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COMMUNITY DETECTION IN SPARSE RANDOM NETWORKS

BY NICOLAS VERZELEN1 AND ERY ARIAS-CASTRO2

INRA and University of California, San Diego

We consider the problem of detecting a tight community in a sparse ran-
dom network. This is formalized as testing for the existence of a dense ran-
dom subgraph in a random graph. Under the null hypothesis, the graph is a
realization of an Erdős–Rényi graph on N vertices and with connection prob-
ability p0; under the alternative, there is an unknown subgraph on n vertices
where the connection probability is p1 > p0. In Arias-Castro and Verzelen
[Ann. Statist. 42 (2014) 940–969], we focused on the asymptotically dense
regime where p0 is large enough that np0 > (n/N)o(1). We consider here the
asymptotically sparse regime where p0 is small enough that np0 < (n/N)c0

for some c0 > 0. As before, we derive information theoretic lower bounds,
and also establish the performance of various tests. Compared to our pre-
vious work [Ann. Statist. 42 (2014) 940–969], the arguments for the lower
bounds are based on the same technology, but are substantially more techni-
cal in the details; also, the methods we study are different: besides a variant of
the scan statistic, we study other tests statistics such as the size of the largest
connected component, the number of triangles, and the number of subtrees
of a given size. Our detection bounds are sharp, except in the Poisson regime
where we were not able to fully characterize the constant arising in the bound.

1. Introduction. Community detection refers to the problem of identifying
communities in networks, for example, circles of friends in social networks, or
groups of genes in graphs of gene co-occurrences [Bickel and Chen (2009),
Girvan and Newman (2002), Lancichinetti and Fortunato (2009), Newman (2006),
Newman and Girvan (2004), Reichardt and Bornholdt (2006)]. Although fueled by
the increasing importance of graph models and network structures in applications,
and the emergence of large-scale social networks on the internet, the topic is much
older in the social sciences, and the algorithmic aspect is very closely related to
graph partitioning, a longstanding area in computer science. We refer the reader
to the comprehensive survey paper of Fortunato (2010) for more examples and
references.
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By community detection, we mean here something slightly different. Indeed,
instead of aiming at extracting the community (or communities) from within the
network, we simply focus on deciding whether or not there is a community at
all. Therefore, instead of considering a problem of graph partitioning, or clus-
tering, we consider a problem of testing statistical hypotheses. We observe an
undirected graph G = (E,V) with N := |V| nodes. Without loss of generality,
we take V = [N ] := {1, . . . ,N}. The corresponding adjacency matrix is denoted
W = (Wi,j ) ∈ {0,1}N×N , where Wi,j = 1 if, and only if, (i, j) ∈ E , meaning there
is an edge between nodes i, j ∈ V . Note that W is symmetric, and we assume
that Wii = 0 for all i. Under the null hypothesis, the graph G is a realization of
G(N,p0), the Erdős–Rényi random graph on N nodes with probability of connec-
tion p0 ∈ (0,1); equivalently, the upper diagonal entries of W are independent and
identically distributed with P(Wi,j = 1) = p0 for any i �= j . Under the alternative,
there is a subset of nodes indexed by S ⊂ V such that P(Wi,j = 1) = p1 for any
i, j ∈ S with i �= j , while P(Wi,j = 1) = p0 for any other pair of nodes i �= j . We
assume that p1 > p0, implying that the connectivity is stronger between nodes in
S, so that S is an assortative community. The subset S is not known, although in
most of the paper we assume that its size n := |S| is known. Let H0 denote the
null hypothesis, which consists of G(N,p0) and is therefore simple. And let HS

denote the alternative where S is the anomalous subset of nodes. We are testing
H0 versus H1 := ⋃

|S|=n HS . We consider an asymptotic setting where

N → ∞, n = n(N) → ∞, n/N → 0, n/ logN → ∞,(1)

meaning the graph is large in size, and the subgraph is comparatively small, but
not too small. Also, the probabilities of connection, p0 = p0(N) and p1 = p1(N),
may change with N—in fact, they will tend to zero in most of the paper.

Despite its potential relevance to applications, this problem has received con-
siderably less attention. We mention the work of Wang et al. (2008) who, in a
somewhat different model, propose a test based on a statistic similar to the mod-
ularity of Newman and Girvan (2004); the test is evaluated via simulations. Sun
and Nobel (2008) consider the problem of detecting a clique, a problem that we
addressed in detail in our previous paper [Arias-Castro and Verzelen (2014)], and
which is a direct extension of the “planted clique problem” [Alon, Krivelevich and
Sudakov (1998), Dekel, Gurel-Gurevich and Peres (2011), Feige and Ron (2010)].
Rukhin and Priebe (2012) consider a test based on the maximum number of edges
among the subgraphs induced by the neighborhoods of the vertices in the graph;
they obtain the limiting distribution of this statistic in the same model we consider
here, with p0 and p1 fixed, and n is a power of N , and in the process show that their
test reduces to the test based on the maximum degree. Closer in spirit to our own
work, Butucea and Ingster (2011) study this testing problem in the case where p0
and p1 are fixed. A dynamic setting is considered in Heard et al. (2010), Mongiovì
et al. (2013), Park, Priebe and Youssef (2013) where the goal is to detect changes
in the graph structure over time.
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1.1. Hypothesis testing. We start with some concepts related to hypothesis
testing. We refer the reader to Lehmann and Romano (2005) for a thorough in-
troduction to the subject. A test φ is a function that takes W as input and returns
φ = 1 to claim there is a community in the network, and φ = 0 otherwise. The
(worst-case) risk of a test φ is defined as

γN(φ) = P0(φ = 1) + max|S|=n
PS(φ = 0),(2)

where P0 is the distribution under the null H0 and PS is the distribution under
HS , the alternative where S is anomalous. We say that a sequence of tests (φN)

for a sequence of problems (WN) is asymptotically powerful (resp., powerless) if
γN(φN) → 0 (resp., → 1). We will often speak of a test being powerful or pow-
erless when in fact referring to a sequence of tests and its asymptotic power prop-
erties. Then, practically speaking, a test is asymptotically powerless if it does not
perform substantially better than any method that ignores the adjacency matrix W,
that is, guessing. We say that the hypotheses merge asymptotically if

γ ∗
N := inf

φ
γN(φ) → 1,

and that the hypotheses separate completely asymptotically if γ ∗
N → 0, which is

equivalent to saying that there exists a sequence of asymptotically powerful tests.
Note that if lim infγ ∗

N > 0, no sequence of tests is asymptotically powerful, which
includes the special case where the two hypotheses are contiguous.

Our general objective is to derive the detection boundary for the problem
of community detection. On the one hand, we want to characterize the range
of parameters (n,N,p0,p1) such that either all tests are asymptotically pow-
erless (γ ∗

N → 1) or no test is asymptotically powerful (lim infγ ∗
N > 0). On the

other hand, we want to introduce asymptotically minimax optimal tests, that is,
tests φ satisfying γN(φ) → 0 whenever γN(φ) → 0 or lim supγ ∗

N < 1 whenever
lim supγ ∗

N < 1.

1.2. Our previous work. We recently considered this testing problem in
Arias-Castro and Verzelen (2014), focusing on the dense regime where log(1 ∨
(np0)

−1) = o(log(N/n)) or equivalently p0 ≥ n−1(n/N)o(1). (For a, b ∈ R, a ∧ b

denotes the minimum of a and b and a ∨ b denotes their maximum.) We obtained
information theoretic lower bounds, and we proposed and analyzed a number of
methods, both when p0 is known and when it is unknown. (None of the methods
we considered require knowledge of p1.) In particular, a combination of the total
degree test based on

W := ∑
1≤i<j≤N

Wi,j ,(3)

and the scan test based on

W ∗
n := max|S|=n

WS, WS := ∑
i,j∈S,i<j

Wi,j ,(4)



3468 N. VERZELEN AND E. ARIAS-CASTRO

was found to be asymptotically minimax optimal when p0 is known and when n

is not too small, specifically n/ logN → ∞. This extends the results that Butucea
and Ingster (2011) obtained for p0 and p1 fixed (and p0 known). In that same
paper, we also proposed and studied a convex relaxation of the scan test, based
on the largest n-sparse eigenvalue of W2, inspired by related work of Berthet and
Rigollet (2013).

1.3. Contribution. Continuing our work, in the present paper we focus on the
sparse regime where

p0 ≤ 1

n

(
n

N

)c0

for some constant c0 > 0.(5)

Obviously, (5) implies that np0 ≤ 1. We define

λ0 = Np0, λ1 = np1,(6)

and note that λ0 and λ1 may vary with N . Our results can be summarized as fol-
lows.

REGIME 1 (λ0 = (N/n)α with fixed 0 < α < 1). Compared to the setting in
our previous work [Arias-Castro and Verzelen (2014)], the total degree test (3)
remains a contender, scanning over subsets of size exactly n as in (4) does not
seem to be optimal anymore, all the more so when p0 is small. Instead, we scan
over subsets of a wider range of sizes, using

W ‡
n = n

sup
k=n/uN

W ∗
k

k
,(7)

where uN = log log(N/n). We call this the broad scan test. In analogy with our
previous results in Arias-Castro and Verzelen (2014), we find that a combination
of the total degree test (3) and the broad scan test based on (7) is asymptoti-
cally optimal when λ0 → ∞, in the following sense. Suppose n = Nκ with 0 <

κ < 1. When κ > 1+α
2+α

, the total degree test is asymptotically powerful when

λ1 � N(1+α)/2

n1+α and the two hypotheses merge asymptotically when λ1  N(1+α)/2

n1+α .
[For two sequences of reals, (aN) and (bN), we write aN  bN to mean that
aN = o(bN).] When κ < 1+α

2+α
, that is for smaller n, there exists a sequence of

increasing functions ψn (defined in Theorem 1) such that the broad scan test
is asymptotically powerful when lim inf(1 − α)ψn(λ1) > 1 and the hypotheses
merge asymptotically when lim sup(1 − α)ψn(λ1) < 1. Furthermore, as n → ∞,
ψn(λ) � λ when λ ≥ 1 remains fixed, while ψn(1) → 1, and ψn(λ) ∼ λ/2 for
λ → ∞. As a consequence, the broad scan test is asymptotically powerful when
λ1 is larger than (up to a numerical) (1 − α)−1. See Table 1 for a visual sum-
mary. [For two real sequences, (aN) and (bN), we write aN ≺ bN to mean that
aN = O(bN), and aN � bN when aN ≺ bN and aN � bN .]
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TABLE 1
Detection boundary and near-optimal algorithms in the regime λ0 = (N/n)α with 0 < α < 1 and
n = Nκ with 0 < κ < 1. Here, “undetectable” means that the hypotheses merge asymptotically,

while “detectable” means that there exists an asymptotically powerful test

κ κ < 1+α
2+α κ > 1+α

2+α

Undetectable λ1 ≺ (1 − α)−1; exact equation in (46) λ1  N(1+α)/2

n1+α

Detectable λ1 � (1 − α)−1; exact equation in (14) λ1 � N(1+α)/2

n1+α

Optimal test Broad scan test Total degree test

When N−o(1) ≤ λ0 ≤ (N/n)o(1) and n = Nκ with 1/2 < κ < 1, the total degree
test is optimal, in the sense that it is asymptotically powerful for λ2

1/λ0 � n2/N ,
while the hypotheses merge asymptotically for λ2

1/λ0  n2/N . This is why we
assume in the remainder of this discussion that n = Nκ with 0 < κ < 1/2.

REGIME 2 (λ0 → ∞ with log(λ0) = o[log (N/n)]). When κ < 1
2 , the broad

scan test is asymptotically powerful when lim infλ1 > 1 and the hypotheses merge
asymptotically when lim supλ1 < 1. See the first line of Table 2 for a visual sum-
mary.

REGIME 3 (λ0 > 0 and λ1 > 0 are fixed). The Poisson regime where λ0 and
λ1 are assumed fixed is depicted on Figure 1. When λ1 > 1, the broad scan test is
asymptotically powerful. When λ0 > e and λ1 < 1, no test is able to fully separate
the hypotheses. In fact, for any fixed (λ0, λ1) a test based on the number of tri-
angles has some nontrivial power [depending on (λ0, λ1)], implying that the two
hypotheses do not completely merge in this case. The case where λ0 < e is not
completely settled. No test is able to fully separate the hypotheses if λ1 <

√
λ0/e.

The largest connected component test is optimal up to a constant when λ0 < 1 and

TABLE 2
Detection boundary and near-optimal algorithms in the regimes λ0 → ∞ and λ0 → 0 and n = Nκ

with 0 < κ < 1/2. For 1/2 < κ < 1, the detection boundary occurs at λ1 � N1/2/n2 and is
achieved by the total degree test

λ0 1 � λ0 � (N
n )o(1) 1

No(1) ≤ λ0 = o(1)

Undetectable lim supλ1 < 1 lim sup
log(λ−1

1 )

log(λ−1
0 )

> κ

Detectable lim infλ1 > 1 lim inf
log(λ−1

1 )

log(λ−1
0 )

< κ

Optimal test Largest CC test Broad scan test
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FIG. 1. Detection diagram in the Poisson asymptotic where λ0 and λ1 are fixed and n = Nκ with
0 < κ < 1/2.

a test based on counting subtrees of a certain size bridges the gap in constants for
1 ≤ λ0 < e, but not completely. When λ0 is bounded from above and λ1 = o(1),
the two hypotheses merge asymptotically.

