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Abstract. The probability that a one dimensional excited random walk in stationary ergodic and elliptic cookie environment is
transient to the right (left) is either zero or one. This solves a problem posed by Kosygina and Zerner (Bull. Inst. Math. Acad. Sin.
(N.S.) 8 (2013) 105–157). As an application, a law of large numbers holds in these conditions.

Résumé. La probabilité qu’une marche aléatoire unidimensionnelle excitée dans un environnement ergodique et elliptique soit
transiente à gauche (à droite) est soit nulle soit un. Ceci résout un problème posé par Kosygina et Zerner (Bull. Inst. Math. Acad.
Sin. (N.S.) 8 (2013) 105–157). Comme application, une loi des grands nombres est démontrée sous ces conditions.
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1. Introduction

Excited random walk was introduced by Itai Benjamini and David B. Wilson in 2003 [4]. Later the model was gener-
alized by Martin P. W. Zerner [14]. It was studied extensively in recent years by numerous researchers, and an almost
up to date account may be found in the recent survey of Kosygina and Zerner [10].

The generalized model due to Zerner is informally known as Cookie Walk, recently the term ‘Brownie Motion’ has
been gaining popularity among researchers in the field.

The model is defined as follows: Let Ω = [0,1]Z×N, and endow this space with the standard σ -algebra (namely
the product of Borel σ -algebras on the intervals). Let μ be a probability measure on Ω which is invariant and ergodic
with respect to the Z-shift (but not necessarily the N-shift). We call μ the cookie distribution. We call each ω ∈ Ω a
cookie environment. Notationally, ω(x,n) ∈ [0,1] is called the nth cookie in the location x.

We say that the distribution μ is elliptic if μ((0,1)Z×N) = 1, and uniformly elliptic if there exists ε > 0 such that
μ([ε,1 − ε]Z×N) = 1.

Given a cookie environment ω and an initial position x ∈ Z we define the excited random walk driven by ω:

Pω,x(X0 = x) = 1,

Pω,x(Xn = Xn−1 + 1|X0,X1, . . . ,Xn−1) = ω
(
Xn−1,#{k ≤ n − 1: Xk = Xn−1}

)
,

Pω,x(Xn = Xn−1 − 1|X0,X1, . . . ,Xn−1) = 1 − Pω,x(Xn = Xn−1 + 1|X0,X1, . . . ,Xn−1).
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We associate μ with the annealed, or averaged, distribution defined by

Px(·) =
∫

Ω

Pω,x(·)dμ(ω).

In this paper we are interested in the probability that the random walk is transient to the right, i.e. that limn→∞ Xn =
+∞. We use A+ to denote the event that the random walk is transient to the right, and A− to denote the event of
transience to the left (i.e. limn→∞ Xn = −∞).

In their recent survey Kosygina and Zerner raised a version of the following problem (see Problem 3.5 of [10]):

Problem 1.1. Find conditions on the distribution μ which imply a zero–one law for a directional transience of one
dimensional excited random walk, i.e. conditions which imply that P0(A

+) ∈ {0,1}.
The main result of this paper answers Problem 1.1, namely:

Theorem 1.2. Let μ be a stationary ergodic (with respect to the Z-shift) and elliptic probability measure on the space
Ω of cookie environments. Then P0(A

+) ∈ {0,1}.
1.1. Law of large numbers

Kosygina and Zerner proved in [10], Theorem 4.1, that for a stationary ergodic and elliptic probability measure
over cookie environments, if a directional 0–1 law holds then a law of large numbers holds. Using Theorem 1.2 an
immediate corollary is the following law of large numbers.

Theorem 1.3. Let μ be a stationary ergodic (with respect to the Z-shift θ ) and elliptic probability measure on the
space Ω of cookie environments. Then P0(limn→∞ Xn

n
= v) = 1 for some deterministic v ∈ [−1,1].

One can write a different, more direct, proof of Theorem 1.3 by noticing that the stationarity assumption in the
proof of Theorem 4.1 in [10] can be slightly weakened. We refer the reader to Theorem 4.3 in [1] and the discussion
above it for details.

1.2. Previous work

In some examples in the literature, special cases of Theorem 1.2 are derived as special cases of stronger characteriza-
tion theorems.

Benjamini and Wilson [4] showed that whenever a cookie environment ω satisfies ω(x,1) = p for all x ∈ Z and
ω(x, i) = 1

2 for all x ∈ Z and i ≥ 2, then the walk is Pω-a.s. recurrent for all p ∈ (0,1). Zerner [14] showed that
if the measure μ is stationary ergodic and satisfies μ([ 1

2 ,1]Z×N) = 1, then it is transient to the right if and only
if either μ(ω(0,1) = 1) = 1 or δ > 1, where δ = Eμ(

∑∞
i=1(2ω(0, i) − 1)). Kosygina and Zerner [9] showed that

whenever the measure μ is i.i.d. (that is, the sequence of columns ω(x, ·), x ∈ Z, is i.i.d. under μ), weakly elliptic
(that is, μ(

∏M
i=1 ω(0, i)) > 0 and μ(

∏M
i=1(1 − ω(0, i))) > 0), and there exists a deterministic number M so that

μ(ω(0, i) = 1
2 ) = 1 for all i > M then the walk is transient to the right if and only if δ > 1, and transient to the left

if and only if δ < −1. Kosygina and Zerner [10] proved a Kalikow-type 0–1 law, i.e. a 0–1 law for (non-directional)
transience for stationary ergodic and elliptic measure over cookie environments, see Theorem 3.1.

