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ON THE TOPOLOGY OF RANDOM COMPLEXES BUILT OVER
STATIONARY POINT PROCESSES1
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There has been considerable recent interest, primarily motivated by prob-
lems in applied algebraic topology, in the homology of random simplicial
complexes. We consider the scenario in which the vertices of the simplices
are the points of a random point process in Rd , and the edges and faces are de-
termined according to some deterministic rule, typically leading to Čech and
Vietoris–Rips complexes. In particular, we obtain results about homology, as
measured via the growth of Betti numbers, when the vertices are the points
of a general stationary point process. This significantly extends earlier results
in which the points were either i.i.d. observations or the points of a Poisson
process. In dealing with general point processes, in which the points exhibit
dependence such as attraction or repulsion, we find phenomena quantitatively
different from those observed in the i.i.d. and Poisson cases. From the point of
view of topological data analysis, our results seriously impact considerations
of model (non)robustness for statistical inference. Our proofs rely on analysis
of subgraph and component counts of stationary point processes, which are
of independent interest in stochastic geometry.

1. Introduction. There has been considerable recent interest, primarily mo-
tivated by problems in applied algebraic topology, in the homology of random
simplicial complexes. Two main scenarios have been considered. In the geomet-
ric model, the vertices of the simplices are a random point set, and the edges and
faces are determined according to some deterministic rule, typically related to the
distance between pairs, or general subsets, of vertices. This has lead, for example,
to the Čech and Vietoris–Rips complexes on random Euclidean point sets, studied
in papers such as [22, 24], with an extension to the manifold setting in [7].

Another approach has been to consider random subgraphs of complete graphs,
leading to a number of papers dealing with the topology of random complexes
generalising Erdős–Rényi graphs, as in, for example, [1, 14, 21, 27, 29]. Also, see
the recent survey [23] for progress in this direction.
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The current paper is concerned with the first of these approaches, although with
a novel and—from the point of view of both theory and applications—important
change of emphasis. Previous papers on simplicial complexes built over random
point sets have always assumed that the points were either independent, identically
distributed (i.i.d.) observations from some underlying distribution on Rd , or points
of a (typically nonhomogeneous) Poisson point process. Our aim in this paper is to
investigate situations in which the points are chosen from a general point process,
in which the points exhibit dependence such as attraction or repulsion. From the
point of view of topological data analysis (TDA) our results, which show that local
dependencies can have a major effect on the growth rates of topological quantifiers
such as Betti numbers, impact on considerations of model (non)robustness for sta-
tistical inference in TDA. We shall not address these issues here, however, beyond
a few comments in Section 1.3 below.

To start being a little more specific, given a point process (i.e., locally finite ran-
dom counting measure) � on Rd , recall that the random geometric graph G(�, r),
for r > 0, is defined as the graph with vertex set � and (undirected) edge set
{(X,Y ) ∈ �2 :‖X − Y‖ ≤ r}. The properties of random geometric graphs when
� is a Poisson point process or a point process of i.i.d. points have been analysed
in detail (cf. [35]), and recently interest has turned to the richer topic of random
simplicial complexes built over these point sets.

A nonempty family K of finite subsets of a finite set V (called vertices) is an ab-
stract simplicial complex if X ∈ K and Y ⊂ X implies that Y ∈ K. Elements of K
are called faces or simplices, and the dimension of a face is defined as its cardinal-
ity minus 1. We shall be concerned with two specific complexes (we shall omit the
prefix “abstract simplicial” from now on), the Čech and Vietoris–Rips complexes.
Let Bx(ε) denote the ball of radius ε around x, and � = {x1, x2, . . . , xm} be a finite
collection of points in Rd .

DEFINITION 1.1 (Čech complexes). The complex C(�,ε), constructed ac-
cording to the following rules, is called the Čech complex associated to � and ε:

(1) the 0-simplices of C(�,ε) are the points in �;
(2) an n-simplex or n-dimensional “face” σ = [xi0, . . . , xin] is in C(�,ε) if⋂n
k=0 Bxik

(ε/2) �= ∅.

DEFINITION 1.2 (Vietoris–Rips complexes). The complex R(�,ε), con-
structed according to the following rules, is called the Vietoris–Rips complex as-
sociated to � and ε:

(1) the 0-simplices of R(�,ε) are the points in �;
(2) an n-simplex or n-dimensional “face” σ = [xi0, . . . , xin] is in R(�,ε) if

Bxik
(ε/2) ∩ Bxim

(ε/2) �= ∅ for every 0 ≤ k < m ≤ n.
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The collection of all faces of dimension at most k is called the k-skeleton of a
complex. Observe that the 1-skeletons of both the Čech and Vietoris–Rips com-
plexes are equal and the same as the geometric graph on � with radius ε. More
information on these complexes will be given in Section 4.1 when it is needed.
Both of these (related) complexes are important in their own right, with the Čech
complex being of particular interest since it is known to be homotopy equivalent
to the random Boolean set

⋃
x∈� Bx(ε), which appears in integral geometry (e.g.,

[36]) and continuum percolation (e.g., [28]). This homotopy equivalence follows
from the nerve theorem [2], Theorem 10.7. We shall concentrate in this paper on
the ranks of the homology groups—that is, the Betti numbers—of these complexes
in the random scenario. At a heuristic level, the kth Betti number βk measures the
number of k-dimensional cycles or “holes” in the complex. As a consequence of
the nerve theorem, βk = 0 for k ≥ d for the Čech complex, and this is one of the
distinguishing features of the Čech complex from that of the Vietoris–Rips com-
plex.

A complementary approach to studying the topological structure of simplicial
complexes is via (nonsmooth) Morse theory, and here results for Poisson process
generated complexes are given in [6] via results on the Morse theory of the distance
function. Contrasted with this is discrete Morse theory [16], which has also been
used to study random complexes in [21, 22]. In fact, the local structure of Morse
critical points (both nonsmooth and discrete) is often more amenable to compu-
tation than the global structure of the Betti numbers. Thus we shall also take this
route in parts of this paper.

There are some recurring themes and techniques in the analysis of Betti numbers
and Morse critical points, which are intimately related to the subgraph and compo-
nent counts of the corresponding random geometric graph. Thus, from the purely
technical side, much of this paper will be concerned with the intrinsically interest-
ing task of extending the results of [35], Chapter 3, on subgraph and component
counts of Poisson point processes to more general stationary point processes.

Subgraph counts of a random geometric graph are an example of U-statistics of
point processes. Hence, apart from their applications in this article, our techniques
to study subgraph counts of random geometric graph over general stationary point
processes could be useful to derive asymptotics for many other translation and
scale invariant U-statistics of point processes (e.g., the number of k-simplices in a
Čech or Vietoris–Rips complexes). Also, the results on subgraph counts are used
to derive results about clique numbers, maximum degree and chromatic number of
the random geometric graph on Poisson or i.i.d. point process ([35], Chapter 6) and
with a similar approach, our results can be used to derive asymptotics for clique
numbers, maximum degree and chromatic number of random geometric graphs
over general stationary point processes; see [3], Section 4.3.1.

Analysis of subgraph counts will take up all of Section 3, the longest section of
the paper. From these results, we shall be able to extract results about Betti num-
bers (via combinatorial topology) as well as the numbers of Morse critical points.
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In formulating results, we shall relate the topological features of the random sim-
plicial complexes to known, inherent properties of the underlying point processes,
including joint densities, void probabilities or Palm void probabilities. The first
two of these properties, along with association properties, are known to be use-
ful in studying measures of clustering, and their impact on percolation of random
geometric graphs was studied in [4]. Since our asymptotic results help quantify
the impact of clustering measures such as sub-Poisson and negative association on
topological features of point processes, they provide additional applications of the
tools of Błaszczyszyn and Yogeshwaran [5] as measures of clustering.

A sampler of some of our main results follows a little necessary notation.

1.1. Some notation. We use | · | to denote Lebesgue measure and ‖ · ‖ for
the Euclidean norm on Rd . Depending on context, | · | will also denote the car-
dinality of a set. As above, we denote the ball of radius r centred at x ∈ Rd by
Bx(r). For x = (x1, . . . , xk) ∈ Rdk , let Bx(r) = ⋃k

i=1 Bxi
(r), h(x) = h(x1, . . . , xk)

for h :Rdk → R and dx = dx1 · · ·dxk . Let 1 = (1, . . . ,1). We also use the stan-
dard Bachman–Landau notation for asymptotics2 and say that a sequence of events
An,n ≥ 1 occurs with high probability (w.h.p.) if P{An} → 1 as n → ∞.

1.2. A result sampler. We shall now describe, without (sometimes important)
precise technical conditions, some of our main results. Full details are given in the
main body of the paper. We start with �, a unit intensity, stationary point process
on Rd , and set3

�n = � ∩
[−n1/d

2
,
n1/d

2

]d

.(1.1)

Let

βk

(
C(�n, r)

)
, βk

(
R(�n, r)

)
,

2That is, for sequences an and bn of positive numbers, we write

an = o(bn) ⇐⇒ for any c > 0, there is a n0 such that an < cbn for all n > n0;
an = O(bn) ⇐⇒ there exists a c > 0 and a n0 such that an < cbn for all n > n0;
an = ω(bn) ⇐⇒ for any c > 0, there is a n0 such that an > cbn for all n > n0;
an = �(bn) ⇐⇒ there exists a c > 0 and a n0 such that an > cbn for all n > n0;
an = �(bn) ⇐⇒ an = O(bn) and an = �(bn).

3Note that our basic setup is a little different from that of all the earlier papers mentioned above. To

compare our results with existing ones on Poisson or i.i.d. point processes, note that rd
n in our results

typically corresponds to nrd
n elsewhere. For a general (non-Poisson) point process, (1.1) provides a

more natural setting.
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respectively, denote the kth Betti numbers of the Čech and Vietoris–Rips com-
plexes based on �n. Note that the βk of a complex depends on the (k + 1) skeleton
of the complex alone, and since the 1-skeletons are the same for both Čech and
Vietoris–Rips complexes, we have that β0(C(�n, r)) = β0(R(�n, r)).

In addition, let Mk(�n) denote the set of Morse critical points (to be defined in
Section 5.1) of index k ∈ {0, . . . , d} for the distance function

dn(x) = min
X∈�n

‖x − X‖,
and set

Nk(�n, r) = ∣∣{c ∈ Mk(�n) :dn(c) ≤ r
}∣∣.

The importance of the critical points stems from the Morse inequalities, which
imply, in particular, that every index k critical point contributing to Nk(�n, r)

either increases βk(C(�n, r)) by 1 or decreases βk−1(C(�n, r)) by 1. In particular,
this implies that βk(C(�n, r)) ≤ Nk(�n, r).

This paper is concerned with the behavior, as n → ∞, of βk(C(�n, rn)),
βk(R(�n, rn)), Nk(�n, rn) and χ(C(�n, rn)), where χ denotes the Euler char-
acteristic. In particular, we shall provide closed form expressions for the asymp-
totic, normalized first moments of these variables, along with bounds for second
moments for most of them.

Throughout the remainder of this subsection we shall assume that � is station-
ary, unit mean and negatively associated (defined rigorously in Section 2.2). Addi-
tional side conditions may also need to hold, but we shall not state them here. Two
simple examples for which everything works are provided by the Ginibre point
process and the simple perturbed lattice. Many of the results hold for various other
sub-classes of point processes as well, but our nonspecific blanket assumptions al-
low for ease of exposition. We divide the results into three classes, depending on
the behavior of rn.

I. SPARSE REGIME: rn → 0. Note that since the points of � only generate
edges and faces of the Čech and Vietoris–Rips complexes C(�n, r) and R(�n, r)

when they are distance less than r apart, and since � has, on, average, only one
point per unit cube, if r is small we expect that both of these complexes will be
made up primarily of the isolated points of �. We describe this fact by calling this
the “sparse” regime.

Since the β0’s are equal for the two complexes, in this setting,

E
{
β0

(
C(�n, rn)

)} = E
{
β0

(
R(�n, rn)

)} = �(n),

and for k ≥ 1, there exist functions f k ≡ 1 [i.e., f k(r) = 1, ∀r] or f k(r) → 0, as
r → 0, depending on the precise distribution of � and on the index k, such that

E
{
βk

(
C(�n, rn)

)} = �
(
nrd(k+1)

n f k+2(rn)
)
, k ∈ {0, . . . , d − 1},

E
{
βk

(
R(�n, rn)

)} = �
(
nrd(2k+1)

n f 2k+2(rn)
)
, k ≥ 1,(1.2)

E
{
Nk(�n, rn)

} = �
(
nrdk

n f k+1(rn)
)
, k ∈ {0, . . . , d − 1},
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and Var(Nk(�n, rn)) = O(E{Nk(�n, rn)}), where Var(X) is the variance of X. In
addition, E{n−1χ(C(�n, rn))} → 1.

In the classical Poisson case, studied in the references given above, it is known
that the same results hold with f k ≡ 1.

Using stochastic ordering techniques, we shall also show that clustering of point
processes increases the functions f k(r) and consequently the mean of the βk and
Nk as well. Also, we know that for the Ginibre point process and for the zeroes of
Gaussian entire functions, f k(r) = rk(k−1). Thus there is a systematic difference
between the scaling limits for Poisson and at least some negatively associated point
processes.

II. THERMODYNAMIC REGIME: rd
n → β ∈ (0,∞). In this regime an edge be-

tween two points in �, which are, in a rough sense, an average distance of one unit
apart, will be formed if they manage to get within a distance β1/d of one another.
Since, in most scenarios, there should be a reasonable probability of this happen-
ing, we expect to see quite a few edges and, in fact, simplices and homologies up
to dimension d − 1. Indeed, this is the case, and the main result in this regime is
that topological complexity grows at a rate proportional to the number of points,
in the sense that

E
{
βk

(
C(�n, rn)

)} = �(n), k ∈ {0, . . . , d − 1},
with identical results for E{βk(R(�n, rn))} and E{Nk(�n, rn)} for the appropri-
ate k. In addition, Var(Nk(�n, rn)) = O(E{Nk(�n, rn)}) and

E
{
n−1χ

(
C(�n, rn)

)} → 1 +
d∑

k=1

(−1)kνk(�,β),

where the νk(�,β) are defined in Theorem 5.2. Since there is no appearance in
these results of an analogue to the f of (1.2), the normalizations here have the
same orders as in the Poisson and i.i.d. cases.