REGIME 4 (λ0 = o(1) with log (1/λ0) = o[ log (N)]). Finally, when λ0 → 0,
the largest connected component test is asymptotically optimal. See Table 2.

1.4. Methodology for the lower bounds. Compared to our previous work
[Arias-Castro and Verzelen (2014)], the derivation of the various lower bounds
here rely on the same general approach. Let G(N,p0;n,p1) denote the random
graph obtained by choosing S uniformly at random among subsets of nodes of size
n, and then generating the graph under the alternative with S being the anomalous
subset. When deriving a lower bound, we first reduce the composite alternative to
a simple alternative, by testing H0 :G(N,p0) versus H̄1 := G(N,p0;n,p1). Let L

denote the corresponding likelihood ratio, that is, L = ∑
|S|=n LS/

(N
n

)
, where LS

is the likelihood ratio for testing H0 versus HS . Then these hypotheses merge in
the asymptote if, and only if, L → 1 in probability under H0. A variant of the so-
called “truncated likelihood” method, introduced by Butucea and Ingster (2011),
consists in proving that E0(L̃) → 1 and E0(L̃

2) → 1, where L̃ is a truncated like-
lihood of the form L̃ = ∑

|S|=n LS1�S
/
(N
n

)
, where �S is a carefully chosen event.

(For a set or event A, 1A denotes the indicator function of A.) An important differ-
ence with our previous work is the more delicate choice of �S , which here relies



COMMUNITY DETECTION IN SPARSE RANDOM NETWORKS 3471

more directly on properties of the graph under consideration. We mention that we
use a variant to show that H0 and H̄1 do not separate in the limit. This could
be shown by proving that the two graph models G(N,p0) and G(N,p0;n,p1) are
contiguous. The “small subgraph conditioning” method of Robinson and Wormald
(1992, 1994) [see the more recent exposition in Wormald (1999)] was designed for
that purpose. For example, this is the method that Mossel, Neeman and Sly (2012)
use to compare a Erdős–Rényi graph with a stochastic block model3 with two
blocks of equal size. This method does not seem directly applicable in the situa-
tions that we consider here, in part because the second moment of the likelihood
ratio, meaning E[L2], tends to infinity at the limit of detection.

1.5. Content. The remaining of the paper is organized as follows. In Section 2,
we introduce some notation and some concepts in probability and statistics, includ-
ing concepts related to hypothesis testing and some basic results on the binomial
distribution. In Section 3, we study a variant of the scan test and the test based on
the size of the largest connected component. We refer the reader to the extended
version [Verzelen and Arias-Castro (2013)] for other tests, such as the test based
on the number of triangles, which always has some power in the Poisson regime,
and a test based on counting the number of subtrees of a given size, which partially
bridges the gap in constants in the Poisson regime that are near-optimal in differ-
ent regimes. In Section 4, we state and prove information theoretic lower bounds
on the difficulty of the detection problem. In Section 5, we discuss the situations
where p0 and/or n are unknown, as well as open problems.

2. Preliminaries. In this section, we first define some general assumptions
and some notation, although more notation will be introduced as needed. We then
list some general results that will be used multiple times throughout the paper.

2.1. Assumptions and notation. We recall that N → ∞ and the other param-
eters such as n,p0,p1 may change with N , and this dependency is left implicit.
Unless otherwise specified, all the limits are with respect to N → ∞. We assume
that N2p0 → ∞, for otherwise the graph (under the null hypothesis) is so sparse
that number of edges remains bounded. Similarly, we assume that n2p1 → ∞, for
otherwise there is a nonvanishing chance that the community (under the alterna-
tive) does not contain any edges. Throughout the paper, we assume that n and p0
are both known, and discuss the situation where they are unknown in Section 5.

Define

α = logλ0

log(N/n)
,(8)

3This is a popular model of a network with communities, also known as the planted partition
model. In this model, the nodes belong to blocks: nodes in the same block connect with some prob-
ability pin, while nodes in different blocks connect with probability pout.
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which varies with N , and notice that p0 = λ0
N

with λ0 = (N
n
)α . The dense regime

considered in Arias-Castro and Verzelen (2014) corresponds to lim infα ≥ 1. Here,
we focus on the sparse regime where lim supα < 1. The case where α → 0 in-
cludes the Poisson regime where λ0 is constant.

Recall that G = (V,E) is the (undirected, unweighted) graph that we observe,
and for S ⊂ V , let GS denote the subgraph induced by S in G.

We use standard notation such as aN ∼ bN when aN/bN → 1; aN = o(bN)

when aN/bN → 0; aN = O(bN), or equivalently aN ≺ bN , when lim supN |aN/

bN | < ∞; aN � bN when aN = O(bN) and bN = O(aN). We extend this notation
to random variables. For example, if AN and BN are random variables, then AN ∼
BN if AN/BN → 1 in probability.

For x ∈ R, define x+ = x ∨ 0 and x− = (−x) ∨ 0, which are the positive and
negative parts of x. For an integer n, let

n(2) =
(

n

2

)
= n(n − 1)

2
.(9)

Because of its importance in describing the tails of the binomial distribution, the
following function—which is the relative entropy or Kullback–Leibler divergence
of Bern(q) to Bern(p)—will appear in our results:

Hp(q) = q log
(

q

p

)
+ (1 − q) log

(
1 − q

1 − p

)
, p, q ∈ (0,1).(10)

We let H(q) denote Hp0(q).

2.2. Calibration of a test. We say that the test that rejects for large values of a
(real-valued) statistic T = TN(WN) is asymptotically powerful if there is a critical
value t = t (N) such that the test {T ≥ t} has risk (2) tending to 0. The choice of t

that makes this possible may depend on p1. In practice, t is chosen to control the
probability of type I error, which does not necessitate knowledge of p1 as long as
T itself does not depend on p1, which is the case of all the tests we consider here.
Similarly, we say that the test is asymptotically powerless if, for any sequence of
reals t = t (N), the risk of the test {T ≥ t} is at least 1 in the limit.

We prefer to leave the critical values implicit as their complicated expressions
do not offer any insight into the theoretical difficulty or the practice of testing for
the presence of a dense subgraph. Indeed, if a method can run efficiently, then most
practitioners will want to calibrate it by simulation (permutation or parametric
bootstrap, when p0 is unknown). Besides, the interested reader will be able to
obtain the (theoretical) critical values by a cursory examination of the proofs.

2.3. Some general results. Remember the definition of the entropy function
in (10). The following is a simple concentration inequality for the binomial distri-
bution.
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LEMMA 1 (Chernoff’s bound). For any positive integer n, any q,p ∈ (0,1),
we have

P
(
Bin(n,p) ≥ qn

) ≤ exp
(−nHp(q)

)
.(11)

Here are some asymptotics for the entropy function.

LEMMA 2. Define h(x) = x logx − x + 1. For 0 < p ≤ q < 1, we have

0 ≤ Hp(q) − ph(q/p) ≤ O

(
q2

1 − q

)
.

The following are standard bounds on the binomial coefficients. Recall that e =
exp(1).

LEMMA 3. For any integers 1 ≤ k ≤ n,(
n

k

)k

≤
(

n

k

)
≤

(
en

k

)k

.(12)

Let Hyp(N,m,n) denotes the hypergeometric distribution counting the number
of red balls in n draws from an urn containing m red balls out of N .

LEMMA 4. Hyp(N,m,n) is stochastically smaller than Bin(n,ρ), where ρ :=
m

N−m
.

3. Some near-optimal tests. In this section, we consider several tests and
establish their performances. We start by recalling the result we obtained for the
total degree test, based on (3), in our previous work [Arias-Castro and Verzelen
(2014)]. Recalling the definition of λ0 and λ1 in (6), define

ζ := (p1 − p0)
2

p0

n4

N2 = (λ1 − λ0n/N)2

λ0

n2

N
.(13)

PROPOSITION 1 (Total degree test). The total degree test is asymptotically
powerful if ζ → ∞, and asymptotically powerless if ζ → 0.

In view of Proposition 1, the setting becomes truly interesting when ζ → 0,
which ensures that the naive total degree test is indeed powerless.

3.1. The broad scan test. In the denser regimes that we considered in Arias-
Castro and Verzelen (2014), the (standard) scan test based on W ∗

n defined in (4)
played a major role. In the sparser regimes we consider here, the broad scan test
based on W ‡

n defined in (7) has more power. Assume that lim infλ1 > 1, so that GS

is supercritical under HS . Then it is preferable to scan over the largest connected
component in GS rather than scan GS itself.
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LEMMA 5. For any λ > 1, let ηλ denote the smallest solution of the equation
η = exp(λ(η − 1)). Let Cm denote a largest connected component in G(m,λ/m)

and assume that λ > 1 is fixed. Then, in probability, |Cm| ∼ (1 − ηλ)m and WCm ∼
λ
2 (1 − η2

λ)m.

PROOF. The bounds on the number of vertices in the giant component is well
known [Van der Hofstad (2012), Theorem 4.8], while the lower bound on the num-
ber of edges comes from Pittel and Wormald (2005), Note 5. �

By Lemma 5, most of the edges of GS lie in its giant component, which is of
size roughly (1 − ηλ1)n. This informally explains why a test based on W ∗

n(1−ηλ1 ) is

more promising that the standard scan test based on W ∗
n .

In the details, the exact dependency of the optimal subset size to scan over seems
rather intricate. This is why in W ‡

n we scan over subsets of size n/uN ≤ k ≤ n.
[Recall that uN = log log(N/n), although the exact form of uN is not important.]
For any subset S ⊂ V , let

W ∗
k,S = max

T ⊂S,|T |=k
WT .

Note that W ∗
k,V = W ∗

k defined in (4). Recall the definition of the exponent α in (8).

THEOREM 1 (Broad scan test). The scan test based on W ‡
n is asymptotically

powerful if

lim supα ≤ 1 and lim inf(1 − α)
n

sup
k=n/uN

ES[W ∗
k,S]

k
> 1;(14)

or

α → 0 and lim infλ1 > 1.(15)

Note that the quantity supn
k=n/uN

ES[W ∗
k,S]/k does not depend on p0 or α. We

shall prove in the next section that the power of the broad scan test is essentially
optimal: if

lim supα < 1 and lim sup(1 − α)
n

sup
k=n/uN

ES

[
W ∗

k,S

]
/k < 1,

or α → 0 and lim supλ1 < 1, then no test is asymptotically powerful [at least when
n2 = o(N), so that the total degree test is powerless]. Regarding (14), we could not
get a closed-form expression of this supremum. Nevertheless, we show in the proof
that

lim inf
n

sup
k=n/uN

ES[W ∗
k,S]

k
≥ lim inf

λ1

2
(1 + ηλ1),(16)

where ηλ is defined in Lemma 5. Moreover, we establish the following upper
bound.
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LEMMA 6.

lim inf
n

sup
k=n/uN

ES[W ∗
k,S]

k
≤ lim inf

λ1

2
+ 1 + √

1 + λ1.(17)

If λ1 → ∞, then

n
sup

k=n/uN

ES[W ∗
k,S]

k
∼ λ1/2.

PROOF. Fix ε > 0 and define x := 2[(1 + ε) + √
(1 + ε)2 + λ1(1 + ε)]. First,

we control the deviations of W ∗
k,S . Define qk = (λ1 + x)/(k − 1) and notice that

qk ≥ p1 for n/uN ≤ k ≤ n. Since log(1 + t) ≤ t for any t > −1, we have

Hp1(qk) := qk log
(

qk

p1

)
+ (1 − qk) log

(
1 − qk

1 − p1

)
≥ qk log

(
qk

p1

)
− qk + p1.

Applying a union bound and Chernoff’s inequality (11), we control the deviations
of W ∗

k,S :

PS

[
W ∗

k,S ≥ k(2)qk

] ≤
(

n

k

)
exp

[−k(2)Hp1(qk)
] ≤ exp[kAk],

where

Ak := log
(

en

k

)
− k − 1

2

(
qk log

(
qk

p1

)
− qk + p1

)
.

Observe that x is larger than 2. As a consequence, we obtain

Ak = 1 + log
(

n

k

)
− λ1 + x

2
log

(
n(λ1 + x)

(k − 1)λ1

)
+ λ1 + x

2
− λ1(k − 1)

2n

≤ 1 + x

2
− λ1 + x

2
log

(
λ1 + x

λ1

)
− λ1

2

[
k − 1

n
− 1 − log

(
k − 1

n

)]

≤ 1 − x2

4(λ1 + x)
,

where we used in the last line the inequalities t − log t − 1 ≥ 0 and log(1 − t) ≤
−t − t2/2, valid for any t ≥ 0. By definition of x, we have x2/(4(λ1 +x)) = 1+ ε.
In conclusion, we have proved that for any integer k between n/uN and n

PS

[
W ∗

k,S

k
≥ λ1 + x

2

]
≤ exp[−kε].(18)

Let us now control the lower deviations of 1
k
W ∗

k,S using Lemma 7,

PS

[
W ∗

k,S

k
≤ ES

[
W ∗

k,S

k

]
−

(
ES

[
W ∗

k,S

k

])1/2 8

k1/2

]
≤ 2−8.
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For k large enough, exp[−kε] ≤ 1/2, which therefore implies that

ES

[
W ∗

k,S

k

]
≤

(
ES

[
W ∗

k,S

k

])1/2 8

(n/uN)1/2 + λ1 + x

2
,(19)

since k ≥ n/uN . Taking the supremum over k and letting n go to infinity, we con-
clude that

lim inf
n∨

k=n/uN

ES

[
W ∗

k,S

k

]
≤ lim inf

λ1 + x

2

= lim inf
λ1

2
+ (1 + ε) +

√
(1 + ε)2 + λ1(1 + ε).