1.3. Structure of the paper

The paper is structured as follows: In Section 2 we present some concepts and processes that take part in the proof.
In Section 2.1 we introduce arrow environments, in Section 2.2 we introduce two associated processes Z+ and Z−,
and in Section 2.3 we study some of their connections to cookie random walks. In Section 2.4 we study monotonicity
and symmetry properties of Z+ and Z−, and present an easy lemma which is, however, the core of our argument. In
Section 3 we reprove a theorem by Kosygina and Zerner. We do this for two purposes. The first purpose is to keep the
paper self-contained, and the second is to enable us to easily use notations and lemmas from their proof in the proof
of our main result. In Section 4 we prove Theorem 1.2.
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2. Preliminaries

In this section we give some basic definitions and lemmas which are necessary for the proof of Theorem 1.2.

2.1. Arrow environments

Let ω be a cookie environment. We can realize ω into a list of arrows, or instructions, which tell the walker where to
walk to in every step of the process. More precisely, let U = [0,1]Z×N, and let F :Ω × U → {0,1}Z×N be defined as
F(ω,u)(x,n) = 1u(x,n)<ω(x,n). An element a ∈ {0,1}Z×N is called an arrow environment.

We now endow U with the standard Borel σ -algebra BU , and with the product measure PU of U[0,1] distributions.
The following lemma is a standard Ergodic theoretic fact. For convenience, a proof sketch of this fact may be found
in the Introduction.

Lemma 2.1. Let μ be a probability measure on the space Ω of cookie environments which is stationary ergodic with
respect to the Z-shift θ . Consider {0,1}Z×N, the space of arrow environments with the standard Borel σ -algebra, and
let ν be the probability measure induced from (Ω × U,μ × PU) on {0,1}Z×N by the function F . Then ν is stationary
ergodic with respect to the shift θ .

The following fact, which is straightforward, lies behind the definition of arrow environments:

Fact 2.2. Given a cookie environment ω, the law of a (non-random) walk moving according to the (random) arrow
environment sampled from ω is the same as the quenched law of the cookie random walk on ω.

Arrow environments were considered by Holmes and Salisbury in [6]. They used this construction to couple ERW
on different cookie environments and deduced monotonicity results.

In this paper we consider arrow environments as a natural way to couple different processes on the same cookie
environment. The use of arrow environments gives a direct approach to distilling the “combinatorial” part from many
of the probabilistic arguments appearing in the ERW literature. See e.g. Section 2.3.

2.2. The processes Z+ and Z−

To avoid degenerate cases we introduce the following definition.

Definition 2.3. We say that sequence of arrows b ∈ {0,1}N is non-degenerate if there are infinitely many i ≥ 1 for
which b(i) �= b(i + 1). An arrow environment a is called non-degenerate if a(x, ·) is non-degenerate for all x ∈ Z.
The subspace of all non-degenerate arrow environments is denoted by A ⊂ {0,1}Z×N.

Let a ∈ A be a non-degenerate arrow environment and let y ≥ 1. We define the processes Z+ and Z− (the initial
value y and the sequence a is suppressed in the notation) as follows: Z+

0 = y. Then, for every n > 0, we define Z+
n to

be the number of 1’s until the Z+
n−1th zero in a(n − 1, ·). More precisely, if

Θn = inf

{
j :

j∑
i=0

[
1 − a(n − 1, i)

] = Z+
n−1

}
,

then we take Z+
n = Θn − Z+

n−1.
We define Z− completely analogously, by replacing the roles of 0 and 1, and considering a on the left half line

rather than the right half line: Z−
0 = y, and Z−

n is the number of zeros until the Z−
n−1th one in a(1 − n, ·).

For ease of notation, we define for every non-degenerate b ∈ {0,1}N the functions U+
b ,U−

b :N → N ∪ {∞} by
U+

b (0) = 0,

U+
b (x) = inf

{
j :

j∑
i=0

[
1 − b(i)

] = x

}
− x, (1)
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and, defining bc by bc(x) = 1 − b(x),

U−
b (x) = U+

bc (x).

Using this notation, we may simply write Z+
n = U+

a(n−1,·)(Z
+
n−1) and Z−

n = U−
a(1−n,·)(Z

−
n−1).

The definition given here for Z+ and Z− appeared first in [1], where the authors of that paper considered the case of
any given number of walkers on the same cookie environment and used a natural generalization of the above process.
A slightly different version of the chains Z+ and Z− was introduced and linked to one dimensional ERW by Kosygina
and Zerner in 2008 [9] in the context of bounded environments, i.e. environments for which there is a deterministic
M so that ω(x, i) = 1

2 for all i > M and all x ∈ Z. In such environments Z+ and Z− may be viewed as a certain
type of a branching process with migration. The connection of random walks to branching process with migration is
traced back at least to Kesten, Kozlov and Spitzer [7] from 1975. An adaptation of their method to ERW was first
made by Basdevant and Singh [2] in 2008. Using this connection, much can be said about the ERW, see e.g. Kosygina
and Zerner [9] and [10] (transience versus recurrence, ballisticity, CLT), Basdevant and Singh [2] and [3] (ballisticity
and asymptotic rate of diffusivity), Peterson [11] and [12] (law of large deviation, slow-down phenomenon, and strict
monotonicity results), Rastegar and Roitershtein [13] (maximum occupation time) and Dolgopyat and Kosygina [5]
and Kosygina and Mountford [8] (limit laws).

