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Abstract. This paper deals with a subcritical Keller–Segel equation. Starting from the stochastic particle system associated with
it, we show well-posedness results and the propagation of chaos property. More precisely, we show that the empirical measure of
the system tends towards the unique solution of the limit equation as the number of particles goes to infinity.

Résumé. Cet article traite de l’équation de Keller–Segel dans un cadre sous-critique. À l’aide du système de particules en lien avec
cette équation, nous montrons des résultats d’existence et d’unicité, puis la propagation du chaos pour ce dernier. Plus précisément,
nous montrons que la mesure empirique du système tend vers l’unique solution de l’équation limite lorsque le nombre de particules
tend vers l’infini.
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1. Introduction and main results

The subject of this paper is the convergence of a stochastic particle system to a nonlinear and nonlocal equation which
can be seen as a subcritical version of the classical Keller–Segel equation.

1.1. The subcritical Keller–Segel equation

Consider the equation:

∂ft (x)

∂t
= χ∇x · ((K ∗ ft )(x)ft (x)

)+ �xft (x), (1.1)

where f :R+×R
2 →R and χ > 0. The force field kernel K :R2 → R

2 comes from an attractive potential � :R2 →R

and is defined by

K(x) := x

|x|α+1
= −∇

(
1

α − 1
|x|1−α

)
︸ ︷︷ ︸

�(x)

, α ∈ (0,1). (1.2)

The standard Keller–Segel equation correspond to the critical case K(x) = x/|x|2 (i.e., more singular at x = 0)
and it describes a model of chemotaxis, i.e., the movement of cells (usually bacteria or amoebae) which are attracted
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by some chemical substance that they produce. This equation has been first introduced by Keller and Segel in [15,16].
Blanchet, Dolbeault and Perthame showed in [4] some nice results on existence of global weak solutions if the non-
negative parameter χ (which is the sensitivity of the bacteria to the chemo-attractant) is smaller than 8π/M where M

is the initial mass (here M will always be 1 since we will deal with probability measures). For more details on the
subject, see [12,13].

1.2. The particle system

We consider the following system of particles

∀i = 1, . . . ,N, X
i,N
t = X

i,N
0 − χ

N

N∑
j=1,j �=i

∫ t

0
K
(
Xi,N

s − X
j,N
s

)
ds + √

2Bi
t , (1.3)

where (Bi)i=1,...,N is an independent family of 2D standard Brownian motions and K is defined in (1.2). We will
show in the sequel that there is propagation of chaos to the solution of the following nonlinear S.D.E. linked with
(1.1) (see the next paragraph)

Xt = X0 − χ

∫ t

0

∫
R2

K(Xs − x)fs(dx)ds + √
2Bt , (1.4)

where ft = L(Xt ) (L(Xt ) denotes the law of Xt ).

1.3. Weak solution for the P.D.E.

For any Polish space E, we denote by P(E) the set of all probability measures on E which we endow with the topology
of weak convergence defined by duality against functions of Cb(E). We give the notion of weak solution that we use
in this paper.

Definition 1.1. We say that f = (ft )t≥0 ∈ C([0,∞),P(R2)) is a weak solution to (1.1) if

∀T > 0,

∫ T

0

∫
R2

∫
R2

∣∣K(x − y)
∣∣fs(dx)fs(dy)ds < ∞, (1.5)

and if for all ϕ ∈ C2
b(R2), all t ≥ 0,

∫
R2

ϕ(x)ft (dx) =
∫
R2

ϕ(x)f0(dx) +
∫ t

0

∫
R2

�xϕ(x)fs(dx)ds

− χ

∫ t

0

∫
R2

∫
R2

K(x − y) · ∇xϕ(x)fs(dy)fs(dx)ds. (1.6)

Remark 1.2. We can see easily that if (Xt )t≥0 is a solution to (1.4), then setting ft = L(Xt ) for any t ≥ 0, (ft )t≥0 is
a weak solution of (1.1) in the sense of Definition 1.1 provided it satisfies (1.5). Indeed, by Itô’s formula, we find that
for ϕ ∈ C2

b(R2),

ϕ(Xt ) = ϕ(X0) − χ

∫ t

0
∇xϕ(Xs) ·

∫
R2

K(Xs − y)fs(dy)ds

+
∫ t

0

√
2∇xϕ(Xs) · dBs +

∫ t

0
�xϕ(Xs)ds.

Taking expectations, we get (1.6).
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1.4. Notation and propagation of chaos

For N ≥ 2, we denote by Psym(EN) the set of symmetric probability measures on EN , i.e., the set of probability
measures which are laws of exchangeable EN -valued random variables.

We consider for any F ∈ Psym((R2)N) with a density (a finite moment of positive order is also required in order to
define the entropy) the Boltzmann entropy and the Fisher information which are defined by

H(F) := 1

N

∫
(R2)N

F (x) logF(x)dx and I (F ) := 1

N

∫
(R2)N

|∇F(x)|2
F(x)

dx.

We also define (xi ∈R
2 stands for the ith coordinate of x ∈ (R2)N ), for k ≥ 0,

Mk(F) := 1

N

∫
(R2)N

N∑
i=1

|xi |kF (dx).

Observe that we proceed to the normalization by 1/N in order to have, for any f ∈ P(R2),

H
(
f ⊗N

) = H(f ), I
(
f ⊗N

) = I (f ) and Mk

(
f ⊗N

) = Mk(f ).

We introduce the space P1(R
2) := {f ∈ P(R2), M1(f ) < ∞} and we recall the definition of the Wasserstein distance:

if f,g ∈ P1(R
2),

W1(f, g) = inf

{∫
R2×R2

|x − y|R(dx,dy)

}
,

where the infimum is taken over all probability measures R on R
2 × R

2 with f for first marginal and g for second
marginal. It is known that the infimum is reached. See, e.g., Villani [21] for many details on the subject.

We now define the notion of propagation of chaos.

Definition 1.3. Let X be some E-valued random variable. A sequence (XN
1 , . . . ,XN

N ) of exchangeable E-valued
random variables is said to be X-chaotic if one of the three following equivalent conditions is satisfied:

(i) (XN
1 ,XN

2 ) goes in law to 2 independent copies of X as N → +∞;
(ii) for all j ≥ 1, (XN

1 , . . . ,XN
j ) goes in law to j independent copies of X as N → +∞;

(iii) the empirical measure μN
XN := 1

N

∑N
i=1 δXN

i
∈ P(E) goes in law to the constant L(X) as N → +∞.

We refer to [19] for the equivalence of the three conditions or [11], Theorem 1.2, where the equivalence is estab-
lished in a quantitative way.

Propagation of chaos in the sense of Sznitman holds for a system of N exchangeable particles evolving in time
if when the initial conditions (X

1,N
0 , . . . ,X

N,N
0 ) are X0-chaotic, the trajectories ((X

1,N
t )t≥0, . . . , (X

N,N
t )t≥0) are

(Xt )t≥0-chaotic, where (Xt )t≥0 is the (unique) solution of the expected (one-particle) limit model.
We finally recall a stronger (see [11]) sense of chaos introduced by Kac in [14] and formalized recently in [6]: the

entropic chaos.

Definition 1.4. Let f be some probability measure on E. A sequence (FN) of symmetric probability measures on EN

is said to be entropically f -chaotic if

FN
1 → f weakly in P(E) and H

(
FN

) → H(f ) as N → ∞,

where FN
1 stands for the first marginal of FN .

We can observe that since the entropy is lower semi continuous (so that H(f ) ≤ lim infN H(FN)) and is convex,
the entropic chaos (which requires limN H(FN) = H(f )) is a stronger notion of convergence which implies that for
all j ≥ 1, the density of the law of (XN

1 , . . . ,XN
j ) goes to f ⊗j strongly in L1 as N → ∞ (see [3]).
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1.5. Main results

We first give a result of existence and uniqueness for (1.1).

Theorem 1.5. Let α ∈ (0,1). Assume that f0 ∈ P1(R
2) is such that H(f0) < ∞.

(i) There exists a unique weak solution f to (1.1) such that

f ∈ L∞
loc

([0,∞),P1
(
R

2))∩ L1
loc

([0,∞);Lp
(
R

2)) for some p >
2

1 − α
. (1.7)

(ii) This solution furthermore satisfies that for all T > 0,∫ T

0
I (fs)ds < ∞, (1.8)

for any q ∈ [1,2) and for all T > 0,

∇xf ∈ L2q/(3q−2)
(
0, T ;Lq

(
R

2)), (1.9)

for any p ≥ 1,

f ∈ C
([0,∞);L1(

R
2))∩ C

(
(0,∞);Lp

(
R

2)), (1.10)

and that for any β ∈ C1(R)∩W
2,∞
loc (R) such that β ′′ is piecewise continuous and vanishes outside a compact set,

∂tβ(f ) = χ(K ∗ f ) · ∇x

(
β(f )

)+ �xβ(f )

− β ′′(f )|∇xf |2 + χβ ′(fs)fs(∇x · K ∗ fs), (1.11)

on [0,∞) ×R
2 in the distributional sense.

We denote by FN
0 the law of (X

i,N
0 )i=1,...,N . We assume that for some f0 ∈ P(R2),{

FN
0 ∈ Psym((R2)N) is f0-chaotic;

supN≥2 M1(F
N
0 ) < ∞, supN≥2 H(FN

0 ) < ∞.
(1.12)

Observe that this condition is satisfied if the random variables (X
i,N
0 )i=1,...,N are i.i.d. with law f0 ∈ P1(R

2) such that
H(f0) < ∞. The next result states the well-posedness for the particle system (1.3).

Theorem 1.6. Let α ∈ (0,1).

(i) Let N ≥ 2 be fixed and assume that M1(F
N
0 ) < ∞ and H(FN

0 ) < ∞. There exists a unique strong solution

(X
i,N
t )t≥0,i=1,...,N to (1.3). Furthermore, the particles a.s. never collapse, i.e., it holds that a.s., for any t ≥ 0 and

i �= j , X
i,N
t �= X

j,N
t .

(ii) Assume (1.12). If for all t ≥ 0, we denote by FN
t ∈ Psym((R2)N) the law of (X

i,N
t )i=1,...,N , then there exists a

constant C depending on χ , supN≥2 H(FN
0 ) and supN≥2 M1(F

N
0 ) such that for all t ≥ 0 and N ≥ 2

H
(
FN

t

) ≤ C(1 + t), M1
(
FN

t

) ≤ C(1 + t),

∫ t

0
I
(
FN

s

)
ds ≤ C(1 + t).

Furthermore for any T > 0,

E

[
sup

t∈[0,T ]
∣∣X1,N

t

∣∣] ≤ C(1 + T ). (1.13)
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We also have

H
(
FN

t

)+
∫ t

0
I
(
FN

s

)
ds ≤ H

(
FN

0

)+ χ

N2

∑
i �=j

∫ t

0
E
[
divK

(
Xi,N

s − X
j,N
s

)]
ds. (1.14)

We next state a well-posedness result for the nonlinear S.D.E. (1.4).