Then letting ε going to zero allows us to prove the first result.
Now assume that λ1 → ∞. From (19), we deduce that

lim supλ−1
1

n∨
k=n/uN

ES

[
W ∗

k,S

k

]
≤ 1

2
.

On the other hand,

n∨
k=n/uN

ES

[
W ∗

k,S

k

]
≥ ES[W ∗

n,S]
n

= λ1
n − 1

2n
∼ λ1

2
.

This completes the proof. �

Hence, assuming α and λ1 are fixed and positive, the broad scan test is asymp-
totically powerful when (1 − α)λ1

2 (1 + ηλ1) > 1. In contrast, the scan test was
proved to be asymptotically powerful when (1 − α)λ1

2 > 1 [Arias-Castro and
Verzelen (2014), Proposition 3], so that we have improved the bound by a factor
larger than 1 + ηλ1 and smaller than one 1 + 2λ−1

1 (1 + √
1 + λ1). When α con-

verges to one, it was proved in Arias-Castro and Verzelen (2014) that the minimax
detection boundary corresponds to (1 − α)λ1/2 ∼ 1 [at least when n2 = o(N)].
Thus, for α going to one, both the broad scan test and the scan test have compa-
rable power and are essentially optimal. In the dense case, the broad scan test and
the scan test have also comparable powers as shown by the next result which is the
counterpart of Arias-Castro and Verzelen (2014), Proposition 3.

PROPOSITION 2. Assume that p0 is bounded away from one. The broad scan
test is powerful if

lim inf
nH(p1)

2 log(N/n)
> 1.
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The proof is essentially the same as the corresponding result for the scan test
itself. See Arias-Castro and Verzelen (2014).

PROOF OF THEOREM 1. First, we control W ‡
n under the null hypothesis. For

any positive constant c0 > 0, we shall prove that

P0
[
(1 − α)W ‡

n ≥ 1 + c0
] = o(1).(20)

Under conditions (14) and (15), α is smaller than for N large enough. Consider
any integer k ∈ [n/uN,n], and let qk = 2(1 + c0)/[(k − 1)(1 − α)]. Recall that
k(2) = k(k − 1)/2. Applying a union bound and Chernoff’s bound (Lemma 1), we
derive that

P0

[
W ∗

k ≥ 1 + c0

1 − α
k

]
≤

(
N

k

)
exp

[−k(2)H(qk)
]

≤ exp
[
k

{
log(eN/k) − k − 1

2
H(qk)

}]
.

We apply Lemma 2 knowing that qk/p0 → ∞, and use the definition of α in (8),
to control the entropy as follows:

k − 1

2
H(qk) ∼ k − 1

2
qk log

[
qk

p0

]

= 1 + c0

1 − α

[
log(N/n) − logλ0 + O(loguN)

]
∼ (1 + c0) log(N/n),

since log(uN) = o(log(N/n)). Consequently,

P0

[
W ∗

k ≥ 1 + c0

1 − α
k

]
≤ exp

[−kc0 log(N/n)
(
1 + o(1)

)]
,

where the o(1) is uniform with respect to k. Applying a union bound, we conclude
that

P0
[
(1 − α)W ‡

n ≥ 1 + c0
] ≤

n∑
k=n/uN

exp
[−kc0 log(N/n)

(
1 + o(1)

)] = o(1).

We now lower bound W ‡
n under the alternative hypothesis. First, assume

that (14) holds, so that there exist a positive constant c and a sequence of inte-
gers kn ≥ n/uN such that ES[W ∗

kn,S] ≥ kn(1 + c)/(1 −α) eventually. In particular,
ES[W ∗

kn,S] → ∞. We then use (22) in the following concentration result for W ∗
k,S .

LEMMA 7. For an integer 0 ≤ k ≤ n, define μ∗
k,S = ES[W ∗

k,S]. We have the
following deviation inequalities:

PS

[
W ∗

k,S ≥ μ∗
k,S + t

] ≤ exp
[
− log(2)

4

{
t ∧ t2

8μ∗
k,S

}]
∀t > 8

(
1 ∨

√
μ∗

k,S

)
(21)
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and

PS

[
W ∗

k,S ≤ μ∗
k,S − t

] ≤ exp
[
− log(2)

t2

8μ∗
k,S

]
∀t > 4

√
μ∗

k,S.(22)

It follows from Lemma 7 that, with probability going to one under PS ,

W ‡
n ≥ W ∗

kn

kn

≥ W ∗
kn,S

kn

≥ 1 + c/2

1 − α
.

Taking c0 = c/4 in (20) allows us to conclude that the test based on W ‡
n with

threshold 1+c/2
1−α

is asymptotically powerful.
Now, assume that (15) holds. Because W ‡

n is stochastically increasing in λ1
under PS , we may assume that λ1 > 1 is fixed. We use a different strategy which
amounts to scanning the largest connected component of GS . Let CS

max be a largest
connected component of GS .

For a small c > 0 to be chosen later, assume that (1 − c)n(1 − ηλ1) ≤ |CS
max| ≤

(1 + c)n(1 − ηλ1) and WCS
max

≥ (1 − c)nλ1
2 (1 − η2

λ1
), which happens with high

probability under PS by Lemma 5. Note that, because λ1 > 1, we have ηλ1 < 1 and,
therefore, |CS

max| � n. Consequently, when computing W ‡
n we scan CS

max, implying
that

W ‡
n ≥ WCS

max

|CS
max|

≥ (1 − c)(λ1/2)(1 − η2
λ1

)n

(1 + c)(1 − ηλ1)n
≥ 1 − c

1 + c

λ1

2
(1 + ηλ1).

Since c above may be taken as small as we wish, and in view of (20), it suffices
to show that λ1(1 + ηλ1) > 2. Since ηλ converges to one when λ goes to one, we
have limλ→1 λ(1 + ηλ) = 2. Consequently, it suffices to show that the function
f :λ �→ λ(1 + ηλ) is increasing on (1,∞). By definition of ηλ, we have ηλ < 1/λ

(since e−λ < 1/λ) and η′(λ) = ηλ(ηλ − 1)/(1 − ληλ). Consequently, f ′(λ) = 2 +
ηλ−1

1−ληλ
. Hence, f ′(λ) is positive if ηλ < (2λ − 1)−1 := aλ. Recall that ηλ is the

smallest solution of the equation x = exp[λ(x − 1)], the largest solution being
x = 1. Furthermore, we have x ≥ exp[λ(x − 1)] for any x ∈ [ηλ,1]. To conclude,
it suffices to prove aλ > eλ(aλ−1). This last bound is equivalent to

λ − 1

2
− 1

2(2λ − 1)
− log(2λ − 1) > 0.

The function on the LHS is null for λ = 1. Furthermore, its derivative 4(λ−1)2

(2λ−1)2 is
positive for λ > 1, which allows us to conclude. �

PROOF OF LEMMA 7. The proof is based on moment bounds for functions of
independent random variables due to Boucheron et al. (2005) that generalize the
Efron–Stein inequality.
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Recall that GS = (S,ES) is the subgraph induced by S. Fix some integer k ∈
[0, n]. For any (i, j) ∈ ES , define the graph G(i,j)

S by removing (i, j) from the

edge set of GS . Let W
(i,j)
T be defined as WT but computed on G(i,j)

S , and then

let W
∗(i,j)
k,S = maxT ⊂S,|T |=k W

(i,j)
T . Observe that 0 ≤ W ∗

k,S − W
∗(i,j)
k,S ≤ 1 and that

W
∗(i,j)
k,S is a measurable function of E (i,j)

S , the edges set of G(i,j)
S . Let T ∗ ⊂ S be a

subset of size k such that W ∗
k,S = WT ∗ . Then we have

∑
(i,j)∈ES

(
W ∗

k,S − W
∗(i,j)
k,S

) ≤ ∑
(i,j)∈ES

(
WT ∗ − W

(i,j)
T ∗

) = WT ∗ = W ∗
k,S,

where the first equality comes from the fact that WT ∗ − W
(i,j)
T ∗ = 1{(i,j)∈ET ∗ }.

Applying [Boucheron et al. (2005), Corollary 1], we derive that, for any real
q ≥ 2,

[
ES

{(
W ∗

k,S −ES

[
W ∗

k,S

])q
+

}]1/q ≤
√

2qES

[
W ∗

k,S

] + q;
[
ES

{(
W ∗

k,S −ES

[
W ∗

k,S

])q
−

}]1/q ≤
√

2qES

[
W ∗

k,S

]
.

Take some t > 8(1 ∨
√
ES[W ∗

k,S]). For any q ≥ 2, we have by Markov’s inequality

PS

[
W ∗

k,S ≥ ES

[
W ∗

k,S

] + t
] ≤

(√
2qES[W ∗

k,S] + q

t

)q

.

The choice q = t
4 ∧ t2

32ES [W ∗
k,S ] is larger than 2 and leads to (21). Similarly, if we

take some t > 4
√
ES[W ∗

k,S], and apply Markov’s inequality, we get

PS

[
W ∗

k,S ≤ ES

[
W ∗

k,S

] − t
] ≤

(√
2qES[W ∗

k,S]
t

)q

.

The choice q = t2

8ES [W ∗
k,S ] ≥ 2 leads to (22). �

3.2. The largest connected component. This test rejects for large values of
the size (number of nodes) of the largest connected component in G, which we
denoted Cmax. We focus on the subcritical regime, lim supλ0 < 1, where the test
is most relevant. We refer the reader to the extended online version [Verzelen and
Arias-Castro (2013)] for a study of this test in the supercritical regime.

Define

Iλ = λ − 1 − log(λ).(23)
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THEOREM 2 (Subcritical largest connected component test). Assume that
log log(N) = o(logn), lim supλ0 < 1, and I−1

λ0
log(N) → ∞. The largest con-

nected component test is asymptotically powerful when lim infλ1 > 1 or

λ0 ≤ λ1e
1−λ1 eventually and lim inf

Iλ0

λ0 + Iλ1 − λ0e
Iλ1

log(n)

log(N)
> 1.(24)

If we further assume that n2 = o(N), then the largest connected component test is
asymptotically powerless when λ1 < 1 for all n and

λ0 ≥ λ1e
1−λ1 eventually or lim sup

Iλ0

λ0 + Iλ1 − λ0e
Iλ1

log(n)

log(N)
< 1.(25)

If we assume that both λ0 and λ1 go to zero, then condition (24) is equivalent to

lim inf
Iλ0

Iλ1

log(n)

log(N)
> 1,(26)

which corresponds to the optimal detection boundary in this setting, as shown in
Theorem 3.

The technical hypothesis log log(N) = o(logn) is only used for convenience
when analyzing the case λ1 → 1. The condition I−1

λ0
log(N) → ∞ implies that λ0

can only converge to zero slower than any power of N . Although it is possible to
analyze the test in the very sparse setting where λ0 goes to zero polynomially fast,
we did not do so to keep the exposition focused on the more interesting regimes.

PROOF OF THEOREM 2. That the test is powerful when lim infλ1 > 1 derives
from the well-known phase transition phenomenon of Erdős–Rényi graphs. Let Cm

denote a largest connected component of G(m,λ/m) and assume that λ ∈ (0,∞)

is fixed. By Van der Hofstad (2012), Theorems 4.4, 4.5 and 4.8, in probability, we
know that

|Cm| ∼
{

I−1
λ logm, if λ < 1,

(1 − ηλ)m, if λ > 1,

where ηλ is defined as in Lemma 5. When λ > 1, the result is actually contained
in Lemma 5.

Hence, under the null with lim supλ0 < 1, the largest connected component of
G is of order log(N) with probability going to one. Under the alternative HS with
lim infλ1 > 1, the graph GS contains a giant connected component whose size of
order n with probability going to one. Recalling that log(N) = o(n) allows us to
conclude.

Now suppose that (24) holds. We assume that the sequence λ1 is always smaller
or equal to 1, that I−1

λ1
= O(log(n)/ log(N)) and that log(I−1

λ1
∨ 1) = o(logn),

meaning that λ1 does not converge too fast to 1. We may do so while keeping
condition (24) true because the distribution of |Cmax| under PS is stochastically
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increasing with λ1, because lim supλ0 < 1, Iλ1 + λ0 − λ0e
Iλ1 ∼ Iλ1(1 − λ0) for

λ1 → 1, and because log log(N) = o(logn).
By hypothesis (24), there exists a constant c′ > 0, such that

τ := lim inf
Iλ0 log(n)

(Iλ1 + λ0 − λ0e
Iλ1 ) log(N)

≥ 1 + c′.