2.3. Survival of Z+ and the hitting time T−1

The aim of this section is to show that strict positivity of the process Z+ is equivalent to the event that an excited
walker on the given arrow environment never hits −1. This equivalence is shown to hold also for several walkers
walking on the same arrow environment in [1].

Removing the probabilistic interpretation from the arguments of Kosygina and Zerner in Section 3 of [9], a pure
combinatorial condition for right-transience is obtained. Fix an arrow environment a ∈ A and for every m ∈ Z set

Tm := inf{t ≥ 0: Xt = m}
to be the hitting time of m by the excited walk X on the arrow environment a. Define

W0 = 1; Wn = #{t < T−1: Xt = n − 1 and Xt+1 = n}, n ≥ 1

to be the total number of crossings of the edge {n − 1, n} by X before hitting −1.
Notice that as a is assumed to be in A, if T−1 = ∞ then limt→∞ Xt = +∞. In particular, for each edge with

non-negative endpoints, the difference between the total number of its right crossings and left crossings by the walk
is exactly 1. In the case where T−1 < ∞ we have an equality. Let us sum up this fact in the following remark.

Remark 2.4. The following hold for all n ≥ 0.

1. If T−1 = ∞ then Wn = 1 + total number of crossings of {n,n − 1} by X.
2. If T−1 < ∞ then Wn = the total number of crossings of {n,n − 1} by X before time T−1.

Lemma 2.5. For all n ≥ 0, the following hold:

• if T−1 < ∞ then Z+
n = Wn,

• if T−1 = ∞ then Z+
n ≥ Wn,

where Z+
n is defined in Section 2.2 with initial value Z+

0 = 1.

Proof. Assume first that T−1 < ∞. We will prove by induction on n ≥ 0 that Z+
n = Wn for all n ≥ 0. For n = 0 we

have Z+
0 = 1 = W0 by definition. Assume now that Z+

n = Wn. Since T−1 < ∞, the last crossing of the undirected
edge {n,n + 1} by X before time T−1 is a left crossing, and therefore a(n, i) = 0, where i is the total number of
visits of X to position n before time T−1. This implies that the number of 0’s in {a(n,1), . . . , a(n, i)} equals the total
number of crossings of {n,n− 1} before time T−1. By Remark 2.4 the last quantity equals Wn. Since by the induction
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hypothesis Z+
n = Wn, We get that Z+

n is the number 0’s in {a(n,1), . . . , a(n, i)}. Now, Wn+1 is the number of ones in
{a(n,1), . . . , a(n, i)}. The latter is exactly the number of 1’s prior to Z+

n 0’s in a(n, ·), which is defined to be Z+
n+1.

Consider now the case T−1 = ∞. Again, we will prove by induction on n ≥ 0 that Z+
n ≥ Wn. For n = 0 we have

Z0 = 1 = W0. Assume by induction that Z+
n ≥ Wn. Let i be the total number of visits of X to place n. Note that

as a ∈ A the process X is transient and so i < ∞ and a(n, i) = 1. By Lemma 2.4 Wn equals the number of 0’s in
{a(n,1), . . . , a(n, i)} plus 1. As in the first case by the induction hypothesis Z+

n is greater than or equal to the number
of 0’s in {a(n,1), . . . , a(n, i)} plus 1. Now, Wn+1 is the number of ones in {a(n,1), . . . , a(n, i)}. The latter is exactly
the number of 1’s prior to the (Z+

n − 1)st zero in a(n, ·), and this number is less than or equal to Z+
n+1. �

As a result, we get the following theorem.

Theorem 2.6. T−1 < ∞ if and only if Z+
n = 0 for some n, and T1 < ∞ if and only if Z−

n = 0 for some n.

Proof. For the first equivalence, assume first that T−1 < ∞, then M := max{Xt : t < T−1} < ∞. Therefore by
Lemma 2.5 we get that Z+

M+1 = WM+1 = 0. On the other hand, if T−1 = ∞, then Wn ≥ 1 for all n ≥ 0. Now
if Z+

n = 0 then by Lemma 2.5 we have that Wn ≤ Z+
n = 0, a contradiction. Considering ā instead of a, where

ā(n, i) = 1 − a(−n, i), the argument from the beginning of the present subsection shows the second equivalence. �

Remark 2.7. The proof of Theorem 2.6 shows that if M := max{Xt : t < T−1} ∈ N ∪ {∞} is the maximal position of
the walk before reaching −1 and τ = inf{n ≥ 0: Z+

n = 0} ∈ N ∪ {∞} is the extinction time of Z+, then τ = M + 1,
where, by convention, ∞ = ∞ + 1.

2.4. Subduality of Z+ and Z−

There are two immediate properties of U+ and U− which will be crucial for our arguments:

Observation 2.8. The following hold for any b ∈ {0,1}N.

1. U+
b (x) and U−

b (x) are non-decreasing in x.
2. U+

b ◦ U−
b (x) < x for all x ∈ Z+ (and equivalently U−

b ◦ U+
b (x) < x).

The next lemma is simple but crucial for the proof of Theorem 1.2. For z ∈ Z we define θz :A → A by (θza)(x, i) =
a(x + z, i), x ∈ Z and i ∈N is the Z-shift map by z steps to the left.

Lemma 2.9 (Subduality). Assume that for the arrow environment a ∈ A the process Z+ with initial value Z+
0 = x

has Z+
l ≥ y. Then on the shifted arrow environment θ l−1a, the process Z− with initial value Z−

0 = y has Z−
l ≤ x.

