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In this article, we introduce the parametrix technique in order to con-
struct fundamental solutions as a general method based on semigroups and
their generators. This leads to a probabilistic interpretation of the parametrix
method that is amenable to Monte Carlo simulation. We consider the explicit
examples of continuous diffusions and jump driven stochastic differential
equations with Hölder continuous coefficients.

1. Introduction. The parametrix technique for solving parabolic partial dif-
ferential equations (PDEs) is a classical method in order to expand the fundamental
solution of such an equation in terms of a basic function known as the parametrix.
This is the parallel of the Taylor expansion of a smooth function in terms of poly-
nomials.

The concept of order of the polynomial in the classical Taylor expansion is re-
placed by multiple integrals whose order increases as the expansion becomes more
accurate. This method has been successfully applied to many equations and var-
ious situations. Its success is due to its flexibility as it can be applied to a wide
variety of PDEs. It has been successfully extended to other situations for theoreti-
cal goals (see, e.g., [9–12] and [14]). In [6], the authors consider the parametrix as
an analytical method for approximations for continuous diffusions. These analyt-
ical approximations may be used as deterministic approximations and are highly
accurate in the cases where the sum converges rapidly. In general, higher order
integrals are difficult to compute and, therefore, this becomes a limitation of the
method.

The goal of the present paper is to introduce a general probabilistic interpreta-
tion of the parametrix method based on semigroups, which not only reexpresses the
arguments of the method in probabilistic terms, but also to introduce an alternative
method of simulation with no approximation error. This leads to the natural emer-
gence of the difference between the generators of the process and its parametrix
in the same manner as the concept of derivative appears in the classical Taylor
expansion.
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Let us explain the above statement in detail. The first step in the Monte Carlo
approach for approximating the solution of the parabolic partial differential equa-
tion ∂tu = Lu is to construct the Euler scheme which approximates the continuous
diffusion process with infinitesimal operator L. To fix the ideas, consider the diffu-
sion process Xt ≡ Xt(x) solution of the following stochastic differential equation
(SDE):

dXt =
m∑

j=1

σj (Xt) dW
j
t + b(Xt) dt, t ∈ [0, T ],X0 = x0,(1.1)

where W is a multidimensional Brownian motion and σj , b :Rd →R
d are smooth

functions. We denote by Ptf (x) = E[f (Xt(x))] the semigroup associated to this
diffusion process. The infinitesimal generator associated to P is defined for f ∈
C2

c (Rd) as

Lf (x) = 1

2

∑
i,j

ai,j (x)∂2
i,j f (x) + bi(x)∂if (x), a := σσ ∗.(1.2)

By the Feynman–Kac formula, one knows that u(t, x) := Ptf (x) is the unique
solution to ∂tu = Lu satisfying the initial condition u(0, x) = f (x). Therefore, the
goal is to approximate X first and then the expectation in Ptf (x) = E[f (Xt(x))]
using the law of large numbers which leads to the Monte Carlo method.

Now, we describe some stochastic approximation methods for X. Given a par-
tition of [0, T ], π = {0 = t0 < · · · < tn = T }, the Euler scheme associated to this
time grid is defined as Xπ

0 (x) = x

Xπ
tk+1

(x) = Xπ
tk
(x) +

m∑
j=1

σj

(
Xπ

tk
(x)

)(
W

j
tk+1

− W
j
tk

)
(1.3)

+ b
(
Xπ

tk
(x)

)
(tk+1 − tk).

It is well known (see [17]) that Xπ ≡ Xπ(x) is an approximation scheme of X of
order one. That is, there exists a constant Cf (x) such that∣∣E[f (

XT (x)
)]−E

[
f
(
Xπ

T (x)
)]∣∣

(1.4)
≤ Cf (x)max{ti+1 − ti; i = 0, . . . , n − 1}

for f measurable and bounded (see [2, 3]) and under strong regularity assumptions
on the coefficients σj and b.

Roughly speaking, the parametrix method is a deterministic method with the
following intuitive background: in short time the diffusion Xt(x0) is close to the
diffusion with coefficients “frozen” in the starting point x0. So one may replace
the operator L by the operator Lx0 defined as

Lx0f (x) = 1

2

∑
i,j

ai,j (x0)∂
2
i,j f (x) + bi(x0)∂if (x)
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and one may replace the semigroup Pt by the semigoup P
x0
t associated to Lx0 .

Clearly, this is the same idea as the one which leads to the construction of the Euler
scheme (1.3). In fact, notice that the generator of the one step (i.e., π = {0, T })
Euler scheme Xπ(x0) is given by Lx0 .