To upper-bound the size of Cmax under P0, we use the following.

LEMMA 8. Let Cm denote a largest connected component of G(m,λ/m) and
assume that λ < 1 for all m and log[I−1

λ ∨1] = o(log(m)). Then, for any sequence
um satisfying

lim inf
umIλ

logm
> 1,

we have

P
(|Cm| ≥ um

) = o(1).

PROOF. This lemma is a slightly modified version of Van der Hofstad (2012),
Theorem 4.4, the main difference being that λ was fixed in the original statement.
Details are omitted. �

Define c = (c′ ∧ 1)/4. Applying Lemma 8, |Cmax| ≤ t0 := I−1
λ0

log(N)(1 + c),
with probability going to one under P0.

We now need to lower-bound the size of Cmax under PS . Define

k0 = (1 − c) log(n)
[
Iλ1 + λ0 − λ0e

Iλ1
]−1

, k = �k0�,

q0 = (1 − c) log(n)
1 − λ0e

Iλ1

Iλ1 + λ0 − λ0e
Iλ1

, q = �q0�.

The denominator of k0 is positive since λ0e
Iλ1 ≤ 1 and

Iλ1 + λ0 − λ0e
Iλ1 ≥ Iλ1 + e−Iλ1

(
1 − eIλ1

) = I
e
−Iλ1

> 0.(27)

We note that k = O(logn), unless the denominator of k0 goes to zero, which is
only possible when Iλ1 goes to zero (implying λ1 → 1), in which case

k ∼ log(n)
[
Iλ1(1 − λ0)

]−1 = O
[
I−1
λ1

∨ 1
]
log(n) = O

[
log(N)

]
,(28)

since, in this case, (24) implies that I−1
λ1

= O(log(n)/ log(N)), and we also have
lim supλ0 < 1 by assumption. So (28) holds in any case.

We shall prove that among the connected components of GS of size larger
than q , there exists at least one component whose size in G is larger than k. By def-
inition of c, we have lim infk/t0 ≥ τ(1 − c)/(1 + c) ≥ (1 + c′)(1− c)/(1 + c) > 1,
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and the connected component test is therefore powerful. The main arguments
rely on the second moment method and on the comparison between cluster sizes
and branching processes. Before that, recall that t0 → ∞, so that log(n)I−1

e
−Iλ1

�
k0 → ∞, which in turn implies Iλ1 = o(log(n)).

LEMMA 9. Fix any c > 0. Consider the distribution G(m,λ/m) and assume
that λ satisfies

lim supλ ≤ 1, log
[
I−1
λ ∨ 1

] = o
(
log(m)

)
, I−1

λ logm → ∞.

For any sequence q = a log(m) with a ≤ I−1
λ (1 − c), let Z≥q denote the number

of nodes belonging to a connected component whose size is larger than q . With
probability going to one, we have

Z≥q ≥ m1−aIλ−o(1).(29)

PROOF. This lemma is a simple extension of the second moment method ar-
gument [equations (4.3.34) and (4.3.35)] in the proof of Van der Hofstad (2012),
Theorem 4.5, where λ is fixed, while here it may vary with m, and in particular,
may converge to 1. We leave the details to the reader. �

Observe that

q

(1 − c)I−1
λ1

log(n)
≤ Iλ1 − λ0Iλ1e

Iλ1

Iλ1 + λ0 − λ0e
Iλ1

≤ 1 − λ0
1 − eIλ1 + Iλ1e

Iλ1

Iλ1 + λ0 − λ0e
Iλ1

≤ 1,

using the fact that xex − ex + 1 ≥ 0 for any x ≥ 0. Thus, we can apply Lemma 9
to GS . And by Lemma 8, the largest connected component of GS has size smaller
than 2I−1

λ1
log(n) with probability tending to one. Hence, GS contains more than

n1+o(1)e−qIλ1

2I−1
λ1

logn
= ne−qIλ1−o(log(n))

connected components of size larger than q . [We used the fact that log(I−1
λ1

∨ 1) =
o(logn).] If k0 − q0 ≤ 1, then applying Lemma 9 to q + 2 (instead of q) allows
us to conclude that there exists a connected component of size at least k. This is
why we assume in the following that lim infk0 − q0 > 1. By definition of k0 and
q0, k0 − q0 ≥ 1, implies that

log(n)λ0 ≥ 1

1 − c
e−Iλ1

(
Iλ1 + λ0 − λ0e

Iλ1
) ≥ 1

1 − c
e−Iλ1 I

e
−Iλ1

by (27). Thus, lim inf k0 − q0 > 1 implies that for n large enough log(n)λ0 ≥
λ1Iλ1e, and consequently

Iλ0 ≤ O(1) − log(λ0) ≤ o
(
log(n)

) + Iλ1 + log
[
I−1

e
−Iλ1

] = o
(
log(n)

)
(30)
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since Iλ1 = o(log(n)), − log(Iλ1) ≤ o(log(n)) and I−1
e−Iλ

= O[(e−Iλ − 1)−2] =
O[I−2

λ ].
Let {C(i)

S , i ∈ I} denote the collection of connected components of size larger

than q in GS . For any such component C(i)
S , we extract any subconnected compo-

nent C̃(i)
S of size q . Recall that, with probability going to one,

|I| ≥ n1−o(1)e−qIλ1 .(31)

For any node x, let C(x) denote the connected component of x in G, and let C−S(x)

denote the connected component of x in the graph G−S where all the edges in GS

have been removed. Then let

Ui := ⋃
x∈C̃(i)

S

C−S(x), i ∈ I; V = ∑
i∈I

1{|Ui |≥k}.

Since V ≥ 1 implies that the largest connected component of G is larger than k, it
suffices to prove that V is larger than one with probability going to one. Observe
that conditionally to |I|, the distribution of (|Ui |, i ∈ I) is independent of GS .
Again, we use a second moment method based on a stochastic comparison between
connected components and binomial branching processes.

LEMMA 10. The following bounds hold:

PS

[|Ui | ≥ k
] ≥

(
k

k − q

)k−q

e−λ0q−Iλ0 (k−q)n−o(1),

VarS[V |GS] ≤ |I|PS

[|Ui | ≥ k
] + |I|2q2

N
ES

[|Ui |1{Ui≥k}
]
,(32)

PS

[|Ui | ≥ k
] ≤ ES

[|Ui |1{Ui≥k}
] ≤

(
k

k − q

)k−q

e−λ0q−Iλ0 (k−q)no(1).(33)

Before proceeding to the proof of Lemma 10, we finish proving that V ≥ 1 with
probability going to one. Let us define μk := ( k

k−q
)k−qe−λ0q−Iλ0 (k−q). Applying

Chebyshev’s inequality, we derive from Lemma 10

V ≥ |I|μkn
−o(1) − OPS

[(|I|μk

)1/2
no(1)] − OPS

[|I|(μk/N)1/2no(1)].
In order to conclude, we only to need to prove that |I|μk ≥ nc−o(1) since
(|I|μk)

1/2/|I|(μk/N)1/2 = √
N/|I| ≥ 1. Relying on (31), we derive

|I|μk ≥ n1−o(1)

(
k

k − q

)k−q

e−λ0q−qIλ1−Iλ0 (k−q)

≥ n1−o(1)

(
k0

k0 − q0

)k0−q0

e−λ0q0−q0Iλ1−Iλ0 (k0−q0)−2Iλ0
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≥ n1−o(1)λ
−(k0−q0)
0 e−λ0q0−k0Iλ1−Iλ0 (k0−q0)

≥ n1−o(1)e−k0λ0−k0Iλ1 ek0−q0

≥ n1−o(1) exp
[−k0

(
λ0 + Iλ1 − λ0e

Iλ1
)] = nc−o(1),

where we use (30) and k0
k0−q0

= λ−1
0 e−Iλ1 in the third line, the definition Iλ0 =

λ0 − log(λ0) − 1 in the fourth line and the definitions of k0 and q0 in the last line.

PROOF OF LEMMA 10. We shall need the two following lemmas.

LEMMA 11 (Upper bound on the cluster sizes). Consider the distribution
G(m,λ/m) and a collection J of nodes. For each k ≥ |J |,

P

[∣∣∣∣ ⋃
x∈J

C(x)

∣∣∣∣ ≥ k

]
≤ Pm,λ/m[T1 + · · · + T|J | ≥ k],

where T1, T2, . . . denote the total progenies of i.i.d. binomial branching processes
with parameters m and λ/m. For each |J | ≤ k ≤ m,

P

[∣∣∣∣ ⋃
x∈J

C(x)

∣∣∣∣ ≥ k

]
≥ Pm−k,λ/m[T1 + · · · + T|J | ≥ k],

where T1, T2, . . . denote the total progenies of i.i.d. binomial branching processes
with parameters m − k and λ/m.

Lemma 11 is a slightly modified version of Van der Hofstad (2012), Theo-
rems 4.2 and 4.3, the only difference being that |J | = 1 in the original statement.
The proof is left to the reader. The following result is proved in Van der Hofstad
(2012), Section 3.5.

LEMMA 12 (Law of the total progeny). Let T1, . . . , Tr denote the total proge-
nies of r i.i.d. branching processes with offspring distribution X. Then

P[T1 + · · · + Tr = k] = r

k
P[X1 + · · · + Xk = k − r],

where (Xi), i = 1, . . . , k are i.i.d. copies of X.

Consider any subset J of node of size q . Under the null hypothesis, |Ui | =
|⋃

x∈C̃(i)
S

C−S(x)| is stochastically dominated by Z := |⋃x∈J C(x)|. Let Tq be sum

of the total progenies of q independent binomial branching processes with param-
eters N − n + q − k and p0. By Lemma 11, we derive

PS

[|Ui | ≥ k
] ≥ P0[Z ≥ k] ≥ PN−n+q−k,p0[Tq ≥ k] ≥ PN−n+q−k,p0[Tq = k].
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Let X1,X2, . . . denote independent binomial random variables with parameters
N − n + q − k and p0. Relying on Lemma 12 and the lower bound

(s
r

) ≥ (s−r)r

r! ≥
(re)−1( (s−r)e

r
)r , we derive

PN−n+q−k,p0[Tq = k]
= q

k
PN−n+q−k,p0[X1 + · · · + Xk = k − q]

= q

k

(
k(N − n + q − k)

k − q

)
p

k−q
0 (1 − p0)

k(N−n+q−k)−k+q

� q

k2

[
ek(N − n − 2(k − q))

k − q

]k−q(
λ0

N

)k−q

e−λ0k−kO(n/N)

� q

k2 e−Iλ0 (k−q)e−λ0q

(
k

k − q

)k−q

e−kO(n/N)

�
(

k

k − q

)k−q

e−λ0q−Iλ0 (k−q)no(1),

where we used (28) with n log(N)/N = o(log(n)) in the last line.
Let us now prove (33). The first inequality is Markov’s. For the second, by

Lemma 11, Ui is stochastically dominated by T̃q , the sum of the total progenies of
q independent binomial branching processes with parameters N and p0, so that

ES

[|Ui |1{Ui≥k}
] =

N∑
r=k

PS[Ui ≥ r] ≤
∞∑

r=k

PN,p0[T̃q ≥ r] ≤
∞∑

r=k

rPN,p0[T̃q = r].

We use Lemma 12 to control the deviation of T̃q . Below X1,X2, . . . denote inde-
pendent binomial random variables with parameter N and p0:

∞∑
r=k

rPN,p0[T̃q = r] ≤
∞∑

r=k

r
q

r
PN,p0[X1 + · · · + Xr = r − q]

(34)

≤
∞∑

r=k

q exp
[
−NrHp0

(
r − q

Nr

)]
,

by Chernoff’s inequality since

r − q

Nr
≥ k − q

Nk
≥ k0 − q0

Nk0
= λ0e

Iλ1

N
>

λ0

N
= p0.

By Lemma 2, Hp0(a) ≥ a log(a/p0) − a + p0. Thus, we arrive at

ES

[|Ui |1{Ui≥k}
] ≤

∞∑
r=k

q exp
[
−(r − q) log

(
r − q

rλ0

)
+ r − q − rλ0

]
(35)

≤ q

∞∑
r=k

exp[Ar ],



3486 N. VERZELEN AND E. ARIAS-CASTRO

where Ar := −(r − q)Iλ0 − qλ0 − (r − q) log(
r−q

r
). Differentiating the function

Ar with respect to r , we get

dAr

dr
= −Iλ0 − log

(
r − q

r

)
− 1 + r − q

r

≤ −Iλ0 − log
(

k − q

k

)
− 1 + k − q

k

≤ −Iλ0 − log
(

k0 − q0

k0

)
− 1 + k0 − q0

k0

= −λ0 − Iλ1 + λ0e
Iλ1 ,

which is negative as argued below the definition of k. Consequently, Ar is a de-
creasing function of r . Define r1 as the smallest integer such that log((r −q)/r) ≥
−Iλ0/2. Since lim supλ0 < 1, it follows that r1 = O(q). Coming back to (35), we
derive

ES

[|Ui |1{Ui≥k}
] ≤ q(r1 − k)+ exp[Ak] + q

∞∑
r=r1

exp[Ar ]

≤ qeAk

[
(r1 − k)+ +

∞∑
r=r1

e−(r−q)[Iλ0−log((r−q)/r)]
]

(36)

≤ qeAk

[
(r1 − k)+ +

∞∑
r=r1

e−(r−q)Iλ0/2

]
≤ eAkO

(
k2)

,

since lim supλ0 < 1. From (28), we know that k = O(log(N)) = no(1), which al-
lows us to prove (33).