Theorem 1.7. Let α ∈ (0,1) and f0 ∈ P1(R
2) such that H(f0) < ∞. There exists a unique strong solution (Xt )t≥0

to (1.4) such that for some p > 2/(1 − α),

(ft )t≥0 ∈ L∞
loc

([0,∞),P1
(
R

2))∩ L1
loc

([0,∞);Lp
(
R

2)), (1.15)

where ft is the law of Xt . Furthermore, (ft )t≥0 is the unique solution to (1.1) given in Theorem 1.5.

We finally give the result about propagation of chaos.

Theorem 1.8. Let α ∈ (0,1). Assume (1.12). For each N ≥ 2, consider the unique solution (X
i,N
t )i=1,...,N,t≥0 to (1.3).

Let (Xt )t≥0 be the unique solution to (1.4).

(i) The sequence (X
i,N
t )i=1,...,N,t≥0 is (Xt )t≥0-chaotic. In particular, the empirical measure QN := 1

N

∑N
i=1 δ

(X
i,N
t )t≥0

goes in law to L((Xt )t≥0) in P(C((0,∞),R2)).
(ii) Assume furthermore that limN H(FN

0 ) = H(f0). For all t ≥ 0, the sequence (X
i,N
t )i=1,...,N is then Xt -

entropically chaotic. In particular, for any j ≥ 1 and any t ≥ 0, denoting by FN
tj the density of the law of

(X
1,N
t , . . . ,X

j,N
t ), it holds that

lim
N→∞

∥∥FN
tj − f

⊗j
t

∥∥
L1((R2)j )

= 0.

We can observe that the condition limN H(FN
0 ) = H(f0) is satisfied if the random variables (X

i,N
0 )i=1,...,N are

i.i.d. with law f0 such that H(f0) < ∞.

1.6. Comments

This paper is some kind of adaptation of the work of Fournier, Hauray and Mischler in [8] where they show the
propagation of chaos of some particle system for the 2D viscous vortex model. We use the same methods for a
subcritical Keller–Segel equation. The proofs are thus sometimes very similar to those in [8] but there are some
differences due to the facts that (i) there are no circulation parameter (MN

i in [8]): this simplify the situation since we
thus deal with solutions which are probabilities, (ii) α �= 1 so when we use Hardy–Littlewood–Sobolev’s inequality
an extra change of variables for the time variable is needed (see Step 1 in the proof of Theorem 1.5 in Section 6) and
(iii) the kernel is not the same: it is not divergence-free and we thus have to deal with some additional terms in our
computations (see the comments before Proposition 3.1 and in the proof of Theorem 1.5). We can also notice that due
to this fact, we have no already known result for the existence and uniqueness of the particle system that we consider.
The methods used to prove uniqueness for the Keller–Segel equation (1.1) and its associated S.D.E. (1.4), and to prove
the entropic chaos are also different.

The proof of Theorem 1.5 follows the ideas of renormalisation solutions to a P.D.E. introduced by DiPerna and
Lions in [7] and developed since then. The key point is to be able to find good a priori estimates which allow us
to approximate the weak solutions by regular functions, i.e., to use Ck functions instead of L1. Then, using these
estimates, one can pass to the limit and go back to the initial problem. One can further see that the uniqueness result
is proven based on coupling methods and the Wasserstein distance. This will allow us to use more general initial
conditions than we could use in a strictly deterministic framework.

The proof of existence and uniqueness for the particle system (1.3) (Theorem 1.6) use some nice arguments. Like
for S.D.E.s with locally Lipschitz coefficients, we show existence and uniqueness up to an explosion time and the
interesting part of the proof is to show that this explosion time is infinite a.s.
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To our knowledge, there is no other work that give a convergence result of some particle system for a chemo-
taxis model with a singular kernel K and without cutoff parameter. In [17] and [18], Stevens studies a particle sys-
tem with two kinds of particles corresponding to bacteria and chemical substance. She shows convergence of the
system for smooth initial data (lying in C3

b(Rd)) and for regular kernels (continuously differentiable and bounded
together with their derivatives). In [9] and [10], Haskovec and Schmeiser consider a kernel with a cutoff parameter
Kε(x) = x

|x|(|x|+ε)
. They get some well-posedness result for the particle system and they show the weak convergence

of subsequences due to a tightness result (observe that here we have propagation of chaos and also entropic chaos). In
a recent work [5], Calvez and Corrias work on some one-dimensional Keller–Segel model. They study a dynamical
particle system for which they give a global existence result under some assumptions on the initial distribution of
the particles that prevents collisions. They also give two blow-up criteria for the particle system they do not state a
convergence result for this system.

Finally, it is important to notice that the present method can not be directly adapted for the standard case α = 1
because in this last situation the entropy and the Fisher information are not controlled.

1.7. Plan of the paper

In the next section, we give some preliminary results. In Section 3, we establish the well-posedness of the particle
system (1.3). In Section 4, we prove the tightness of the particle system and we show that any limit point belongs to
the set of solutions to the nonlinear S.D.E. (1.4). In Section 5, we show that the P.D.E. (1.1) and the nonlinear S.D.E.
(1.4) are well-posed and we show the propagation of chaos. Finally, in the last section, we improve the regularity of
the solution, give some renormalization results for the solution to (1.1) and we conclude with the entropic chaos.

2. Preliminaries

In this section, we recall some lemmas stated in [8] and [11] and we state a result on the regularity of the kernel K

defined in (1.2). The first result tells us that pairs of particles which law have finite Fisher information cannot be too
close.

Lemma 2.1 ([8], Lemma 3.3). Consider F ∈ P(R2 × R
2) with finite Fisher information and (X1,X2) a random

variable with law F . Then for any γ ∈ (0,2) and any β > γ/2 there exists Cγ,β so that

E
[|X1 − X2|−γ

] =
∫
R2×R2

F(x1, x2)

|x1 − x2|γ dx1 dx2 ≤ Cγ,β

(
I (F )β + 1

)
.

In the next lemma, we see that the Fisher information of the marginals of some F ∈ Psym((R2)N) is smaller than
the Fisher information of F .

Lemma 2.2 ([11], Lemma 3.7). For any F ∈ Psym((R2)N) and 1 ≤ l ≤ N , I (Fl) ≤ I (F ), where Fl ∈ Psym((R2)l)

denotes the marginal probability of F on the lth block of variables.

The following lemma allows us to control from below the entropy of some F ∈ Pk((R
2)N) by its moment of order

k for any k > 0.

Lemma 2.3 ([8], Lemma 3.1). For any k,λ ∈ (0,∞), there is a constant Ck,λ ∈ R such that for any N ≥ 1, any
F ∈ Pk((R

2)N),

H(F) ≥ −Ck,λ − λMk(F ).

The next result tells us that a probability measure on R
2 with finite Fisher information belongs to Lp for any p ≥ 1

and its derivatives, to Lq for any q ∈ [1,2).
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Lemma 2.4 ([8], Lemma 3.2). For any f ∈ P(R2) with finite Fisher information, there holds

∀p ∈ [1,∞), ‖f ‖Lp(R2) ≤ CpI (f )1−1/p,

∀q ∈ [1,2), ‖∇xf ‖Lq(R2) ≤ CqI (f )3/2−1/q .

We end this section with the following result on K .

Lemma 2.5. Let α ∈ (0,1). There exists a constant Cα such that for all x, y ∈R
2

∣∣K(x) − K(y)
∣∣ ≤ Cα|x − y|

(
1

|x|α+1
+ 1

|y|α+1

)
.

Proof. We have∣∣K(x) − K(y)
∣∣ =

∣∣∣∣x
(

1

|x|α+1
− 1

|y|α+1

)
+ x − y

|y|α+1

∣∣∣∣
≤ |x||x − y|(α + 1)max

(
1

|x|α+2
,

1

|y|α+2

)
+ |x − y|

|y|α+1
.

By symmetry, we also have

∣∣K(x) − K(y)
∣∣ ≤ |y||x − y|(α + 1)max

(
1

|x|α+2
,

1

|y|α+2

)
+ |x − y|

|x|α+1
.

So we deduce that∣∣K(x) − K(y)
∣∣ ≤ |x − y|

[
(α + 1)min

(|x|, |y|)max

(
1

|x|α+2
,

1

|y|α+2

)

+ 1

|x|α+1
+ 1

|y|α+1

]

≤ |x − y|
[
(α + 1)

1

min(|x|, |y|)α+1
+ 1

|x|α+1
+ 1

|y|α+1

]

≤ (α + 2)|x − y|
(

1

|x|α+1
+ 1

|y|α+1

)
,

which concludes the proof. �

3. Well-posedness for the system of particles

Let’s now introduce another particle system with a regularized kernel. We set, for ε ∈ (0,1),

Kε(x) = x

max(|x|, ε)α+1
, (3.1)

which obviously satisfies |Kε(x) − Kε(y)| ≤ Cα,ε|x − y| and we consider the following system of S.D.E.s

∀i = 1, . . . ,N, X
i,N,ε
t = X

i,N
0 − χ

N

N∑
j=1,j �=i

∫ t

0
Kε

(
Xi,N,ε

s − X
j,N,ε
s

)
ds + √

2Bi
t , (3.2)

for which strong existence and uniqueness thus holds.
The following result will be useful for the proof of Theorem 1.6. Its proof is very similar to the proof of [8],

Proposition 5.1. Nevertheless, due to the fact that the kernel is not divergence-free, there is an additional term in the
dissipation of entropy’s formula (3.3) which will lead to additional computations to control it.
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Proposition 3.1. Let α ∈ (0,1).

(i) Let N ≥ 2 be fixed. Assume that M1(F
N
0 ) < ∞ and H(FN

0 ) < ∞. For all t ≥ 0, we denote by F
N,ε
t ∈

Psym((R2)N) the law of (X
i,N,ε
t )i=1,...,N . Then

H
(
F

N,ε
t

) = H
(
FN

0

)+ χ

N2

∑
i �=j

∫ t

0

∫
(R2)N

divKε(xi − xj )F
N,ε
s (x)ds dx

−
∫ t

0
I
(
FN,ε

s

)
ds. (3.3)

(ii) There exists a constant C which depends on χ , H(FN
0 ) and M1(F

N
0 ) (but not on ε) such that for all t ≥ 0 and

N ≥ 2,

H
(
F

N,ε
t

) ≤ C(1 + t), M1
(
F

N,ε
t

) ≤ C(1 + t),

∫ t

0
I
(
FN,ε

s

)
ds ≤ C(1 + t). (3.4)

Furthermore,

E

[
sup
[0,T ]

∣∣X1,N,ε
t

∣∣] ≤ C(1 + T ). (3.5)

Proof. Let ϕ ∈ C2
b((R2)N), and t ≥ 0 be fixed. Using Itô’s formula, we compute the expectation of ϕ(X

1,N,ε
t , . . . ,

X
N,N,ε
t ) and get (recall that xi ∈ R

2 stands for the ith coordinate of x ∈ (R2)N )

d

dt

∫
(R2)N

ϕ(x)F
N,ε
t (dx) = − χ

N

∫
(R2)N

∑
i �=j

Kε(xi − xj ) · ∇xi
ϕ(x)F

N,ε
t (dx)

+
∫

(R2)N
�xϕ(x)F

N,ε
t (dx). (3.6)

We deduce that FN,ε is a weak solution to

∂tF
N,ε
t (x) = χ

N

∑
i �=j

divxi

(
F

N,ε
t (x)Kε(xi − xj )

)+ �xF
N,ε
t (x). (3.7)

We are now able to compute the evolution of the entropy.

d

dt
H
(
F

N,ε
t

) = 1

N

∫
(R2)N

∂tF
N,ε
t (x)

(
1 + logF

N,ε
t (x)

)
dx

= χ

N2

∑
i �=j

∫
(R2)N

divxi

(
F

N,ε
t (x)Kε(xi − xj )

)(
1 + logF

N,ε
t (x)

)
dx

+ 1

N

∫
(R2)N

�xF
N,ε
t (x)

(
1 + logF

N,ε
t (x)

)
dx.