The goal of the present article is to give a probabilistic representation formula
based on the parametrix method. This formula will lead to simulation procedures
for E[f (XT )] with no approximation error which are based on the weighted sam-
ple average of Euler schemes with random partition points given by the jump times
of an independent Poisson process. In fact, the first probabilistic representation for-
mula (forward formula) we intend to prove is the following:

E
[
f (XT )

] = eT
E

[
f
(
Xπ

T

) JT −1∏
k=0

θτk+1−τk

(
Xπ

τk
,Xπ

τk+1

)]
.(1.5)

Here, τ0 = 0 and π := {τk, k ∈ N}, are the jump times of a Poisson process
{Jt ; t ∈ [0, T ]} of parameter one and Xπ is a continuous time Markov process
which satisfies

P
(
Xπ

τk+1
∈ dy|{τk, k ∈ N},Xπ

τk
= x0

) = P
x0
τk+1−τk

(x0, dy) = p
x0
τk+1−τk

(x0, y) dy.

In the particular case discussed above, then Xπ corresponds in fact to an Euler
scheme with random partition points. θt :Rd ×R

d → R is a weight function to be
described later.

Before discussing the nature of the above probabilistic representation formula,
let us remark that a similar formula is available for one-dimensional diffusion pro-
cesses (see [5]) which is strongly based on explicit formulas that one may obtain
using the Lamperti formula. Although many elements may be common between
these two formulations, the one presented here is different in nature.

In order to motivate the above formula (1.5), let us give the following basic
heuristic argument that leads to the forward parametrix method:

Ptf (x) − P x
t f (x) =

∫ t

0
∂s

(
P x

t−sPsf
)
(x) dt

(1.6)

=
∫ t

0
P x

t−s

(
L − Lx)Psf (x) ds.

Here, we suppose that Psf ∈ Dom(L − Lx). The above expression is already an
equivalent of a Taylor expansion of order one where the notion of first-order deriva-
tive is being replaced by L − Lx . Its iteration will lead to higher order Taylor ex-
pansions. Another way of looking at this is to consider (1.6) as a Volterra equation
in Pf (x). This will be our point of view here.

In fact, if t is considered as the time variable and considering (1.6) as an equa-
tion, one sees, after an application of the integration by parts on the diffferential
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operator L − Lx , that {Ptf ; t ∈ [0, T ]} for f ∈ C∞
c can also be considered as a

solution of the following Volterra type linear equation:

Ptf (x) = P x
t f (x) +

∫ t

0

∫
px

t−s(x, y1)
(
L − Lx)Psf (y1) dy1 ds

(1.7)

= P x
t f (x) +

∫ t

0

∫
θt−s(x, y1)p

x
t−s(x, y1)Psf (y1) dy1 ds.

Here, we have used the function θ , defined as

θt−s(x, y1)p
z
t−s(x, y1)|z=x

= (
L − Lz)∗pz

t−s(x, ·)(y1)|z=x

(1.8)

= 1

2

∑
i,j

∂i,j

((
ai,j (·) − ai,j (z)

)
pz

t−s(x, ·))(y1)

−∑
i

∂i

((
bi(·) − bi(z)

)
pz

t−s(x, ·))(y1)

∣∣∣∣
z=x

.

Equation (1.7) can be iterated in Ptf in order to obtain a series expansion of the
solution which is the equivalent of the Taylor expansion of Ptf .

We may note that the second term in this expansion for t = T can be rewritten
using the Euler scheme with partition points π = {0, T − s, T } as∫ T

0

∫
θT −s(x, y1)p

x
T −s(x, ·)(y1)P

y1
s f (y1) dy1 ds

(1.9)

=
∫ T

0
E
[
f
(
Xπ

T (x)
)
θT −s

(
x,Xπ

T −s(x)
)]

ds.

This is the first step toward the construction of what we call the forward parametrix
method.2 It requires the regularity of the coefficients and it is based on the usual
Euler scheme for the sde (1.1). Note that (1.9) will be associated with the term
JT = 1 in (1.5). In fact, if there is only one jump of the Poisson process J in the
interval [0, T ], then the distribution of the jump is uniform in the interval [0, T ].
This leads to the probabilistic interpretation of the time integral in (1.9).