Turning to the proof of (32), we have the decomposition

VarS[V |GS]
≤ |I|PS[Ui ≥ k] + ∑

i �=i′∈I

{
PS

[|Ui | ≥ k, |Ui′ | ≥ k
] − P

2
S

[|Ui | ≥ k
]}

(37)
≤ |I|PS[Ui ≥ k] + |I|2PS

[|Ui | ≥ k,Ui ∩ Ui′ �= ∅
]

+ |I|2{
PS

[|Ui | ≥ k, |Ui′ | ≥ k,Ui ∩ Ui′ = ∅
] − P

2
S

[|Ui | ≥ k
]}

.

The last term is nonpositive. Indeed,

PS

[|Ui | ≥ k, |Ui′ | ≥ k,Ui ∩ Ui′ = ∅
] − P

2
S

[|Ui | ≥ k
]

=
N∑

r=k

PS

[|Ui | = r
](
PS

[|Ui′ | ≥ k,Ui ∩ Ui′ =∅||Ui | = r
] − PS

[|Ui′ | ≥ k
])

≤
N∑

r=k

PS

[|Ui | = r
](
PS

[|Ui′ | ≥ k|Ui ∩ Ui′ = ∅, |Ui | = r
] − PS

[|Ui′ | ≥ k
])

,
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where the last difference is negative, as the graph is now smaller once we condition
on |Ui | ≥ 1 and Ui ∩ Ui′ = ∅. Consider the second term in (37):

PS

[|Ui | ≥ k,Ui ∩ Ui′ �= ∅
] =

N∑
r=k

PS

[|Ui | = r
]
PS

[
Ui ∩ Ui′ �= ∅||Ui | = r

]
.

By symmetry and a union bound, we derive

PS

[
Ui ∩ Ui′ �=∅||Ui | = r

] ≤ q2
PS

[
y ∈ C−S(x)||Ui | = r

]
,

for some x ∈ C̃(i)
S and y ∈ C̃(i′)

S . Since the graph G−S is not symmetric, the prob-
ability that a fixed node z belongs to C−S(x) conditionally to |C−S(x)| is smaller
for z ∈ S \ {i} than for z ∈ Sc. It follows that

PS

[
y ∈ C−S(x)||Ui | = r

] ≤ ES

[ |C−S(x)| − 1

N − 1

∣∣∣|Ui | = r

]
.

Since |C−S(x)| ≤ r , we conclude

PS

[|Ui | ≥ k,Ui ∩ Ui′ �= ∅
] ≤

N∑
r=k

PS

[|Ui | = r
]q2r

N
= q2

N
ES

[|Ui |1{Ui≥k}
]
.

�

Let us continue with the proof of Theorem 2, now assuming that λ1 < 1,
that condition (25) holds, and that n2 = o(N). We assume in the sequel that
Iλ1 ≤ − log(λ0), meaning that λ1 is not too small. We may do so while keep-
ing condition (25) true, because the distribution of |Cmax| under PS is increas-
ing with respect to λ1 and because for Iλ1 = − log(λ0), (25) is equivalent to
lim sup log(n)/ log(N) < 1, which is always true since n2 = o(N). Similarly, we
assume that Iλ1 = o(log(n)) while keeping condition (25) true since for Iλ1 going

to infinity, (25) is equivalent to lim sup
Iλ0 log(n)

Iλ1 log(N)
< 1 and since I−1

λ0
log(N) → ∞.

By condition (25), there exists a constant c > 0 such that

lim sup
Iλ0

λ0 + Iλ1 − λ0e
Iλ1

log(n)

log(N)
< 1 − c.(38)

We shall prove that with probability PS going to one, the largest connected
component of G does not intersect S. As the distribution of the statistic under the
alternative dominates the distribution under the null, this will imply that the largest
connected component test is asymptotically powerless.

Denote A the event that, for all (x, y) ∈ S, there is no path between x and y with
all other nodes in Sc. For any subset T , denote CT (x) the connected component
of x in GT , and recall that C(x) is a shorthand for CV(x). By symmetry, we have

PS

[
Ac] ≤ n2

P0
[
y ∈ C−S(x)

] ≤ n2
P0

[
y ∈ C(x)

]
,
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since the probability of the edges outside GS under PS is the same as under P0.
Again, by symmetry

P0
[
y ∈ C(x)

] = E0
[
P0

[
y ∈ C(x)

]|∣∣C(x)
∣∣] ≤ E0

[ |C(x)|
N − 1

]
≤ 1

(N − 1)(1 − λ0)
,

as the expected size of a cluster is dominated by the expected progeny of a branch-
ing process with parameters N and p0 (Lemma 11) and the expected progeny of a
subcritical branching process having mean offspring μ < 1 is (1 − μ)−1 [Van der
Hofstad (2012), Theorem 3.5]. Thus,

PS

[
Ac] = O

(
n2/N

) = o(1).(39)

Define

k := (1 − c)1/2 log(N)I−1
λ0

.(40)

Since lim supλ0 < 1 and since log log(N) = o[log(n)], it follows that k �
log(N) = no(1). By Lemma 9, |Cmax| is larger or equal to k with probability PS

(and P0) going to one. Thus, it suffices to prove that PS[∨x∈S |C(x)| ≥ k] → 0.
Observe that

PS

[∨
x∈S

∣∣C(x)
∣∣ ≥ k

]
≤ nPS

[{∣∣C(x)
∣∣ ≥ k

} ∩A
] + PS

[
Ac],

so that, by (39), we only need to prove that nPS[{|C(x)| ≥ k} ∩A] = o(1). Under
the event A, C(x) ∩ S is exactly the connected component CS(x) of x in GS . Fur-
thermore, C(x) is the union of C−S(y) over y ∈ CS(x). Consequently, we have the
decomposition

PS

[{∣∣C(x)
∣∣ ≥ k

} ∩A
] ≤ PS

[∣∣CS(x)
∣∣ ≥ k

]

+
k−1∑
q=1

PS

[∣∣CS(x)
∣∣ = q

]
PS

[
Bq |∣∣CS(x)

∣∣ = q
]
,

where Bq := {|⋃y∈CS(x) C−S(y)| ≥ k}. By Lemma 11, the distribution of |CS(x)| is
stochastically dominated by the total progeny distribution of a binomial branching
process with parameters (n,λ1/n). Denote by J any set of nodes of size q . Since,
conditionally to |CS(x)| = q , the event Bq is increasing and only depends on the
edges outside GS , we have

PS

[
Bq |

∣∣CS(x)
∣∣ = q

] ≤ P0

[∣∣∣∣ ⋃
y∈J

C(y)

∣∣∣∣ ≥ k

]
,

which is in turn, by Lemma 11, smaller than the probability that the total progeny
of q independent branching processes with parameters (N,λ0/N) is larger than k.
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Relying on the law of the total progeny of branching processes (Lemma 12) and
Lemma 11, we get

PS

[∣∣CS(x)
∣∣ = q

] ≤ 1

q
P

[
Bin(nq,λ1/n) = q − 1

]
,

PS

[
Bq |∣∣CS(x)

∣∣ = q
] ≤

∞∑
r=k

q

r
P

[
Bin(Nr,λ0/N) = r − q

]
.

Working out the density of the binomial random variable, we derive

PS

[∣∣CS(x)
∣∣ = q

] ≤
(

nq

q − 1

)
p

q−1
1 (1 − p1)

nq−q+1 ≺ 1

λ1
e−Iλ1q,

and for q ≤ (1 − λ0)k, we get

PS

[
Bq |

∣∣CS(x)
∣∣ = q

] ≤ q

k
exp

[
−NkHp0

(
k − q

Nk

)]
,

which is exactly the term (34), which has been proved in (36) to be smaller than

O
(
k2)( k

k − q

)k−q

e−(k−q)Iλ0−qλ0 .

Let define

B� := e−Iλ1�−�λ0−(k−�)Iλ0

(
k

k − �

)k−�

.

Gathering all these bounds, we get

PS

[{∣∣C(x)
∣∣ ≥ k

} ∩A
] ≺ e−Iλ1k

λ1
+

k−1∑
q=�(1−λ0)k�

e−Iλ1q

λ1
+ O

(
k2

λ1

) �(1−λ0)k�∑
q=1

Bq

≺ k3

λ1

[
e−Iλ1 (1−λ0)k +

k∨
q=1

Bq

]
≺ no(1) sup

q∈[0;k]
Bq,

where we observe that e−Iλ1 (1−λ0)k = B(1−λ0)k and we use k = no(1) and Iλ1 =
o(log(n)). By differentiating log(Bq) as a function of q , we obtain the maximum

sup
q∈[0;k]

Bq ≤
{

e−kIλ0 , if λ0e
Iλ1 > 1,

e−Iλ1k exp
[
λ0k

(
eIλ1 − 1

)]
, else.

Recall that we assume λ0e
Iλ1 ≤ 1 so that

PS

[{∣∣C(x)
∣∣ ≥ k

} ∩A
] ≺ no(1) exp

[−k
{
λ0 + Iλ1 − λ0e

Iλ1
}]

≺ n−(1−c)−1/2+o(1),

by definition (40) of k and condition (38). We conclude that

nPS

[{∣∣C(x)
∣∣ ≥ k

} ∩A
] = o(1). �
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3.3. Other tests. In the extended version [Verzelen and Arias-Castro (2013)],
we consider other tests.

The number of k-trees. Consider the test that rejects for large values of the
number of subtrees of size k in G. This test happens to partially bridge the gap
in constants between what the broad scan test and largest connected component
test can achieve in the regime where λ0 is constant. In more detail, we find in
Verzelen and Arias-Castro (2013) that even in the supercritical Poisson regime
with 1 < λ0 < e, there exist subcritical communities λ1 < 1 that are asymptotically
detectable with probability going to one. The condition λ1 >

√
λ0/e will be shown

to be minimal in Theorem 4.

The number of triangles. Consider the test that rejects for large values of the
number of triangles in G. This is an emblematic test among those based on count-
ing patterns, as it is the simplest and the least costly to compute. As such, the
number of triangles in a graph is an important topological characteristic, with ap-
plications in the study of real-life networks. For example, Maslov, Sneppen and
Zaliznyak (2004) use the number of triangles to quantify the amount of clustering
in the Internet. It is easy to see—and formally established in Verzelen and Arias-
Castro (2013)—that this test as nontrivial power in the Poisson regime where both
λ0 and λ1 are fixed.

4. Information theoretic lower bounds. In this section, we state and prove
lower bounds on the risk of any test whatsoever. In most cases, we find sufficient
conditions under which the null and alternative hypotheses merge asymptotically,
meaning that all tests are asymptotically powerless. In other cases, we find suffi-
cient conditions under which no test is asymptotically powerful.

To derive lower bounds, it is standard to reduce a composite hypothesis to a
simple hypothesis. This is done by putting a prior on the set of distributions that
define the hypothesis. In our setting, we assume that p0 is known so that the null
hypothesis is simple, corresponding to the Erdős–Rényi model G(N,p0). The al-
ternative H1 := ⋃

|S|=n HS is composite and “parameterized” by subsets of nodes
of size n. We choose as prior the uniform distribution over these subsets, leading
to the simple hypothesis H̄1 comprising of G(N,p0;n,p1) defined earlier. The
corresponding risk for H0 versus H̄1 is

γ̄N (φ) = P0(φ = 1) + 1(N
n

) ∑
|S|=n

PS(φ = 0).

Note that γN(φ) ≥ γ̄N (φ) for any test φ. Our choice of prior was guided by in-
variance considerations: the problem is invariant with respect to a relabeling of the
nodes. In our setting, this implies that γ ∗

N = γ̄ ∗
N , or equivalently, that there exists

a test invariant with respect to permutation of the nodes that minimizes the worst-
case risk [Lehmann and Romano (2005), Lemma 8.4.1]. Once we have a simple
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versus simple hypothesis testing problem, we can express the risk in closed form
using the corresponding likelihood ratio. Let P̄1 denote the distribution of W under
H̄1, meaning G(N,p0;n,p1). The likelihood ratio for testing P0 versus P̄1 is

L = 1(N
n

) ∑
|S|=n

LS,(41)

where LS is the likelihood for testing P0 versus PS . Then the test φ∗ = {L > 1} is
the unique test that minimizes γ̄N , and

γ̄N

(
φ∗) = γ̄ ∗

N = 1 − 1
2E0|L − 1|.