Proof. Property 2 of Observation 2.8 gives us that U−
a(l−1,·) ◦U+

a(l−1,·)(x) ≤ x for all x ∈ Z+. Using this together with
the monotonicity property 2 of Observation 2.8 l times, we get:

U−
a(0,·) ◦ · · · ◦ U−

a(l−1,·) ◦ U+
a(l−1,·) ◦ · · · ◦ U+

a(0,·)(x) ≤ x.

In other words U−
a(0,·) ◦ · · · ◦U−

a(l−1,·)(m) ≤ x, where m := Z+
l = U+

a(l−1,·) ◦ · · · ◦U+
a(0,·)(x). By the assumption m ≥ y

and so by the monotonicity property 2 of Observation 2.8 also U−
a(0,·) ◦ · · · ◦ U−

a(l−1,·)(y) ≤ x. To finish, note that the

left hand side of the last inequality is by definition Z−
l ≤ x, where the process Z− is defined on the shifted environment

θ l−1a with initial value Z−
0 = y. �

3. A Kalikow type 0–1 law

The main purpose of this section is to present the proof, originally by Kosygina and Zerner, of a Kalikow type 0–1
law, and by it set the ground for the proof of our main result, which is to be found in the next section. Remember the
events A+ and A− from the Introduction.
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Theorem 3.1 ([10], Theorem 3.2). Let μ be a stationary ergodic and elliptic probability measure over cookie envi-
ronments. Then P0(A

+ ∪ A−) ∈ {0,1}.

An interesting question related to Theorem 3.1 is the following:

Problem 3.2. Can the ellipticity assumption be weakened in Theorem 3.1? If so, can it be weakened also in Theo-
rem 1.2?

As a convention, we say a probability measure μ over cookie environments has a given property of cookie environ-
ments if every cookie environment has it μ-a.s. We say μ satisfies a given property P of arrow environments if almost
every arrow environment has the property P with respect to the annealed measure P associated to μ. For example
μ is elliptic if μ((0,1)Z×N) = 1, and μ is non-degenerate if the induced measure on arrow environments satisfies
P(a ∈ A) = 1.

Unless otherwise mentioned, from now onwards we assume that μ is a stationary ergodic and elliptic probability
distribution over cookie environments. As a first reduction to the proofs of both Theorem 3.1 and Theorem 1.2 we
will use the following definition and results from Section 2 of Kosygina and Zerner [10], regarding the question of
finiteness of the ERW range. For x ∈ Z and ω ∈ Ω , let R(x,ω) be the event that

∑∞
i=1(ω(x, i)) < ∞ and L(x,ω) the

event that
∑∞

i=1(1 − ω(x, i)) < ∞.
Notice that it follows from the Borel–Cantelli lemma that a probability measure μ over cookie environments

satisfies μ(R(x,ω)) = μ(L(x,ω)) = 0 for every x ∈ Z, if and only if it is non-degenerate. Moreover, the Borel–
Cantelli lemma also implies the following lemma (see e.g. [10], Lemma 2.2).

Lemma 3.3. Assume that μ is a non-degenerate probability measure over cookie environments. Then P0-a.s.

lim sup
n→∞

Xn ∈ {−∞,+∞} and lim inf
n→∞ Xn ∈ {−∞,+∞}.

Theorem 3.4 ([10], Theorem 2.3). Let μ be a stationary ergodic and elliptic probability measure over cookie envi-
ronments.

(a) If μ(R(0,ω)) > 0 and μ(L(0,ω)) > 0 then the range is P0-a.s. finite.
(b) If μ(R(0,ω)) = 0 and μ(L(0,ω)) > 0 then P0(A

+) = 1.
(c) If μ(R(0,ω)) > 0 and μ(L(0,ω)) = 0 then P0(A

−) = 1.
(d) If μ(R(0,ω)) = 0 and μ(L(0,ω)) = 0 then the range is P0-a.s. infinite.

The proof of Theorem 3.4 is omitted.

Corollary 3.5. Let μ be a stationary ergodic and elliptic probability measure over cookie environments. If μ is not
non-degenerate then P0(A

+),P0(A
−) ∈ {0,1}. In particular, in this case P0(A

+ ∪ A−) ∈ {0,1}.

Given a walk Xn on Z, a right excursion (from 0) is a sequence of steps Xτ0, . . . ,Xτ1 ≤ ∞ of the walk such that
Xτ0 = 0, either Xτ1 = 0 or τ1 = ∞, and Xt > 0 for all τ0 < t < τ1. Call m ≥ 0 an optional regeneration position for
an arrow environment a if the walk started at m never hits m − 1, that is if Tm−1 = ∞. We call m ≥ 0 a regeneration
position if in addition, when starting the walk from 0, the walk Xn reaches m after some finite time. Note that the
arrow environment on [m,∞) remains unchanged until the walker reaches m for the first time (if it ever does). It
follows that if m is an (optional) regeneration position, and the walk Xn reaches m, then afterwards it will never
return to m − 1.

Lemma 3.6. Let μ be a stationary ergodic probability measure over cookie environments. If P0(T−1 = ∞) > 0 then
there are P0-a.s. infinitely many optional regeneration positions.
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Proof. Let p := P0(T−1 = ∞) > 0. By stationarity of the arrow environment, Pm(Tm−1 = ∞) = p for any m ≥ 0. By
Lemma 2.1 we may apply the ergodic theorem to the measure ν to get

1

n

n∑
m=1

1{m is a optional regeneration position} → p ν-a.s.