III. CONNECTIVITY REGIME: rd
n = �(logn). Clearly, if rn is large enough,

there comes a point (which we call the contractibility radius) beyond which each
point of �n will be connected to the others, and the Čech complex will become
contractible to a single point, while the Vietoris–Rips complex will become topo-
logically k-connected. (This is certainly the case if rn = √

dn1/d .) The question
then is “how large is large enough?”

It turns out that in the current scenario of negative association there exist case
dependent constants C such that for rn ≥ C(logn)1/d , C(�n, rn) is contractible
w.h.p. as n → ∞. In the specific cases of the Ginibre process or zeroes of Gaus-
sian entire functions, this happens earlier, and rn = �((logn)1/4) is the radius for
contractibility of the Čech complex. As a trivial corollary, it follows that, w.h.p.
χ(C(�n, rn)) = 1 when rn is the radius of contractibility. Further, for the Ginibre
process, rn = �((logn)1/4) is also the critical radius for k-connectedness of the
Vietoris–Rips complex.
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1.3. Some implications for topological data analysis. Perhaps the core tool of
TDA is persistent homology, as visualized through barcodes and persistence dia-
grams; cf. [11, 15, 19, 42]. See also the very accessible recent survey [12]. While
here is not the place to go into the details of persistent homology, it can be de-
scribed reasonably simply in the setting of this paper. For a given n, and a collec-
tion of points �n, consider the collections of Čech (or Vietoris–Rips) complexes
C(�n, r) built over these points, as r grows. Initially, C(�n,0) will contain only
the points of �n. However, as r increases, different homological entities (cycles
of differing degree) will appear and, eventually, disappear. If to each such phe-
nomenon we assign an interval starting at the birth time and ending at the death
time, then the collection of all of these intervals is a representation of the persistent
homology generated by �n and is known as its barcode. The individual intervals
are referred to as bars. The Betti numbers βk(C(�n, r)) therefore count the num-
ber of bars related to k-cycles active at “connection distance” r .

Heuristics and simulations4 (see Figures 1, 2, 3) indicate that as the points are
more regularly distributed in a point process, the bars start later and vanish earlier
than those for Poisson point process. In the three figures, all point processes are of
unit intensity, and we observe that the hypergeometric perturbed lattice has more
regularly distributed points than the Poisson point process, which in turn has more
regularly distributed points than the negative binomial perturbed lattice. We can see
that the corresponding bars start earlier and end later as we go from hypergeometric
perturbed lattice to the Poisson point process to the negative binomial perturbed

FIG. 1. Hypergeometric perturbed lattice. H1 barcodes of the Rips complex.

4These barcodes were simulated using the easy-to-use and open access package javaPlex [39].
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FIG. 2. Poisson point process. H1 barcodes of the Rips complex.

lattice. Some of our results confirm this heuristic. For example, using the results
above it is easy to see that nontrivial homology groups of Čech and Vietoris–Rips

complexes start to appear once rn satisfies r
d(k+1)
n f k+2(rn) = ω(n−1). For the

Poisson case this requires only rn = ω(n−1/d(k+1)). Since, typically, f (r) → 0
as r → 0, we therefore generally need larger radii for nontrivial homology (and
hence for bars) to appear. The disappearance of homology is harder, however, and

FIG. 3. Negative Binomial perturbed lattice. H1 barcodes of the Rips complex.
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in general, our results on connectivity cannot confirm the heuristic. However, for
the Ginibre point process and zeroes of GEF in R2, they do show that nontrivial
topology vanishes at rn = ω((logn)1/4) as opposed to ω((logn)1/2) for a two-
dimensional Poisson point process of constant intensity.

As for implications to TDA, applied topologists are beginning to appreciate the
fact that stochasticity underlies their data as a consequence of sampling, and are
beginning to build statistical models to allow parameter estimation and inference
(e.g., [8, 9, 13, 30, 40]). The results of this paper show that small changes in model
structure (such as the introduction of attraction and repulsion between points in a
data cloud) can have measurable effects on topological behavior.

The remainder of the paper is organized as follows: in the following section,
we shall summarize some facts needed from the theory of point processes. Sec-
tions 3, 4 and 5 contain the core technical results on component and subgraph
counts, Betti numbers and Morse critical points, respectively. We shall give care-
ful proofs for all the results of Section 3 barring the results on extension to sub-
complex counts in Section 3.6 since these mimic earlier proofs. The results of the
Sections 4 and 5 are either easy corollaries of earlier results or can be proved by
using similar techniques, and so there we shall give less detail. Appendix contains
a technical result regarding Palm void probabilities of the Ginibre process which
Manjunath Krishnapur proved for us.

2. Point processes. Our aim in this section is to set up some general defini-
tions related to point processes, give some background on those of main interest
to us and to prove two technical results, of some independent interest, which we
shall need later.

2.1. Point processes and Palm measures. A point process � in Rd is a
N -valued random variable, where N is the space of locally finite (Radon) count-
ing measures in Rd equipped with the canonical σ -algebra; cf. [25, 36, 38]. We can
represent � as either a random measure, �(·) = ∑

i δXi
(·) or as a random point set

� = {Xi}i≥1, where, in both cases, the Xi are the “points” of the process.
The factorial moment measure α(k) of a point process � is defined by

α(k)

(
n∏

i=1

Bi

)
= E

{
n∏

i=1

�(Bi)

}
,

for disjoint bounded Borel subsets B1, . . . ,Bn. When k = 1, α := α(1) is called
the intensity or mean measure, and α(k) also serves as the intensity measure of the
point process

�(k) := {
(X1, . . . ,Xk) ∈ �k :Xi �= Xj,∀i �= j

}
.

The kth joint intensity, ρ(k) : (Rd)k → [0,∞) is the density (if it exists) of αk with
respect to (in this paper) Lebesgue measure. The ρ(k) characterize a simple point
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process just as moments characterize a random variable. A sufficient condition for
joint intensities (when they exist) to characterize a simple point process is ρ(k)(·) ≤
Ck for some constant C and for all k ≥ 1; cf. [20], Lemma 4.2.6 and Remark 1.2.4.
Throughout, we shall restrict ourselves to simple stationary point processes of unit
intensity; namely, α(B) = |B| for all bounded, Borel B . We also shall assume that
all the joint intensities ρ(k)(·) exist for the point processes under consideration in
this article.

For a point process � whose probability distribution is P, its reduced Palm
probability distribution P!

x at x ∈ Rd is defined as the probability measure that
satisfies the following disintegration formula for any bounded measurable function
u :N ×Rd →R+ with compact support in the second co-ordinate:∫

N
P(dφ)

∫
Rd

φ(dx)u(φ, x) =
∫
Rd

dx

∫
N
P!

x(dφ)u
(
φ ∪ {x}, x).

As a consequence of the above definition, for the corresponding Palm expecta-
tion E!

x with the function u satisfying assumptions as above, we get the well-known
refined Campbell theorem (cf. [38], page 119, [36], Theorem 3.3),

E
{∑

X∈�

u(�,X)

}
=

∫
x∈Rd

E!
x

{
u
(
� ∪ {x}, x)}dx.(2.1)

If the point process is not stationary or has unit intensity, one can still define
Palm probability distribution by replacing dx on the RHS of the above two equa-
tions with the intensity measure of the point process. In particular, the definition of
Palm probability gives us that P!

x{�(x) = 0} = 1. Intuitively, P!
x is the distribution

of the remainder of the point process, conditioned on there having been a point
at x.

2.2. Some special cases. We shall assume the reader is familiar with stationary
Poisson point processes, determined, for example, by ρk ≡ 1 for all k, and use this
as a basis for comparison in a quick tour through some non-Poisson cases that will
provide examples for the theorems of the remaining sections.

Associated point processes. A point process � is called associated (or pos-
itively associated) if for any finite collection of disjoint bounded Borel sub-
sets B1, . . . ,Bk ⊂ Rd and f,g continuous and increasing functions taking values
in [0,1],

Cov
(
f
(
�(B1), . . . ,�(Bk)

)
, g

(
�(B1), . . . ,�(Bk)

)) ≥ 0;(2.2)

cf. [10]. The referenced article gives many examples of associated processes. We
call a point process � negatively associated if

Cov
(
f
(
�(B1), . . . ,�(Bk)

)
, g

(
�(Bk+1), . . . ,�(Bl)

)) ≤ 0,(2.3)
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for any finite collection of bounded Borel subsets B1, . . . ,Bl ⊂ Rd such that
(B1 ∪ · · · ∪ Bk) ∩ (Bk+1 ∪ · · · ∪ Bl) = ∅ and f,g increasing bounded continu-
ous functions.

In general, the literature contains fewer examples of negatively associated pro-
cesses than their positively associated counterparts, a phenomenon that occurs
even in simpler situations; cf. [33]. We shall give two examples of negatively
associated point processes below (determinantal point processes and the simple
perturbed lattice) as these are of more interest to us in this article, but we refer
the reader to [3, 10] for many examples of positively associated point processes.
The stationary Poisson point process is both negatively and positively associated.
Finite independent unions of negatively associated point processes is negatively
associated as well, and this can be used to construct many examples of negatively
associated point processes from a few simple examples. Just to reiterate the ear-
lier point about scarcity of negatively associated point processes, not many “natu-
ral” examples, apart from the two presented below and binomial point process, are
known. This is in contrast to the situation for positively associated point processes.
Here are three other point processes of interest to us:

Determinantal processes. A simple point process � on Rd is said to be de-
terminantal with kernel K : (Rd)2 → C if its joint intensities satisfy the following
equality for all k ≥ 1 and for all x1, . . . , xk ∈Rd :

ρk(x1, . . . , xk) = det
(
K(xi, xj )1≤i,j≤k

)
,(2.4)

where det indicates a determinant of a matrix.
Stationary determinantal point processes with continuous kernels are negatively

associated [18], Corollary 6.3. For examples of stationary determinantal point pro-
cesses, see [26], Section 5. A determinantal process of particular interest is the unit
intensity Ginibre process ([20], Section 4.3.7), which has the continuous kernel

K(z,w) = exp
(−1

2

(‖z‖2 + ‖w‖2)+ zw
)
, z,w ∈ C.

In [31], the authors have introduced a family of determinantal point processes
called the α-Ginibre point processes in the context of modeling cellular net-
works with α = 1 corresponding to the Ginibre point process, and as α → 0, the
α-Ginibre point processes converges to the appropriate Poisson point process. This
class of point processes gives a continuous family of point processes between the
Poisson point process and the Ginibre point process.

A counterpart to determinantal point processes are permanental point processes,
which can be defined by replacing the determinant in (2.4) by a matrix permanent.

Perturbed lattices. Let Nz : z ∈ Zd be i.i.d. integer valued random variables
distributed as N , and Xiz, i ≥ 1, z ∈ Zd be i.i.d. Rd valued random variables dis-
tributed as X. A perturbed lattice is defined as

�(N,X) := ⋃
z∈Zd

Nz⋃
i=1

{z + Xiz},
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provided that �(N,X) is a simple point process. N is called the replication ker-
nel, and X is called the perturbation kernel. Though the point process is station-
ary with respect to lattice translations only, we can make it stationary with re-
spect to Rd translations by shifting the origin uniformly within [0,1]d ; that is,⋃

z∈Zd

⋃Nz

i=1{U + z + Xiz} is stationary if U is uniformly distributed in [0,1]d .
The point process for which N ≡ 1 and X is uniform on the unit cube is known
as the simple perturbed lattice and is negatively associated. For more details, see
below and especially [5].

Zeroes of a Gaussian entire function. (Normalized) Gaussian entire functions
are defined on the complex plane C via the a.s. convergent expansion f (z) =∑∞

n=0 ξnz
n/

√
n!, where the ξn are i.i.d. standard complex Gaussians. The zeros

of f (when considered as a point process in R2 and called as zeros of GEF), while
neither negatively associated nor determinantal, share many properties with the
Ginibre process that make them interesting and tractable; cf. [20] for more back-
ground.

Sub- and super-Poisson processes. At times, weaker notions than association,
based only on factorial moment measures, suffice to establish interesting results.

We say that a point process �1 is α-weaker than �2 (written �1 ≤α−w �2)
if α

(k)
1 (B) ≤ α

(k)
2 (B) for all k ≥ 1 and bounded Borel B ⊂ (Rd)k . We call

a point process α-negatively associated (associated) if α(k+l)(B1 × B2) ≤ (≥)

α(k)(B1)α
(l)(B2) for all k, l ≥ 1 and bounded Borel B1 × B2 ⊂ (Rd)k × (Rd)l .

Negative association (association) implies α-negative association (association)
which in turn implies α-weaker ordering with respect to the Poisson process with
intensity measure α.

Even weaker notions of association come from looking at void probabilities, and
we say that a point process �1 is ν-weaker than �2 (denoted by �1 ≤ν−w �2) if

ν1(B) = P
{
�1(B) = ∅

} ≤ P
{
�2(B) = ∅

} = ν2(B)

for all B bounded Borel subsets.
Finally, we call a point process α-sub-Poisson (super-Poisson) if it is α-weaker

(stronger) than the Poisson point process and similarly for ν-sub-Poisson (super-
Poisson). A point process is weakly sub-Poisson (super-Poisson) if it is both α- and
ν-sub-Poisson (super-Poisson).