For each subset S ⊂ V of size n, let �S be a decreasing event, that is, a decreasing
subset of adjacency matrices, and define the truncated likelihood as

L̃ = 1(N
n

) ∑
|S|=n

LS1�S
.(42)

We have

E0|L − 1| ≤ E0|L̃ − 1| +E0(L − L̃)

≤
√
E0

[
L̃2

] − 1 + 2
(
1 −E0[L̃]) + (

1 −E0[L̃]),
using the Cauchy–Schwarz inequality and the fact that E0L = 1 since it is a
likelihood. Hence, for all tests to be asymptotically powerless, it suffices that
lim supE0[L̃2] ≤ 1 and lim infE0[L̃] ≥ 1. Note that

E0[L̃] = 1(N
n

) ∑
|S|=n

PS(�S).

In all our examples, PS(�S) is only a function of |S|, and since all the sets we
consider have same size n, E0[L̃] → 1 is equivalent to PS(�S) → 1.

4.1. All tests are asymptotically powerless. We start with some sufficient con-
ditions under which all tests are asymptotically powerless. Recall α in (8) and ζ

in (13). We require that ζ → 0 below to prevent the total degree test from having
any power (see Proposition 1).

THEOREM 3. Assume that ζ → 0. Then all tests are asymptotically powerless
in any of the following situations:

λ0 → 0, λ1 → 0, lim sup
Iλ0

Iλ1

logn

logN
< 1;(43)

0 < lim infλ0 ≤ lim supλ0 < ∞, λ1 → 0;(44)

λ0 → ∞ with α → 0, lim supλ1 < 1;(45)

0 < lim infα ≤ lim supα < 1, lim sup(1 − α)
n

sup
k=n/uN

ES[W ∗
k,S]

k
< 1.(46)
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We recall here the first few steps that we took in Arias-Castro and Verzelen
(2014) to derive analogous lower bounds in the denser regime where lim infα ≥ 1.
We start with some general identities. We have

LS := exp
(
θWS − �(θ)n(2)),(47)

with

θ := θp1, θq := log
(

q(1 − p0)

p0(1 − q)

)
(48)

and

�(θ) := log
(
1 − p0 + p0e

θ )
,

which is the cumulant generating function of Bern(p0).
In all cases, the events �S satisfy

�S ⊂ ⋂
k>kmin

{
WT ≤ wk,∀T ⊂ S such that |T | = k

}
,(49)

where kmin and wk vary according to the specific setting.
To prove that E0L̃

2 ≤ 1 + o(1), we proceed as follows. We have

E0
[
L̃2] = 1(N

n

)2

∑
|S1|=n

∑
|S2|=n

E0(LS1LS21�S1
1�S2

)

= 1(N
n

)2

∑
|S1|=n

∑
|S2|=n

E0
[
exp

(
θ(WS1 + WS2) − 2�(θ)n(2))1�S1∩�S2

]
.

Define

WS×T = ∑
i∈S,j∈T

Wi,j ,

and note that WS = 1
2WS×S . We use the decomposition

WS1 + WS2 = WS1×(S1\S2) + WS2×(S2\S1) + 2WS1∩S2,(50)

the independence of the random variables on the RHS of (50), and the FKG in-
equality to get

E0
(
eθ(WS1+WS2 )−2�(θ)n(2)

1�S1∩�S2

) ≤ I · II · III,(51)

where K = |S1 ∩ S2|,
I := E0

[
exp

(
θWS1×(S1\S2) − �(θ)

2
(n − K)(n + K − 1)

)]
= 1,

II := E0

[
exp

(
θWS2×(S2\S1) − �(θ)

2
(n − K)(n + K − 1)

)]
= 1,

III := E0
[
exp

(
2θWS1∩S2 − 2�(θ)K(2))1�S1∩�S2

]
.
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The first two equalities are due to the fact that the likelihood integrates to one.
Assuming that ζ → 0, we prove that all tests are asymptotically powerless in

the following settings:

lim supλ0 < ∞, λ2
1 = o(λ0);(52)

λ0 → 0, λ1 → 0, lim sup
Iλ0 log(n)

Iλ1 log(N)
< 1, n2 = o(N);(53)

lim supλ1 < 1, λ0 → ∞, lim supα < 1;(54)

lim infλ1 ≥ 1, 0 < lim infα ≤ lim supα < 1,
(55)

lim sup(1 − α)
n

sup
k=n/uN

ES[W ∗
k,S]

k
< 1.

This implies Theorem 3. Indeed, (52) includes (44). Assume that (43) holds. Con-
sider any subsequence n2/N converging to x ∈ R

+ ∪ {∞}. If x = 0, then (53)
holds. If x �= 0, then ζ → 0 implies that (λ1 − λ0n/N)2/λ0 = o(1). If, in addi-
tion, λ1 ≥ 2λ0n/N , this implies that λ2

1/λ0 = o(1). If, otherwise, λ1 ≤ 2λ0n/N ,
then λ2

1/λ0 ≤ 4λ0(n/N)2 = o(1) since λ0 = o(1). Thus, in both cases, (52) holds.
Finally, (54) includes (45) and also (46) when lim supλ1 < 1, while (55) in-
cludes (46) when lim infλ1 ≥ 1. We note that (55) implies that lim supλ1 < ∞
because of (16).

4.1.1. Proof of Theorem 3 under (52). The arguments here are very similar to
those used in Arias-Castro and Verzelen (2014), except for the choice of events �S .
Define

�S := {GS is a forest}.
When �S holds, for any T ⊂ S, GT is also a forest, and since any forest F with
k nodes and t connected components (therefore all trees) has exactly k − t ≤ k

edges, we have WT ≤ |T |. Hence, (49) holds with wk := k.

LEMMA 13. PS(�S) is independent of S of size n, and PS(�S) → 1.

PROOF. The expected number of cycles of size k in GS under PS is equal to

n!
(n − k)!2k

pk
1 ≤ λk

1

2k
.(56)

Summing (56) over k, we see that the expected number of cycles in GS under PS is
smaller than λ3

1/(1 − λ1) = o(1). Hence, with probability going to one under PS ,
GS has no cycles and is therefore a forest. �
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In order to conclude, we only need to prove that lim supE0[L̃2] ≤ 1. We start
from (51) and we recall that K = |S1 ∩ S2|. We take kmin as the largest integer k

satisfying

2

k − 3
≥ p2

1(1 − p0)

p0(1 − p1)2 ,

with the convention 2/0 = ∞, so that kmin ≥ 3. Let qk = 2/(k − 1). Recall that
ρ = n/(N − n) and define k0 = �bnρ�, where b → ∞ satisfies b2ζ → 0.

• When K ≤ kmin, we will use the obvious bound:

III ≤ E0 exp
(
2θWS1∩S2 − 2�(θ)K(2)) = exp

(
�K(2)),

where

� := �(2θ) − 2�(θ) = log
(

1 + (p1 − p0)
2

p0(1 − p0)

)
.(57)

• When K > kmin, we use a different bound. Noting that �S1 ∩ �S2 ⊂ {WS1∩S2 ≤
wK}, for any ξ ∈ (0,2θ), we have

III ≤ E0
[
exp

(
ξWS1∩S2 + (2θ − ξ)wK − 2�(θ)K(2))1{WS1∩S2≤wK }

]
≤ E0

[
exp

(
ξWS1∩S2 + (2θ − ξ)wK − 2�(θ)K(2))],

so that

III ≤ exp
(
�KK(2)),

where

�k := min
ξ∈[0,2θ ]�(ξ) + (2θ − ξ)qk − 2�(θ).(58)

Using the fact that E0[L̃2] ≤ E[III] where the expectation is taken with respect
to K , we have

E0
[
L̃2] ≤ E

[
1{K≤k0} exp

(
�K(2))]

+E
[
1{k0+1≤K≤kmin} exp

(
�K(2))]

+E
[
1{kmin+1≤K≤n} exp

(
�KK(2))]

= A1 + A2 + A3,

where the expectation is with respect to K ∼ Hyp(N,n,n). By Lemma 4,
K is stochastically bounded by Bin(n,ρ). Hence, using Chernoff’s bound (see
Lemma 1), we have

P(K ≥ k) ≤ P
(
Hyp(N,n,n) ≥ k

) ≤ P
(
Bin(n,ρ) ≥ k

) ≤ exp
(−nHρ(k/n)

)
.(59)
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• When K ≤ k0, we proceed as follows. If k0 = 1, we simply have

A1 = P(K ≤ 1) ≤ 1.

If k0 ≥ 2, we use the expression (57) of � to derive

A1 ≤ exp
[
�k2

0
] ≤ exp

[
O(1)

(p1 − p0)
2

p0(1 − p0)

b2n4

N2

]
= exp

[
O

(
b2ζ

)] → 1.

• When k0 + 1 ≤ K ≤ kmin, we use (59) and Lemma 2, to get

A2 ≤
kmin∑

k=k0+1

exp
[
�

k(k − 1)

2
− nHρ

(
k

n

)]

≤
kmin∑

k=k0+1

exp
[
k

(
�

k − 1

2
− log

(
k

nρ

)
+ 1

)]
.

The last sum is equal to zero if kmin ≤ k0; therefore, assume that kmin > k0.
For a > 0 fixed, the function f (x) = ax − logx is decreasing on (0,1/a) and
increasing on (1/a,∞). Therefore, for k0 + 1 ≤ k ≤ kmin,

�
k − 1

2
− log

(
k

nρ

)
≤ max

�∈{k0,kmin}

{
�

� − 1

2
− log

(
�N

n2

)}
.

We know that �(k0 − 1) = o(1), so that

�
k0 − 1

2
− log

(
k0

nρ

)
≤ o(1) − logb → −∞.

Therefore, it suffices to show that

kmin − 1

2
� − log

(
kmin

nρ

)
→ −∞.

If kmin > 3, observe that

kmin − 1

2
� ≤

(
1 + kmin − 3

2

)
log

(
1 + 2

kmin − 3

(
1 + o(1)

))

≤ 3

2
log 3 + o(1),

while log(kmin/(nρ)) ≥ log(k0/(nρ)) → ∞. If we have kmin = 3, then we have

� − log
(

3

nρ

)
≤ log

(
p2

1/p0
) − log

(
N/n2) + O(1)

≤ log
(

λ2
1

λ0

)
+ O(1) → −∞,

because of (52).
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• When kmin < K ≤ n, we need to bound �K . Remember the definition of the
entropy function Hq in (10), and that H(q) is short for Hp0(q). It is well
known that H is the Fenchel–Legendre transform of �; more specifically, for
q ∈ (p0,1),

H(q) = sup
θ≥0

[
qθ − �(θ)

] = qθq − �(θq).(60)

Hence, the minimum of �(ξ) + (2θ − ξ)qk − 2�(θ) over ξ > 0 is achieved at
ξ = θqk

as soon as 2θ ≥ θqk
. Moreover, by the definition of θ in (48), our choice

of qk , and the fact that k ≥ kmin, we have

2θ − θqk
= log

(
p2

1(1 − p0)

p0(1 − p1)2

2

k − 3

)
≥ 0.

Hence, we have

�k = −H(qk) + 2θqk − 2�(θ)
(61)

= −2Hp1(qk) + H(qk).

Using the definition of the entropy and the fact that p0 = o(1), we therefore
have

�k = qk log
(

p2
1

qkp0

)
+ (1 − qk) log

(
(1 − p1)

2

(1 − qk)(1 − p0)

)

≤ 2

k − 1

(
log

(
λ2

1N(k − 1)

2λ0n2

)
+ O(1)

)
,

where the O(1) is uniform in k. Hence, starting from the bound we got when
bounding A2, we can bound A3 by

n∑
k=kmin+1

exp
[
k

(
�k

k − 1

2
− log

(
k

nρ

)
+ 1

)]

≤
n∑

k=kmin+1

exp
[
k

{
log

(
λ2

1

λ0

)
+ log

(
N(k − 1)

2n2

)
− log

(
Nk

n2

)
+ O(1)

}]

≤
n∑

k=kmin+1

exp
[
k

{
log

(
λ2

1

λ0

)
+ O(1)

}]
= o(1),

since λ2
1/λ0 = o(1).

This concludes the proof of Theorem 3 under (52).
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4.1.2. Proof of Theorem 3 under (53). Let c be a positive constant that will be
chosen small later on. Define

fn := (1 + c)I−1
λ1

log(n).

We consider the event

�S = {GS is a forest} ∩ {|Cmax,S | ≤ fn

}
.

When �S holds, for any T ⊂ S, GT is also a forest, with |T | − WT connected
components. Since the size of each connected component is at most fn, there are
at least �|T |/fn� connected components. Hence, (49) holds with wk = k − � k

fn
�.

LEMMA 14. PS(�S) is independent of S of size n, and PS(�S) → 1.

PROOF. This is a straightforward consequence of Lemmas 8 and 13. �

To conclude, it suffices to show that E0[L̃2] ≤ 1 + o(1). For this, we will need
the following.

LEMMA 15. Let Fk,j stand for the number of forests with j trees on k labelled
vertices. For any k ≥ 2 and any j ≤ k, Fk,j ≤ kk−2.

