

δx (4.18)

on LTα . Here, we restrict the pruning measure to the points of LTα which are not leaves in order to ensure the condition
νa∞(Lfμ(LTa

α)) = 0. Because the probability that μ(LTa
α) �= 0 is zero for fixed a, the sequence (νa

N )N∈N∪{∞} almost
surely depends υ(LTα,μ)-almost continuously on the distances, i.e.

RLTα ∗μ⊗n
(
Discont(Fn)

) = 0 a.s.,

for Fn as in (2.52). We use Proposition 2.25 and the previous construction to get(
aNGπt

N ,μN, νa
N

)
t≥0

Sk�⇒(
LTπt

α ,μ, νa∞
)
t≥0. (4.19)

It is easy to check that (LTπt
α ,μ, νa∞) converges almost surely, as t → ∞, in the LWV-topology to (LT≤a

α ,μ,0) where
LT≤a

α = {x ∈ LTα | r(ρ, x) ≤ a}. This is the pruning construction at the height a of Miermont [42].

Remark 4.5 (Pruning based on other scaling results). Some authors give other convergence of Galton–Watson trees
to continuous trees. For example a sequence of Galton–Watson trees (GN)N∈N conditioned to have maximum height
at least γNT converges to a general Lévy tree conditioned to have maximum height at least T , see Proposition 2.5.2
in [27]. Or a sequence of Galton–Watson trees that converges to a forest of Lévy trees, see Theorem 2.4.1 in [27]. In
the first case, the previous results clearly applies. In the second case, in general we do not have an excursion with
finite length anymore, i.e., the measure μske might become infinite. However, if we restrict the domain of the contour
processes to a finite interval, we can still apply the previous results.

Example 4.6 (More general pruning). A non-uniform pruning process on the branch points of a general Galton–
Watson tree has been defined by Abraham, Delmas and He [4]: they cut a branch point v and its subtree above
independently with probability 1 − uc(v)−1, where c(v) is the number of children of v. This corresponds to taking the
pruning measure νADH

N on GN that is supported on the branch points and satisfies

νADH
N

({v}) := c(v) − 1. (4.20)

A pruning process on the infinite branch points of a Lévy tree has been defined by Abraham and Delmas [2]: they
cut each infinite branch point and its subtree above independently with probability 1 − e−tΔx where Δx is the weight
of the node x that can be defined using the jumps of the Lévy process. This corresponds to taking a measure νAD on
the infinite branch points of the Lévy tree.

Because we know that a properly renormalized sequence of conditioned Galton–Watson trees converges to a Lévy
tree, we conjecture that there exists a sequence bN such that(

aNGN,μnod
N , νske

N + bNνADH
N

) LWV−→
N→∞

(
LT,μnod, νske + νAD)

, (4.21)

where LT is a Lévy tree or at least an α-stable Lévy tree with bN of the order N−1/α up to a slowly varying function.
The Poisson point process with intensity νske + νAD used in the pruning of the Lévy tree is the Poisson point process
given in Section 4.2 of [47].
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Example 4.7 (Cutting down trees). Random deconstruction of trees is an old topic which has recently gained a lot of
attention (compare, [14,15,24,36,37,41,45]). The main result of [37] is the following. Given a finite-variance Galton–
Watson tree conditioned to have N nodes, select an edge at random and delete the subtree above. Repeat the procedure
until the root is isolated. Then the suitably rescaled number of cuts needed converges jointly with the rescaled tree
to some random couple (ZT ,T ). It is known that the limiting tree T is the Brownian CRT, while (unconditioned) ZT

is Rayleigh distributed. In a very recent paper, Abraham and Delmas [3] used a pruning with the length measure on
the Brownian CRT (compare Example 4.2) and showed that given T , ZT equals in distribution the averaged time it
takes to separate a point from the root. The latter quantity was used in the proof given by Janson [37]. In this example,
we show that whenever bi-measure R-trees converge – provided some extra tightness conditions hold – Janson’s
quantities converge as well.