Performing some integrations by parts, we get

d

dt
H
(
F

N,ε
t

) = − χ

N2

∑
i �=j

∫
(R2)N

Kε(xi − xj ) · ∇xi
F

N,ε
t (x)dx − I

(
F

N,ε
t

)

= χ

N2

∑
i �=j

∫
(R2)N

divKε(xi − xj )F
N,ε
t (x)dx − I

(
F

N,ε
t

)
,
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and (3.3) follows. Using that div Kε(x) = 1−α

|x|α+1 1{|x|≥ε} + 2
εα+1 1{|x|<ε} ≤ 2

|x|α+1 and the exchangeability of the parti-
cles, we get

d

dt
H
(
F

N,ε
t

) ≤ 2χ

N2

∑
i �=j

∫
(R2)N

F
N,ε
t (x)

|xi − xj |α+1
dx − I

(
F

N,ε
t

)

≤ 2χ

∫
(R2)N

F
N,ε
t (x)

|x1 − x2|α+1
dx − I

(
F

N,ε
t

)
.

Since α ∈ (0,1), we can use Lemma 2.1 with γ = α + 1 and β such that α+1
2 < β < 1, which gives

∫
(R2)N

F
N,ε
t (x)dx

|x1 − x2|α+1
≤ C

(
I
(
F

N,ε
t2

)β + 1
)
,

where F
N,ε
t2 is the two-marginal of F

N,ε
t . By Lemma 2.2, we have I (F

N,ε
t2 ) ≤ I (F

N,ε
t ). Using that Cxβ ≤ C′ + x

6χ

for a constant C′ sufficiently large, we thus get

d

dt
H
(
F

N,ε
t

) ≤ C − 2

3
I
(
F

N,ε
t

)
,

and thus

H
(
F

N,ε
t

)+ 2

3

∫ t

0
I
(
FN,ε

s

)
ds ≤ H

(
FN

0

)+ Ct. (3.8)

We now compute M1(F
N,ε
t ). We first observe that

M1
(
F

N,ε
t

) = 1

N

∫
(R2)N

N∑
i=1

|xi |FN,ε
t (dx) = E

[∣∣X1,N,ε
t

∣∣],
since the particles are exchangeable. We will need to control E[sup[0,T ] |X1,N,ε

t |] in the sequel. We have

E

[
sup
[0,T ]

∣∣X1,N,ε
t

∣∣] ≤ C

(
E
[∣∣X1

0

∣∣]+E

[
sup
[0,T ]

∣∣B1
t

∣∣]

+E

[
sup

t∈[0,T ]

∣∣∣∣ 1

N

∑
j �=1

∫ t

0
Kε

(
X1,N,ε

s − X
j,N,ε
s

)
ds

∣∣∣∣
])

≤ C

(
E
[∣∣X1

0

∣∣]+ T + 1

N

∑
j �=1

∫ T

0
E
[∣∣Kε

(
X1,N,ε

s − X
j,N,ε
s

)∣∣]ds

)

≤ C

(
E
[∣∣X1

0

∣∣]+ T +
∫ T

0
E

[
1

|X1,N,ε
s − X

2,N,ε
s |α

]
ds

)
. (3.9)

Using Lemma 2.1 with γ = α and β such that α
2 < β < 1 and recalling that I (F

N,ε
t2 ) ≤ I (F

N,ε
t ), we get

M1
(
F

N,ε
t

) ≤ C

(
M1

(
FN

0

)+ T +
∫ t

0
I
(
F

N,ε
t

)β ds

)

≤ C
(
M1

(
FN

0

)+ T
)+ 1

3

∫ t

0
I
(
F

N,ε
t

)
ds, (3.10)
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where we used that Cxβ ≤ C′ + x
3 for a constant C′ sufficiently large. Summing (3.8) and (3.10), we thus find

H
(
F

N,ε
t

)+ M1
(
F

N,ε
t

)+ 1

3

∫ t

0
I
(
FN,ε

s

)
ds ≤ H

(
FN

0

)+ Ct + C
(
1 + M1

(
FN

0

))
.

Since the quantities M1 and I are positive, we immediately get H(F
N,ε
t ) ≤ C(1 + t). Using Lemma 2.3, we have

H(F
N,ε
t ) ≥ −C − M1(F

N,ε
t )/2, so that

M1
(
F

N,ε
t

)+ 1

3

∫ t

0
I
(
FN,ε

s

)
ds ≤ C(1 + t) + M1

(
F

N,ε
t

)
/2.

Using again the positivity of M1 and I , we easily get (3.4). Coming back to (3.9), we finally observe that

E

[
sup
[0,T ]

∣∣X1,N,ε
t

∣∣] ≤ C

(
E
[∣∣X1

0

∣∣]+ T +
∫ T

0
I
(
FN,ε

s

)
ds

)
≤ C

(
1 +E

[∣∣X1
0

∣∣]+ T
)
,

which gives (3.5) and concludes the proof. �

We can now give the proof of existence and uniqueness for the particle system (1.3).

Proof of Theorem 1.6. Like in [20], the key point of the proof is to show that particles of the system (1.3) a.s. never
collide. We divide the proof in three steps. The first step consists in showing that a.s. there are no collisions between
particles for the system (3.2). In the second step, we deduce that the particles of the system (1.3) also never collide,
which ensures global existence and uniqueness for (1.3). In the last step, we establish the estimates about the entropy,
Fisher information and the first moment. We fix N ≥ 2 and for all ε ∈ (0,1), we consider (X

i,N,ε
t )i=1,...,N,t≥0 the

unique solution to (3.2).
Step 1. Let τε := inf{t ≥ 0,∃i �= j, |Xi,N,ε

t −X
j,N,ε
t | ≤ ε}. The aim of this step is to prove that limε→0 P[τε < T ] =

0 for all T > 0. We fix T > 0 and introduce

Sε
t := 1

N2

∑
i �=j

log
∣∣Xi,N,ε

t − X
j,N,ε
t

∣∣. (3.11)

For any A > 1, we have

P[τε < T ] ≤ P

[
inf[0,T ]S

ε
t∧τε

≤ Sε
τε

]
≤ P

[∃i,∃t ∈ [0, T ], ∣∣Xi,N,ε
t

∣∣ > A
]

+ P

[
∀i,∀t ∈ [0, T ], ∣∣Xi,N,ε

t

∣∣ ≤ A, inf[0,T ]S
ε
t∧τε

≤ Sε
τε

]

≤ NE[sup[0,T ] |X1,N,ε
t |]

A
+ P

[
inf[0,T ]S

ε
t∧τε

≤ log ε

N2
+ log 2A

]

≤ C(1 + T )N

A
+ P

[
inf[0,T ]S

ε
t∧τε

≤ log ε

N2
+ log 2A

]
, (3.12)

where we used (3.5). We thus want to compute P[inf[0,T ] Sε
t∧τε

≤ −M] for all (large) M > 0. Using Itô’s formula, that
Kε(x) = K(x) for any |x| ≥ ε (see (3.1)) and that �(log |x|) = 0 on {x ∈R

2, |x| > ε}, we have

log
∣∣Xi,N,ε

t∧τε
− X

j,N,ε
t∧τε

∣∣ = log
∣∣Xi,N

0 − X
j,N

0

∣∣+ M
i,j,ε
t∧τε

− χ

N

∫ t∧τε

0

[∑
k �=i,j

(
K
(
Xi,N,ε

s − Xk,N,ε
s

)− K
(
X

j,N,ε
s − Xk,N,ε

s

))
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+ 2K
(
Xi,N,ε

s − X
j,N,ε
s

)] · X
i,N,ε
s − X

j,N,ε
s

|Xi,N,ε
s − X

j,N,ε
s |2

ds

=: log
∣∣Xi,N

0 − X
j,N

0

∣∣+ M
i,j,ε
t∧τε

+ R
i,j,ε
t∧τε

,

where M
i,j,ε
t is a martingale. Setting S0 := 1

N2

∑
i �=j log |Xi,N

0 − X
j,N

0 |, Mε
t := 1

N2

∑
i �=j M

i,j,ε
t∧τε

and Rε
t :=

1
N2

∑
i �=j R

i,j,ε
t∧τε

, we thus have

Sε
t∧τε

= S0 + Mε
t + Rε

t ,

so that

P

(
inf[0,T ]S

ε
t∧τε

≤ −M
)

≤ P(S0 ≤ −M/3) + P

(
inf[0,T ]M

ε
t ≤ −M/3

)
+ P

(
inf[0,T ]R

ε
t ≤ −M/3

)
. (3.13)

Using first Lemma 2.5 and that |K(x)| = |x|−α , and then exchangeability, we clearly have for some constant C

independent of N and ε,

E

[
sup
[0,T ]

∣∣Rε
t

∣∣] ≤ C

χN3

∑
i �=j

∑
k �=i,j

(
E

[
1

|Xi,N,ε
s − X

k,N,ε
s |α+1

]
+E

[
1

|Xj,N,ε
s − X

k,N,ε
s |α+1

]

+E

[
1

|Xi,N,ε
s − X

j,N,ε
s |α+1

])
ds

≤ Cχ

∫ T

0
E

[
1

|X1,N,ε
s − X

2,N,ε
s |α+1

]
ds

≤ Cχ

∫ T

0

(
1 + I

(
F

N,ε
s2

))
ds

≤ C(1 + T ), (3.14)

where we used Lemma 2.1, the fact that I (F
N,ε
t2 ) ≤ I (F

N,ε
t ) by Lemma 2.2, and finally Proposition 3.1. We thus get

P

(
inf[0,T ]R

ε
t ≤ −M/3

)
≤ P

(
sup
[0,T ]

∣∣Rε
t

∣∣ ≥ M/3
)

≤ C(1 + T )

M
. (3.15)

We now want to compute P(inf[0,T ] Mε
t ≤ −M/3). Using that log |x| ≤ |x|, we have

Sε
t ≤ 1

N2

∑
i �=j

(∣∣Xi,N,ε
t

∣∣+ ∣∣Xj,N,ε
t

∣∣) ≤ 2

N

∑
i

∣∣Xi,N,ε
t

∣∣.
Consequently,

Mε
t ≤ Sε

t∧τε
+ sup

s∈[0,T ]
∣∣Rε

s

∣∣− S0

≤ 2

N

∑
i

sup
s∈[0,T ]

∣∣Xi,N,ε
s

∣∣+ sup
s∈[0,T ]

∣∣Rε
s

∣∣− S0 =: Kε − S0 =: Zε.