PROOF. Fix k ≥ 2. By Cayley’s formula, we have Fk,1 = kk−2. Therefore, it
suffices to prove that Fk,j ≥ Fk,j+1 for all j ≥ 1. If we take a forest with j trees
and erase any of its k − j edges, we obtain a forest with j + 1 trees. And there are
exactly

∑
s �=t kskt such ways of obtaining a given forest with j + 1 trees of sizes

k1 ≤ · · · ≤ kj+1. Since ∑
s �=t

kskt ≥ k1(k − k1) ≥ k − 1,

it follows that Fk,j (k − j) ≥ Fk,j+1(k − 1). Thus, Fk,j ≥ Fk,j+1. �

Starting from (51), and using the fact that, under �S1 ∩ �S2 , GS1∩S2 is a forest
with WS1∩S2 ≤ wK edges, we have

E0
[
L̃2] ≤ E0

(
exp

(
2θWS1∩S2 − 2�(θ)K(2))1{GS1∩S2 is a forest,WS1∩S2≤wK }

)
.

Note that the exponential term is smaller than 1 when |S1 ∩ S2| ≤ 1. Recall that
ρ = m

N−m
and that �(θ) = log[(1 − p0)/(1 − p1)]. We first have

E0
[
L̃2] − 1 ≤

n∑
k=2

wk∑
i=1

P[K = k,WS1∩S2 = i,GS1∩S2 forest] exp
[
2iθ − 2�(θ)k(2)]
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with the (k, i) term in the sum being bounded by

(
n

k

)
ρkFk,k−i

p2i
1

pi
0

(
1 − p0

1 − p1

)2(i−k(2))

≺
(

n2

N

)k−i(λ2
1

λ0

)i Fk,k−i

(n
k

)
nk

≺
(

n2e

N

)k−i(λ2
1e

λ0

)i 1

k2 ,

so that, with a change in summation indices,

E0
[
L̃2] − 1 ≺

∞∑
j=1

(
n2e

N

)j j�fn�∑
i=1

(
λ2

1e

λ0

)i 1

(i + j)2

(62)

≺
∞∑

j=1

(
n2e

N

[
1 ∨ λ2

1e

λ0

]fn
)j

.

In the second inequality, we used the fact that K is stochastically bounded by
Bin(n,ρ) (see Lemma 4). In the third inequality, we used the fact that p0 < p1 and
i ≤ wk < k, as well as the fact that n2 = o(N), which implies that ρk ∼ (n/N)k .
In the fourth inequality, we used Lemma 15 and the lower bound k! ≥ (k/e)k . The
fifth inequality comes from a change of variables and uses the definition of wk .
When λ2

1e ≤ λ0, since n2 = o(N), this sum is O(n2/N). When λ2
1e > λ0, this sum

is equal to

1

eAn−1 − 1
, An := log

(
N

n2

)
− fn log

(
λ2

1e

λ0

)
.(63)

So it suffices to show that An → ∞. Since we are working under (53), there is
c > 0 such that, eventually,

Iλ0 logn

Iλ1 logN
≤ 1 − c

1 + c
.

Then, using the fact that λ0 ∨ λ1 = o(1), we have

fn log
(

λ2
1e

λ0

)
= (1 + c)

logn

Iλ1

(2λ1 − 2Iλ1 + Iλ0 − λ0)

≤ −(
1 + c + o(1)

)
log

(
n2) + (1 − c) logN

≤ log
(
N/n2) − c log(N),

eventually. This implies that An ≥ −1 + c logN → ∞.
This completes the proof of Theorem 3 under (53).



COMMUNITY DETECTION IN SPARSE RANDOM NETWORKS 3499

4.1.3. Proof of Theorem 3 under (54). Recall that ρ = n/(N − n) and define
k0 = �bnρ�, where b → ∞ satisfies b2ζ → 0. Let kmin be the integer part of 1 +

2
1−α

(1 ∨ n2−α

N1−α ). Define

�S =
n⋂

k=kmin+1

{
WT ≤ wk,∀T ⊂ S such that |T | = k

}
,

where wk := k here.

LEMMA 16. For any k > kmin and any subset S of size n, we have
PS[�S] → 1.

This takes care of the first moment. In order to conclude, it suffices to control
the second moment, specifically, to prove that limE[L̃2] ≤ 1. Arguing as before,
we have

E0
[
L̃2] ≤ A1 + A2 + A3,

where

A1 := E
[
1{K≤k0} exp

(
�K(2))],

A2 := E
[
1{k0+1≤K≤kmin} exp

(
�K(2))],

A3 := E0
[
1{k0+1≤K≤kmin} exp

(
2θWS1∩S2 − 2�(θ)K(2))1{WS1∩S2≤wK }

]
.

• Arguing exactly as we did before, we have A1 = 1 + o(1).
• Arguing as before, we can also bound A2 by

kmin∑
k=k0+1

exp
[
k

(
�

k − 1

2
− log

(
k

nρ

)
+ 1

)]

≤
kmin∑

k=k0+1

exp
[
k

(
1 + o(1) + max

�∈{k0,kmin}

{
�

� − 1

2
− log

(
�N

n2

)})]
.

First, we have �(k0 − 1)/2 − log(k0N/n2) → −∞. This is true if k0 = 1, and
when k0 > 1, we have N/n2 ≤ b, so that

(p1 − p0)
2

p0(1 − p0)
∼ N2

n4 ζ = N2

n4b2 b2ζ → 0,

by definition of b and, therefore,

�
k0 − 1

2
� N2

n4 ζ
bn2

N
≤ b2ζ → 0.
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We also have �(kmin − 1)/2 − log(kminN/n2) → −∞. To show this, we divide
the analysis into two cases. When N1−α ≤ n2−α , this results from

�
kmin − 1

2
≤ (

1 + o(1)
) n2−α

(1 − α)N1−α

p2
1

p0

= (
1 + o(1)

) λ2
1

1 − α
= O(1),

together with

log
(

kminN

n2

)
≥ log

(
2Nα

(1 − α)nα

)
≥ α log(N/n) → ∞,(64)

where we used the definition of kmin and the fact that λ0 = (N/n)α . When
N1−α ≥ n2−α , this results from

�
kmin − 1

2
≤ 1

2

⌊
2

1 − α

⌋
log

(
1 + p2

1

p0

)
+ o(1)

≤ 1

2

⌊
2

1 − α

⌋
log

[
1 + λ2

1
N1−α

n2−α

]
+ o(1)

≤ 1

2

⌊
2

1 − α

⌋
log

[(
1 + λ2

1
)N1−α

n2−α

]
+ o(1)

≤ 1

1 − α
log

(
1 + λ2

1
) + o(1) + log

(
N/n2) − α

2
− ϒ,

where in the last line,

ϒ :=
⎧⎨
⎩− α

1 − α
log(n), if α ≥ 1/3,

−α log(N/n), if α < 1/3

and we have used the identity �2/(1 − α)� = 2 for α < 1/3. And we also have

log
(

kminN

n2

)
≥ log

(
N/n2)

,(65)

so that

�
kmin − 1

2
− log

(
kminN

n2

)
≤ 1

1 − α
log

(
1 + λ2

1
) − ϒ,

which goes to −∞ since λ1 = O(1) and α log(N/n) = λ0 → ∞. Hence, we
have A2 = o(1).

• It remains to prove that A3 = o(1). If we assume that p1 ≤ 2p0, then �k ≤
� ≤ p0(1 + o(1)) and we can prove that A3 = o(1) arguing as for A2 above,
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bounding A3 by
n∑

k=kmin+1

exp
[
k

(
�

k − 1

2
− log

(
k

nρ

)
+ 1

)]

≤
n∑

k=kmin+1

exp
[
k

(
1 + o(1) + max

�∈{kmin+1,n}

{
�

� − 1

2
− log

(
�N

n2

)})]

≤
n∑

k=kmin+1

exp
[
k

(
1 + o(1) + �

n

2
− log

(
kminN

n2

))]
.

On one hand, we have �n ≺ np0 = (n/N)1−α = o(1). On the other hand,
log(kminN/n2) → ∞. Indeed, when N1−α ≤ n2−α , we have (64); and when
N1−α > n2−α , then N/n2 > nα/(1−α) → ∞ and we use (65). We conclude that
A3 = o(1) when p1 ≤ 2p0. In the following, we suppose that p1 ≥ 2p0. Leav-
ing wk unspecified, so we can use the same arguments later, we have that A3 is
equal to

E0
[
1{k0+1≤K≤kmin} exp

(
2θWS1∩S2 − 2�(θ)K(2))1{WS1∩S2≤wK }

]
=

n∑
k=kmin+1

wk∑
i=1

P0
[|S1 ∩ S2| = k,WS1∩S2 = i

]
exp

[
2iθ − 2k(2)�(θ)

]

≤
n∑

k=kmin+1

wk∑
i=1

(
n

k

)
ρk

(
k(2)

i

)
pi

0(1 − p0)
k(2)−i

× exp
[
2i log

(
p1

p0

)
+ 2

(
k(2) − i

)
log

(
1 − p1

1 − p0

)]

:=
n∑

k=kmin+1

wk∑
i=1

Bi,k.

Furthermore, since 0 < 1 − p0 < 1 and 1 − p1 < 1 − p0, we have

Bi,k ≤
(

n

k

)
ρk

(
k(2)

i

)
pi

0(p1/p0)
2i ≤ eo(k)

(
en2

kN

)k(ep2
1k

(2)

p0i

)i

,(66)

using the standard bound
(n
k

) ≤ (en/k)k .
We now specify the calculations when wk = k. Considering the sums over

i = 1, . . . , k/2 and over i = k/2 + 1, . . . , k separately, we get
k∑

i=1

Bi,k ≤ eo(k)

(
en2

kN

)k
[�k/2�∑

i=1

(
ep2

1k
(2)

p0

)i

+
k∑

�k/2�+1

(
ep2

1k
(2)

p0k/2

)i
]

≤ eo(k)

(
en2

kN

)k

k

[
1 +

(
ep2

1k
(2)

p0

)k/2

+
(

ep2
1k

(2)

p0k/2

)k]

≺ eo(k)

[(
en2

kN

)k

+
(

e3/2n2p1

N
√

2p0

)k

+
(

e2n2p2
1

Np0

)k]
.
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First, en2

kN
≤ en2

k0N
= o(1) by definition of k0. Next, n2p1

N
√

p0
≤ 2(p1−p0)√

p0

n2

N
=

2
√

ζ → 0, by the fact that p1 ≥ 2p0. Finally, n2p2
1/(Np0) = λ2

1/λ0 → 0 since
λ0 → ∞ and λ1 = O(1). Hence, we conclude that

n∑
k=kmin+1

k∑
i=1

Bi,k = o(1).(67)

This immediately implies that A3 = o(1).

This completes the proof of Theorem 3 under (54).

PROOF OF LEMMA 16. Let us consider the event

�′
S := {no connected component of GS has more than one cycle}.

Under �′
S , a connected component of GS has at most as many edges as ver-

tices. Consequently, �′
S ⊂ �S and we only need to prove that PS(�′

S) → 1. Since
lim supλ1 < 1 and PS(�′

S) is nondecreasing in λ1, we may assume that λ1 is fixed
in (0,1).

As a warmup for what follows, we note that the number Lk of cycles of size k

in GS satisfies

ES[Lk] = pk
1

n!
(n − k)!2k

≤ λk
1

2k
,

since there are n!/[(n − k)!2k] potential cycles of size k. Now, if a connected
component contains (at least) two cycles, there are two possibilities:

• The two cycles have at least one edge in common. In that case, there is a cycle
(say of length k) with a chord (say of length s < k). Let L′

k,s denote the number
of such configurations, there are n!/[(n−k)!2k] potential cycles of size k. Given
a cycle of size k, there are less than

(k
2

)
starting and ending nodes possible for

the chord. Once these two nodes are set, there remains less than n!/(n − s + 1)!
possibilities for the other nodes on the chord. Thus, we have

ES

[
L′

k,s

] ≤ pk+s
1

n!
(n − k)!2k

(
k

2

)
n!

(n − s + 1)!

≤
(

λ1

n

)k+s

knk+s−1 ≤ λk+s
1

k

n
.

Summing this inequality over s and k, we control the expected number of cycles
with a chord:

∞∑
k=3

k−1∑
s=1

E
[
L′

k,s

] ≤ 1

n

∞∑
k=3

kλk+1
1

1 − λ1
� 1

n
= o(1),

since lim supλ1 < 1. Hence, this event occurs with probability going to 0.
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• The two cycles have no edge in common. Since there are in the same connected
component, there is a path that goes from a vertex in the first cycle to a vertex in
the second cycle. Let us note L′

k1,k2,s
the number of cycles of size k1 and k2 that

do not share an edge and are connected by a path of length s. Observe that there
are less n!

(n−k1)!2k1
possible configurations for the first cycle, less than n!

(n−k2)!2k2
possible configurations for the second cycle, and less than k1k2n!/(n − s + 1)!
possibilities for the chord. Thus, we get

E
[
L′

k1,k2,s

] ≤ p
k1+k2+s
1

n!
(n − k1)!2k1

n!
(n − k2)!2k2

k1k2
n!

(n − s + 1)!