Let us now discuss an alternative to the above method which requires less regu-
larity conditions on the coefficients of (1.1). This method will be called the back-
ward parametrix method and it is obtained by duality arguments as follows. That is,
consider for two functions f,g ∈ C∞

c (Rd) the pairing 〈f,P ∗
t g〉. Then we will use

2This also explains the logic behind the choice of variables in the integrals. Through the rest of the
paper yi will denote the integrating variables in the order given by the corresponding Euler scheme.
Similar rule will apply with the times ti , i ∈ N. For example, we will have that t1 = t − s1 in (1.6).
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the approximating semigroup Q̂tg(y) := (P
y
t )∗g(y) = ∫

g(x)p
y
t (x, y) dx. A sim-

ilar heuristic argument gives

P ∗
t g(y) − (

P
y
t

)∗
g(y) =

∫ t

0

∫ (
L − Ly)py

t−s(·, y)(y1)P
∗
s g(y1) dy1 ds

(1.10)

=
∫ t

0

∫
θ̂t−s(y1, y)p

y
t−s(y1, y)P ∗

s g(y1) dy1 ds.

Note that in this case the operator L − Ly is applied to the density function
p

y
t−s(·, y) with the coefficients frozen at y, therefore, no derivative of the coef-

ficients is needed in this approach. In fact,

θ̂t−s(y1, y)pz
t−s(y1, y)|z=y

(1.11)
= (

L − Lz)pz
t−s(·, y)(y1)|z=y

=
{

1

2

∑
i,j

(
ai,j (y1) − ai,j (z)

)
∂i,j

(1.12)

+∑
i

(
bi(y1) − bi(z)

)
∂i

}
pz

t (·, y)(y1)

∣∣∣∣
z=y

.

As before, we can obtain a probabilistic representation. In this case, one has to be
careful with the time direction. In fact, due to the symmetry of the density function
p

y
t−s(y1, y) one interprets it as the density of the Euler scheme at y1 started at y.

Therefore, the sign of the drift has to be changed leading to what we call the
backward parametrix method. In the particular case that f is a density function, it
will be interpreted as a “backward running” Euler scheme from T to 0 with random
initial point with density f . The test function g is replaced by a Dirac delta at the
initial point of the diffusion x0. See Section 6 for precise statements.

Therefore, the behavior of forward and backward methods are different. In fact,
the forward method applies when the coefficients are regular. In many applied
situations, one may have coefficients which are just Hölder continuous and, there-
fore, the forward method does not apply. In that case, one may apply the back-
ward method which demands less regularity. For this reason, the treatment of the
forward method and the backward method are essentially different and they are
treated separately. Issues related to simulation will be discussed in another article.

Our article is structured as follows: In Section 2, we give the notation used
throughout the paper. In Section 3, we discuss the existence, uniqueness and reg-
ularity properties of the solution of the linear Volterra equations of the type (1.7)
or (1.10) which will be applicable to both probabilistic representation formulas to
be discussed later. In Section 4, we provide a general abstract framework based
on semigroups for which our two approaches (forward and backward) can be ap-
plied. The main hypotheses applying to both methods are given in this section. In
Section 5, we give the analytical form of the forward method. In Section 5.1, we
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give the probabilistic representation, and in Section 5.2, we give the continuity and
differentiability properties of the density functions. This is the usual application of
the parametrix method.

In Section 6, we give the backward approach which was first introduced in [13].
We also give the probabilistic interpretation and the regularity results correspond-
ing to the backward method in parallel sections.

In Section 7, we consider our main examples. The first corresponds to the
continuous diffusion with uniformly elliptic diffusion coefficient. We see in Sec-
tion 7.1 that in the forward approach we need the coefficients to be smooth. While
in Section 7.2, we show that in order for the backward approach to be applicable,
we only require the coefficients to be Hölder continuous. In Section 7.3, we also
consider the case of a jump driven SDE where the Lévy measure is of stable type
in a neighborhood of zero. This example is given with two probabilistic interpre-
tations.

We close with some conclusions: an Appendix and the References section.

2. Some notation and general definitions. We now give some basic nota-
tion and definitions used through this article. For a sequence of operators Si ,
i = 1, . . . , n which do not necessarily commute, we define

∏n
i=1 Si = S1 · · ·Sn and∏1

i=n Si = Sn · · ·S1. We will denote by I , the identity matrix or identity operator
and S∗ will denote the adjoint operator of S. Dom(S) denotes the domain of the
operator S. If the operator S is of integral type, we will denote its associated mea-
sure S(x, dy) so that Sf (x) = ∫

f (y)S(x, dy). All space integrals will be taken
over Rd . For this reason, we do not write the region of integration which we sup-
pose clearly understood. Also in order to avoid long statements, we may refrain
from writing often where the time and space variables take values supposing that
they are well understood from the context.

In general, indexed products where the upper limit is negative are defined as
1 or I . In a similar fashion, indexed sums where the upper limit is negative are
defined as zero.