It is known that negative association (association) implies the weak sub-Poisson
(super-Poisson) property. Other examples come from perturbed lattices. For ex-
ample, if the replication kernel N is hypergeometric or binomial and X uniform,
then the resulting perturbed lattice �(N,X) is a weakly sub-Poisson point pro-
cess. One can also construct a sequence of perturbed lattices �(Nn,X),n ≥ 1
whose joint intensities and void probabilities monotonically increase to that of the
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Poisson point process by choosing the replication kernels Nn to be distributed as
Bin(n, 1

n
). On the other hand, negative binomial and geometric perturbation ker-

nels lead to weakly super-Poisson processes. Permanental point processes are also
weakly sub-Poisson. See [5] for proofs and more about stochastic ordering of point
processes.

2.3. Two technical lemmas. We shall state some general results about Palm
measures of these point processes that we need later. The first lemma shows that
negatively associated point processes are “stochastically stronger” than their Palm
versions. This can also be viewed as a justification for the usage of negative asso-
ciation as the defining property of sparse point processes. The second shows that
Palm versions of negatively associated point processes also exhibit negative asso-
ciation. We state the results in more generality than we need, since they seem to
be of independent interest.

LEMMA 2.1. Let � be a negatively associated stationary point process in Rd

of unit intensity and F :Rdn → R+ an increasing bounded continuous function.
Then for B1, . . . ,Bn disjoint bounded Borel subsets and almost every x ∈ Rdk ,

E!
x1,...,xk

(
F
(
�(B1), . . . ,�(Bn)

)) ≤ E
{
F
(
�(B1), . . . ,�(Bn)

)}
.(2.5)

The above inequality will be reversed for an associated point process.

PROOF. For 0 < ε < r we have

E
{
F
(
�
(
B1 \ Bx(r)

)
, . . . ,�

(
Bn \ Bx(r)

))|�(
Bxi

(ε)
) ≥ 1,1 ≤ i ≤ k

}
= E{F(�(B1 \ Bx(r)), . . . ,�(Bn \ Bx(r)))

∏k
i=1 1[�(Bxi

(ε)) ≥ 1]}
P{�(Bxi

(ε)) ≥ 1,1 ≤ i ≤ k}

≤ E{F(�(B1 \ Bx(r)), . . . ,�(Bn \ Bx(r)))}E{∏k
i=1 1[�(Bxi

(ε)) ≥ 1]}
P{�(Bxi

(ε)) ≥ 1,1 ≤ i ≤ k}
= E

{
F
(
�
(
B1 \ Bx(r)

)
, . . . ,�

(
Bn \ Bx(r)

))}
,

where the inequality is due to the negative association property of �.
Sending first ε → 0 and then r → 0, (2.5) follows immediately from [37],

Lemma 6.3, and monotone convergence. �

LEMMA 2.2. Let � be a negatively associated stationary point process in Rd

of unit intensity. We shall also assume the existence of all the joint intensities of
the point process. Let F :Rdn → R+ and G :Rdm → R+ be increasing bounded
continuous functions. Then for B1, . . . ,Bm+n disjoint bounded Borel subsets and
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almost every x ∈ Rd(k+l),

E!
x
{
F
(
�(B1), . . . ,�(Bn)

)
G
(
�(Bn+1), . . . ,�(Bm+n)

)}
ρ(k+l)(x)

≤ E!
x1,...,xk

{
F
(
�(B1), . . . ,�(Bn)

)}
×E!

xk+1,...,xk+l

{
G
(
�(Bn+1), . . . ,�(Bm+n)

)}
× ρ(k)(x1, . . . , xk)ρ

(l)(xk+1, . . . , xk+l).

The above inequality will be reversed for an associated point process �.

PROOF. As in the proof of Lemma 2.1, take 0 < ε < r . For notational simplic-
ity, set B∗ = B \ Bx(r) for bounded Borel set B:

E
{
F
(
�
(
B∗

1
)
, . . . ,�

(
B∗

n

))
G
(
�
(
B∗

n+1
)
, . . . ,�

(
B∗

m+n

))
|�(

Bxi
(ε)

) ≥ 1,1 ≤ i ≤ (k + l)
}

× P
{
�
(
Bxi

(ε)
) ≥ 1,1 ≤ i ≤ (k + l)

}

= E

{
F
(
�
(
B∗

1
)
, . . . ,�

(
B∗

n

)) k∏
i=1

1
[
�
(
Bxi

(ε)
) ≥ 1

]

× G
(
�
(
B∗

n+1
)
, . . . ,�

(
B∗

m+n

)) l∏
i=1

1
[
�
(
Bxk+i

(ε)
) ≥ 1

]}

≤ E{F(�(B∗
1 ), . . . ,�(B∗

n))
∏k

i=1 1[�(Bxi
(ε)) ≥ 1]}

P{�(Bxi
(ε)) ≥ 1,1 ≤ i ≤ k}

× E{G(�(B∗
n+1), . . . ,�(B∗

m+n))
∏l

i=1 1[�(Bxk+i
(ε)) ≥ 1]}

P{�(Bxk+i
(ε)) ≥ 1,1 ≤ i ≤ l}

× P
{
�
(
Bxi

(ε)
) ≥ 1,1 ≤ i ≤ k

}
P
{
�
(
Bxk+i

(ε)
) ≥ 1,1 ≤ i ≤ l

}
= E

{
F
(
�
(
B∗

1
)
, . . . ,�

(
B∗

n

))|�(
Bxi

(ε)
) ≥ 1,1 ≤ i ≤ k

}
×E

{
G
(
�
(
B∗

n+1
)
, . . . ,�

(
B∗

m+n

))|�(
Bxk+i

(ε)
) ≥ 1,1 ≤ i ≤ l

}
× P

{
�
(
Bxi

(ε)
) ≥ 1,1 ≤ i ≤ k

}
P
{
�
(
Bxk+i

(ε)
) ≥ 1,1 ≤ i ≤ l

}
,

where the inequality is due to the negative association of �. As in the previous
proof, the conditional expectations in the first and last expressions converge to
the respective Palm expectations as ε → 0. Since � is a simple point process, after
dividing by |B0(ε)|k+l on both sides, the product of the probability terms in the last
line converges to ρ(k)(x1, . . . , xk)ρ

(l)(xk+1, . . . , xk+l) while the probability term
in the first line converges to ρ(k+l)(x) as ε → 0. Complete the proof by sending
r → 0. �
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3. Subgraph and component counts in random geometric graphs. Recall
that for a point set � and radius r > 0, the geometric graph G(�, r) is defined as
the graph with vertex set � and edge-set {(X,Y ) :‖X − Y‖ ≤ r}. We shall work

with restrictions of � to a sequence of increasing windows Wn = [−n1/d

2 , n1/d

2 ]d ,
along with a radius regime {rn > 0}n≥1, setting �n := � ∩ Wn. The choice of
the radius regime will impact on the asymptotic properties of the geometric graph
when the points of � are those of a point process.

Let � be a connected graph on k vertices. In this section we shall be interested
in how often � appears (up to graph isomorphisms) in a sequence of geometric
graphs Gn = G(�n, rn), and how often among such appearances it is actually iso-
morphic to a component of Gn; namely, it is a �-component of Gn. For graphs
built over Poisson and i.i.d. processes, we know from [35], Chapters 3, 13, that no
�-components exist when n(rd

n )k−1 → 0 (|�| = k), but that they do appear when
n(rd

n )k−1 → ∞. The �-components continue to exist even when rd
n = o(logn) and

vanish when rd
n = ω(logn), which is the threshold for connectivity of the graph.

In this section, we shall show, among other things, that the threshold for
formation of �-components for negatively associated processes with rn → 0 is
n(rd

n )k−1f k(rn) → ∞, for functions f k which typically satisfy f k(r) → 0 as
r → 0, and so is higher than in the Poisson case. These components continue to
exist even when rd

n → β > 0. The threshold for the vanishing of components will
be treated in the next section.

The reader should try to keep this broader picture in mind as she wades through
the various limits of this section.

3.1. Some notation and a start. As above, let � be a connected graph on k

vertices, k ≥ 1 and {x1, . . . , xk} a collection of k points in Rd . Introduce the (indi-
cator) function h� :Rdk ×R+ → {0,1} by

h�(x, r) := 1
[
G
({x1, . . . , xk}, r) � �

]
,(3.1)

where � denotes graph isomorphism and 1 is the usual indicator function. For a
fixed sequence {rn} set

h�,n(x) := h�(x, rn),(3.2)

and, for r = 1, write

h�(x) := h�(x,1).(3.3)

Moving now to the random setting, in which � is a simple point process with
kth intensities ρ(k), we say that � is a feasible subgraph of � if∫

(Rd )k
h�(x)ρ(k)(x) dx > 0.

Thus � is a feasible subgraph of � if the α(k) measure of finding a copy of it (up
to graph isomorphism) in G(�,1) is positive. For many of our examples of point
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processes and graphs �, feasibility will hold because ρ(k)(x) > 0 a.e. or at least on
a large enough set.

We shall be interested in the the number of �-subgraphs, Gn(�,�), and number
of �-components, Jn(�,�), of �n, which are defined as follows:

Gn(�,�) := 1

k!
∑

X∈�
(k)
n

h�,n(X),

(3.4)

Jn(�,�) := 1

k!
∑

X∈�
(k)
n

h�,n(X)1
[
�n

(
BX(rn)

) = k
]
.

We shall now make a small digression to clarify the terminology. In the termi-
nology of [35], Gn(�,�) is referred to as the number of induced �-subgraphs of
G(�, r) and not the number of �-isomorphic subgraphs. However, it is easy to see
that the latter is a finite linear combination of the number of induced subgraphs of
the same order. We shall be considering only induced subgraphs in this article and
hence shall chose to omit the adjective induced.

Note that Jn considers graphs based on vertices in �n only, namely, all vertices
that lie in Wn. Such a graph, however, may have vertices in the complement of Wn,
provided the points are within distance a rn of Wn, and so actually be part of
something larger. To account for this boundary effect, we introduce an additional
variable, which does not count such “boundary crossing” graphs. This is given by

J̃n(�,�) := 1

k!
∑

X∈�
(k)
n

h�,n(X)1
[
�
(
BX(rn)

) = k
]
.(3.5)

We shall see later that in the sparse and thermodynamic regimes, the differences
between Jn and J̃n disappear in asymptotic results. Nevertheless, both are needed
for the proofs.

The key ingredient in obtaining asymptotics for sub-graph counts and compo-
nent counts are the following closed-form expressions, which are immediate con-
sequences of the Campbell–Mecke formula:

E
{
Gn(�,�)

} = 1

k!
∫
Wk

n

h�,n(x)ρ(k)(x) dx,(3.6)

E
{
Jn(�,�)

} = 1

k!
∫
Wk

n

h�,n(x)P!
x
{
�n

(
Bx(rn)

) = 0
}
ρ(k)(x) dx.(3.7)

Much of the remainder of this section is based on obtaining asymptotic expres-
sions for these integrals in terms of basic point process parameters in the sparse
and thermodynamic regimes, as well as looking at bounds on variances. We shall
consider the connectivity regime only in the following section on Betti numbers.
Our results here extend those of [35], Chapter 3, for Poisson and i.i.d. processes,
and the general approach of the proofs is thus similar.
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3.2. Sparse regime: rn → 0. The intuition behind the following theorem is
that in the sparse regime it is difficult to find �-subgraphs in a random geometric
graph, and even more unlikely that any such subgraph will have another point of
the point process near it. This implies that almost all [in the sense made precise
by (3.8)] such subgraphs will actually be a component of the full graph, discon-
nected from other components.

THEOREM 3.1. Let � be a stationary point process in Rd of unit intensity
and � be a feasible connected graph of � on k vertices. Let ρ(k) be almost every-
where continuous. Assume that ρ(k)(0, . . . ,0) = 0, and that there exist functions
f k

ρ :R+ →R+ and gk
ρ : (B0(k))k →R+ such that

ρ(k)(ry) = �
(
f k

ρ (r)
)

and lim
r→0

ρ(k)(ry)

f k
ρ (r)

= gk
ρ(y),

for all y of the form y = (0, y2, . . . , yk). Further, assume that f k+1 = O(f k) as
r → 0 and gk

ρ is almost everywhere continuous. Let rn → 0. Then

lim
n→∞

E{Gn(�,�)}
nr

d(k−1)
n f k(rn)

= lim
n→∞

E{Jn(�,�)}
nr

d(k−1)
n f k(rn)

= μ0(�,�)(3.8)

:=
⎧⎨
⎩

1, k = 1,
1

k!
∫
Rd(k−1)

h�(y)gk
ρ(y) dy, k ≥ 1.

If ρ(k)(0, . . . ,0) > 0, then the same result holds with f k
ρ ≡ 1 and gk

ρ ≡
ρ(k)(0, . . . ,0).

Before turning to the proof of the theorem, we shall make a few points about its
conditions, and provide some examples. As before, we are assuming that all point
processes are normalized to have unit intensity.

REMARK 3.2. (1) Note that the theorem does not guarantee the positivity of
μ0(�,�).

(2) f 1(r) ≡ 1 for all stationary point processes of unit intensity since, in this
case, ρ(1) ≡ 1.

(3) It is easy to check that if � is α-negatively associated or α-super-Poisson,
then the condition f k+1 = O(f k) as r → 0 is satisfied.

(4) In the case ρk(0, . . . ,0) = 0 for k ≥ 2, even if we cannot find appropriate
f k or gk

ρ , it is still true that E{Gn(�,�)} = o(nr
d(k−1)
n ).

(5) If � is only Zd -stationary (as is the case with perturbed lattices), then it will
be clear from the proof that (3.8) still holds, but with

μ0(�,�) := 1

k!
∫
[0,1]d

∫
Rd(k−1)

h�(x,y)gk
ρ(x,y) dx dy.
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(6) For a homogeneous Poisson point process, the theorem holds with f k ≡ 1
and gk

ρ ≡ 1, recovering [35], Proposition 3.1.