≤
(

λ1

n

)k1+k2+s

nk1+k2+s−1 = λ
k1+k2+s
1

n
,

so that the expected number of such configurations is bounded as follows:∑
k1≥3

∑
k2≥3

∑
s≥1

E
[
L′

k1,k2,s

] ≤ 1

n

∑
k1≥3

∑
k2≥3

∑
s≥1

λ
k1+k2+s
1 � 1

n
= o(1).

Hence, this second event occurs with probability going two zero.

All in all, we have proved that PS(�′
S) → 1, implying that PS(�S) → 1. �

4.1.4. Proof of Theorem 3 under (55). We follow the arguments laid out for

the case (54). We define �S in the same way, except that wk := [k (1−c)1/2

1−α
], where

c is a positive constant (to be chosen small later) such that c < α and, eventually,

sup
n/uN<k≤n

1

k
ES

[
W ∗

k,S

] ≤ 1 − 2c

1 − α
.(68)

LEMMA 17. For any k > kmin and any subset S of size n, we have
PS[�S] → 1.

For the second moment, we proceed exactly as in the case (54), and we start
from (67). In fact, when wk ≤ k, the proof is complete. So we assume that c is
small enough that wk > k, and bound the sum over k + 1 ≤ i ≤ wk . For i > k, we
use the bound (66), together with the fact that λ0 = (N/n)α and k < i, to derive

Bi,k ≤ eo(k)

(
en2

kN

)k(ep2
1k

(2)

p0i

)i

≤ eo(k)

(
en2

kN

)k(N1−αk

n2−α

λ2
1e

2

)i

= eo(k)+k

(
n

N

)k−i(1−α)(λ2
1e

2

)i(n

k

)k−i

≤ eo(k)+k

(
n

N

)k−i(1−α)(λ2
1e

2

)i

.
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This allows us to control the sum
wk∑

i=k+1

Bi,k ≤ wke
o(k)+k

(
n

N

)k−(1−α)wk
(

λ2
1e

2
∨ 1

)wk

≺ keo(k)+k

(
n

N

)k(1−(1−c)1/2)(λ2
1e

2
∨ 1

)k((1−c)1/2)/(1−α)

= exp
[
O(k) − k

(
1 − (1 − c)1/2)

log(N/n)
]
,

where in the second line we used the fact that wk = O(k) since lim supα < 1, and
in the third line we used the fact that λ1 = O(1). Thus,

n∑
k=kmin+1

wk∑
i=k+1

Bi,k = o(1),

which together with (67) allows us to conclude that A3 = o(1).
This completes the proof of Theorem 3 under (55).

PROOF OF LEMMA 17. Recall that uN = log log(N/n). First we consider in-
tegers k satisfying kmin + 1 ≤ k < n/uN . Define ω′

k = k(1 − c)−1/2(λ1
2 ∨ 1) and

q ′
k = ω′

k/k(2). Applying a union bound and Chernoff’s bound for the binomial
distribution, we derive that

PS

[
W ∗

k,S ≥ ω′
k

] ≤
(

n

k

)
P

[
Bin

(
k(2), p1

) ≥ ω′
k

]

≤ exp
[
k

{
log

(
ne

k

)
− k − 1

2
Hp1

(
q ′
k

)}]
.

Since k/n ≤ 1/uN = o(1), and since λ1 is bounded, we have q ′
k/p1 → ∞, so that

k − 1

2
Hp1

(
q ′
k

)

∼ k − 1

2
q ′
k log

(
q ′
k

p1

)

= (1 − c)−1/2
[
λ1

2
∨ 1

][
log

(
n

k − 1

)
+ log

{
(1 − c)−1/2

(
1 ∨ 2

λ1

)}]

≥ (
1 + o(1)

)
(1 − c)−1/2 log

(
n

k

)
,

and, therefore, since c ∈ (0,1) is fixed,

log
(

ne

k

)
− k − 1

2
Hp1

(
q ′
k

) ≤ 1 + [
1 − (

1 + o(1)
)
(1 − c)−1/2]

log(uN) → −∞.
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We conclude that

n/uN∑
k=kmin+1

PS

[
W ∗

k,S ≥ ω′
k

] = o(1).

Let us now prove that ω′
k ≤ wk . Indeed, this inequality holds if, and only if, λ1 ≤

2(1 − c)/(1 − α) and c ≤ α. The second inequality is by definition of c, while the
first inequality is ensured by (68) since

λ1

2

n − 1

n
= ES

[
W ∗

n,S/n
] ≤ sup

k≤n

ES

[
W ∗

k,S/k
] ≤ (1 − 2c)/(1 − α).

Let us turn to integers k satisfying k ≥ n/uN . Let c0 = (1 − c)−1/2 − 1 and
t = c0ES[W ∗

k,S]. By taking any fixed subset T ⊂ S of size |T | = k, we derive

ES

[
W ∗

k,S

] ≥ ES[WT ] = p1k
(2) ≥ λ1

n
(n/uN)(2) � n

u2
N

→ ∞,(69)

so that t satisfies the condition of Lemma 7 eventually. Using that lemma, we
derive that

PS

[
W ∗

k,S ≥ ES

[
W ∗

k,S

]
(1 − c)−1/2] ≤ exp

[
−ES

[
W ∗

k,S

] log(2)

4
c0

[
1 ∧ c0

8

]]
.

By condition (68), wk ≥ ES[W ∗
k,S](1 − c)−1/2. Hence, there exists a positive con-

stant κ , such that

n∑
k=n/uN

PS

[
W ∗

k,S ≥ wk

] ≤
n∑

k=n/uN

exp
[−κES

[
W ∗

k,S

]]

≤ n exp
[−κES

[
W ∗

n/uN ,S

]]
.

Because of (69) and the fact that log(N) = o(n), we have

ES

[
W ∗

n/uN ,S

] � n

log2(n)
,

and, therefore, the sum above goes to 0. �

4.2. No test is asymptotically powerful. When λ0 is bounded away from 0 and
infinity, the triangle test has some nonnegligible power as long as λ1 is bounded
away from 0 (see Section 3.3). This motivates us to obtain sufficient conditions
under which no test is asymptotically powerful.

Our method is also based on bounding the first two moments of a trun-
cated likelihood ratio L̃. Indeed, it is enough to show that lim infE0L̃ > 0 and
lim infE0[L̃2] < ∞. This comes from the following result.
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LEMMA 18. Let P0 and P1 be two probability distributions on the same prob-
ability space, with densities f0 and f1 with respect to some dominating measure.
Let � be any event and define the truncated likelihood ratio L̃ = L1� , where
L = f1/f0 is the likelihood ratio for testing P0 versus P1. Then any test for P0
versus P1 has risk at least

4

27

(E0L̃)3

E0[L̃2] ,
where E0 denotes the expectation under P0, and by convention 0/0 = 0.

PROOF. Assume E0L̃ �= 0, for otherwise the result is immediate. The risk of
the likelihood ratio test {L > 1}—which is the test that optimizes the risk—is equal
to

B := 1 − 1
2E0|L − 1| = 1 −E0(1 − L)+ ≥ 1 −E0(1 − L̃)+,

since L̃ ≤ L. For any t ∈ (0,1), we have

E0(1 − L̃)+ ≤ (1 − t)P0(L̃ > t) + P0(L̃ ≤ t) = 1 − tP0(L̃ > t).

Moreover, using the Cauchy–Schwarz inequality, we have for any t > 0

E0L̃ = E0[L̃1{L̃≤t}] +E0[L̃1{L̃>t}]

≤ t +
√
E0

[
L̃2

]
P0(L̃ > t),

so that, taking t < E0L̃, we have

P0(L̃ > t) ≥ (E0L̃ − t)2

E0L̃2
.

We conclude that

B ≥ tP0(L̃ > t) ≥ t
(E0L̃ − t)2

E0L̃2
,

and optimizing this over 0 < t < E0L̃ yields the result. �

Since we only need to focus on the case where λ0 is bounded from 0 and in-
finity, and where λ1 is bounded from 0 (because the other cases are covered by
Theorem 3), we may assume they are fixed without loss of generality. In that case
ζ → 0 is equivalent to n2/N → 0, which is what we assume in the following.

THEOREM 4. Write n = Nκ with 0 < κ < 1/2, and assume that λ0 and λ1 are
both fixed. No test is asymptotically powerful in all the following situations:

λ1 < 1, λ2
1e ≤ λ0;(70)

λ1 < 1, λ2
1e > λ0,

1 − 2κ

κ

Iλ1

log((eλ2
1)/λ0)

> 1.(71)
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PROOF. We use the same truncation as in Section 4.1.2, using the same no-
tation �S and fn defined there, and still denote the resulting truncated likelihood
by L̃.

For the first moment, by symmetry,

E0[L̃] = PS[�S] = PS

[
GS is a forest, |Cmax,S | ≤ fn

]
.

We already saw that PS[|Cmax,S | ≤ fn] → 1 [Van der Hofstad (2012), Theo-
rem 4.4]. Consequently,

E0[L̃] = PS[GS is a forest] + o(1).

Of course, GS is a forest if, and only if, it has no cycles. By Takács (1988), the
number of cycles in GS converges weakly to a Poisson distribution with mean

a(λ1) = 1

2
log

(
1

1 − λ1

)
− λ1

2
− λ2

1

4
,

when λ1 < 1 is fixed. As a consequence, E0[L̃] = exp[−a(λ1)] + o(1), which
remains bounded away from zero.

For the second moment, we start from (62):

E0
[
L̃2] − 1 ≺

∞∑
j=1

(
n2e

N

[
1 ∨ λ2

1e

λ0

]fn
)j

,

with fn = (1 + c)I−1
λ1

logn and c is a small positive constant. Under (70), we have

λ2
1e ≤ λ0 and the RHS is O(n2/N) = o(1). Under (71), we have λ2

1e > λ0, and the
RHS is, as before, equal to (63). Here, we have

An =
[
1 − 2κ − (1 + c)

κ

Iλ1

log
(

λ2
1e

λ0

)]
logN → ∞,

when (71) is satisfied and c is small enough. Hence, in any case, we found that
E0[L̃2] ≤ 1 + o(1). �

5. Discussion.

5.1. Adapting to unknown p0 and n. In Arias-Castro and Verzelen (2014),
we discussed in detail the case where p0 is unknown. In this situation, the total
degree test is not applicable, and we replaced it with a test based on the difference
between two estimates for the degree variance. On the other hand, the scan test
[based on (4)] can be calibrated in various ways without asymptotic loss of power,
for example, by plugging in the estimate p̂0 = W

N(2) in place of p0. We showed
that a combination of degree variance test and the scan test are optimal when p0 is
unknown, so that the degree variance test can truly play the role of the total degree
test in this situation. We believe this is the case here also. In addition to that, the
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broad scan test [based on (7)] can also be calibrated without asymptotic loss of
power, and the same is true for all the other tests that we studied here, except for
the largest connected component test in the supercritical regime.

We also discussed in Arias-Castro and Verzelen (2014) the case where the size
of the subgraph n is unknown. This only truly affects the broad scan test, whose
definition itself depends on n. As we argued in our previous paper, it suffices to
apply the procedure to all possible n’s, meaning, consider the multiple test based
on a combination of the statistics

W ‡
n , n = 1, . . . ,N/2

with a Bonferroni correction. The concentration inequalities that we obtained for
W ‡

n can accommodate an additional logarithmic factor that comes out of applying
the union to control this statistic under P0, and from this we can immediately see
that the test is asymptotically as powerful (up to first order).

5.2. Open problems. The cases where λ0 → 0 and where lim infλ0 ≥ e are
essentially resolved. Indeed, in the first situation, the largest connected component
test is asymptotically optimal by Theorem 2 and Theorem 3 case (43), while in
the second situation the broad scan test is asymptotically optimal by Theorem 1
and Theorem 3 cases (45) and (46), together with Theorem 4. The case where 0 <

λ0 < e is fixed is not completely resolved. Since the triangle test has nonnegligible
power as soon as λ1 is bounded away from 0, consider τ defined as the largest real
such that no test for G(N,

λ0
N

) versus G(N,
λ0
N

;n, λ1
n

) is asymptotically powerful
when lim supλ1 < τ . Theorem 2 and the result we obtain in Verzelen and Arias-
Castro (2013) for the test based on counting subtrees of size k provide some upper
bounds on τ .

OPEN PROBLEM 1. Compute τ as a function of λ0 and κ := lim sup logn
logN

.

Although we proved that the broad scan test was asymptotically optimal when
lim infλ0 ≥ e, its performance was described only indirectly in terms of λ1 in the
case (14).

OPEN PROBLEM 2. Compute, as a function of λ1, the limits inferior and su-
perior of

n
sup

k=n/uN

ES[W ∗
k,S]

k
.

We also formulate an open problem that connects directly with the planted
clique problem. We saw that the broad scan test is powerful when λ1 is suffi-
ciently large, but we do not know how to compute it in polynomial time. Is there a
polynomial-time test that can come close to that?
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OPEN PROBLEM 3. Find a polynomial-time test that is asymptotically pow-
erful for testing G(N,p0) versus G(N,p0;n,p1) when n2/N = O(1), while
λ0 → ∞ and λ1 = O(1).

Acknowledgements. We are grateful to Jacques Verstraete and Raphael
Yuster for helpful discussions and references on counting k-cycles.
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