As it is usual, A ≤ B for two matrices A and B , denote the fact that A−B is pos-
itive definite. Components of vectors or matrices are denoted by superscript letters.
When the context makes it clear we denote by ∂if the partial derivative operator
with respect to the ith variable of the function f and similarly for higher order
derivatives. For example, derivatives with respect to a multi-index β , of length |β|,
are denoted by ∂βf . Time derivatives will be denoted by ∂t .

We denote by δa(dx) the point mass measure concentrated in {a}, B(x, r) de-
notes the ball of center x ∈ R

d and radius r > 0, [x] denotes the ceiling or smallest
integer function for x ∈ R and R+ ≡ (0,∞). The indicator function of the set
A is denoted by 1A(x), C(A) denotes the space of real valued functions contin-
uous in the set A. The space of real valued measurable bounded functions de-
fined on A is denoted by L∞(A). Similarly, the space of continuous bounded
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functions in A is denoted by Cb(A). The space of real valued infinitely differ-
entiable functions with compact support defined on R

d is denoted by C∞
c (Rd).

The space of Rl-valued bounded functions defined on R
d with bounded deriva-

tives up to order k is denoted by Ck
b(Rd;Rl). The norm in this space is defined

as ‖f ‖k,∞ = max|β|≤k supx∈Rd |∂βf (x)|. In the particular case that k = 0, we also
use the simplified notation ‖f ‖∞ ≡ ‖f ‖0,∞.

The multidimensional Gaussian density at y ∈ R
d with mean zero and covari-

ance matrix given by the positive definite matrix a is denoted by qa(y). Some-
times we abuse the notation denoting by qt (y), for y ∈ R

d , t > 0 the Gaussian
density corresponding to the variance–covariance matrix tI . Similarly, Hi

a(y) and

H
i,j
a (y) for i, j ∈ {1, . . . , d}, denote the multidimensional version of the Hermite

polynomials of order one and two. Exact definitions and some of the properties of
Gaussian densities used throughout the article are given in Section A.2.

Constants will be denoted by C or c, we will not give the explicit dependence
on parameters of the problem unless it is needed in the discussion. As it is usual,
constants may change from one line to the next although the same symbol may be
used.

In the notation throughout the article, we try to denote by x the starting point
of the diffusion and y the arrival point with z being the parameter value where the
operator Lz is frozen at. In the forward method, z will be the starting point x and in
the backward method z will be the arrival point y. Due to the iteration procedure,
many intermediate points will appear which will be generally denoted by yi , i =
0, . . . , n, always going from y0 = x toward yn = y in the forward method and from
y0 = y to yn = x in the backward method. As stated previously, the time variables
will be evolving forward in the sense of the Euler scheme if they are denoted by ti ,
i = 0, . . . , n from t0 = 0 to tn = t or backwardly if denoted by si , i = 0, . . . , n

from s0 = t to sn = 0.

3. A functional linear equation. In this section, we consider a functional
equation of Volterra type which will include both equations (1.7) and (1.10).
Therefore, this represents and abstract framework which includes the forward and
backward method.

We consider a jointly measurable functions a : (0, T ] × R
d × R

d → R and we
define the operator

Uaf (t, x) =
∫ t

0

∫
Rd

f (s, y)at−s(x, y) dy ds.

Our aim is to solve the equation

f = g + Uaf(3.1)

and to study the regularity of the solution. Formally, the unique solution is obtained
by iteration and given by Hag := ∑∞

n=0 Un
a g. In order to make this calculation

mathematically sound, we have to study the convergence of the series. For this, we
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consider the iterations of the operator Ua . We define U0
a to be the identity operator,

U1
a = Ua and we define by recurrence Un

a = Un−1
a Ua .

LEMMA 3.1. If Ia(t, x) := ∫
Rd |at (x, y)|dy ∈ L∞([0, T ] × R

d) and g ∈
L∞([0, T ] × R

d), then the equation (3.1) has a unique solution in the space
A := {f ∈ L∞([0, T ] ×R

d); limN→∞ ‖UN
a f ‖∞ = 0}.

PROOF. In fact,∥∥Uag(t, ·)∥∥∞ ≤
∫ t

0

∥∥g(s, ·)∥∥∞
∥∥Ia(t − s, ·)∥∥∞ ds.

Then by induction it follows that∥∥Un
a g

∥∥∞ ≤ T n‖Ia‖n∞
n! ‖g‖∞.

This means that the infinite sum Hag := ∑∞
n=0 Un

a g converges absolutely and,
therefore, is well defined in L∞([0, T ] × R

d). Furthermore, it is easy to see that
the sum is a solution of equation (3.1) satisfying Hag ∈ A.