(7) If � ≥α−w �(1), then for all k ≥ 1, ρ(k) ≥ ρ
(k)
(1) ≡ 1 and hence f k ≡ 1 and

also μ0(�,�) > 0. Examples of point processes in this class are all super-Poisson
perturbed lattices and permanental point processes.

(8) For a perturbed lattice � with perturbation kernel N ∈ {0, . . . ,K} a.s.,
ρ(k)(0, . . . ,0) > 0 if and only if k ≤ K . In this case, μ0(�,�) > 0 for a con-
nected graph � on k vertices. For connected graphs � on k vertices with k > K ,
nr

−d(k−1)
n E{Gn(�,�)} → 0. For sub-Poisson perturbed lattices, the existence of

f k depends on the perturbation kernel. However, for high values of k, it is clear
that the scaling for sub-Poisson perturbed lattices will differ significantly from that
of the Poisson case.

(9) From [32], Theorem 1.1, for the zeroes of Gaussian entire function and
calculations similar to [20], Theorem 4.3.10, for the Ginibre point process, one
can check that in both cases

ρk(x1, . . . , xk) = �

(∏
i<j

‖xi − xj‖2
)
.

Hence f k(r) = �(rk(k−1)) for these processes.

PROOF OF THEOREM 3.1. We shall prove the theorem for k ≥ 2. The case
k = 1 follows easily by making a few notational changes to the general case. We
start with the convergence of E{Gn(�,�)}. In the expression for E{Gn(�,�)}
in (3.6), make the change of variable xi = x1 + rnyi for i ≥ 2 and then use station-
arity of the point process to obtain

E
{
Gn(�,�)

}

= r
d(k−1)
n

k!
∫
Wn

∫
(r−1

n (Wn−x))k−1
h�,n(x1 + rny)ρ(k)(x1 + rny) dx · · ·dyk

= r
d(k−1)
n

k!
∫
Wn

∫
(r−1

n (Wn−x))k−1
h�,n(rny)ρ(k)(rny) dx · · ·dyk

≤ r
d(k−1)
n

k!
∫
Wn

∫
Rd(k−1)

h�(y)ρ(k)(rny) dx · · ·dyk

= nr
d(k−1)
n

k!
∫
Rd(k−1)

h�(y)ρ(k)(rny) dy.

Since � is a connected graph, h� ≡ 0 outside (B0(k))k−1, and hence the preceding
integral is finite. Further for all x ∈ W(n1/d−2k)d , it follows that

BO(k) ⊂ (Wn − x) ⊂ r−1
n (Wn − x)
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for large n. Hence for large enough n,

E
{
Gn(�,�)

} ≥ r
d(k−1)
n

k!
∫
W

(n1/d−2k)d

∫
(r−1

n (Wn−x))k−1
h�(y)ρ(k)(rny) dx · · ·dyk

= r
d(k−1)
n

k!
∫
W

(n1/d−2k)d

∫
Rd(k−1)

h�(y)ρ(k)(rny) dx · · ·dyk

= ((n1/d − 2k)d)r
d(k−1)
n

k!
∫
Rd(k−1)

h�(y)ρ(k)(rny) dy.

Thus, as n → ∞,

E{Gn(�,�)}
nr

d(k−1)
n

∼ 1

k!
∫
Rd(k−1)

h�(y)ρ(k)(rny) dy.

Note that we can restrict the range of integration in the above equation to B0(k).
Since ρ(k)(rny)/f k(rn) = gk

ρ(y) a.e. in B0(k), and gk
ρ is bounded (as it is continu-

ous) in B0(k), we can use the Lebesgue dominated convergence theorem to show
that, as n → ∞,

E{Gn(�,�)}
nr

d(k−1)
n f k(rn)

→ μ0(�,�).

This proves the convergence of expected number of �-subgraphs.
We shall now show that the normalized expected numbers of components and

subgraphs are asymptotically equivalent for small enough radii. This will complete
the proof of the theorem.

Using the lower bound of 1 − �(BX(rn)) for the void term in Jn [see (3.4)], we
obtain the following lower bound for Jn:

Jn(�,�) ≥ Gn(�,�) − 1

k!
∑

X∈�
(k)
n

h�,n(X)�
(
BX(rn)

)

= Gn(�,�) − En(�,�).

Since Jn ≤ Gn, we only need to show that E{En(�,�)}
nr

d(k−1)
n f k(rn)

→ 0. From the Campbell–

Mecke formula, we have

E
{
En(�,�)

} = 1

k!
∫
Wk

n

h�,n(x)E!
x
{
�
(
Bx(rn)

)}
ρ(k)(x) dx.

From [37], Lemma 6.4, we know that ρ
!(1)
x (y) = ρ(k+1)(x,y)

ρ(k)(x)
. Now applying the

Campbell–Mecke formula for E!
x in the above equation, we find that

E
{
En(�,�)

} = 1

k!
∫
Wk

n ×Bx(rn)
h�,n(x)ρ(k+1)(x, y) dxdy.
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Now apply the change of variables xi = x1 + rnyi for i ≥ 2, y = rny and proceed
as in the case of E{Gn} to see that, for large enough n,

E
{
En(�,�)

} ≤ nrdk
n

k!
∫
Rd(k−1)×B0(k+1)

h�(y)ρ(k+1)(rny, rny) dydy,

where the additional factor of rd
n is due to the y variable. Dividing by

nr
d(k−1)
n f k(rn) and bounding h� by 1, we have

E{En(�,�)}
nr

d(k−1)
n f k(rn)

≤ rd
n f k+1(rn)

k!f k(rn)

∫
B0(k)k−1×B0(k+1)

ρ(k+1)(rny, rny)

f k+1(rn)
dy dy.

Since f k+1(r) = O(f k(r)) by assumption, E{En(�,�)}
nr

d(k−1)
n f k(rn)

→ 0 and hence

E{Jn(�,�)}
nr

d(k−1)
n f k(rn)

→ μ0(�,�),

as required. �

The following corollary follows easily from the ordering of the joint intensities
of the point processes.

COROLLARY 3.3. Let �i, i = 1,2, be two stationary point processes and
f k

ρi
, gk

ρi
correspond to the functions of Theorem 3.1. If �1 ≤α−w �2, then

f k
ρ1

≤ f k
ρ2

. If f k
ρ1

≡ f k
ρ2

, then gk
ρ1

≤ gk
ρ2

, and hence μ0(�1,�) ≤ μ0(�2,�) for
a connected graph � that is feasible for both �1 and �2.

3.3. Thermodynamic regime: rd
n → β .

THEOREM 3.4. Let � be a stationary point process in Rd of unit intensity
and � be a feasible connected graph of � on k vertices. Assume that ρ(k) is almost
everywhere continuous, and let rd

n → β > 0 and y = (0, y2, . . . , yk). Then

lim
n→∞

E{Gn(�,�)}
n

= μβ(�,�)(3.9)

:=
⎧⎪⎨
⎪⎩

1, k = 1,

βk−1

k!
∫
Rd(k−1)

h�(y)ρ(k)(β1/dy
)
dy, k ≥ 2,

lim
n→∞

E{Jn(�,�)}
n

= γβ(�,�)(3.10)



3358 D. YOGESHWARAN AND R. J. ADLER

:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P!
O

{
�
(
BO

(
β1/d

)) = 0
}
, k = 1,

βk−1

k!
∫
Rd(k−1)

h�(y)ρ(k)(β1/dy
)
,

× P!
β1/dy

{
�
(
Bβ1/dy

(
β1/d

)) = 0
}
dy, k ≥ 2.

If � is a negatively associated point process with P{�(Bx(β
1/d)) = 0} > 0 for

almost every x ∈ B0(β
1/dk)k , then γβ(�,�) > 0.

Again, before turning to the proof, we make some observations about the theo-
rem:

(1) The positivity of γβ(�,�) is not immediate. For an example in which
this does not hold, let �0 be a Poisson point process of unit intensity in Rd ,
�i, i ≥ 1 i.i.d. copies of the point process of 4 i.i.d. uniformly distributed points in
BO(β1/d/2), and define the Cox point process,

� := ⋃
Xi∈�0

{Xi + �i}.

Clearly, for all X ∈ �, P{�(BX(β1/d)) ≥ 4} = 1.
Now take rd

n ≡ β and � a triangle, and note that Jn(�,�) = 0 for all n ≥ 1 and
so γβ(�,�) = 0, even though all the assumptions of Theorem 3.4 are satisfied.

(2) As in Corollary 3.3, �1 ≤α−w �2 implies that μβ(�1,�) ≤ μβ(�2,�).
However, as the previous example shows, the situation for γβ(�,�) is somewhat
more complicated.

(3) If |�| = 1, then Jn(�,�) is the number of isolated nodes in the Boolean
model of balls of radii β centered on the points of �. The Palm measure of a
determinantal point process is also determinantal and in particular, for the Ginibre
process, ρ!(1)(z) = 1 − e−‖z‖2

. Using this explicit structure, it can be shown that,
for small enough β ,

γβ(�Gin,�) ≥ 1 − πβ2 + π
(
1 − e−β2)

> 1 − πβ2 + O
(
π2β4) = γβ(�Poi,�),

and hence the inequality for the γβ could be reversed in the thermodynamic regime
for even negatively associated point processes as compared to the sparse regime.

PROOF OF THEOREM 3.4. Since the proof here is similar to the preceding one,
we shall not give all the details, and again, we shall only bother with the case k ≥ 2.
Starting with (3.6) and (3.7), the proof follows similar lines to that of Theorem 3.1.
The difference is that r

d(k−1)
n → βk−1 and ρ(k)(rny) → ρ(k)(β1/dy), and so there

is no need for additional scaling. For the convergence of Jn, one first shows the
convergence of J̃n using similar techniques to those in the proof of Theorem 3.1.
Then note that

J̃n(�,�) ≤ Jn(�,�) ≤ J̃n(�,�) + Gn(�n/�(n1/d−(k+1)rn)d ,�).
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The rightmost term in the upper bound accounts for the boundary effects, and by
arguments similar to those in the proof of Theorem 3.1, it is easy to see that

E
{
Gn(�n/�(n1/d−(k+1)rn),�)

} = O
(|Wn/W(n1/d−(k+1)rn)d |

) = O
(
n(d−1)/d).

More importantly for us, this expectation is o(n), and so of lower order than
J̃n(�,�). Thus E{Jn(�,�)}/n also converges to γβ(�,�). Since rd

n → β > 0,
the void probability term in Jn is not necessarily degenerate.

The positivity of γβ(�,�) for negatively associated point processes is an easy
corollary of Lemma 2.1. We need only note that

F
(
�(B)

) = 1
[
�(B) = 0

] = (
1 − �(B)

)∨ 0

is a decreasing bounded continuous function and hence

P!
x
(
�
(
Bx

(
β1/d)) = 0

) ≥ P
{
�
(
Bx

(
β1/d)) = 0

}
> 0

for a.e. x ∈ B0(k)k . This completes the proof. �

3.4. Variance bounds for the sparse and thermodynamic regimes. The crux
of the second moment bounds lies in the fact that, up to constants, variances are
essentially bounded above (below) by expectations for negatively associated (asso-
ciated) point processes. [It is simple to check that Var(·) = �(E{·}) for the Poisson
process, which is both negatively associated and associated; cf. [35], Chapter 3.]
We, however, shall need to extend these inequalities to graph variables, and this is
the content of this section.

THEOREM 3.5 (Covariance bounds in sparse regime). Let � and �0 be two
feasible connected graphs on k and l (k ≥ l ≥ 2) vertices, respectively, for a sta-
tionary point process � with almost everywhere continuous joint densities. Let �

satisfy the assumptions of Theorem 3.1 and assume that the f j and g
j
ρ exist for all

j ≤ k + l. Further, let rn → 0 and μ0(�,�) > 0.

(1) If � is α-negatively associated, then

Cov
(
Gn(�,�),Gn(�,�0)

) = O
(
E
{
Gn(�,�)

})
.

(2) If � is α-associated, then

Cov
(
Gn(�,�),Gn(�,�0)

) = �
(
E
{
Gn(�,�)

})
.

PROOF. We shall prove the result for α-negatively associated processes and
k ≥ 2. The α-associated case follows by reversing the inequality sign in (3.11)
below, and the case k = 1 needs a few simple notational changes. We shall again
use the Campbell–Mecke formula to obtain closed-form expressions for the second
moments and then perform a similar analysis as in the proof of Theorem 3.1 to
obtain the asymptotics.
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For j ≤ l and x = (x1, . . . , xk+l−j ), in analogy to (3.1)–(3.3), define

h�,�0,j (x) := h�(x1, . . . , xk)h�0(x1, . . . , xj , xk+1, . . . , xk+l−j ),

h�,�0,j,n(x) := h�,n(x1, . . . , xk)h�0,n(x1, . . . , xj , xk+1, . . . , xk+l−j ).