We have

P

(
inf[0,T ]M

ε
t ≤ −M/3

)
≤ P

(
Zε ≥ √

M/3
)+ P

(
inf[0,T ]M

ε
t ≤ −M/3,Zε <

√
M/3

)
. (3.16)
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Since (Mε
t )t≥0 is a continuous local martingale, there exists a Brownian motion β such that Mε

t = β〈Mε〉t . For x ∈ R,
we set σx := inf{t ≥ 0, βt = x}. Using that sup[0,T ] Mε

t ≤ Zε a.s.,

P

(
inf[0,T ]M

ε
t ≤ −M/3,Zε <

√
M/3

)
≤ P

(
inf[0,T ]M

ε
t ≤ −M/3, sup

[0,T ]
Mε

t <
√

M/3
)

≤ P(σ−M/3 ≤ σ√
M/3)

=
√

M/3

M/3 + √
M/3

≤
√

3

M
, (3.17)

by classical results on the Brownian motion. Using (3.5) and (3.14), we get that E[Kε] ≤ C(1 + T ) where C does not
depend on ε. So using the Markov inequality,

P
(
Zε ≥ √

M/3
) = P

(
Kε − S0 ≥ √

M/3
)

≤ P
(
Kε ≥ √

M/12
)+ P(−S0 ≥ √

M/12)

≤ C(1 + T )√
M

+ P(−S0 ≥ √
M/12). (3.18)

Gathering (3.16), (3.17) and (3.18), we find that

P

(
inf[0,T ]M

ε
t ≤ −M/3

)
≤ C(1 + T )√

M
+ P(−S0 ≥ √

M/12). (3.19)

Coming back to (3.12) and (3.13), using (3.15) and (3.19) with M = − log ε

N2 − log 2A, we finally get that for any

ε ∈ (0,1), any A > 1 such that log ε

N2 + log 2A < 0,

P(τε < T ) ≤ C(1 + T )N

A
+ P

(
S0 ≤

(
log ε

N2
+ log 2A

)/
3

)

+ C(1 + T )

−(log ε/N2) − log 2A
+ C(1 + T )√

(− log ε/N2) − log 2A

+ P

(
S0 ≤ −

√(
− log ε

N2
− log 2A

)/
12

)
.

Observe finally that S0 > −∞ a.s. (because FN
0 has a density since H(FN

0 ) < ∞) so that limM→+∞ P(S0 < −M) = 0.
Letting ε → 0 in the above formula, we get that for all A > 1,

lim sup
ε

P(τε < T ) ≤ C(1 + T )N

A
.

It only remains to make A go to ∞ to conclude this step.
Step 2. Since K is Lipschitz-continuous outside 0, classical arguments give existence and uniqueness of a solution

to (1.3) until the explosion time τ = inf{t ≥ 0,∃i �= j,X
i,N
t = X

j,N
t }. We can observe that since Kε(x) = K(x) for

any |x| ≥ ε, (Xi,N,ε)i=1,...,N is solution to (1.3) on [0, τε] so that for any i = 1, . . . ,N , X
i,N
t = X

i,N,ε
t on [0, τε]. We

thus have τε < τ for any ε ∈ (0,1) a.s. so that, using Step 1, we have for any T > 0

P(τ < T ) ≤ P(τε < T )
ε→0−→ 0.

Thus τ = ∞ a.s. which proves global existence and uniqueness for (1.3).
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Step 3. Using that the functionals H , I and M1 are lower semi-continuous and Proposition 3.1, we have

H
(
FN

t

) ≤ lim inf
ε

H
(
F

N,ε
t

) ≤ C(1 + t),

(3.20)∫ t

0
I
(
FN

s

)
ds ≤ lim inf

ε

∫ t

0
I
(
FN,ε

s

)
ds ≤ C(1 + t)

and

M1
(
FN

t

) ≤ lim inf
ε

M1
(
F

N,ε
t

) ≤ C(1 + t).

Using Fatou’s lemma and (3.5), we get

E

[
sup
[0,T ]

∣∣X1,N
t

∣∣] ≤ lim inf
ε

E

[
sup
[0,T ]

∣∣X1,N,ε
t

∣∣] ≤ C(1 + T ),

and (1.13) is proven. It remains to prove (1.14). Using again that the functionals H and I are lower semi-continuous
and using (3.3), we get

H
(
FN

t

)+
∫ t

0
I
(
FN

s

)
ds ≤ lim inf

ε

[
H
(
F

N,ε
t

)+
∫ t

0
I
(
FN,ε

s

)
ds

]

≤ H
(
FN

0

)+ lim inf
ε

χ

N2

∫ t

0

∑
i �=j

E
[
divKε

(
Xi,N,ε

s − X
j,N,ε
s

)]
ds.

By exchangeability, it suffices to prove that, as ε → 0,

Dε :=
∫ t

0
E
[
divKε

(
X1,N,ε

s − X2,N,ε
s

)]
ds →

∫ t

0
E
[
divK

(
X1,N

s − X2,N
s

)]
ds =: D.

By Step 2, we have X
i,N
s = X

i,N,ε
s for any i and s ≤ τε and thus recalling that Kε(x) = K(x) for any |x| ≥ ε, we get

that a.s. for any s < τε

divKε

(
X1,N,ε

s − X2,N,ε
s

) = divK
(
X1,N,ε

s − X2,N,ε
s

) = divK
(
X1,N

s − X2,N
s

)
.

So using that divK(x) ≤ 2|x|−α−1 and divKε(x) ≤ 2|x|−α−1, we get

|D − Dε| ≤ C

∫ t

0
E

[
1{τε<s}

(
1

|X1,N,ε
s − X

2,N,ε
s |α+1

+ 1

|X1,N
s − X

2,N
s |α+1

)]
ds.

Let a ∈ (0, 1−α
1+α

) (in order to have (1 + a)(α + 1) < 2). Using first the Hölder inequality with p = 1 + a and q such
that 1/p + 1/q = 1, and then Lemma 2.1 with β = 1, we get

|D − Dε| ≤ C

∫ t

0
P(τε < s)1/q

E

[(
1

|X1,N,ε
s − X

2,N,ε
s |(α+1)(1+a)

+ 1

|X1,N
s − X

2,N
s |(α+1)(1+a)

)]1/p

ds

≤ CP(τε < t)1/q

∫ t

0

[
1 + I

(
FN,ε

s

)+ I
(
FN

s

)]
ds

≤ C(1 + t)P(τε < t)1/q,

by (3.4) and (3.20). This tends to 0 as ε → 0 by Step 1 and concludes the proof. �
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4. Convergence of the particle system

We start this section with a tightness result for the particle system (1.3).

Lemma 4.1. Let α ∈ (0,1). Assume (1.12). For each N ≥ 2, let (X
i,N
t )i=1,...,N be the unique solution to (1.3) and

QN := 1
N

∑N
i=1 δ

(X
i,N
t )t≥0

.

(i) The family {L((X
1,N
t )t≥0),N ≥ 2} is tight in P(C([0,∞),R2)).

(ii) The family {L(QN),N ≥ 2} is tight in P(P(C([0,∞),R2))).

Proof. Since the system is exchangeable, we deduce (ii) from (i) by [19], Proposition 2.2. Let’s prove (i). Let thus η >

0 and T > 0 be fixed. To prove the tightness of {L((X
1,N
t )t≥0),N ≥ 2} in P(C([0,∞),R2)), we have to find a compact

subset Kη,T of C([0, T ],R2) such that supN P[(X1,N
t )t∈[0,T ] /∈ Kη,T ] ≤ η. We first set ZT := sup0<s<t<T

√
2|B1

t −
B1

s |/|t − s|1/3. This random variable is a.s. finite since the paths of a Brownian motion are a.s. Hölder continuous with
index 1/3. We can also notice that the law of ZT does not depend on N . Using the Hölder inequality with p = 3 and
q = 3/2, we get that for all 0 < s < t < T ,∣∣∣∣∣ χN

N∑
j=2

∫ t

s

K
(
X1,N

u − X
j,N
u

)
du

∣∣∣∣∣ ≤ χ

N

N∑
j=2

∫ t

s

du

|X1,N
u − X

j,N
u |α

≤ χ

N
(t − s)1/3

N∑
j=2

(∫ T

0

du

|X1,N
u − X

j,N
u |3α/2

)2/3

≤ (t − s)1/3

(
χ + χ

N

N∑
j=2

∫ T

0

du

|X1,N
u − X

j,N
u |3α/2

)

=: (t − s)1/3UN
T .

Using Lemma 2.1 with γ = 3α/2 and β = 1, the exchangeability of the system of particles, and denoting by FN
u2 the

two-marginal of FN
u , we have

E
(
UN

T

) = χ + χ
N − 1

N

∫ T

0
E

(
1

|X1,N
u − X

2,N
u |3α/2

)
du ≤ χ + C

∫ T

0

(
1 + I

(
FN

u2

))
du

≤ χ + C

∫ T

0

(
1 + I

(
FN

u

))
du

≤ C(1 + T ),

where we used that I (FN
t2 ) ≤ I (FN

t ) by Lemma 2.2 and Theorem 1.6. We thus have supN≥2 E(UN
T ) < ∞. Further-

more, ZT is also a.s. finite so that we can find R > 0 such that P(ZT + UN
T > R) ≤ η/2 for all N ≥ 2. Recalling

(1.12), we can also find a > 0 such that supN≥2 P(X
1,N
0 > a) ≤ η/2. We now consider

Kη,T := {
f ∈ C

([0, T ],R2), ∣∣f (0)
∣∣ ≤ a,

∣∣f (t) − f (s)
∣∣ ≤ R(t − s)1/3 ∀0 < s < t < T

}
,

which is a compact subset of C([0, T ],R2) by Ascoli’s theorem. Observing that for all 0 < s < t < T , |X1,N
t −

X
1,N
s | ≤ (ZT + UN

t )(t − s)1/3, we get

P
[(

X
1,N
t

)
t∈[0,T ] /∈ Kη,T

] ≤ P
(∣∣X1,N

0

∣∣ > a
)+ P

(
ZT + UN

T > R
) ≤ η,

which concludes the proof. �
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We define S as the set of all probability measures f ∈ P(C([0,∞),R2)) such that f is the law of (Xt )t≥0 solution
to (1.4) satisfying (setting ft = L(Xt ))

∀T > 0,

∫ T

0
I (fs)ds < ∞ and sup

[0,T ]
M1(fs) < ∞. (4.1)

Observe that by Lemma 2.4, (4.1) implies (1.7). The condition p > 2
1−α

in (1.7) is asked in order to use (5.1) with
γ = −(α + 1) (see the beginning of Section 5).