For any solution f of (3.1), one obtains by iteration that

f =
N∑

n=0

Un
a g + UN

a f.

Therefore, if f ∈ A then f satisfies f = Hag. From here, one obtains the unique-
ness. �

Unfortunately, in our case
∫ |at (x, y)|dy blows up as t → 0 and we center our

discussion on this matter. We see from (1.8) and (1.11) that the rate of divergence is
determined by the regularity of the coefficients. We will call this regularity index
ρ in what follows. In order to introduce our main assumption, we define for a
function β : (0, T ] × R

d × R
d → R+, the class of functions 
β such that there

exists a positive constant C which satisfies the following inequality for every n ∈
N, y0, yn+1 ∈ R

d and every δi > 0, i = 1, . . . , n with s(δ) := ∑n
i=1 δi ,∫

dy1 · · ·
∫

dyn

n∏
i=0

γδi
(yi, yi+1) ≤ Cn+1βs(δ)(y0, yn+1).(3.2)

HYPOTHESIS 3.2. There exists a positive constant C and a function γ ∈ 
β

such that sup(t,x)∈[0,T ]×Rd

∫ |γt (x, y)|dy < ∞ and ρ ∈ [0,1) such that for every
(t, x, y) ∈ (0, T ] ×R

d ×R
d

∣∣at (x, y)
∣∣ ≤ C

tρ
γt (x, y).(3.3)

Furthermore, there exists a function β such that γ ∈ 
β .
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If we define Cβ(t, x) := ∫ t
0 ds

∫
dy βt−s(x, y) for (t, x) ∈ [0, T ] ×R

d , we will
also assume that

HYPOTHESIS 3.3. Cβ is a bounded function.

We denote3 DT = {((t, x), (s, y)) : 0 < s ≤ t ≤ T ,x, y ∈R
d}. To the function a,

we associate the function A :DT →R defined by

A
(
(t, x), (s, y)

)= at−s(x, y).

Then we define the operator Ua :L∞([0, T ] ×R
d) → L∞([0, T ] ×R

d) by

Uaf (t, x) =
∫ t

0
ds

∫
dy f (s, y)A

(
(t, x), (s, y)

)=
∫ t

0
ds

∫
dy f (s, y)at−s(x, y).

In fact, note that if f ∈ L∞([0, T ] ×R
d) then

∣∣Uaf (t, x)
∣∣ ≤ ‖f ‖∞

∫ t

0
ds

∫
dy

|γt−s(x, y)|
(t − s)ρ

≤ C‖f ‖∞t1−ρ.

Note in particular that this estimate implies that Un
a f is well defined for f ∈

L∞([0, T ] ×R
d). We also define for 0 < s ≤ t ≤ T and x, y ∈ R

d

A1
(
(t, x), (s, y)

) = A
(
(t, x), (s, y)

)
,

An

(
(t, x), (s, y)

) =
∫ s0

s
ds1

∫
dy1

∫ s0

s1

ds2

∫
dy2 · · ·

∫ s0

sn−2

dsn−1

∫
dyn−1(3.4)

×
n−1∏
i=0

A
(
(si, yi), (si+1, yi+1)

)
with the convention that s0 = t, y0 = x and sn = s, yn = y, n ≥ 2. Notice that we
have that An is finite. That is, we have the following.

LEMMA 3.4. Assume Hypothesis 3.2, then there exists a constant C(T ,ρ)

such that∣∣An

(
(t, x), (s, y)

)∣∣ ≤ Cβt−s(x, y) × Cn(T ,ρ)

[1 + nρ]! ,(3.5)

An+1
(
(t, x), (s, y)

) =
∫ t

s
ds1

∫
dy1 An

(
(t, x), (s1, y1)

)
A
(
(s1, y1), (s, y)

)
.(3.6)

3Notice that according to our remark about the meaning of the variables in the integrals of (1.9),
this order of time is reversed with respect to the order in space.
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PROOF. We use Hypothesis 3.2 and we obtain (with s0 = t, y0 = x, sn =
s, yn = y)∣∣An

(
(t, x), (s, y)

)∣∣
≤
∫ s0

s
ds1

∫
dy1

∫ s0

s1

ds2

∫
dy1 · · ·

∫ s0

sn−2

dsn−1

∫
dyn−1

×
n−1∏
i=0

(si − si+1)
−ργsi−si+1(yi, yi+1)

≤ Cnβs0−sn(y0, yn)

∫ s0

s
ds1

∫ s0

s1

ds2 · · ·
∫ s0

sn−2

dsn−1

n−1∏
i=0

(si − si+1)
−ρ

≤ Cnβt−s(x, y)(t − s)n(1−ρ) 
n(ρ)

[1 + nρ]! = βt−s(x, y)
Cn(T ,ρ)

[1 + nρ]!
the last inequality being a consequence of the change of variables si = s0 − ti and
Lemma A.1 where we have set C(T ,ρ) = CT 1−ρ
(ρ). �

Now that An is well defined we can now give an explicit formula for Un
a .