Then

E
{
Gn(�,�)Gn(�,�0)

}
= E

{ ∑
X ,Y⊂�,|X |=k,|Y|=l

h�,n(X )h�0,n(Y)

}

=
l∑

j=0

E
{ ∑
X ,Y⊂�,|X |=k,|Y|=l,|X∩Y|=j

h�,n(X )h�0,n(Y)

}

=
l∑

j=0

1

j !(k − j)!(l − j)!
∫
W

k+l−j
n

h�,�0,j,n(x)ρ(k+l−j)(x) dx

≤
l∑

j=1

1

j !(k − j)!(l − j)!
∫
W

k+l−j
n

h�,�0,j,n(x)ρ(k+l−j)(x) dx(3.11)

+ 1

k!l!
∫
Wk

n

∫
Wl

n

h�,�0,0,n(x)ρ(k)(x1, . . . , xk)

× ρ(l)(xk+1, . . . , xk+l) dx1 · · ·dxk+l

=
l∑

j=1

1

j !(k − j)!(l − j)!
∫
W

k+l−j
n

h�,�0,j,n(x)ρ(k+l−j)(x) dx

+E
{
Gn(�,�)

}
E
{
Gn(�,�0)

}
,

where the inequality is due to the α-negative association property. Thus using sim-
ilar arguments as in the proof of Theorem 3.1 and setting y = (0, y2, . . . , yk+l−j ),
we have

Cov
(
Gn(�,�),Gn(�,�0)

)

≤
l∑

j=1

1

j !(k − j)!(l − j)!
∫
W

k+l−j
n

h�,�0,j,n(x)ρ(k+l−j)(x) dx

∼
l∑

j=1

nr
d(k+l−j−1)
n f k+l−j (rn)

j !(k − j)!(l − j)!
∫
Rd(k+l−j−1)

h�,�0,j (y)g(k+l−j)
ρ (y) dy(3.12)

= O
(
nrd(k−1)

n f k(rn)
)

= O
(
E
{
Gn(�,�)

})
,
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which is what we needed to show. �

Unlike the sparse regime, subgraph counts and component counts have differ-
ent limits in the thermodynamic regime and hence we need variance bounds on
component counts in the thermodynamic regime.

THEOREM 3.6 (Variance bounds in the thermodynamic regime). Let � be a
negatively associated stationary point process in Rd of unit intensity and � be a
feasible connected graph of � on k vertices. Assume that ρ(k) is almost everywhere
continuous. Let rd

n → β > 0 and γβ(�,�) > 0. Then we have that

Var
(
J̃n(�,�)

) = O
(
E
{
Jn(�,�)

})
.

PROOF. First, write

J̃n(�,�)2 = J̃n(�,�) + ∑
X,Y⊂�n,|X|=|Y |=k

h�,n(X)h�,n(Y )

× 1
[
�
(
BX(rn)

) = �
(
BY (rn)

) = 0
]
.

By the Campbell–Mecke formula,

E
{
J̃n(�,�)2}

= E
{
J̃n(�,�)

}
+ 1

(k!)2

∫
Wk

n ×Wk
n

h�,n(x)h�,n(y)1
[
G
({x,y}; rn) is disconnected

]
× P!

x,y
{
�
(
Bx(rn)

) = �
(
By(rn)

) = 0
}
ρ(2k)(x,y) dxdy.

Thus

Var
(
J̃n(�,�)

) = E
{
J̃n(�,�)

}
+ 1

(k!)2

∫
Wk

n ×Wk
n

h�,n(x)h�,n(y)Qn(x,y) dxdy,

where

Qn(x,y) := 1
[
G
({x,y}; rn) is disconnected

]
× P!

x,y
{
�
(
Bx(rn)

) = �
(
By(rn)

) = 0
}

× ρ(2k)(x,y) − P!
x
{
�
(
Bx(rn)

) = 0
}

× P!
y
{
�
(
By(rn)

) = 0
}
ρ(k)(x)ρ(k)(y).

Choose n large enough so that rn ≤ β1/d + 1
4 . For such an n and negatively asso-

ciated �, we know from Lemma 2.2 that Qn(x,y) ≤ 0 for all x,y such that the set
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distance dS(x,y) := infi,j ‖xi − yj‖ > 3β1/d . Thus, we have that

Var
(
J̃n(�,�)

) ≤ E
{
J̃n(�,�)

}
+ 1

(k!)2

∫
Wk

n ×Wk
n

h�,n(x)h�,n(y)

× Qn(x,y)1
[
d(x,y) ≤ 3β1/d]dxdy.

From Theorem 3.4, we know that E{J̃n(�,�)} = �(n), and using similar methods
as in that theorem, one can show that the latter term in the above equation is of
O(n). Combining the two, we get that Var(J̃n(�,�)) = O(n). �

3.5. Phase transitions in the sparse and thermodynamic regimes. So far, we
have concentrated on the asymptotic behavior of the expectations of the numbers
of different types of subgraphs that appear in the random graph associated with a
point process. In this section we shall combine expectations on first and second
moment to obtain results about these numbers themselves, looking at probabilities
that they are nonzero, as well as L2 and almost sure results about growth and decay
rates. The main theorem of this section is the following:

THEOREM 3.7. Let � be a stationary point process with almost everywhere
continuous joint densities and � a feasible connected graph for � on k vertices.

(1) Let � satisfy the assumptions of Theorem 3.1 with μ0(�,�) > 0. Let rn → 0.

(a) If nr
d(k−1)
n f k(rn) → 0,5 then P{Gn(�,�) ≥ 1} → 0.

(b) If � is α-negatively associated and nr
d(k−1)
n f k(rn) → β for some 0 <

β < ∞, there there exists a finite C (dependent on the process but not on �)
for which

lim
n→∞P

{
Jn(�,�) ≥ 1

} ≥
[
1 + C

βμ0(�,�)

]−1

.

(c) If � is α-negatively associated and nr
d(k−1)
n f k(rn) → ∞, then

Jn(�,�)

nr
d(k−1)
n f k(rn)

L2→ μ0(�,�).

(2) Let � be a negatively associated point process satisfying the assumptions of
Theorem 3.4 with γβ(�,�) > 0. Let rd

n → β . Then

Jn(�,�)

n

L2→ γβ(�,�).(3.13)

5Note that neither this assumption nor the one in (1)(b) can hold for k = 1, as f 1(r) ≡ 1. Hence
the statements do not say anything in these two cases.
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PROOF. The proof for part (1)(a) follows from Markov’s inequality and The-
orem 3.1. The proof of (1)(b) is based on the following second moment bound:

P
{
Jn(�,�) ≥ 1

} ≥ (E{Jn(�,�)})2

E{Jn(�,�)2}

≥ (E{Jn(�,�)})2

E{Gn(�,�)2}

≥
[
(E{Gn(�,�)})2

(E{Jn(�,�)})2 + Var(Gn(�,�))

(E{Jn(�,�)})2

]−1

.

Now, by applying Theorem 3.5, we obtain that there exists a C > 0 for which

P
{
Jn(�,�) ≥ 1

} ≥
[
(E{Gn(�,�)})2

(E{Jn(�,�)})2 + C

E{Gn(�,�)}
]−1

.

Under the assumptions of (1)(b), E{Gn(�,�)} converges to βμ0(�,�), while the
first term in the square brackets converges to 1 by Theorem 3.1.

For (1)(c), observe that

Var
(
Jn(�,�)

) ≤ Var
(
Gn(�,�)

)
+ 2E

{
Gn(�,�)

}
E
{
En(�,�)

}− (
E
{
En(�,�)

})2
,

where En(�,�) is as defined in the proof of Theorem 3.1. From the proofs of
Theorems 3.1 and 3.5, it follows that

Var
(
Jn(�,�)

) = O
(
Var

(
Gn(�,�)

)) = O
(
nrd(k−1)

n f k(rn)
)
,

which completes the proof for this case.
We now prove part 2 in a similar fashion. In fact, it follows easily from The-

orem 3.6 and the relation between Jn and J̃n noted in the proof of Theorem 3.4.
More specifically, as n → ∞,

Var
(

J̃n(�,�)

n

)
→ 0

and

E
{‖Jn(�,�) − J̃n(�,�)‖

n

}
= E{Gn(�n/�(n1/d−(k+1)rn)d ,�)}

n
→ 0.

Thus, we have that J̃n(�,�)
n

P→ γβ(�,�) and ‖Jn(�,�)−J̃n(�,�)‖
n

P→ 0 as n → ∞.
�

Since Jn is a Kd -Lipschitz functional of counting measures for a constant Kd

depending only on the dimension d (see [35], Proof of Theorem 3.15), the result
in (3.13) above can be strengthened to a concentration inequality for stationary
determinantal point processes by using the concentration inequality in [34], The-
orem 3.6. Further, (3.13) can also be extended to a strong law for ergodic point
processes via the methods used in [41], Lemma 3.2.
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3.6. Extension to subcomplex counts. The earlier section was concerned about
subgraph and component counts but, as will be seen later, the techniques can be
adapted to the analysis of wider classes of functionals. One specific class of func-
tionals for which we shall explicitly state the asymptotics are subcomplex counts.
These will be used in the next section. While asymptotics for Vietoris–Rips com-
plexes can be derived using those of subgraph counts, we shall need the results of
this section to derive the corresponding asymptotics for Čech complexes. We shall
need a few definitions before stating these results.

Let K and L be two complexes with vertex-sets V1 and V2, respectively. A func-
tion f :V1 → V2 is called a simplicial map if [f (v1), . . . , f (vk)] is a face of L
whenever [v1, . . . , vk] is a k-face of K. If f is a bijection and f −1 is also a sim-
plicial map, f is said to be a simplicial isomorphism. If there exists a simplicial
isomorphism between two complexes K and L, then we write K � L.

Let � be a complex on k vertices (k ≥ 1) such that its 1-dimensional skeleton
(i.e., the underlying graph) is connected (as a graph), and let {x1, . . . , xk} be a
collection of k points in Rd . As in the graph case, introduce the (indicator) function
h̃� :Rdk ×R+ → {0,1} defined by

h̃�(x, r) := 1
[
C
({x1, . . . , xk}, r) � �

]
,(3.14)

where � denotes simplicial isomorphism, and C was defined in Definition 1.1. Let
� be a simple stationary point process and rn, n ≥ 1 be a sequence of radii. As
before, setting h̃�(x) := h̃�(x,1), we call � a feasible subcomplex of � if∫

(Rd )k
h̃�(x)ρ(k)(x) dx > 0.

We can define an (induced) subcomplex count for the Čech complex on the
point process �n as follows:

C̃n(�,�) := 1

k!
∑

X∈�
(k)
n

h̃�(X, rn).

Also of interest is the number of isolated � subcomplexes of the Čech complex on
the point process �n, defined as follows:

C̃∗
n(�,�) := 1

k!
∑

X∈�
(k)
n

h̃�(X, rn)1
[
�n

(
BX(rn)

) = k
]
.

For the sake of brevity and to avoid repetition, we shall not provide the proofs
of the following two theorems, as they are a simple extension of the proofs of
Theorems 3.1, 3.4 and 3.7; see also the explanation before (5.1) in Section 5.

THEOREM 3.8. Let � be a stationary point process satisfying the assumptions
of Theorem 3.1 and �k be a feasible connected complexes of � on k vertices. Let
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rn → 0. Then

lim
n→∞

E{C̃n(�,�k)}
nr

d(k−1)
n f k(rn)

= lim
n→∞

E{C̃∗
n(�,�k)}

nr
d(k−1)
n f k(rn)

= μ̃0(�,�k)(3.15)

:=
⎧⎨
⎩

1, k = 1,
1

k!
∫
Rd(k−1)

h�k
(y)gk

ρ(y) dy, k ≥ 2.

If ρ(k)(0, . . . ,0) > 0, then the same result holds with f k
ρ ≡ 1 and gk

ρ ≡
ρ(k)(0, . . . ,0).

If � is α-negatively associated, μ̃0(�,�k) > 0 and nr
d(k−1)
n f k(rn) → ∞, then

C̃∗
n(�,�k)

nr
d(k−1)
n f k(rn)

L2→ μ̃0(�,�k).

THEOREM 3.9. Let � be a stationary point process in Rd of unit intensity
and � be a feasible connected complex of � on k vertices. Assume that ρ(k) is
almost everywhere continuous, and let rd

n → β > 0 and y = (0, y2, . . . , yk). Then

lim
n→∞

E{C̃n(�,�)}
n

= μ̃β(�,�)(3.16)

:=
⎧⎪⎨
⎪⎩

1, k = 1,

βk−1

k!
∫
Rd(k−1)

h̃�(y)ρ(k)(β1/dy
)
dy, k ≥ 2,

lim
n→∞

E{C̃∗
n(�,�)}

n

= γ̃β(�,�)(3.17)

:=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P!
O

{
�
(
BO

(
β1/d

)) = 0
}
, k = 1,

βk−1

k!
∫
Rd(k−1)

h̃�(y)ρ(k)(β1/dy
)

× P!
β1/dy

{
�
(
Bβ1/dy

(
β1/d

)) = 0
}
dy, k ≥ 2.

If � is a negatively associated point process and γ̃β(�,�) > 0, then

C̃∗
n(�,�k)

n

L2→ γ̃β(�,�k).

Further, if � is a negatively associated point process such that for almost every
x = (x1, . . . , xk) ∈ B0(β

1/dk)k , P{�(Bx(β
1/d)) = 0} > 0, then γ̃β(�,�) > 0.
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4. Betti numbers of random geometric complexes. This is really the main
section of the paper, giving, as it does, results about the homology of random
geometric complexes through their Betti numbers. Despite this, it will turn out
that, as mentioned earlier, the hard work for the proofs has already been done in
the previous section.

We shall start with a review of the basic topological notions needed to formulate
our results, along with an explanation of the connections between Betti numbers of
random complexes, component numbers of random geometric graphs and subcom-
plex counts. This connection was established and exploited in [22, 23] to extract
theorems for Betti numbers from those for the component counts of random geo-
metric graphs and subcomplex counts.

4.1. Topological preliminaries. Recall that Čech and Vietoris–Rips com-
plexes and their faces were already defined at Definitions 1.1 and 1.2 in the In-
troduction, and that the dimension of a face σ is |σ | − 1. Recall also that the edges
of the random geometric graph G(�, r) are the 1-dimensional faces of C(�, r) or
R(�, r).

Now, however, we require some additional terminology. The Vietoris–Rips
complex R(�n, r) is also called the clique complex (or flag complex) of G(�n, r),
as the faces are cliques (complete subgraphs) of the 1-dimensional faces. Let
Hk(C(�n, r)) and Hk(R(�n, r)), respectively, denote the kth simplicial homol-
ogy groups of the random Čech and Vietoris–Rips complexes. (We shall take
our homologies over the field Z2, but this will not be important.) In this section
we shall be concerned with asymptotics for the Betti numbers βk(C(�n, r)) and
βk(R(�n, r)), (i.e., the ranks of the homologies) and through them the appearance
and disappearance of homology groups.