Proposition 4.2. Let α ∈ (0,1) and assume (1.12). For each N ≥ 2, let (X
i,N
0 )i=1,...,N be FN

0 -distributed and consider

the solution (X
i,N
t )i=1,...,N,t≥0 to (1.3). Assume that there is a subsequence of QN := 1

N

∑N
i=1 δ

(X
i,N
t )t≥0

going in law

to some P(C([0,∞),R2))-valued random variable Q. Then Q a.s. belongs to S .

Proof. We consider a (not relabelled) subsequence of QN going in law to some Q and we introduce the identity
map ψ :C([0,∞);R2) → C([0,∞);R2). Using the arguments of [8], Proposition 6.1, we have to prove that Q a.s.
satisfies

(a) Q ◦ (ψ(0))−1 = f0;
(b) setting Qt =Q ◦ (ψ(t))−1, (Qt )t≥0 satisfies (4.1);
(c) for all 0 < t0 < · · · < tk < s < t , ϕ1, . . . , ϕk ∈ Cb(R

2), ϕ ∈ C2
b(R2), F(Q) = 0 where, for f ∈ P(C([0,∞),R2)),

F(f ) :=
∫ ∫

f (dγ )f (dγ̃ )ϕ1(γt1) · · ·ϕk(γtk )

×
[
ϕ(γt ) − ϕ(γs) + χ

∫ t

s

∇xϕ(γu) · K(γu − γ̃u)du −
∫ t

s

�xϕ(γu)du

]
.

For simplicity, we split the proof in many steps.
Step 1. By assumption (1.12), we have that FN

0 is f0-chaotic which implies that QN
0 = QN ◦ ψ(0)−1 goes weakly

to f0 in law, and, since f0 is deterministic, also in probability. Hence Q0 = f0 a.s. and thus f ◦ ψ(0)−1 = f0. Thus Q
a.s. satisfies (a).

Step 2. Since 1
N

∑N
i=1 δ

X
i,N
t

goes weakly to Qt , for all j ≥ 1,FN
tj goes weakly to πtj , where πt := L(Qt ) and

πtj := ∫
P(R2)

f ⊗jπt (df ). We can thus apply [11], Theorem 5.7 (and then Fatou’s lemma) to get

E

[∫ T

0
I (Qs)ds

]
=

∫ T

0
E
[
I (Qs)

]
ds ≤

∫ T

0
lim inf

N
I
(
FN

s

)
ds

≤ lim inf
N

∫ T

0
I
(
FN

s

)
ds,

which is finite by Theorem 1.6. We conclude that
∫ T

0 I (Qs)ds < ∞ a.s. We also have, using Fatou’s lemma and the
exchangeability of the particles,

E

[
sup
[0,T ]

M1(Qt )
]

≤ E

[
lim inf

N
sup
[0,T ]

M1
(
QN

t

)]

≤ lim inf
N

E

[
sup
[0,T ]

1

N

N∑
i=1

∣∣Xi,N
t

∣∣]

≤ lim inf
N

E

[
sup
[0,T ]

∣∣X1,N
t

∣∣] ≤ C(1 + T ),

by (1.13), so that sup[0,T ] M1(Qt ) < ∞ a.s. Consequently, Q a.s. satisfies (b).
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Step 3.1. Using Itô’s formula

Oi
t := ϕ

(
Xi,N

s

)+ χ

N

∑
j �=i

∫ t

0
∇xϕ

(
Xi,N

s

) · K(
Xi,N

s − X
j,N
s

)
ds −

∫ t

0
�xϕ

(
Xi,N

s

)
ds

= ϕ
(
X

i,N
0

)+ √
2
∫ t

0
∇xϕ

(
Xi,N

s

) · dBi
s .

But, using the last equality, we see that

F
(
QN

) = 1

N

N∑
i=1

ϕ1
(
X

i,N
t1

) · · ·ϕk

(
X

i,N
tk

)[
Oi

t − Oi
s

]

=
√

2

N

N∑
i=1

ϕ1
(
X

i,N
t1

) · · ·ϕk

(
X

i,N
tk

)∫ t

s

∇xϕ
(
Xi,N

u

) · dBi
u.

From there, and thanks to the independence of the Brownian motions we conclude that (recall that the functions
ϕ1, . . . , ϕk,∇xϕ are bounded)

E
[(
F
(
QN

))2] ≤ C

N
.

Step 3.2. We also introduce the regularized version of F . For ε ∈ (0,1), we define Fε replacing K by Kε defined
by (3.1). Since f �→ Fε(f ) is continuous and bounded from P(C([0,∞);R2)) to R and since QN goes in law to Q,
we deduce that for any ε ∈ (0,1),

E
[∣∣Fε(Q)

∣∣] = lim
N

E
[∣∣Fε

(
QN

)∣∣].
Step 3.3. Using that all the functions and their derivatives involved in F are bounded and that |Kε(x) − K(x)| ≤

|x|−α10≤|x|≤ε , we get

∣∣F(f ) −Fε(f )
∣∣ ≤ χC

∫ ∫ ∫ t

0

∣∣γ (u) − γ̃ (u)
∣∣−α10<|γ (u)−γ̃ (u)|<ε duf (dγ )f (dγ̃ )

≤ Cε3/2−α

∫ ∫ ∫ t

0

∣∣γ (u) − γ̃ (u)
∣∣−3/21γ (u)�=γ̃ (u) duf (dγ )f (dγ̃ ).

Thus,

∣∣F(
QN

)−Fε

(
QN

)∣∣ ≤ Cε3/2−α

N2

∑
i �=j

∫ t

0

∣∣Xi,N
u − X

j,N
u

∣∣−3/2 du,

and by exchangeability

E
[∣∣F(

QN
)−Fε

(
QN

)∣∣] ≤ Cε3/2−α

∫ t

0
E
[∣∣X1,N

u − X2,N
u

∣∣−3/2]du.

Using Lemma 2.1 with γ = 3/2 and β = 1 and denoting by FN
u2 the two-marginal of FN

u , we have

E
[∣∣F(

QN
)−Fε

(
QN

)∣∣] ≤ Cε3/2−α

∫ t

0
I
(
FN

u2

)
du.

Using that I (FN
t2 ) ≤ I (FN

t ) by Lemma 2.2 and Theorem 1.6 we conclude that

E
[∣∣F(

QN
)−Fε

(
QN

)∣∣] ≤ Cε3/2−α.
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Step 3.4. Now we see that

∣∣F(Q) −Fε(Q)
∣∣ ≤ Cε3/2−α

∫ t

0

∫
R2

∫
R2

|x − y|−3/2Qs(dx)Qs(dy)ds.

Step 2 says that (4.1) holds true for Qs , then thanks to Lemma 2.4 we get that a.s., ∇xQs ∈ L2q/(3q−2)(0, T ;Lq(R2))

for all q ∈ [1,2). Then using [8], Lemma 3.5, for γ = 3/2 we deduce that a.s.

lim
ε→0

∣∣F(Q) −Fε(Q)
∣∣ = 0.

Step 3.5. Using Steps 3.1, 3.2 and 3.3, we finally observe, using the same arguments as in [8], Proposition 6.1, Step
4.5, that

E
[∣∣F(Q)

∣∣∧ 1
] ≤ Cε3/2−α +E

[∣∣F(Q) −Fε(Q)
∣∣∧ 1

]
,

so that F(Q) = 0 a.s. by Step 3.4 thanks to dominated convergence and Q a.s. satisfies (c) which concludes the
proof. �

5. Well-posedness and propagation of chaos

We start this section with the proof of existence and uniqueness for the nonlinear S.D.E. (1.4). We will use that for
γ ∈ (−2,0), for p ∈ (2/(2 + γ ),∞] and for any h ∈ P(R2) ∩ Lp(R2),

sup
v∈R2

∫
R2

h(v∗)|v − v∗|γ dv∗ ≤ sup
v∈R2

∫
|v∗−v|<1

h(v∗)|v − v∗|γ dv∗

+ sup
v∈R2

∫
|v∗−v|≥1

h(v∗)dv∗

≤ Cγ,p‖h‖Lp(R2) + 1, (5.1)

where

Cγ,p =
[∫

|v∗|≤1
|v∗|γp/(p−1) dv∗

](p−1)/p

< ∞,

since by assumption γp/(p − 1) > −2.

Proof of Theorem 1.7. The existence in law follows from Proposition 4.2 and Lemma 4.1 (see the comment after
(4.1)). We now prove pathwise uniqueness which will also imply the strong existence. To this aim, we consider
(Xt )t≥0 and (Yt )t≥0 two solutions of (1.4) driven by the same Brownian motion and with same initial condition such
that, setting fs := L(Xs) and gs := L(Ys), (ft )t≥0 and (gt )t≥0 are in L∞

loc([0,∞),P1(R
2))∩L1

loc([0,∞);Lp(R2)) for
some p > 2

1−α
. For any s > 0, we consider the probability measure Rs on R

2 ×R
2 with first (resp. second) marginal

equal to fs (resp. gs ) such that

W1(fs, gs) =
∫
R2×R2

|x − y|Rs(dx,dy).

We have

Xt − Yt = −χ

(∫ t

0

∫
R2

K(Xs − x)fs(dx)ds −
∫ t

0

∫
R2

K(Ys − y)gs(dy)ds

)

= −χ

∫ t

0

∫
R2×R2

[
K(Xs − x) − K(Ys − y)

]
Rs(dx,dy).
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Using Lemma 2.5 and recalling that L(Xt ) = ft , L(Yt ) = gt , and that Rt has marginals ft and gt , this gives

E

[
sup
[0,T ]

|Xt − Yt |
]

≤ Cαχ

∫ T

0

∫
R2×R2

E

[(|Xs − Ys | + |x − y|)( 1

|Xs − x|α+1
+ 1

|Ys − y|α+1

)]
Rs(dx,dy)ds

≤ Cαχ

∫ T

0
E

[
|Xs − Ys |

(∫
R2

1

|Xs − x|α+1
fs(dx)

+
∫
R2

1

|Ys − y|α+1
gs(dy)

)]
ds

+ Cαχ

∫ T

0

∫
R2×R2

|x − y|E
[

1

|Xs − x|α+1

+ 1

|Ys − y|α+1

]
Rs(dx,dy)ds.

Using (5.1), we thus have, since
∫
R2×R2 |x − y|Rs(dx,dy) =W1(fs, gs) ≤ E[|Xs − Ys |] by definition of W1,

E

[
sup
[0,T ]

|Xt − Yt |
]

≤ C

∫ T

0
E
[|Xs − Ys |

](
1 + ‖fs‖Lp + ‖gs‖Lp

)
ds

+ C

∫ T

0

∫
R2×R2

|x − y|(1 + ‖fs‖Lp + ‖gs‖Lp

)
Rs(dx,dy)ds

≤ C

∫ T

0
E
[|Xs − Ys |

](
1 + ‖fs‖Lp + ‖gs‖Lp

)
ds.

By Grönwall’s lemma, we thus get E(sup[0,T ] |Xt − Yt |) = 0 and pathwise uniqueness is proven. �

The following lemma is useful for the uniqueness of (1.1).