In particular there are ν-a.s. infinitely many optional regeneration positions. �

The following lemma is a part of Lemma 8 of [9], which is proved for the i.i.d. case.

Lemma 3.7. Let μ be a stationary ergodic and non-degenerate probability measure over cookie environments. If
P0(T−1 = ∞) > 0 then there are a.s. only finitely many right excursions.

Proof. Consider lim supXn. If lim supXn < ∞, then by Lemma 3.3 A− holds. In particular, the number of right ex-
cursions is finite. If lim supXn = ∞, then since by Lemma 3.6 on the event lim supXn = ∞ there a.s. exist (infinitely
many) optional regeneration positions, the walk hits such a position m at some finite time and from that time on it
never returns to m − 1, let alone 0, and thus there are only finitely many right excursions. �

Also the following lemma is a part of Lemma 8 of [9].

Lemma 3.8. If Pω,0(T−1 < ∞) = 1 and ω is elliptic, that is ω ∈ (0,1)Z×N, then all right excursions are Pω,0-a.s.
finite.

Proof. The proof uses a finite modification argument which is standard (see [9], proof of Lemma 8, or [10], (3.2)
and Figure 1 there). For convenience we shall supply a sketch. We will prove that the ith right excursion is a.s. finite
by induction on i. For i = 0 this is trivial. Assume now that the first i right excursions are a.s. finite and consider
the past including the first step of the (i + 1)st excursion. The event that the last excursion is finite depends only on
what the walk has done in places x > 0. Therefore, the probability that the (i + 1)st excursion is finite given that
the past does not change when we modify parts of the past as long as we do not change the parts when x > 0. In
particular it remains the same when we erase all visits to the negative integers and visits to zero are concatenated in
time (simply by replacing enough of the first arrows above 0 to be right arrows). As the modified event has positive
probability, conditioning on it, the probability for finiteness of the (i + 1)st excursion equals the probability that the
first excursion is finite conditioned on making a pre-given sequence of first steps on the positive half line. This equals
1 by the assumption of the lemma since by ellipticity of ω there is a positive probability to make any pre-given finite
sequence of moves. �

Corollary 3.9 ([10], Lemma 3.3, [1], Corollary 3.7). Let μ be an elliptic and non-degenerate probability measure
over cookie environments. P0(T−1 = ∞) > 0 if and only if P0(A

+) > 0.

Proof. Note that if T−1 = ∞, then by Lemma 3.3 lim infXn = +∞ which yields A+. For the other implication,
assume P0(T−1 < ∞) = 1, then Pω,0(T−1 < ∞) = 1 for μ-a.e. ω ∈ Ω . By Lemma 3.8 Pω,0-a.s. all right excursions
are finite and in particular Pω,o-a.s. Xn � +∞ for μ-a.e. ω ∈ Ω . In other words, in this case P0(A

+) = 0. �

Proof of Theorem 3.1. First note that in the case where μ is not non-degenerate, the conclusion of the theorem
follows from Corollary 3.5. For the rest of the proof we assume that μ is also non-degenerate. If P0(T−1 = ∞) > 0
(resp. P0(T1 = ∞) > 0) then by Lemma 3.7 there are P0-a.s. only finitely many right (resp. left) excursions. In
particular P0-a.s. the walk visits 0 only finitely many times from the right (resp. left). By the assumption, for every m

P0

[ ∞∏
i=m

(
1 − ω(0, i)

) = 0

]
= 1

(
resp. P0

[ ∞∏
i=m

ω(0, i) = 0

]
= 1

)

so we have P0-a.s. only finitely many visits to zero, which implies the occurrence of the event A+ ∪ A−.
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On the other hand, if P0(T−1 < ∞) = 1 and P0(T1 < ∞) = 1 then by Lemma 3.8 the walk is P0-a.s. not transient
to the right and not transient to the left. This means it is P0-a.s. recurrent. �

For y,n ∈ Z+ and B ⊂ Z+ denote by P
y(Z+

n ∈ B) the probability that the process Z+ with initial value y satisfies
Z+

n ∈ B . Py(Z−
n ∈ B) is defined similarly.

Let S+ and S− be the events that {Z+
n > 0 for all n} and {Z−

n > 0 for all n}, respectively.

Corollary 3.10. Let μ be a stationary ergodic, elliptic and non-degenerate probability measure over cookie environ-
ments. P0(A

+) = 1 if and only if P1(S+) > 0 and P
1(S−) = 0.

Proof. If P0(A
+) = 1 then by Corollary 3.9 P0(T−1 = ∞) > 0 and by Theorem 2.6 also P

1(S+) > 0. Assume for
contradiction P

1(S−) > 0, then by Theorem 2.6 also P0(T1 = ∞) > 0, and so by Corollary 3.9 also P0(A
−) > 0. This

contradicts the assumption.
For the other direction, again by Theorem 2.6 and Corollary 3.9 we know that P0(A

+) > 0 and P0(A
−) = 0. By

Theorem 3.1, we have P0(A
+ ∪ A−) = 1, and so P0(A

+) = 1. �

4. Proof of the main result

This section is devoted to the proof of Theorem 1.2. The following is a key proposition.

Proposition 4.1. Assume that μ is a stationary ergodic and elliptic probability measure over cookie environments. If
P

1(S+) > 0, then P
1(S−) = 0.

We shall first prove Theorem 1.2 assuming Proposition 4.1, and then turn to proving Proposition 4.1.