LEMMA 3.5. Assume Hypotheses 3.2 and 3.3. Let f ∈ L∞([0, T ] ×R
d) then

Un
a f (t, x) =

∫ t

0
ds

∫
dyAn

(
(t, x), (s, y)

)
f (s, y).(3.7)

PROOF. For n = 1, this is true by the definition of Ua . Suppose that this is true
for n and let us prove it for n + 1. By (3.6),

Un+1
a f (t, x)

= Un
a Uaf (t, x) =

∫ t

0
du

∫
dzAn

(
(t, x), (u, z)

)
Uaf (u, z)

=
∫ t

0
du

∫
dzAn

(
(t, x), (u, z)

) ∫ u

0
dv

∫
dwA

(
(u, z), (v,w)

)
f (v,w)

=
∫ t

0
dv

∫
dwf (v,w)

∫ t

v
du

∫
dzAn

(
(t, x), (u, z)

)
A
(
(u, z), (v,w)

)
=

∫ t

0
dv

∫
dwf (v,w)

∫
dzAn+1

(
(t, x), (v,w)

)
.

So (3.7) is proved. The integrability of the above expressions follows from
Lemma 3.4 and Hypothesis 3.3. �

The main estimate in this section is the following. For this, we define

CT (ρ) =
∞∑

n=0

Cn(T ,ρ)

[1 + nρ]! .
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THEOREM 3.6. (A) Assume that Hypotheses 3.2 and 3.3 hold true. Then the
series

Sa

(
(t, x), (s, y)

)=
∞∑

n=1

An

(
(t, x), (s, y)

)
(3.8)

is absolutely convergent and∣∣Sa

(
(t, x), (s, y)

)∣∣ ≤ CT (ρ)βt−s(x, y).

(B) Moreover, for f ∈ L∞([0, T ] ×R
d) the series

Haf (t, x) :=
∞∑

n=0

Un
a f (t, x)

is absolutely convergent and∣∣Haf (t, x)
∣∣ ≤ CT (ρ)Cβ(t, x)‖f ‖∞.

Finally,

Haf (t, x) =
∫ t

0

∫
f (s, y)Sa

(
(t, x), (s, y)

)
dy ds.

(C) Let f,g ∈ L∞([0, T ] ×R
d) such that

f = g + Uaf.

Then f = Hag.

PROOF. From Lemma 3.4, (3.5), we conclude that the series Sa((t, x),

(s, y)) = ∑∞
n=1 An((t, x), (s, y)) is absolutely convergent and |Sa((t, x), (s, y))| ≤

CT (ρ)βt−s(x, y). We consider now a function f ∈ L∞([0, T ] ×R
d). As a conse-

quence of (3.5),

Un
a f (t, x) ≤ Cn(T ,ρ)

[1 + nρ]! ‖f ‖∞
∫ t

0

∫
dy βt−s(x, y) ≤ Cn(T ,ρ)

[1 + nρ]!Cβ(t, x)‖f ‖∞.

It follows that the series Haf (t, x) := ∑∞
n=0 Un

a f (t, x) is absolutely convergent
and |Haf (t, x)| ≤ CT (ρ)Cβ(t, x)‖f ‖∞. Furthermore, from the above estimates it
is clear that we can exchange integrals and sums in order to prove that Hag is a
solution to the equation (3.1). For any given bounded solution f to (3.1), we obtain
by iteration of the equation that the solution has to be Hag and, therefore, we get
the uniqueness. �

We give now a corollary with the study of the fundamental solution. This will
be used in order to obtain the density functions corresponding to the operators
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appearing in (1.7) and (1.10). The proof follows directly from the statements and
method of proof of Theorem 3.6. For this, we define

M :=
{
G : (0, T ] ×R

d ×R
d →R;

∫ t

0
ds

∫
dz

∣∣Gs(z, y)βt−s(x, z)
∣∣ < ∞,

∀y ∈ R
d,∀t ∈ [0, T ]

}
.

Furthermore, for G ∈ M and g ∈ L∞([0, T ] × R
d), we define Gg(t, x) =∫

dy g(y)Gt(x, y).