Lemma 5.1. Let p > 2/(1 − α) and consider a weak solution (ft )t≥0 to (1.1) lying in L∞
loc([0,∞),P1(R

2)) ∩
L1

loc([0,∞);Lp(R2)). Assume that for some h = (ht )t≥0 lying in L∞
loc([0,∞),P1(R

2)) ∩ L1
loc([0,∞);Lp(R2)), for

all ϕ ∈ C2
c (R2), all t ≥ 0,∫

R2
ϕ(x)ht (dx) =

∫
R2

ϕ(x)f0(dx) +
∫ t

0

∫
R2

�xϕ(x)hs(dx)ds

− χ

∫ t

0

∫
R2

∫
R2

K(x − y) · ∇xϕ(x)fs(dy)hs(dx)ds. (5.2)

Then h = f .

Proof. For any ϕ ∈ C2
c (R2) and any t ≥ 0, we set

At ϕ(x) = �xϕ(x) − χ

∫
R2

K(x − y) · ∇xϕ(x)ft (dy).

We will prove that for any μ ∈ P1(R
2), there exists at most one h lying in L∞

loc([0,∞),P1(R
2))∩L1

loc([0,∞);Lp(R2))

such that for all t ≥ 0, ϕ ∈ C2
c (R2),∫

R2
ϕ(x)ht (dx) =

∫
R2

ϕ(x)μ(dx) +
∫ t

0

∫
R2

Asϕ(x)hs(dx)ds. (5.3)

This will conclude the proof since f and h solve this equation with μ = f0 by assumption.
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Step 1. Let μ ∈ P1(R
2). A continuous adapted R

2-valued process (Xt )t≥0 on some filtered probability space
(Ω,F , (Ft )t≥0,P ) is said to solve the martingale problem MP((At )≥0,μ) if P ◦ X−1

0 = μ and if for all ϕ ∈ C2
c (R2),

(M
ϕ
t )t≥0 is a (Ω,F , (Ft )t≥0,P )-martingale, where

M
ϕ
t = ϕ(Xt) −

∫ t

0
Asϕ(Xs)ds.

Using Bhatt and Karandikar [1], Theorem 5.2 (see also Remark 3.1 in [1]), uniqueness for (5.3) holds if

(i) there exists a countable subset (ϕk)k≥1 ⊂ C2
c such that for all t ≥ 0, the closure (for the bounded pointwise

convergence) of {(ϕk,At ϕk), k ≥ 1} contains {(ϕ,At ϕ), ϕ ∈ C2
c },

(ii) for each x0 ∈R
2, there exists a solution to MP((At )≥0, δx0),

(iii) for each x0 ∈R
2, uniqueness (in law) holds for MP((At )≥0, δx0).

Step 2. We first prove (i). Consider thus some countable (ϕk)k≥1 ⊂ C2
c dense in C2

c , in the sense that for ψ ∈ C2
c ,

there exists a subsequence ϕkn such that limn→∞(‖ψ − ϕkn‖∞ + ‖ψ ′ − ϕ′
kn

‖∞ + ‖ψ ′′ − ϕ′′
kn

‖∞) = 0. We then have
to prove that, for t ≥ 0,

(a) At ϕkn(x) tends to Atψ(x) for all x ∈R
2,

(b) supn ‖At ϕkn‖∞ < ∞.

Let x ∈ R
2. Using that |K(x)| = 1

|x|α , we have

∣∣At ϕkn(x) −Atψ(x)
∣∣ ≤ ∥∥ψ ′′ − ϕ′′

kn

∥∥∞ + χ
∥∥ψ ′ − ϕ′

kn

∥∥∞
∫
R2

1

|x − y|α ft (dy) → 0,

since
∫
R2

1
|x−y|α ft (dy) ≤ C(1+‖ft‖Lp) by (5.1). For (b), we can observe that setting A := supn(‖ϕkn‖∞ +‖ϕk′

n
‖∞ +

‖ϕ′′
kn

‖∞)

|At ϕkn | ≤ A + χA

∫
R2

1

|x − y|α ft (dy) ≤ A + CA
(
1 + ‖ft‖Lp

)
,

which concludes this step.
Step 3. Using classical arguments, we observe that a process (Xt )t≥0 is a solution to MP((At )≥0, δx0) if and only

if there exists, on a possibly enlarged probability space, a (Ft )t≥0-Brownian motion (Bt )t≥0 such that

Xt = x0 − χ

∫ t

0

∫
R2

K(Xs − x)fs(dx)ds + √
2Bt . (5.4)

It thus suffices to prove existence and uniqueness in law for solutions to (5.4) to get (ii) and (iii).
Step 4. The proof of (pathwise) uniqueness for (5.4) is very similar with the proof of uniqueness for (1.4) which

has already been done and we leave it to the reader.
Step 5. It remains to check (ii) to conclude. We thus have to prove the existence of a solution to (5.4). To this aim,

we use a Picard iteration. We thus consider the constant process X0
t = x0 and define recursively

Xn+1
t = x0 − χ

∫ t

0

∫
R2

K
(
Xn

s − x
)
fs(dx)ds + √

2Bt .

Using the same kind of arguments as in the proof of Theorem 1.7, we get

E

(
sup
[0,T ]

∣∣Xn+1
t − Xn

t

∣∣) ≤ C

∫ T

0
E
[∣∣Xn

s − Xn−1
s

∣∣](1 + ‖fs‖Lp

)
ds.

Since
∫ T

0 (1 + ‖fs‖Lp)ds < ∞, we classically deduce that
∑

nE(sup[0,T ] |Xn+1
t − Xn

t |) < ∞, so that there is a con-
tinuous adapted process (Xt )t≥0 such that for all T > 0, limnE[sup[0,T ] |Xt −Xn

t |] = 0. This L1 convergence implies
that (Xt )t≥0 is solution to (5.4), which concludes the proof. �

The following result ensures that uniqueness holds for (1.1).
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Theorem 5.2. Let f0 and g0 be two probability measures with finite first moment. Let (ft )t≥0 and (gt )t≥0 be two
solutions to (1.1) lying in L∞

loc([0,∞),P1(R
2)) ∩ L1

loc([0,∞);Lp(R2)) for some p > 2/(1 − α) starting from f0 and
g0, respectively. Then

W1(ft , gt ) ≤W1(f0, g0) exp

(
C

∫ t

0

(
1 + ‖fs‖Lp + ‖gs‖Lp

)
ds

)
.

Proof. Let thus p > 2/(1 − α), (ft )t≥0 and (gt )t≥0 be two solutions to (1.1) lying in L∞
loc([0,∞),P1(R

2)) ∩
L1

loc([0,∞);Lp(R2)). For any s ≥ 0, we consider the probability measure Rs on R
2 × R

2 with first (resp. second)
marginal equal to fs (resp. gs ) such that

W1(fs, gs) =
∫
R2×R2

|x − y|Rs(dx,dy),

and we consider (X0, Y0) with law R0. We finally set

Xt = X0 − χ

∫ t

0

∫
R2

K(Xs − x)fs(dx)ds + √
2Bt ,

Yt = Y0 − χ

∫ t

0

∫
R2

K(Ys − x)gs(dx)ds + √
2Bt .

Using Itô’s formula, we see that h defined by ht := L(Xt ) satisfies (5.2) and Lemma 5.1 ensures us that L(Xt ) = ft .
Similarly, we also have L(Yt ) = gt . Using the same arguments as in the proof of Theorem 1.7, we easily get

E
(|Xt − Yt |

) ≤ E
[|X0 − Y0|

]+ C

∫ t

0
E
[|Xs − Ys |

](
1 + ‖fs‖Lp + ‖gs‖Lp

)
ds.

Using the Grönwall’s lemma and recalling that E[|X0 − Y0|] = W1(f0, g0), we get

E
(|Xt − Yt |

) ≤ W1(f0, g0) exp

(
C

∫ t

0

(
1 + ‖fs‖Lp + ‖gs‖Lp

)
ds

)
,

which concludes the proof since W1(ft , gt ) ≤ E(|Xt − Yt |). �

We can now give the proof of our well-posedness result for (1.1).

Proof of Theorem 1.5(i). The existence follows by Theorem 1.7. Indeed consider (Xt )t≥0 the unique solution of
(1.4) with initial law f0 and set for t ≥ 0 ft := L(Xt ). Thanks to the Remark 1.2, ft is a weak solution to (1.1) in the
sense given by Definition 1.1 and (1.15) is exactly (1.7).

For uniqueness, consider two weak solutions (ft )t≥0 and (gt )t≥0 of (1.1) satisfying (1.7) with the same initial
condition f0 ∈ P1(R

2). Then Theorem 5.2 ensures that W1(ft , gt ) = 0 for any t ≥ 0 which concludes the proof. �

We end this section with the proof of our propagation of chaos result.

Proof of Theorem 1.8(i). We consider QN := 1
N

∑N
i=1 δ

(X
i,N
t )t≥0

. By Lemma 4.1, the family {L(QN),N ≥ 2} is

tight in P(P(C([0,∞),R2))). Furthermore, by Proposition 4.2, any limit point of QN belongs a.s. to the set of all
probability measures f ∈ P(C([0,∞),R2)) such that f is the law of a solution to (1.4) satisfying (1.9). But by
Theorem 1.7, this set is reduced to L((Xt )t≥0) =: f . We thus deduce that QN goes in law to f as N → ∞ which
concludes the proof of (i). �
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6. Renormalization and entropic chaos

In this section, we first deal with the renormalization which will give us the dissipation of entropy for the solution to
(1.1). From this, we will be able to show the entropic chaos for the system (1.3), which will conclude this paper.

Proof of Theorem 1.5(ii). We adapt the ideas used in [8] for the 2D vortex model to our case, which in particular
has a nondivergence free kernel. We split the proof in four steps plus a Step 0 which is nothing but direct results of
what we have already done. We consider the unique weak solution f = (ft )t≥0 of (1.1). In Step 1 we deal with the
necessary estimates on K ∗ f and ∇ · (K ∗ f ) to regularize f . In Step 2 we show the convergence of a regular version
of f towards f . In Step 3, we improve the regularity of the solution using a well-known bootstrap argument. Finally,
in Step 4 we prove the renormalization property.

We first observe that by construction, f satisfies (1.8). Indeed, for any t ≥ 0, we considered ft as the law of
Xt , where (Xt )t≥0 is the unique solution to (1.4), obtained by Proposition 4.2 and Lemma 4.1, so that (4.1) (which
englobes (1.8)) is satisfied.

Step 0. Direct estimates. We start by noticing that Lemma 2.4 and (1.8) implies directly (1.9) and also that for any
p ∈ [1,∞) and all T > 0,

f ∈ Lp/(p−1)
(
0, T ;Lp

(
R

2)). (6.1)

Step 1. First estimates. The aim of this step is to prove that for any q > 2/α and all T > 0:

(K ∗ f ) ∈ L2q/(αq−2)
(
0, T ;Lq

(
R

2)) (6.2)

and

∇x · (K ∗ f ) = K ∗ (∇x · f ) ∈ L2q/(q(1+α)−2)
(
0, T ;Lq

(
R

2)). (6.3)

Let us remember the Hardy–Littlewood–Sobolev inequality in 2D: for 1 ≤ p < 2/(2 − α),∥∥∥∥
∫
R2

f (y)

| · −y|2−(2−α)
dy

∥∥∥∥
2p/(2−(2−α)p)

≤ Cα,p‖f ‖p.