Proof of Theorem 1.2. By Corollary 3.5 we may assume that μ is also non-degenerate. If P1(S+) > 0 then by Propo-
sition 4.1 P

1(S−) = 0 and therefore by Corollary 3.10 P0(A
+) = 1. Symmetrically, if P1(S−) > 0 then P0(A

−) = 1.
To deal with the last case, namely that P1(S− ∪ S+) = 0, note that Corollary 3.9 implies that P0(A

+ ∪A−) = 0. Since
μ is non-degenerate, then by Lemma 3.3 it holds that P0(Xn = 0 i.o.) = 1. This completes the proof of the theorem. �

Remark 4.2. In some specific cases, e.g. when μ is uniformly elliptic and stationary ergodic or when it is i.i.d. and
elliptic, there are case specific proofs of Proposition 4.1 which are significantly simpler than the one provided below
for the general case. For example, in the i.i.d. case both Z+ and Z− are Markov chains, and thus it suffices to show
that there exists M such that {Pk(∃n Z−

n < M): k = 1,2,3, . . .} is bounded away from zero. This, however, follows
immediately from Lemma 4.3 and subduality (Lemma 2.9). If, on the other hand, we assume uniform ellipticity (but
no longer i.i.d.), instead of the density statement of Lemma 4.4 one can easily show that Z+

n goes to infinity, which in
turn allows us to immediately use Lemma 2.9 to finnish the proof.

We now prove Proposition 4.1. We shall divide the proof into several steps. To the end of the paper we assume that
all the assumptions of Proposition 4.1 hold.

Lemma 4.3. For every ε > 0 there is some y ∈ Z+ so that Py[S+] > 1 − ε.

Proof. Z+
n > 0 for all n ≥ 0 if and only if T−1 = ∞, and so as in Lemma 3.6, by stationarity and ergodicity of the

environment there are a.s. infinitely many optional regeneration positions. In particular there is an a.s. finite (random)
first optional regeneration position φ > 0. Consider now the process Z+ at time φ. If Z+ is positive at time φ then
it will stay positive forever. Fix ε > 0. Let m be a large enough number so that P0(φ > m) < ε

2 . Set km = 1 and
sequentially choose sufficiently large km−1, . . . , k0 ∈ N so that P(Ua(j−1,·)(kj−1) < kj ) < ε

2m
for all 1 ≤ j ≤ m.

Setting y = k0, we have

P
y[S+] ≥ P

y
[
Z+

φ ≥ 1
] ≥ P

(
Ua(i−1,·)(ki−1) ≥ ki, i = 1, . . . ,m,φ ≤ m

) ≥ 1 − ε
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by union bound. �

For a set B ⊂ Z+ denote by (B) the upper density of B , that is

(B) = lim sup
n→∞

#{j ∈ B: j < n}
n

.

Lemma 4.4. For every initial y ≥ 1 it holds that Py[ ({n: Z+
n < k}) = 0|S+] = 1 for every k ≥ 0.

Proof. Fix k > 0. For γ > 0 and x ∈ Z let Aγ,x be the event that
∏k

i=1(1 − ω(x, i)) > γ . By stationarity g(γ ) :=
μ[Aγ,x] is independent of x. By ellipticity, limγ→0 g(γ ) = 1. By ergodicity, the set Aγ = {x: Aγ,x} has density
g(γ ). Let r be a natural number, let Br be the event that ({n: Z+

n < k}) > 1
r

and let γ be small enough so that
g(γ ) + 1

r
> 1. Then, on Br there are infinitely many n such that both events Z+

n ≤ k and Aγ,n+1 occur. Set Fn =
σ {ω,a(0, ·), . . . , a(n − 1, ·)} be the σ -algebra generated by the all the cookies and the first n piles of arrows to the
right of and including 0 and let Mn = P[Sc+|Fn] where Sc+ is the complement of S+. Then (Mn)n≥1 is a bounded
martingale with respect to the filtration (Fn)n≥1 converging P-a.s. to 1Sc+ . Now, the occurrence of Br implies that
there are infinitely many n for which both events Z+

n ≤ k and Aγ,n+1 occur, and therefore there are infinitely many n

with Mn ≥ γ . In particular, on Br , 1Sc+ > γ , implying that Sc+ occurs, so P[Br |S+] = 0. Since r was chosen arbitrarily,
we are done. �

Lemma 4.5. Let ε > 0 and let y be from Lemma 4.3. For every k ≥ 0 there is some l so that Py[Z+
l > k] > 1 − 2ε.

Proof. Assume not, then by Lemma 4.3 there are k and ε so that Py[Z+
l > k|S+] ≤ 1 − ε =: λ < 1 for all l. By

linearity of expectation, Ey[#{l < n: Z+
l > k}|S+] ≤ nλ. Fix some λ < δ < 1, then by the Markov inequality we have

P
y

[
#{l < n: Z+

l > k}
n

> δ
∣∣S+

]
≤ λ

δ
.

In other words,

P
y

[
#{l < n: Z+

l ≤ k}
n

≥ 1 − δ
∣∣S+

]
≥ 1 − λ

δ
=: α > 0.

But therefore

P
y

[
there are infinitely many n such that

#{l < n: Z+
l ≤ k}

n
≥ 1 − δ

∣∣S+
]

≥ α,

contradicting Lemma 4.4. �

By translation invariance of the probability measure μ we get from the Subduality Lemma 2.9 the corollary below.
Denote by P

k
r [Z−

l ≤ y], r ∈ Z, the probability that on the r-shifted arrow environment θra, the process Z− with initial
value k satisfies Z−

l ≤ y.