COROLLARY 3.7. Assume that Hypotheses 3.2 and 3.3 hold true. Then Sa

is the fundamental solution to the equation f = g + Uaf . That is, for any g ∈
L∞([0, T ] ×R

d), the solution can be written as

f (t, x) = g(t, x) +
∫ t

0
ds

∫
dy g(s, y)Sa

(
(t, x), (s, y)

)
.

Furthermore, consider the equation f = Gg + Uaf where g ∈ L∞([0, T ] × R
d)

and G ∈ M. Then the unique solution can be written as f (t, x) = Gg(t, x) +∫
dy g(y)S̄a((t, x), (0, y)) where S̄a is given by the following uniform absolutely

convergent infinite sum:

S̄a

(
(t, x), (0, y)

) =
∫ t

0
ds

∫
dzGs(z, y)Sa

(
(t, x), (s, z)

)
(3.9)

=
∞∑

n=1

∫ t

0
ds

∫
dzGs(z, y)An

(
(t, x), (s, z)

)
.

S̄a is usually called the fundamental solution of the equation f = Gg + Uaf .
We will now start discussing regularity properties of the solution. We have to re-
place hypothesis (3.2) by a slightly stronger hypothesis which will lead to uniform
integrability.

HYPOTHESIS 3.8. Given some functions γ :R+ × R
d × R

d → R+ and G ∈
M. Assume that there exists r > 0, ζ > 1 and a function ξ :R+ → R+ such that
the following holds:

(i) For every z0, zn ∈ R
d and R > 0 there exists a constant CR ≡ CR(z0, zn) >

0 such that for every n ≥ 2, δi > 0, i = 0, . . . , n − 1 and (y0, yn) ∈ B(z0, r) ×
B(zn, r) we have∫

dy1 · · ·
∫

dyn−11{∑n−1
i=1 |yi |≤R}

n−2∏
i=0

γδi
(yi, yi+1)

ζ
∣∣Gδn−1(yn−1, yn)

∣∣ζ
(3.10)

≤ Cn
Rξ

(
n−1∑
i=0

δi

)
.
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(ii) For every z0, zn ∈ R
d there exists a constant C ≡ C(z0, zn) > 0 such that

for every n ∈ N, δi > 0, i = 0, . . . , n − 1, (y0, yn) ∈ B(z0, r)× B(zn, r) and ε > 0,
there exists Rε > 0 with∫

dy1 · · ·
∫

dyn−11{∑n−1
i=1 |yi |>Rε}

n−2∏
i=0

γδi
(yi, yi+1)Gδn−1(yn−1, yn)

(3.11)

≤ Cnεξ

(
n−1∑
i=0

δi

)
.

The reason for both conditions should be clear. The first one, gives a uniform in-
tegrability condition on compact sets. The second condition states that the measure
of the complement of the compact set {∑n−1

i=1 |yi | ≤ R} is sufficiently small.

LEMMA 3.9. Assume Hypotheses 3.2 and 3.3. Suppose that Hypothesis 3.8
holds for some ζ ∈ (1, ρ−1) and γ given in Hypothesis 3.2. Furthermore, as-
sume that (t, x, y) → (Gt(x, y), at (x, y)) is continuous in (0, T ]×R

d ×R
d . Then

(t, x, y) → S̄a((t, x), (0, y)) is continuous.

PROOF. First recall that (3.9) is a uniform absolutely convergent sum, there-
fore, it is enough to prove the joint continuity of each term in the sum. Each term
is divided in two integrals on disjoint sets. The first, on a compact set, is uniformly
integrable because

sup
|y0||yn|≤K

∫ s0

s
ds1

∫
dy1

∫ s0

s1

ds2

∫
dy1 · · ·

∫ s0

sn−2

dsn−1

∫
dyn−11{∑n−1

i=1 |yi |≤R}

×
n−2∏
i=0

∣∣A(
(si, yi), (si+1, yi+1)

)∣∣ζ ∣∣Gsn(yn−1, yn)
∣∣ζ < ∞

so that we have uniform integrability for the integrand. Then one may interchange
the limit lim(s0,y0,yn+1)→(s′

0,y
′
0,y

′
n+1)

from outside to inside the integral for fixed n

and R.
The argument now finishes fixing ε > 0 and, therefore, there exists Rε such that

(3.11) is satisfied. Therefore,

lim
ε↓0

sup
(y0,yn)∈B(z0,r)×B(zn,r)

∫ s0

s
ds1

∫
dy1

∫ s0

s1

ds2

∫
dy1 · · ·

×
∫ s0

sn−2

dsn−1

∫
dyn−11{∑n−1

i=1 |yi |≥Rε}

×
n−2∏
i=0

∣∣A(
(si, yi), (si+1, yi+1)

)∣∣∣∣Gsn(yn−1, yn)
∣∣ ≤ C lim

ε↓0
εξ(s0) = 0.
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This gives the continuity of the partial sums and then of the series itself due to the
uniform convergence in (3.9). �

We discuss now the differentiability properties.