Next, let Pk be the (k + 1)-dimensional cross-polytope in Rk+1, contain-
ing the origin, and defined to be the convex hull of the 2k + 2 points {±ei},
where e1, . . . , ek+1 are the standard basis vectors of Rk+1. The boundary of Pk ,
which we denote by Õk , is a k-dimensional simplicial complex, homotopic to a
k-dimensional sphere. Let Ok be the 1-skeleton of Õk that is, the clique complex
of the graph Ok is Õk . In terms of simplicial homology of the random Vietoris–
Rips complexes, the existence of subgraphs isomorphic to Ok is the key to under-
standing k-cycles, and so the kth homology. In fact, from [21], Lemma 5.3, we
know that, because the Vietoris–Rips complex is a clique complex, any nontrivial
element of the k-dimensional homology Hk(R(�n, r)) arises from a subcomplex
on at least 2k + 2 vertices. If it has only 2k + 2 vertices, then it will be isomorphic
to Õk and the corresponding 1-skeleton will be isomorphic to Ok .

Now let �
j
k , j = 1, . . . , nk (nk < ∞) be an ordering of the different graphs that

arise when extending a (k + 1)-clique (i.e., a k-dimensional face) to a minimal (in
terms of the number of edges) connected subgraph on 2k + 3 vertices. Thus the �

j
k

are all graphs on 2k + 3 vertices, having
(k+1

2

)+ k + 2 edges.
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Finally, for a given finite graph �, let G̃(�n,�) denote the number of subgraphs
of G(�n, rn) that are isomorphic to �. However, as explained in the discussion
after (3.4), G̃(�n,�) is a finite linear combination of Gn(�,�′)’s with �′’s being
of the same order as �.

Then [21], Lemma 5.3, and a dimension bound in [22], equation (3.1), imply
the following crucial inequality linking Betti numbers to component and subgraph
counts in Vietoris–Rips complexes for k ≥ 1 and for all n ≥ 1:

Jn(�n,Ok) ≤ βk

(
R(�n, rn)

) ≤ Jn(�,Ok) +
nk∑

j=1

G̃n

(
�,�

j
k

)
.(4.1)

A related inequality holds for Čech complexes. Let �̃k be the complex on k

vertices such that any k−1 vertices form a (k−1)-face, but �̃k is not a k-face. Any
collection of vertices X for which G(X, r) � �̃k is said to form an empty (k − 1)-
simplex. Let �̃′

k be the complex of a (k−1)-face with an extra edge attached to two
vertices and �̃′′

k be the graph of a (k − 1)-face with a path of length 2 attached to
one of the vertices. Both �̃′

k and �̃′′
k are complexes of order k + 1. The we have the

following combinatorial inequality from [23], equation (5), for k ∈ {0, . . . , d − 1}
and for all n ≥ 1:

C̃∗
n(�, �̃k+2) ≤ βk

(
C(�n, rn)

)
(4.2)

≤ C̃∗
n(�, �̃k+2) + C̃n

(
�, �̃′

k+2
)+ C̃n

(
�, �̃′′

k+2
)
.

With these combinatorial inequalities in hand, we are now ready to develop limit
theorems for the Betti numbers of the random Čech and Vietoris–Rips complexes
(Section 4.2) as well as find thresholds for vanishing and nonvanishing of homol-
ogy groups (Section 4.3).

4.2. Expectations of Betti numbers. We return now to the setting of a station-
ary point process � in Rd and the sequence of finite point processes �n. Our
results all follow quite easily from the corresponding limit theorems in Section 3,
and we continue to use the notation of that section without further comment.

The underlying heuristic is that in the sparse regime the order is determined by
the order of the minimal structure involved in forming homology groups, which is
Ok for the random Vietoris–Rips complex and �k for the random Čech complex.
Using Theorem 3.1 for the Vietoris–Rips complexes and Theorem 3.8 for the Čech
complexes, it is easy to see that these are the leading order terms and that the G

and G̃ terms in both (4.1) and (4.2) are, asymptotically, irrelevant. Hence, we have
the following result.

THEOREM 4.1 (Sparse regime: rn → 0). Let � be a stationary point process
in Rd satisfying the assumptions in Theorem 3.1 for all k ≥ 1. Let rn → 0. Further,
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assume that μ̃0(�, �̃k+2) > 0 for all k ∈ {0, . . . , d − 1} and μ0(�,Ok) > 0 for all
k ≥ 1. Then

lim
n→∞

E{βk(C(�n, rn))}
nr

d(k+1)
n f k+2(rn)

= μ̃0(�, �̃k+2), k ∈ {0, . . . , d − 1},

lim
n→∞

E{βk(R(�n, rn))}
nr

d(2k+1)
n f 2k+2(rn)

= μ0(�,Ok), k ≥ 1.

For k = 0, we have that

lim
n→∞

E{β0(C(�n, rn))}
n

= lim
n→∞

E{β0(R(�n, rn))}
n

= 1.

PROOF. We start with the case k ≥ 1 and k ∈ {0, . . . , d − 1} for the Vietoris–
Rips and Čech complexes, respectively. From Theorems 3.1 and 3.8, the orders of
magnitude of the terms in (4.1) and (4.2) are as follows:

E
{
C̃∗

n(�, �̃k+2)
} = �

(
nrd(k+1)

n f k+2(rn)
)
,

E
{
C̃n

(
�, �̃′

k+2
)} = �

(
nrd(k+2)

n f k+3(rn)
)
,

E
{
C̃n

(
�, �̃′′

k+2
)} = �

(
nrd(k+2)

n f k+3(rn)
)
,

E
{
Jn(�,Ok)

} = �
(
nrd(2k+1)

n f 2k+2(rn)
)
,

E
{
G̃
(
�,�

j
k

)} = �
(
nrd(2k+2)

n f 2k+3(rn)
)
, 1 ≤ j ≤ nk.

Substituting these into (4.1) and (4.2), and using the fact that the limits of
E{C̃∗

n(�, �̃k+2)} and E{Jn(�,Ok)} are explicitly known from Theorems 3.1
and 3.8, completes the proof of the theorem.

For the case k = 0, the bounds similar to (4.1) on β0 and a similar argument will
give the right asymptotics. �

Turning now to the thermodynamic regime, and applying the same arguments
as in the previous proof, but using Theorems 3.4 and 3.9 in place of Theorems 3.1
and 3.8, we find that all the terms in (4.1) and (4.2) are of order �(n). This leads
to the following result.

THEOREM 4.2 (Thermodynamic regime: rd
n → β). Let � be a stationary

point process in Rd satisfying the assumptions in Theorem 3.4 for all k ≥ 1. Let
rd
n → β ∈ (0,∞). Further, assume that γ̃β(�, �̃k) > 0 for all k ∈ {0, . . . , d − 1}

and γβ(�,Ok) > 0 for all k ≥ 1. Then, for all k ≥ 0,

E
{
βk

(
R(�n, rn)

)} = �(n),

and for all k ∈ {0, . . . , d − 1},
E
{
βk

(
C(�n, rn)

)} = �(n).
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The above asymptotics have been strengthened to convergence and strong laws
in the recent preprint [41]. Further, we note without proof that one can obtain
ordering results for Betti numbers of α − w ordered point processes in the sparse
regime analogous to Corollary 3.3 but not in the thermodynamic regime.

4.3. Thresholds for homology groups. Our aim in this subsection is to estab-
lish results about the conditions under which different homology groups appear
and disappear in the homology of random complexes. We shall need to treat Čech
and Vietoris–Rips complexes separately, and start with results on the contractibil-
ity of these. We follow these with the key results of the section, on thresholds for
the appearance and disappearance of homology groups. These results also show
that γ -weakly sub-Poisson point processes have lower vanishing thresholds for
given �-components. As a corollary to the results on Čech complexes, we also
obtain an asymptotic result on the behavior of the Euler characteristic χ(C(�, r)).

Recall that there are a number of equivalent definitions for the Euler character-
istic. However, the most natural for us at this point is

χ
(
C(�, r)

) := ∑
k≥0

(−1)kβk

(
C(�, r)

)
.(4.3)

THEOREM 4.3 (Contractibility of Čech complexes). Let � be a stationary
γ -weakly sub-Poisson point process. Then there exists a Cd > 0 such that for rn ≥
Cd(logn)1/d , w.h.p. C(�n, rn) is contractible and χ(C(�n, rn)) = 1.

PROOF. We start with a proof of contractibility and then show that
χ(C(�n, rn)) = 1, w.h.p. As in the proof of contractibility for Poisson Čech com-
plexes in [22], Theorem 6.1, we shall show that, for our choice of rn, the set⋃

X∈�n
BX(rn/2) covers Wn w.h.p. Then the nerve theorem of [2], Theorem 10.7,

implies that the Čech complex is contractible w.h.p. Let Zd be the d-dimensional
lattice, and let Qzi

,1 ≤ i ≤ Nn be an enumeration of the cubes of the scaled lattice
rn

4
√

d
Zd that are fully contained within Wn. If every cube contains a point of �,

then
⋃

X∈�n
BX(rn/2) covers Wn. By the union bound,

P
{
Wn �

⋃
X∈�n

BX(rn/2)

}
≤

Nn∑
i=1

P
{
�(Qzi

) = 0
}

≤ NnP
{
�(1)

(
BO

(
rn

8
√

d

))
= 0

}

≤ (4
√

d)dn

rd
n

e−(rn/(8
√

d))d ,

where �(1) is the Poisson point process of unit intensity. All that remains is to
choose an appropriate Cd > 0 to complete the proof of contractibility for general
stationary γ -weakly sub-Poisson point processes.
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As for the proof of the statement about the Euler characteristic, the following
obvious bound suffices:

P
{
Wn ⊂ ⋃

X∈�n

BX(rn/2)

}

≤ P
{
β0

(
C(�n, rn)

) = 1, βk

(
C(�n, rn)

) = 0, k ≥ 1
}

≤ P
{
χ
(
C(�n, rn)

) = 1
}
. �

With these results in hand, we can now use bounds (4.1) and (4.2) along with
L2 convergence results of Theorems 3.7, 3.8 and 3.9 to complete the picture about
vanishing and nonvanishing of homology groups of Čech complexes and Vietoris–
Rips complexes.

THEOREM 4.4 (Thresholds for Čech complexes). Let � be a stationary point
process satisfying the assumptions on its joint intensities ρ(k) as in Theorems 3.1
and 3.4 for all k ≥ 1. Then the following statements hold:

(1) Let � be a γ -weakly sub-Poisson point process.

(a) If

rd(k+1)
n f k+2(rn) = o

(
n−1) or rd

n = ω(logn),

then βk(C(�n, rn)) = 0, k ∈ {0, . . . , d − 1}, w.h.p.
(b) If rd

n = ω(logn), then β0(C(�n, rn)) = 1, w.h.p.

(2) Let � be a negatively associated point process. Further assume that
μ̃0(�,�k) > 0 and γ̃β(�,�k) > 0, both for all k ∈ {0, . . . , d − 1} and all
β > 0.

(a) If

rd(k+1)
n f k+2(rn) = ω

(
n−1) and rd

n = O(1),

then βk(C(�n, rn)) �= 0, k ∈ {0, . . . , d − 1}, w.h.p.
(b) If rd

n = O(1), then β0(C(�n, rn)) �= 0, w.h.p.

In the absence of a contractibility result for the Vietoris–Rips complex, we
are unable to estimate the second thresholds, where the homology groups van-
ish. Thus we have the following less complete picture for the Vietoris–Rips com-
plex. Since H0(C(�n, rn)) = H0(R(�n, rn)), we shall restrict ourselves to only
Hk(R(�n, rn)), k ≥ 1, in the following theorem.

THEOREM 4.5 (Thresholds for Vietoris–Rips complexes). Let � be a sta-
tionary point process satisfying the assumptions on its joint intensities ρ(k) as in
Theorems 3.1 and 3.4 for all k ≥ 1. Then the following statements hold for k ≥ 1:
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(1) If

rd(2k+1)
n f 2k+2(rn) = o

(
n−1),

then βk(R(�n, rn)) = 0, w.h.p.
(2) Let � be a negatively associated point process. Further assume that

μ0(�,Ok) > 0 and γβ(�,Ok) > 0, both for all k ≥ 1 and all β > 0. If

rd(2k+1)
n f 2k+1(rn) = ω

(
n−1) and rd

n = O(1),

then βk(R(�n, rn)) �= 0, w.h.p.

4.4. Further results for the Ginibre process. Using the special structure of the
Ginibre point process, we can improve on the threshold results of the last section.
The radius regime for contractibility of Čech complexes over the Ginibre point
process and zeros of GEF can be made more precise, as more is known about
void probabilities in these cases. Once we have the contractibility or connectivity
results, the upper bounds on the thresholds for vanishing of Betti numbers in this
special case can be improved.

THEOREM 4.6 (Contractibility of Čech complexes). Let � be the Ginibre
point process or zeros of GEF. Then there exists a Cd > 0 (depending on the point
process) such that for rn ≥ Cd(logn)1/4, w.h.p. C(�n, rn) is contractible. Hence,
β0(C(�n, rn)) = 1, βk(C(�n, rn)) = 0, k ≥ 1 and χ(C(�n, rn)) = 1 w.h.p. for
r2
n = ω(

√
logn).