Corollary 4.6. For every k ∈N, r1, r2 ∈ Z and ε > 0 there is some l ∈N so that Pk
r1

[Z−
l ≤ y] ≥ P

y
r2[Z+

l > k] ≥ 1−2ε,
where y is as in Lemma 4.3.

Proof. Fix k ∈ N and ε > 0 and let l be the one guaranteed in Lemma 4.5. r1, r2 ∈ Z, then the right inequality follows
from stationarity of μ, and the left inequality follows from the Subduality Lemma 2.9 and stationarity of μ. �

Lemma 4.7. For every ε > 0 there are n1 < n2 < · · · so that P1[Z−
ni

> y] < 3ε, where y is as in Lemma 4.3.
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Proof. Fix m1 = 0. There is k1 so that P1[Z−
m1

> k1] < ε. Let l1 be the l guaranteed by Corollary 4.6 for k = k1.
Define n1 = m1 + l1, then by Corollary 4.6 P

1[Z−
n1

< y] ≥ P
1[Z−

m1
≤ k1,Z

−
n1

< y] ≥ 1 − 3ε. Let m2 > n1. There is k2

so that P1[Z−
m2

> k] < ε. Let l2 be the l guaranteed by Corollary 4.6 for k = k1 and r1 = m2. Define n2 = m2 + l2, then
P

1[Z−
n2

< y] ≥ P
1[Z−

m2
≤ k,Z−

n2
< y] ≥ 1 − 3ε. Assume that n1 < · · · < nr were chosen so that P1[Z−

ni
< y] ≥ 1 − 3ε

for all 1 ≤ i ≤ r . At the (r + 1)st step, fix mr+1 > nr . There is kr+1 so that P1[Z−
mr+1

> kr+1] < ε. Let lr+1 be the l

guaranteed by Lemma 4.5 for k = kr+1 and r1 = mr+1. Define nr+1 = mr+1 + lr+1, then

P
1[Z−

nr+1
< y

] ≥ P
1[Z−

mr+1
≤ kr+1,Z

−
nr+1

< y
] ≥ 1 − 3ε. �

Proof of Proposition 4.1. Assume that P1[S+] > 0. Let δ > 0. We will show that P1[Z−
n > 0 for all n] ≤ δ. Let

ε = δ
4 > 0. By Lemma 4.7, there are n1 < n2 < · · · so that P1[Z−

ni
≤ y] ≥ 1 − 3ε, where y is as in Lemma 4.3. As in

the proof of Lemma 4.4, set

Aγ,x =
{

y∏
i=1

ω(x, i) > γ

}
for γ > 0 and x ∈ Z.

By stationarity g(γ ) := μ[Aγ,x] is independent of x. By ellipticity, limγ→0 g(γ ) = 1. Let γ > 0 be small enough so
that g(γ ) > 1 − ε. Then P

1[Z−
ni

≤ y,Aγ,−ni
] ≥ 1 − 4ε = 1 − δ for all i ≥ 1. Let D be the event that there are infinitely

many i such that Z−
ni

≤ y and Aγ,−ni
. Then P

1[D] ≥ 1 − δ.
Set Fn = σ {ω,a(0, ·), . . . , a(−(n − 1))} be the σ -algebra generated by all the cookies and the first n piles of

arrows to the left of and including 0 and let Mn = P[Sc+|Fn]. Then (Mn)nge1 is a bounded martingale with respect to
the filtration (Fn)n≥1 converging a.s. to 1Sc− , and so if the event D occurs, then also does Sc−. Therefore

P
1[Z−

n > 0 for all n
] ≤ 1 − P

1[D] ≤ δ.

Since δ was arbitrary, we are done. �

Appendix: Proof sketch of Lemma 2.1

The function F is a measurable function from the product space Ω × U with the shift θ × θ to the space A with the
shift θ , so that the measure on the latter is obtained from the former by F . It is straightforward to verify that μ ×P

′ is
stationary with respect to θ × θ . Note that

F−1[θA] = (θ × θ)F−1[A] for every A ⊂ A. (2)

Hence the stationarity of ν follows from the stationarity of μ × P
′.

For the proof of ergodicity, first note that it is enough to show that (Ω × U,μ × P
′,BΩ × BU , θ × θ) is ergodic.

Indeed, using (2) the inverse image under F of each θ -invariant set is (θ × θ )-invariant, and so it must be of either
P × P -measure 0 or 1. To prove the ergodicity of μ × P

′, let f :Ω × U → [0,1] be a μ × P
′-measurable function.

We shall show that f is a constant function. Denote by E the expectation operator with respect to μ × P
′. First note

that ϕ := E(f |BΩ) is a θ invariant function on Ω and so by ergodicity it is μ-a.s. constant in [0,1].
Let fn = E[f |BΩ ×σ(u(−n, ·), . . . , u(n, ·))]. Then E[|f −fn|] → 0 as n → ∞, where σ(u(−n, ·), . . . , u(n, ·)) ⊂

BU is the minimal sub σ -algebra containing the Z-coordinates −n, . . . , n. Let ε > 0 and let n0 be large enough so that
for all n ≥ n0 E[|f − fn|] < ε. Let f̃n = (θ × θ)3nfn be the 3n steps left shift of fn. Note that, since P

′ is the product
measure, fn and f̃n are independent conditioned on BΩ . Therefore