Let (GN,μN, νN)N∈N∪{∞} be a sequence of random bi-measure R-trees such that

(GN,μN, νN)
LWV�⇒

N→∞(G∞,μ∞, ν∞). (4.22)

For each N ∈ N ∪ {∞}, let the pruning process (XN
t )t≥0 start in XN

0 = (GN,μN, νN). Denote by ΘN the averaged
time until a point gets separated from the root ρN , where the average is taken with respect to the sampling measure
μN . Given a realization X ∈ Hf,σ of XN

0 , consider for each u ∈ supp(μN) the (random) time Eu
X until u gets separated

from ρN , i.e., until a cut point falls on [ρN,u[. We abbreviate Eu
N := Eu

XN
0

and obtain

ΘN =
∫
GN

μN(du)Eu
N . (4.23)

For all finite subsets {u1, . . . , un} ⊆ GN and t1, . . . , tn ≥ 0, the distribution of Eu1
N , . . . ,Eun

N is given by

P
(
Eu1

N ≥ t1, . . . ,Eun

N ≥ tn | (GN,μN, νN)
) =

n∏
l=1

e−tp(l)·νN (Sl\Sl+1), (4.24)

where p : {1,2, . . . , n} → {1,2, . . . , n} is any permutation such that tp(1) ≤ · · · ≤ tp(n), and Sl := [[up(l), . . . , up(n)]].
Then for all n ∈ N,

E
[
Θn

N

] = E

[∫
Gn

N

μ⊗n
N

(
d(u1, . . . , un)

)
E

[
n∏

l=1

Eul

N | (GN,μN, νN)

]]

= n! ·E
[∫

Gn
N

μ⊗n
N

(
d(u1, . . . , un)

) n∏
j=1

1

νN([[u1, . . . , uj ]])

]
, (4.25)

where the last equality is obtained by using (4.24) and easy computations with the formula E[∏n
i=1 Xi] = ∫

R
n+ P(Xi >

ti,∀i)d(t1 . . . tn).
Now assume the following:

(i) for all n ∈N, ε > 0 there is an M > 0 such that

sup
N∈N

E

[∫
Gn

N

μ⊗n
N

(
d(u1, . . . , un)

)( n∏
j=1

1

νN([[u1, . . . , uj ]]) − M

)+]
≤ ε, (4.26)

(ii) there is only one probability measure Q on R+ with moments∫
R+

Q(dθ)θn = n! ·E
[∫

μ⊗n∞
(
d(u1, . . . , un)

) n∏
j=1

1

ν∞([[u1, . . . , uj ]])

]
(4.27)

for each n ∈N.
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Note that these assumptions are in particular satisfied in the case of conditioned finite variance Galton–Watson trees
converging to the Brownian CRT if νN is the length measure and μN the uniform distribution on the nodes (see, e.g.,
[37], proof of Lem. 4.5, Thm. 1.9).

For each n,M ∈N, define γ n
M :Hn →R+ by

γ n
M

(
T , (u1, . . . , un), ν

) := M ∧
n∏

j=1

ν
([[u1, . . . , uj ]]

)−1
. (4.28)

Then γ n
M ∈ Cb(Hn) if Hn is equipped with the sGw-topology, and the LWV-convergence (4.22) together with Proposi-

tion 2.17 implies that

E

[∫
γ n
M ◦ τ(GN ,μN ,νN ) dμ⊗n

N

]
−→

N→∞E

[∫
γ n
M ◦ τ(G∞,μ∞,ν∞) dμ⊗n∞

]
. (4.29)

Thus, we also have E[Θn
N ] −→

N→∞E[Θn∞] for each n ∈ N, provided that (4.26) holds. By assumption (ii), the moments

of Θ∞ determine its distribution uniquely, and therefore the method of moments yields

ΘN �⇒
N→∞Θ∞.
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