PROOF. The proof follows along similar lines as the proof of Theorem 4.3
except that in this case, the void probabilities are of strictly lower order and so,
the radius for contractibility as well. More precisely, we know from [20], Propo-
sition 7.2.1 and Theorem 7.2.3, that for the Ginibre point process and zeros of
GEF, − log(P{�(BO(r)) = 0}) = �(r4) as r → ∞. All that remains is to substi-
tute these bounds into the proof of Theorem 4.3 to derive the corresponding results
for the Ginibre point process and zeros of GEF. �

For Vietoris–Rips complexes, we do not have a contractibility result for the
Ginibre point proceses, but as a consequence of the upper bounds for the Palm
void probabilities, we can obtain upper bounds on the threshold for the vanishing
of the Betti numbers as well.

THEOREM 4.7 (Disappearence of homology groups for Vietoris–Rips com-
plexes). Let � be the Ginibre point process. Then there exists a Cd,k > 0 such
that for rn ≥ Cd,k(logn)1/4, we have that w.h.p. βk(R(�n, rn)) = 0, k ≥ 1.
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The proof uses the discrete Morse theoretic approach (see [16]) similar to that
of [22], Theorem 5.1, and the reader is referred to that proof and the Appendix
in [22] for missing details. As in [22], Theorem 5.1, our proof actually shows topo-
logical k-connectivity, though we do not state it here explicitly to avoid defining
further topological notions.

PROOF OF THEOREM 4.7. As the point process is simple and stationary, index
the points in � as X1,X2, . . . such that ‖X1‖ < ‖X2‖ < ‖X3‖ < · · · . Define V to
be the collection of pairs of simplices (V1,V2), V1 ⊂ V2 with

V1 = [Xi1, . . . ,Xik ] and V2 = [Xi0,Xi1, . . . ,Xik ],
where i0 < i1 < · · · < ik . In words, we pair a simplex with another simplex of
codimension 1 in the original simplex only if the additional point is closer to the
origin than the rest. A simplex that is not in V is said to be a critical simplex. Let
Ck be the number of critical k-simplices of V . From discrete Morse theory, we
know that βk(R(�n, rn)) ≤ Ck . Thus, we only need to show that E{Ck} → 0 for
all k ≥ 1, for an appropriate choice of radii.

A k-simplex X = [Xi0, . . . ,Xik ] where i0 < i1 < · · · < ik is critical only if

�n

(
k⋂

j=0

BXij
(r) ∩ BO

(‖Xi0‖
)) = {Xi0}.

Hence, using Campbell–Mecke formula for the first inequality, then using [22],
Lemma 5.3—that is, for a critical k-simplex as above, there exists an εd > 0 and
x ∈ Rd such that

Bx(εd) ⊂
k⋂

j=0

BXij
(r) ∩ BO

(‖Xi0‖
)

—and Lemma A.4 for the second inequality and finally ρ(k) ≤ 1 for the last in-
equality, we find that

E{Ck} ≤
∫
Wk+1

n

1[x is a simplex]1[‖xi0‖ < ‖xi1‖ < · · · < ‖xik‖
]

× P!
x

{
�n

(
k⋂

j=0

Bxij
(r) ∩ BO

(‖xi0‖
)) = 0

}
ρ(k)(x) dx

≤ exp
{
(k + 1)(εdr)2 − (εdr)4

(
1

4
+ o(1)

)}∫
Wn×Bxi0 (r)k

ρ(k)(x) dx

≤ nr2k exp
{
k(εdr)2 − (εdr)4

(
1

4
+ o(1)

)}
.

It is easy to see that there exists a constant Cd,k > 0 such that E{Ck} → 0 for
rn ≥ Cd,k(logn)1/4, and so we are done. �
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5. Morse theory for random geometric complexes. Our aim in this section
is to present a collection of results concerning random geometric complexes, but
from the viewpoint of Morse theory.

In fact, we have already used discrete Morse theory to derive some of the con-
nectivity thresholds for Vietoris–Rips complexes in Theorem 4.7. However, in
addition to this essentially combinatorial Morse theory, there is a different and
more geometric version of Morse theory for nonsmooth functions on “nice” man-
ifolds [17]. While discrete Morse theory can be applied to study simplicial com-
plexes without requiring any information on an ambient space in which the com-
plex is embedded, in a geometric setting such as ours one can exploit knowledge
of the ambient (Euclidean, in our case) space to apply the so-called “min-type”
Morse theory.

This theory has also been exploited in the past to study of random geometric
complexes on Poisson and i.i.d. point processes in [6], where it was shown that
this Morse theoretic approach can give an intrinsically richer set of results than
that obtained by attacking homology directly. Further, these Morse theoretic results
have, as usual, implications about Betti numbers. We wish to point out that each of
thse quite distinct versions of Morse theory have proved to be useful tools in the
study of random complexes.

We do not intend to give full proofs here, but rather to set things up in such a
way that parallels between the structures that have appeared in previous sections
and those that are natural to the Morse theoretic approach become clear, and it
becomes “obvious” what the Morse theoretic results will be. Full proofs would
require considerable more space, but would add little in terms of insight. We note,
however, that this does not make the proofs of [6] in any way redundant. On the one
hand, the results there go beyond what we have here (albeit only for the Poisson
and i.i.d. cases), and it is their existence that allows us to be certain that the parallels
work properly.

We start with some definitions and a quick description of the Morse theoretic
setting.

5.1. Morse theory. Morse theory for geometric complexes is based on the dis-
tance function, d� :Rd →R+, defined by

d�(x) := min
X∈�

‖x − X‖, x ∈Rd .

Note that while classical Morse theory deals with smooth functions, the distance
function is piecewise linear, but nondifferentiable along subspaces. The extension
to the distance function of classical Morse theory is discussed in detail in [6],
based on the definitions and results in [17], and we shall adopt the same approach.
The main difference between smooth Morse theory and that based on the distance
function lies in the definition of the indices of critical points.
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Critical points of index 0 of the distance function are the points where d� = 0,
which are local and global minima, and are the points of �. For higher indices,
define the critical points as follows: A point c ∈Rd is said to be a critical point with
index 1 ≤ k ≤ d if there exists a collection of points X = {X1, . . . ,Xk+1} ⊂ �(k+1)

such that the following conditions hold:

(1) d�(c) = ‖c − Xi‖ for all 1 ≤ i ≤ k + 1 and d�(c) < ‖c − Y‖ for all Y ∈
� \ X.

(2) The points Xi,1 ≤ i ≤ k + 1 lie in general position; namely, they do not lie
in a (k − 1)-dimensional affine space.

(3) c ∈ convo(X), where convo(X) denotes the interior of the convex hull
formed by the points of X.

Let C(X) denote the center of the unique (k − 1)-dimensional sphere (if it exists)
containing the points of X ∈ �(k+1) and R(X) be the radius of the ball. The con-
ditions in the definition of critical points can be reduced to the following more
workable conditions; see [6], Lemma 2.2. A set of points X ∈ �(k+1) in general
position generates an index k critical point if and only if

C(X) ∈ convo(X) and �
(
BC(X)

(
R(X)

)) = 0.

Our interest lies in critical points which are at most at a distance r from �, namely,
those for which d�(c) ≤ r , or, equivalently R(X) ≤ r . The reason for this lies in
the simple fact that

d−1
�

([0, r]) = ⋃
x∈�

Bx(r),

and, as we already noted earlier, by the nerve theorem this is homotopy equivalent
to the Čech complex C(�, r).

The following indicator functions will be required to draw the analogy between
counting critical points and counting components of random geometric graphs. For
X ∈ �(k+1), define

h(X) := 1
[
C(X) ∈ convo(X)

]
,

hr(X) := 1
[
C(X) ∈ convo(X)

]
1
[
R(X) ≤ r

]
.

Note that these functions are translation and scale invariant, as were the h� func-
tions defined for the subgraph and component counts in Section 3; namely, for all
x ∈ Rd and y = (0, y1, . . . , yk) ∈Rd(k+1),

hr(x, x + ry1, . . . , x + ryk) = h1(y).

This was the key property of h� used to derive asymptotics for component counts.
Thus, once we manage to represent the numbers of critical points as counting
statistics of hr , the analogy with component counts is made. To this end, let
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Nk(�, r) be the number of critical points of index k for the distance function d�

that are at most at a distance r from �. Then

Nk(�, r) = ∑
X∈�(k+1)

hr(X)1
[
�
(
BC(X)

(
R(X)

)) = 0
]
.(5.1)

The similarity between the expression for Nk(�n, rn) and Jn [cf. (3.4)] should
convince the reader that the method of proof used for component counts will also
suffice for a derivation of the asymptotics of Morse critical points. Although the
void indicator term is slightly different, we can use the fact that R(X) ≤ r for
hr(X) = 1 to apply the techniques of Section 3 with only minor changes.

5.2. Limit theorems for expected numbers of critical points. As in previous
sections, we shall give results for the sparse and thermodynamic regimes sep-
arately. In the Betti number results, in the sparse regime (rn → 0) the scaling
factor of n for Jn (see Theorem 3.1) arose from the translation invariance of
h� and �. The factor of r

d(k−1)
n was due to the scale invariance of h� , and the

factor of f k(rn) came from the scaling of the joint intensities ρ(k). Since hr is
also translation and scale invariant, we work under the same assumptions on �

as in Theorems 3.1 and 3.5 with corresponding conditions hr in order to ob-
tain asymptotics for expected number of critical points of the distance function.
Also, E{N0(�n, r)} = E{�(Wn)} = n for all r ≥ 0 and so we shall focus only on
Nk,1 ≤ k ≤ d . The corresponding result is as follows:

THEOREM 5.1 (Sparse regime). Let � be a stationary point process in Rd

satisfying the assumptions of Theorem 3.1 for all 1 ≤ k ≤ (d + 1). Let rn → 0 and
y = (0, y1, y2, . . . , yk). Then, for 1 ≤ k ≤ d ,

lim
n→∞

E{Nk(�n, rn)}
nrdk

n f k+1(rn)
= νk(�,0)

:= 1

(k + 1)!
∫
Rdk

h1(y)gk+1
ρ (y) dy.

Further, Var(Nk(�n, rn)) = O(E{Nk(�n, rn)}) for negatively associated point
processes.

One point that is deserving of additional comment for the proof is that, as in
Theorem 3.1, we can omit the void probability term in the limit by the following
reasoning: since R(y) ≤ r if hr(y) = 1, y = (0, y1, . . . , yk), we have that whenever
hrn(y) = 1,{

�
(
B

C(r
1/d
n y)

(
r1/d
n

)) = 0
} ⊂ {

�
(
B

C(r
1/d
n y)

(
r1/d
n R(y)

)) = 0
}
,

and the probability of the left event here (and hence the right as well) tends to 1.
This follows from similar arguments to those in the proof of Theorem 3.1.
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Turning now to the thermodynamic regime, we saw in Theorem 3.4 that the sole
scaling factor of n for component counts is due to the translation invariance of h�

and �. The same remains true for mean numbers of critical points.

THEOREM 5.2 (Thermodynamic regime: rd
n → β). Let � be a stationary

point process in Rd satisfying the assumptions of Theorem 3.4 for all 1 ≤ k ≤
(d + 1). Let rd

n → β ∈ (0,∞) and y = (0, y1, y2, . . . , yk). Then, for 1 ≤ k ≤ d ,

lim
n→∞

E{Nk(�n, rn)}
n

= νk(�,β)

:= βk

(k + 1)!
∫
Rdk

h1(y)P!
β1/dy

(
�
(
BC(β1/dy)

(
β1/dR(y)

)) = 0
)
ρ(k)(β1/dy

)
dy.

Further, assume that � is also a negatively associated point process such that

P
{
�
(
BC(x)

(
β1/d)) = 0

}
> 0

for a.e. x = (0, x1, . . . , xk) ∈ B0(3β1/d)k+1, and for all 1 ≤ k ≤ d . Then
νk(�,β) > 0 for all 1 ≤ k ≤ d .

Also, Var(Nk(�n, rn)) = O(E{Nk(�n, rn)}) for negatively associated point pro-
cesses.

As previously, the void probability needs some attention. In this case, to show
its positivity, we again use the fact that R(y) ≤ 1 if h1(y) = 1, and hence, whenever
h1(y) = 1,{

�
(
BC(β1/dy)

(
β1/d)) = 0

} ⊂ {
�
(
BC(β1/dy)

(
β1/dR(y)

)) = 0
}
.

The positivity of the first event under Palm probability is guaranteed by our as-
sumption via Lemma 2.1.

Finally, we turn to a result about Euler characteristics that is not accessible from
the non-Morse theory. We already defined the Euler characteristic in terms of Betti
numbers at (4.3), and showed in Theorem 4.3 that, in the connectivity regime, it is 1
with high probability. However, taking an alternative, but equivalent, definition via
numbers of Morse critical points, we can deduce its L1 asymptotics in the sparse
and thermodynamic regimes as a corollary of the previous results in this section.
The alternative definition, which is more amenable to computations due to the
bounded number of terms in the following sum, is

χ
(
C(�, r)

) :=
d∑

k=0

(−1)kNk(�, r).

THEOREM 5.3. Let � be a stationary point process in Rd satisfying the as-
sumptions of Propositions 3.1 and 3.4 for all 1 ≤ k ≤ (d + 1):
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(i) If rn → 0, then

n−1E
{
χ
(
C(�n, rn)

)} → 1.

(ii) If rd
n → β ∈ (0,∞), then

n−1E
{
χ
(
C(�n, rn)

)} → 1 +
d∑

k=1

(−1)kνk(�,β).

(iii) If � is also a negatively associated point process, then the above conver-
gences also hold in the L2-norm.

To prove the part (iii) of the theorem, we need variance bounds, which is why
we require the additional assumption of negative association. For example, in the
sparse regime, we have the following bound via the Cauchy–Schwarz inequality:

E
{∥∥∥∥χ(C(�n, rn))

n
− 1

∥∥∥∥
2}

= E

{∥∥∥∥∥
(

�(Wn)

n
− 1

)
+

d∑
k=1

(−1)k
Nk(�, r)

n

∥∥∥∥∥
2}

≤ d

(
Var(�(Wn))

n2 +
d∑

k=1

E{Nk(�n, rn)
2}

n2

)

= d

(
Var(�(Wn))

n2 +
d∑

k=1

Var(Nk(�n, rn))

n2 +
d∑

k=1

(E{Nk(�n, rn)})2

n2

)
.