E(fnf̃n|BΩ) = E(f̃n|BΩ)E(fn|BΩ). (3)

Note also that

E
[|f − f̃n|

] = E
[∣∣(θ × θ)−3nf − (θ × θ)−3nf̃n

∣∣] = E
[|f − fn|

]
< ε. (4)
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Write ϕn = E(f̃n|BΩ), and ϕ̃n = E(fn|BΩ). By (4) and the triangle inequality, E[|ϕ − ϕn|] < ε and E[|ϕ − ϕ̃n|] < ε.
Therefore

E[fnf̃n] = E
[
E[fnf̃n|BΩ ]] (3)= E[ϕnϕ̃n] = E

[
(ϕ + ϕn − ϕ)(ϕ + ϕ̃n − ϕ)

]
= ϕ2 + ϕE

[
(ϕn − ϕ)

] + ϕE
[
(ϕ̃n − ϕ)

] + E
[
(ϕ̃n − ϕ)(ϕ̃n − ϕ)

]
.

(We used the fact that ϕ is an a.s. constant and write it (notation abused) as a number.) Using the fact that all functions
are bounded from above by 1, their difference is bounded from above by 2 and we have∣∣E[

fnf̃n − ϕ2]∣∣ ≤ E
[|ϕn − ϕ|] + E

[|ϕ̃n − ϕ|] + 2E
[∣∣(ϕ̃n − ϕ)

∣∣] < 4ε.

As E[fnf̃n] → E[f 2] as n → ∞, taking n to infinity and then ε to zero yields E[f 2] = E[ϕ2] = E[ϕ]2 = E[f ]2.
Therefore var(f ) = 0 and f is a μ × P

′-a.s. constant. �

Acknowledgements

We thank Itai Benjamini, Xiaoqin Guo, Gady Kozma, Igor Shinkar and Ofer Zeitouni for useful discussions. We
also thank Jonathon Peterson for reading an earlier version of the manuscript. We thank the anonymous referees for
valuable comments including the open problem regarding ellipticity that helped us to improve the mathematical results
and the style of the paper. The research of N. B. and T. O. was partially supported by ERC StG grant 239990. The
research of G. A. was supported by Israeli Science Foundation grant ISF 1471/11.

References

[1] G. Amir and T. Orenshtein. Excited mob. Preprint, 2013. Available at arXiv:1307.6052.
[2] A. L. Basdevant and A. Singh. On the speed of a cookie random walk. Probab. Theory Related Fields 141 (3) (2008) 625–645. MR2391167
[3] A. L. Basdevant and A. Singh. Rate of growth of a transient cookie random walk. Electron. J. Probab. 13 (2008) 811–851. MR2399297
[4] I. Benjamini and D. B. Wilson. Excited random walk. Electron. Commun. Probab. 8 (9) (2003) 86–92. MR1987097
[5] D. Dolgopyat. Central limit theorem for excited random walk in the recurrent regime. ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011) 259–

268. MR2831235
[6] M. Holmes and T. S. Salisbury. A combinatorial result with applications to self-interacting random walks. J. Combin. Theory Ser. A 119 (2)

(2012) 460–475. MR2860606
[7] H. Kesten, M. V. Kozlov and F. Spitzer. A limit law for random walk in a random environment. Compos. Math. 30 (1975) 145–

168. MR0380998
[8] E. Kosygina and T. Mountford. Limit laws of transient excited random walks on integers. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2)

(2011) 575–600. MR2814424
[9] E. Kosygina and M. P. W. Zerner. Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab.

13 (2008) 1952–1979. MR2453552
[10] E. Kosygina and M. P. W. Zerner. Excited random walks: Results, methods, open problems. Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013)

105–157. MR3097419
[11] J. Peterson. Large deviations and slowdown asymptotics for one-dimensional excited random walks. Electron. J. Probab. 17 (48) (2012)

1–24. MR2946155
[12] J. Peterson. Strict monotonicity properties in one-dimensional excited random walks. Markov Process. Related Fields 19 (4) (2013) 721–

734. MR3185198
[13] R. Rastegar and A. Roitershtein. Maximum occupation time of a transient excited random walk on Z. Preprint, 2011. Available at

arXiv:1111.1254.
[14] M. P. W. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (1) (2005) 98–122. MR2197139

http://arxiv.org/abs/arXiv:1307.6052
http://www.ams.org/mathscinet-getitem?mr=2391167
http://www.ams.org/mathscinet-getitem?mr=2399297
http://www.ams.org/mathscinet-getitem?mr=1987097
http://www.ams.org/mathscinet-getitem?mr=2831235
http://www.ams.org/mathscinet-getitem?mr=2860606
http://www.ams.org/mathscinet-getitem?mr=0380998
http://www.ams.org/mathscinet-getitem?mr=2814424
http://www.ams.org/mathscinet-getitem?mr=2453552
http://www.ams.org/mathscinet-getitem?mr=3097419
http://www.ams.org/mathscinet-getitem?mr=2946155
http://www.ams.org/mathscinet-getitem?mr=3185198
http://arxiv.org/abs/arXiv:1111.1254
http://www.ams.org/mathscinet-getitem?mr=2197139

	Introduction
	Law of large numbers
	Previous work
	Structure of the paper

	Preliminaries
	Arrow environments
	The processes Z+ and Z-
	Survival of Z+ and the hitting time T-1
	Subduality of Z+ and Z-

	A Kalikow type 0-1 law
	Proof of the main result
	Appendix: Proof sketch of Lemma 2.1
	Acknowledgements
	References