Using (6.1) we get that for any p ∈ (1,2/(2 − α)) and all T > 0,

(K ∗ f ) ∈ Lp/(p−1)
(
0, T ;L2p/(2−(2−α)p)

(
R

2)),
and under the change of variables q = 2p/(2 − (2 − α)p) we easily deduce (6.2).

Similarly, but using (1.9) instead of (6.1), we get that for any p ∈ (1,2/(2 − α)) and all T > 0,

∇x · (K ∗ f ) ∈ L2p/(3p−2)
(
0, T ;L2p/(2−(2−α)p)

(
R

2)),
applying the same change of variables q = 2p/(2 − (2 − α)p) we get (6.3).

Step 2. Continuity. Consider T > 0 fixed. For q > 2/α we have that 2q/(q(1 + α) − 2) > q/(q − 1), then using
(6.1) with q∗ = q/(q − 1) > 1, and (6.3), we get that f ∇x · (K ∗ f ) belongs to L1(0, T ;L1(R2)). The following
lemma follows directly:

Lemma 6.1. Consider a mollifier sequence (ρn) on R
2 and introduce the mollified function f n

t := ft ∗ ρn. Clearly,
f n

t ∈ C([0,∞),L1(R2)). For all T > 0, there exists rn ∈ L1(0, T ;L1
loc(R

2)) that goes to 0 when n → ∞, and such
that

∂tf
n − χ∇x · ((K ∗ f )f n

)− �xf
n = rn. (6.4)

Remark 6.2. The proof of the previous lemma is a modification of [7], Lemma II.1(ii) and Remark 4. In fact, for all
T > 0, f ∈ L∞(0, T ;L1(R2)) and for any q > 2/α, (K ∗ f ) ∈ L1(0, T ;Lq(R2)). That suffices for the existence of rn
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given by

rn := χ
[(∇ · ((K ∗ f )f

)) ∗ ρn − ∇ · ((K ∗ f )f n
)]

,

which goes to 0 if n → ∞ in L1(0, T ;L1
loc(R

2)).

As a consequence of Lemma 6.1, the chain rule applied to the smooth f n reads

∂tβ
(
f n

) = χ
[
(K ∗ f ) · ∇xβ

(
f n

)+ β ′(f n
)
f n∇x · (K ∗ f )

]
+ �xβ

(
f n

)− β ′′(f n
)∣∣∇xf

n
∣∣2 + β ′(f n

)
rn, (6.5)

for any β ∈ C1(R) ∩ W
2,∞
loc (R) such that β ′′ is piecewise continuous and vanishes outside of a compact set. Since

equation (6.4) with (K ∗ f ) fixed is linear in f n, the difference f n,k := f n − f k satisfies (6.4) with rn replaced
by rn,k := rn − rk → 0 in L1(0, T ;L1

loc(R
2)) and then also (6.5) (with again f n and rn changed in f n,k and rn,k).

Observe that the term β ′(f n)f n∇x · (K ∗ f ) is equal to 0 in [8].
Now, choosing β(s) = β1(s) where β1(s) = s2/2 for |s| ≤ 1 and β1(s) = |s| − 1/2 for |s| ≥ 1. It is clear that β ∈

C1(R), that β ′, β ′′ ∈ L∞(R) and that the second derivative has compact support. For any nonnegative ψ ∈ C2
c (R2),

we obtain

d

dt

∫
R2

β1
(
f n,k(t, x)

)
ψ(x)dx

=
∫
R2

χ
[
(K ∗ f ) · ∇xβ1

(
f n,k

)+ β ′
1

(
f n,k

)
f n,k∇x · (K ∗ f )

]
ψ(x)dx

+
∫
R2

[�xβ1
(
f n,k

)− β ′′
1

(
f n,k

)∣∣∇xf
n,k

∣∣2 + β ′
1

(
f n,k

)
rn,k

]
ψ(x)dx

≤
∫
R2

∣∣rn,k(t, x)
∣∣ψ(x)dx +

∫
R2

β1
(
f n,k

)�xψ dx

+ χ

∫
R2

∣∣f n,k∇x · (K ∗ f )
∣∣ψ(x)dx − χ

∫
R2

β1
(
f n,k

)∇x · ((K ∗ f )ψ(x)
)

dx,

where we have used that |β ′
1| ≤ 1 and that β ′′

1 ≥ 0. We know that f0 ∈ L1(R2) then f n,k(0) → 0 in L1(R2), also that
rn,k → 0 in L1(0, T ;L1

loc(R
2)). It is not difficult to see that β1(f

n,k)(K ∗ f ) → 0 in L1(0, T ;L1
loc(R

2)) (because
β1 is sub-linear, and for all 0 < α < 1 there is q := p/(p − 1) > 2/α, then using (6.1) and (6.2): f n,k → 0 in
Lp/(p−1)(0, T ;Lp(R2)), and (K ∗ f ) ∈ Lq/(q−1)(0, T ;Lq(R2))).

The same arguments apply to β1(f
n,k)∇x · (K ∗ f ) and |f n,k∇x · (K ∗ f )|, and then both goes to 0 as n, k → ∞

in L1(0, T ;L1
loc(R

2)). Finally, we get

sup
t∈[0,T ]

∫
R2

β1
(
f n,k(t, x)

)
ψ(x)dx −→

n,k→∞ 0.

Since ψ is arbitrary, we deduce that there exists f̄ ∈ C([0,∞);L1
loc(R

2)) so that f n → f̄ in C([0,∞);L1
loc(R

2))

with the topology of the uniform convergence on any compact subset in time. Together with the convergence f n → f

in C([0,∞);P(R2)) we get that f = f̄ . We end this step by concluding that, with the same convention for the notion
of convergence on [0,∞): f n → f in C([0,∞);L1(R2)).

Step 3. Additional estimates. From (6.5), we know that for all 0 < t0 < t1, all ψ ∈ C2
c (R2),∫

R2
β
(
f n

t1

)
ψ(x)dx +

∫ t1

t0

∫
R2

β ′′(f n
s

)∣∣∇xf
n
s

∣∣2ψ(x)dx ds

=
∫
R2

β
(
f n

t0

)
ψ(x)dx +

∫ t1

t0

∫
R2

β ′(f n
s

)
rnψ(x)dx ds
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+
∫ t1

t0

∫
R2

β
(
f n

s

)[�xψ(x) − χ(K ∗ f )∇xψ(x)
]

dx ds

+ χ

∫ t1

t0

∫
R2

[
β ′(f n

s

)
f n

s − β
(
f n

s

)]
ψ(x)∇x · (K ∗ f )dx ds. (6.6)

Let us choose 0 ≤ ψ ∈ C2
c (R2) and β ∈ C1(R) ∩ W

2,∞
loc (R) convex such that β ′′ is nonnegative and vanishes outside

of a compact set. Let us remark that there is a constant C > 0 such that sβ ′(s) ≤ Cβ(s), this will be very useful to
deal with the last term which appears because the kernel is not divergence-free. We can pass to the limit as n → ∞
(for details see Step 2) to get∫

R2
β(ft1)ψ(x)dx ≤

∫
R2

β(ft0)ψ(x)dx +
∫ t1

t0

∫
R2

β(fs)
[�xψ(x) − χ(K ∗ f )∇xψ(x)

]
dx ds

+ χ

∫ t1

t0

∫
R2

[−β(fs) + β ′(fs)fs

]
ψ(x)∇x · (K ∗ f )dx ds.

It is not hard to deduce, by approximating ψ ≡ 1 by a well-chosen sequence ψR that∫
R2

β(ft1)dx ≤
∫
R2

β(ft0)dx + χ

∫ t1

t0

∫
R2

[−β(fs) + β ′(fs)fs

]∇x · (K ∗ f )dx ds,

whenever β is admissible.
Now we deal with the regularity in space of (1.10). Let us start by noticing that

∇x · (K ∗ f )(x) =
∫
R2

(1 − α)f (y)

|x − y|1+α
dy, (6.7)

so that taking p > 2/(1 − α) and using (5.1),∫ T

0

∥∥∇x · (K ∗ fs)
∥∥

L∞(R2)
≤ C(α,p)

∫ T

0

(‖fs‖Lp(R2) + 1
)
< ∞,

and due to the fact that sβ ′(s) ≤ Cβ(s), we get∫
R2

β(ft1)dx ≤
∫
R2

β(ft0)dx

+ (C + 1)χ

∫ t1

t0

∥∥∇x · (K ∗ f )(x)
∥∥

L∞(R2)

∫
R2

β(fs)dx ds.

Then Grönwall’s lemma implies that for all 0 < t0 < t1 < T ,∫
R2

β(ft1)dx ≤ C(α,T )

∫
R2

β(ft0)dx.

Finally letting β(s) → |s|q/q , we get that for all q ≥ 1 and all 0 < t0 < t1 < T ,∥∥f (t1, ·)
∥∥

Lq(R2)
≤ C(q,α,T )

∥∥f (t0, ·)
∥∥

Lq(R2)
. (6.8)

Coming back to (6.6) and using βM(s) = s2/2 for |s| ≤ M and βM(s) = M|s| − M2/2 for |s| ≥ M , we have∫
R2

βM

(
f n

t1

)
ψ dx +

∫ t1

t0

∫
R2

1|fs |≤M

∣∣∇xf
n
s

∣∣2ψ dx ds

=
∫
R2

βM

(
f n

t0

)
ψ dx +

∫ t1

t0

∫
R2

β ′
M

(
f n

s

)
rnψ(x)dx ds
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+
∫ t1

t0

∫
R2

βM

(
f n

s

)[�ψ(x) − χ(K ∗ w)∇xψ(x)
]

dx ds

+ χ

∫ t1

t0

∫
R2

[
β ′

M

(
f n

s

)
f n

s − βM

(
f n

s

)]
ψ(x)∇x · (K ∗ f )dx ds,

similarly as above we first make n → ∞, then we approximate ψ ≡ 1 by a well-chosen sequence ψR and make
R → ∞, and finally make the limit M → ∞ to find that for every T ≥ t1 ≥ t0 ≥ 0:∫

R2
|ft1 |2 dx +

∫ t1

t0

∫
R2

|∇xfs |2 dx ds

≤
∫
R2

|ft0 |2 dx + χ

∫ t1

t0

∥∥∇x(K ∗ f )(x)
∥∥

L∞(R2)

∫
R2

|fs |2 dx ds.