The L2 convergence follows once it is noted that all the terms on right-hand
side converge to 0 due to the variance bounds proven for negatively associated
point processes. A slight modification of this argument handles the thermodynamic
regime as well.

APPENDIX

In this section, we prove the result about Palm void probabilities of Ginibre
point process that is used in the proof of Theorem 4.7. The proof is due to Manju-
nath Krishnapur.

LEMMA A.4. Let D = B0(r) ⊂ R2 for some r > 0 and � be the Ginibre point
process. Then for k ≥ 1 and x ∈ R2k ,

P!
x
{
�(D) = 0

} ≤ exp
{
kr2}P{�(D) = 0

} = exp
{
kr2 − r4(1

4 + o(1)
)}

.
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PROOF. We shall prove the result for k = 1. The proof for the general case
then follows by a recursive application of the same argument.

Let KD be the restriction to D of the integral operator K corresponding to Gini-
bre point process. Since the Palm process of the Ginibre point process is also a
determinantal point process, let LD be the integral operator corresponding to the
Palm point process restricted to D. Let λi, i = 1,2, . . . and μi, i = 1,2, . . . be
the eigenvalues of KD and LD , respectively. From [37], Theorem 6.5, we know
that KD − LD has rank 1, and hence, by a generalization of Cauchy’s interlace-
ment theorem, the respective eigenvalues are interlaced with λi ≥ μi ≥ λi+1 for
i = 1,2, . . . .

Now, consider the case k = 1 and we have the following inequality:

P!
x
{
�(D) = 0

} = ∏
i≥1

(1 − μi) ≤ ∏
i≥2

(1 − λi) = (1 − λ1)
−1P

{
�(D) = 0

}
,

where the two equalities are due to [20] Theorem 4.5.3, and the inequality is due to
the generalization of Cauchy’s interlacement theorem described above. Now using
[20], Proposition 7.2.1, to bound P{�(D) = 0} and from the fact that 1 − λ1 =
P{EXP(1) > r2} = exp{−r2} (see [20], proof of Theorem 4.7.1), where EXP(1) is
the exponential random variable with mean 1, we have the desired inequality for
the case k = 1. �

Acknowledgments. The authors wish to thank Manjunath Krishnapur for
pointing out an error in Remark 3.2(9) and other useful discussions regarding
determinantal point processes. The authors also thank an anonymous referee for
many helpful comments on the first draft. Most of this work was done when D. Yo-
geshwaran was a postdoctoral researcher at Technion, Israel and D. Yogeshwaran
thanks Technion for its support.

REFERENCES

[1] BABSON, E., HOFFMAN, C. and KAHLE, M. (2011). The fundamental group of random
2-complexes. J. Amer. Math. Soc. 24 1–28. MR2726597

[2] BJÖRNER, A. (1995). Topological methods. In Handbook of Combinatorics, Vol. 1, 2 1819–
1872. Elsevier, Amsterdam. MR1373690

[3] BŁASZCZYSZYN, B. and YOGESHWARAN, D. (2015). Clustering, percolation and comparison
of point processes. In Stochastic Geometry, Spatial Statistics and Random Fields: Models
and Algorithms (V. Schmidt, ed.). Lecture Notes in Mathematics 2120. Springer, Cham.
To appear.

[4] BŁASZCZYSZYN, B. and YOGESHWARAN, D. (2013). Clustering and percolation of point
processes. Electron. J. Probab. 18 no. 72, 20. MR3091718

[5] BŁASZCZYSZYN, B. and YOGESHWARAN, D. (2014). On comparison of clustering properties
of point processes. Adv. in Appl. Probab. 46 1–20. MR3189045

[6] BOBROWSKI, O. and ADLER, R. J. (2014). Distance functions, critical points, and topology
for some random complexes. Homology, Homotopy Appl. 16 311–344.

[7] BOBROWSKI, O. and MUKHERJEE, S. (2015). The topology of probability distributions on
manifolds. Probab. Theory Related Fields 161 651–686. MR3334278

http://www.ams.org/mathscinet-getitem?mr=2726597
http://www.ams.org/mathscinet-getitem?mr=1373690
http://www.ams.org/mathscinet-getitem?mr=3091718
http://www.ams.org/mathscinet-getitem?mr=3189045
http://www.ams.org/mathscinet-getitem?mr=3334278


RANDOM COMPLEXES 3379

[8] BOBROWSKI, O., MUKHERJEE, S. and TAYLOR, J. (2014). Topological consistency via kernel
estimation. Preprint. Available at arXiv:1407.5272.

[9] BUBENIK, P., CARLSSON, G., KIM, P. T. and LUO, Z.-M. (2010). Statistical topology via
Morse theory persistence and nonparametric estimation. In Algebraic Methods in Statis-
tics and Probability II. Contemp. Math. 516 75–92. Amer. Math. Soc., Providence, RI.
MR2730741

[10] BURTON, R. and WAYMIRE, E. (1985). Scaling limits for associated random measures. Ann.
Probab. 13 1267–1278. MR0806223

[11] CARLSSON, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46 255–308.
MR2476414

[12] CARLSSON, G. (2014). Topological pattern recognition for point cloud data. Acta Numer. 23
289–368. MR3202240

[13] CHAZAL, F., COHEN-STEINER, D. and MÉRIGOT, Q. (2011). Geometric inference for prob-
ability measures. Found. Comput. Math. 11 733–751. MR2859954

[14] COHEN, D., COSTA, A., FARBER, M. and KAPPELER, T. (2011). Topology of random
2-complexes. Discrete Comput. Geom. 47 No. 1.

[15] EDELSBRUNNER, H. and HARER, J. L. (2010). Computational Topology: An Introduction.
Amer. Math. Soc., Providence, RI. MR2572029

[16] FORMAN, R. (2002). A user’s guide to discrete Morse theory. Sém. Lothar. Combin. 48 Art.
B48c, 35.

[17] GERSHKOVICH, V. and RUBINSTEIN, H. (1997). Morse theory for Min-type functions. Asian
J. Math. 1 696–715. MR1621571

[18] GHOSH, S. (2012). Determinantal processes and completeness of random exponentials: The
critical case. Preprint. Available at arXiv:1211.2435.

[19] GHRIST, R. (2008). Barcodes: The persistent topology of data. Bull. Amer. Math. Soc. (N.S.)
45 61–75. MR2358377

[20] HOUGH, J. B., KRISHNAPUR, M., PERES, Y. and VIRÁG, B. (2009). Zeros of Gaussian An-
alytic Functions and Determinantal Point Processes. University Lecture Series 51. Amer.
Math. Soc., Providence, RI. MR2552864

[21] KAHLE, M. (2009). Topology of random clique complexes. Discrete Math. 309 1658–1671.
MR2510573

[22] KAHLE, M. (2011). Random geometric complexes. Discrete Comput. Geom. 45 553–573.
MR2770552

[23] KAHLE, M. (2014). Topology of random simplicial complexes: A survey. In Algebraic Topol-
ogy: Applications and New Directions. Contemp. Math. 620 (U. Tillmann, S. Galatius and
D. Sinha, eds.). Amer. Math. Soc., Providence, RI. MR3290093

[24] KAHLE, M. and MECKES, E. (2013). Limit theorems for Betti numbers of random simplicial
complexes. Homology, Homotopy Appl. 15 343–374. MR3079211

[25] KALLENBERG, O. (1983). Random Measures, 3rd ed. Akademie-Verlag, Berlin. MR0818219
[26] LAVANCIER, F., MØLLER, J. and RUBAK, E. (2012). Determinantal point process models and

statistical inference. Preprint. Available at arXiv:1205.4818.
[27] LINIAL, N. and MESHULAM, R. (2006). Homological connectivity of random 2-complexes.

Combinatorica 26 475–487. MR2260850
[28] MEESTER, R. and ROY, R. (1996). Continuum Percolation. Cambridge Tracts in Mathematics

119. Cambridge Univ. Press, Cambridge. MR1409145
[29] MESHULAM, R. and WALLACH, N. (2009). Homological connectivity of random

k-dimensional complexes. Random Structures Algorithms 34 408–417. MR2504405
[30] MILEYKO, Y., MUKHERJEE, S. and HARER, J. (2011). Probability measures on the space of

persistence diagrams. Inverse Problems 27 124007, 22. MR2854323
[31] MIYOSHI, N. and SHIRAI, T. (2013). Cellular networks with α-Ginibre configurated base sta-

tions. Available at https://www.researchgate.net/publication/260094649.

http://arxiv.org/abs/arXiv:1407.5272
http://www.ams.org/mathscinet-getitem?mr=2730741
http://www.ams.org/mathscinet-getitem?mr=0806223
http://www.ams.org/mathscinet-getitem?mr=2476414
http://www.ams.org/mathscinet-getitem?mr=3202240
http://www.ams.org/mathscinet-getitem?mr=2859954
http://www.ams.org/mathscinet-getitem?mr=2572029
http://www.ams.org/mathscinet-getitem?mr=1621571
http://arxiv.org/abs/arXiv:1211.2435
http://www.ams.org/mathscinet-getitem?mr=2358377
http://www.ams.org/mathscinet-getitem?mr=2552864
http://www.ams.org/mathscinet-getitem?mr=2510573
http://www.ams.org/mathscinet-getitem?mr=2770552
http://www.ams.org/mathscinet-getitem?mr=3290093
http://www.ams.org/mathscinet-getitem?mr=3079211
http://www.ams.org/mathscinet-getitem?mr=0818219
http://arxiv.org/abs/arXiv:1205.4818
http://www.ams.org/mathscinet-getitem?mr=2260850
http://www.ams.org/mathscinet-getitem?mr=1409145
http://www.ams.org/mathscinet-getitem?mr=2504405
http://www.ams.org/mathscinet-getitem?mr=2854323
https://www.researchgate.net/publication/260094649


3380 D. YOGESHWARAN AND R. J. ADLER

[32] NAZAROV, F. and SODIN, M. (2012). Correlation functions for random complex zeroes: Strong
clustering and local universality. Comm. Math. Phys. 310 75–98. MR2885614

[33] PEMANTLE, R. (2000). Towards a theory of negative dependence. J. Math. Phys. 41 1371–
1390. MR1757964

[34] PEMANTLE, R. and PERES, Y. (2014). Concentration of Lipschitz functionals of determinantal
and other strong Rayleigh measures. Combin. Probab. Comput. 23 140–160. MR3197973

[35] PENROSE, M. (2003). Random Geometric Graphs. Oxford Studies in Probability 5. Oxford
Univ. Press, Oxford. MR1986198

[36] SCHNEIDER, R. and WEIL, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.
MR2455326

[37] SHIRAI, T. and TAKAHASHI, Y. (2003). Random point fields associated with certain Fredholm
determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205 414–
463. MR2018415

[38] STOYAN, D., KENDALL, W. and MECKE, J. (1995). Stochastic Geometry and Its Applications.
Wiley, Chichester.

[39] TAUSZ, A. and VEJDEMO-JOHANSSON, M. (2011). JavaPlex: A research software package
for persistent (co) homology. Available at http://code.google.com/p/javaplex/.

[40] TURNER, K., MILEYKO, Y., MUKHERJEE, S. and HARER, J. (2014). Fréchet means for dis-
tributions of persistence diagrams. Discrete Comput. Geom. 52 44–70. MR3231030

[41] YOGESHWARAN, D., SUBAG, E. and ADLER, R. J. (2014). Random geometric complexes in
the thermodynamic regime. Preprint. Available at arXiv:1403.1164.

[42] ZOMORODIAN, A. J. (2009). Topology for Computing. Cambridge Monographs on Applied
and Computational Mathematics 16. Cambridge Univ. Press, Cambridge. MR2549932

STATISTICS AND MATHEMATICS UNIT

INDIAN STATISTICAL INSTITUTE

BANGALORE—560059
INDIA

E-MAIL: d.yogesh@isibang.ac.in

FACULTY OF ELECTRICAL ENGINEERING

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA 32000
ISRAEL

E-MAIL: robert@ee.technion.ac.il

http://www.ams.org/mathscinet-getitem?mr=2885614
http://www.ams.org/mathscinet-getitem?mr=1757964
http://www.ams.org/mathscinet-getitem?mr=3197973
http://www.ams.org/mathscinet-getitem?mr=1986198
http://www.ams.org/mathscinet-getitem?mr=2455326
http://www.ams.org/mathscinet-getitem?mr=2018415
http://code.google.com/p/javaplex/
http://www.ams.org/mathscinet-getitem?mr=3231030
http://arxiv.org/abs/arXiv:1403.1164
http://www.ams.org/mathscinet-getitem?mr=2549932
mailto:d.yogesh@isibang.ac.in
mailto:robert@ee.technion.ac.il

	Introduction
	Some notation
	A result sampler
	Some implications for topological data analysis

	Point processes
	Point processes and Palm measures
	Some special cases
	Associated point processes
	Determinantal processes
	Perturbed lattices
	Zeroes of a Gaussian entire function
	Sub- and super-Poisson processes

	Two technical lemmas

	Subgraph and component counts in random geometric graphs
	Some notation and a start
	Sparse regime: rn->0
	Thermodynamic regime: rnd->beta
	Variance bounds for the sparse and thermodynamic regimes
	Phase transitions in the sparse and thermodynamic regimes
	Extension to subcomplex counts

	Betti numbers of random geometric complexes
	Topological preliminaries
	Expectations of Betti numbers
	Thresholds for homology groups
	Further results for the Ginibre process

	Morse theory for random geometric complexes
	Morse theory
	Limit theorems for expected numbers of critical points

	Appendix
	Acknowledgments
	References
	Author's Addresses