We conclude, using (6.8), that for all 0 < t0 < T and any q ∈ [1,∞):

f ∈ L∞(
t0, T ;Lq

(
R

2)) and ∇xf ∈ L2((t0, T ) ×R
2). (6.9)

To get the continuity in time of (1.10), we need to improve even more the estimates on f which will be achieved
using a bootstrap argument. First, fixing p > 2/(2 − α) we notice that for all t0 > 0

‖K ∗ ft‖L∞ ≤ C(p)
(
1 + ‖ft‖Lp

) ⇒ K ∗ ft ∈ L∞(
t0, T ;L∞(

R
2)),

and thanks to (6.7) and (6.9):∥∥∇x(K ∗ ft )
∥∥

L∞ ≤ C(p)
(
1 + ‖ft‖Lp

) ⇒ ∇x(K ∗ ft ) ∈ L∞(
t0, T ;L∞(

R
2)),

we thus have

∂tf − �xf = [
χf ∇x · (K ∗ f ) + (K ∗ f ) · ∇xf

] ∈ L2((t0, T ) ×R
2),

and [2], Theorem X.11, provides the maximal regularity in L2 spaces for the heat equation, in other words: for all
t0 > 0

f ∈ L∞(
t0, T ;H 1(

R
2))∩ L2(t0, T ;H 2(

R
2)).

Remark 6.3. We emphasize that the previous bound is true for all t0. In fact, when ft0 ∈ H 1(R2), the maximal
regularity implies the above bound in the time interval [t0,∞). But thanks to (6.9), we can find t0 arbitrary close
to 0 such that ft0/2 ∈ H 1(R2), then we get the conclusion.

Using now the interpolation inequality, there exists a constant C > 0 such that

‖∇xf ‖L3(R2) ≤ C
∥∥D2f

∥∥2/3
L2(R2)

‖f ‖1/3
L2(R2)

,

which implies∫ T

t0

‖∇xf ‖3
L3(R2)

ds ≤ C

∫ T

t0

∥∥D2f
∥∥2

L2(R2)
‖f ‖L2(R2) < ∞.

Thanks to the previous calculus and again [2], Theorem X.12, we conclude that ∂tf,∇xf ∈ L3((t0, T ) ×R
2) and

then Morrey’s inequality implies that for all t0 > 0

f ∈ C0((t0, T ) ×R
2),
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all together allow us to deduce that

f ∈ C
([0, T );L1(

R
2))∩ C

(
(0, T );L2(

R
2)).

We can go even further iterating this argument, using the interpolation inequality and the Sobolev inequality, to
deduce that ∇xf ∈ Lp((t0, T ) ×R

2) for any 1 < p < ∞, [χf ∇x · (K ∗ f ) + (K ∗ f ) · ∇xf ] ∈ Lp((t0, T ) ×R
2) for

all t0 > 0. Then the maximal regularity of the heat equation in Lp spaces (see [2], Theorem X.12) implies that for all
t0 > 0

∂tf,∇xf ∈ Lp
(
(t0, T ) ×R

2),
and then using again Morrey’s inequality: f ∈ C0,α((t0, T ) × R

2) for any 0 < α < 1, and any t0 > 0. All together
allow us to prove (1.10).

Step 4. Renormalization. To end the proof we show (1.11). Let thus β ∈ C1(R)∩W
2,∞
loc (R) sub-linear, such that β ′′

is piecewise continuous and vanishes outside of a compact set. Thanks to (6.9), we can pass to the limit in the similar
identity as (6.6) obtained for time dependent test functions ψ ∈ C2

c ([0,∞) ×R
2) to get∫ ∞

t0

∫
R2

β ′′(fs)|∇xfs |2ψs dx ds =
∫
R2

β(ft0)ψt0 dx − χ

∫ ∞

t0

∫
R2

ψs(x)∇x · (K ∗ f )
(
fsβ

′(fs) − β(fs)
)

dx ds

+
∫ ∞

t0

∫
R2

β(fs)
(�xψs(x) − (K ∗ f )∇xψs(x) + ∂tψs(x)

)
dx ds. (6.10)

In the case ψ ≥ 0 and β ′′ ≥ 0 we can pass to the limit t0 → 0 thanks to monotonous convergence in the first term, the
continuity property obtained in Step 2 in the second term, and the monotonous convergence in the other terms (recall
that sβ ′(s) ≤ β(s), β is sub-linear and |f |(1 + |K ∗ f | + |∇ · (K ∗ f )|) belongs to L1(0, T ;L1(R2)) thanks to (6.2)
and (6.3)). We get∫ ∞

0

∫
R2

β ′′(fs)|∇xfs |2ψs dx ds =
∫
R2

β(f0)ψ0 dx

+
∫ ∞

0

∫
R2

β(fs)
[�xψs − χ∇x

(
(K ∗ f ) · ψs

)+ ∂tψs

]
dx ds

+ χ

∫ ∞

0

∫
R2

β ′(fs)fsψs(x)∇x · (K ∗ f )dx ds, (6.11)

and the bound given by (6.11) implies directly that we can pass to the limit t0 → 0 in the general case for ψ in (6.10)
which is nothing but (1.11) in the distributional sense. �

We now give a useful lemma for the entropic chaos.

Lemma 6.4. Let α ∈ (0,1) and f0 ∈ P1(R
2) such that H(f0) < ∞. Let (ft )t≥0 be the unique solution of (1.1)

satisfying (1.7). Then

H(ft ) +
∫ t

0
I (fs)ds = H(f0) + χ(1 − α)

∫ t

0

∫
R2

∫
R2

fs(dx)fs(dy)

|x − y|α+1
ds. (6.12)

Proof. For m > 1, let us take βm ∈ C1(R) ∩ W
2,∞
loc (R) given by

βm(s) =
⎧⎨
⎩

s log(s) + (1 − s)/m for m−1 ≤ s ≤ m,
βm(m−) + β ′

m(m−)(s − m) for s > m,
βm(m−1+ ) + β ′

m(m−1+ )(s − m−1) for s < m−1,

so that βm(s) ≤ Cs and βm → s log(s) for any s > 0.
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Since βm is admissible (in the sense of Theorem 1.5), then using (1.11) we get that for any ψ ∈ C∞
c (R2),∫

βm(ft )ψ dx −
∫

βm(f0)ψ dx = χ

∫ t

0

∫
∇x · (K ∗ f )

(
fβ ′

m(f ) − βm(f )
)
ψ dx ds

+
∫ t

0

∫
βm(f )

(�xψ − χ(K ∗ f ) · ∇xψ
)

dx ds

−
∫ t

0

∫
β ′′

m(f )|∇xf |2ψ dx ds,

using that β ′′
m(s) is nonnegative, that βm growths linearly at +∞ and that (fs)s≥0 is nonnegative we can make ψ → 1

to get∫
βm(ft )dx −

∫
βm(f0)dx = χ

∫ t

0

∫
∇x · (K ∗ f )

(
fβ ′

m(f ) − βm(f )
)

dx ds

−
∫ t

0

∫
β ′′

m(f )|∇xf |2 dx ds.

In fact, the first and the second terms converge thanks to monotonous convergence and that |βm(s)| ≤ C|s|. The third
term is a consequence of the monotonous convergence, that β ′

m(s) is bounded, and that f ∇ · (K ∗f ) (resp. |f (K ∗f )|
for the fourth term) is integrable by (6.3) (resp. (6.2)). The last term is a consequence of (4.1).

Finally, we notice that in the interval (0,1] the function −βm increases to −s log(s) while in the interval [1,∞),
βm(s) increases to s log(s). Thanks to the monotonous convergence we can make m → ∞ and using the integrability
of all the limits we get (6.12). �

It remains to conclude with the proof of the entropic chaos.

Proof of Theorem 1.8(ii). We only have to prove that for each t ≥ 0, H(FN
t ) tends to H(ft ). To this aim, we first

show that for any t ≥ 0

L := lim sup
N

[
H
(
FN

t

)+
∫ t

0
I
(
FN

s

)
ds

]
≤ H(ft ) +

∫ t

0
I (fs)ds. (6.13)

Let t ≥ 0 be fixed. Using (1.14) and recalling that H(FN
0 ) → H(f0) by assumption, we have

L ≤ H(f0) + lim sup
N

χ(1 − α)

N2

∑
i �=j

∫ t

0
E

[
1

|Xi,N
s − X

j,N
s |α+1

]
ds,

so that using that H(ft ) + ∫ t

0 I (fs)ds = H(f0) + χ(1 − α)
∫ t

0

∫
R2

∫
R2

fs(dx)fs (dy)

|x−y|α+1 ds by Lemma 6.4, we only have to
prove that

lim
N→∞

1

N2

∫ t

0
E

[∑
i �=j

1

|Xi,N
s − X

j,N
s |α+1

]
ds =

∫ t

0

∫
R2

∫
R2

fs(dx)fs(dy)

|x − y|α+1
ds.

By exchangeability, it suffices to prove that, as N → ∞,

DN :=
∫ t

0
E

[
1

|X1,N
s − X

2,N
s |α+1

]
ds →

∫ t

0

∫
R2

∫
R2

fs(dx)fs(dy)

|x − y|α+1
ds =: D.

For any ε > 0, we have

|D − DN | ≤ |D − Dε| + |Dε − DN,ε| + |DN,ε − DN |,
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where DN,ε = ∫ t

0 E[ 1
(|X1,N

s −X
2,N
s |∨ε)α+1

]ds and Dε = ∫ t

0

∫
R2

∫
R2

fs(dx)fs (dy)

(|x−y|∨ε)α+1 ds. Using that for any ε > 0 fixed, the

function (x, y) �→ (|x − y| ∨ ε)−α−1 is bounded continuous and that L(X
1,N
s ,X

2,N
s ) goes weakly to fs ⊗ fs for

any s ≥ 0, we have limN E[ 1
(|X1,N

s −X
2,N
s |∨ε)α+1

] = ∫
R2

∫
R2

fs(dx)fs (dy)

(|x−y|∨ε)α+1 . By dominated convergence, we thus get that

limN |Dε − DN,ε| = 0. We thus have

lim sup
N

|D − DN | ≤ |D − Dε| + lim sup
N

|DN,ε − DN | ∀ε > 0.

Let α̃ be such that α + 1 < α̃ < 2. We have

|D − Dε| ≤ 2
∫ t

0

∫
R2

∫
R2

fs(dx)fs(dy)

|x − y|α+1
1{|x−y|<ε} ds

≤ 2εα̃−α−1
∫ t

0

∫
R2

∫
R2

fs(dx)fs(dy)

|x − y|α̃ ds

≤ Cεα̃−α−1
∫ t

0

(
1 + I (fs)

)
ds ≤ C(1 + t)εα̃−α−1,

by Lemma 2.1 (applied with F = fs ⊗ fs , for which I (Fs) = I (fs)) and (1.8). Using the same arguments, we also
have for any N ≥ 2,

|DN,ε − DN | ≤ Cεα̃−α−1
∫ t

0

(
1 + I

(
FN

s

))
ds ≤ C(1 + t)εα̃−α−1.

We thus get that lim supN |D − DN | = 0 and (6.13) is proven.
Using [11], Theorem 3.4 and Theorem 5.7, we have

lim inf
N

H
(
FN

t

) ≥ H(ft ) and lim inf
N

∫ t

0
I
(
FN

s

)
ds ≥

∫ t

0
I (fs)ds. (6.14)

Using (6.13) and (6.14), we easily conclude that

lim
N

H
(
FN

t

) = H(ft ) and lim
N

∫ t

0
I
(
FN

s

)
ds =

∫ t

0
I (fs)ds,

which concludes the proof. �
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