THEOREM 3.10. Assume Hypotheses 3.2 and 3.3 and suppose that Ḡt (x,

y) := ∇yGt(x, y) exists for all (t, x, y) ∈ (0, T ]×R
d ×R

d . Furthermore, assume
that Hypothesis 3.8 is satisfied with (γ, Ḡ) replacing (γ,G) then the application
y → S̄a((t, x), (0, y)) is differentiable for t > 0 and y ∈ R

d and the sum below
converges absolutely and uniformly for (t, x, y) ∈ [0, T ] ×R

d ×R
d ,

∇yS̄a

(
(t, x), (0, y)

)=
∞∑

n=1

∫ t

0
ds

∫
dz∇yGs(z, y)An

(
(t, x), (s, z)

)
.

The proof is done in a similar way as the proof of Lemma 3.9 using the definition
of derivative.

4. Abstract framework for semigroup expansions. In this section, we in-
troduce a general framework which will be used in order to obtain a Taylor-like
expansion method for Markovian semigroups.

HYPOTHESIS 4.1. (Pt )t≥0 is a semigroup of linear operators defined on a
space containing C∞

c (Rd) with infinitesimal generator L such that C∞
c (Rd) ⊆

Dom(L). Ptf (x) is jointly measurable and bounded in the sense that ‖Ptf ‖∞ ≤
‖f ‖∞ for all f ∈ C∞

c (Rd) and t ∈ [0, T ].

The first goal of this article is to give an expansion for PT f (x) for fixed T > 0
and f ∈ C∞

c (Rd) based on a parametrized semigroup of linear operators (P z
t )t≥0,

z ∈R
d .

In the case of continuous diffusions to be discussed in Section 7, P z stands for
the semigroup of a diffusion process with coefficients “frozen” at z. We consider
an explicit approximating class in the diffusion case in Section 7 given by the
Euler–Maruyama scheme.

Our hypothesis on (P z
t )t≥0 are:

HYPOTHESIS 4.2. For each z ∈ R
d , (P z

t )t≥0 is a semigroup of linear opera-
tors defined on a space containing C∞

c (Rd) with infinitesimal generator Lz such
that C∞

c (Rd) ⊆ Dom(Lz). We also assume that P z
t f (x) = ∫

f (y)pz
t (x, y) dy for

any f ∈ C∞
c (Rd), (x, z) ∈ R

d × R
d and a jointly measurable probability kernel

pz ∈ C((0, T ] ×R
d ×R

d).

The link between L and Lz is given by the following hypothesis.
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HYPOTHESIS 4.3. Lf (z) = Lzf (z) for every f ∈ C∞
c (Rd) and z ∈R

d .

To simplify notation, we introduce Qtf (x) := P x
t f (x), noticing that (Qt)t≥0

is no longer a semigroup but it still satisfies that ‖Qtf ‖∞ ≤ ‖f ‖∞ for all t ∈
[0, T ]. We will use the following notation in the forward and backward method,
respectively

ψx
t (y) := px

t (x, y),

φz
t (x) := pz

t (x, z).

The reason for using the above notation is to clarify to which variables of pz
t (x, y)

an operator applies to. This is the case of, for example, Lzφz
t (x) ≡ (Lzφz

t )(x).
The expansion we want to obtain can be achieved in two different ways. One

will be called the forward method and the other called the backward method. In
any of these methods, the expansion is done based on the semigroup (P z

t )t≥0,
z ∈ R

d . In the classical Taylor-like expansion one needs to use polynomials as basis
functions. In the forward method, these polynomials will be replaced by products
(or compositions) of the following basic operator S,

Stf (x) :=
∫ (

Ly − Lx)f (y)ψx
t (y) dy, f ∈ ⋂

x∈Rd

Dom
(
Lx).

In the backward method, a similar role is played by the operator

Ŝtf (y) :=
∫

f (x)
(
Lx − Ly)φy

t (x) dx.(4.1)

The above Hypotheses 4.1, 4.2 and 4.3 will be assumed throughout the theoret-
ical part of the article. They will be easily verified in the examples.

5. Forward method. We first state the assumptions needed in order to imple-
ment the forward method.

HYPOTHESIS 5.1. P z
t g, Ptg ∈ ⋂

x∈Rd Dom(Lx), ∀g ∈ C∞
c (Rd), z ∈ R

d, t ∈
[0, T ].

We assume the following two regularity properties for the difference operator S.

HYPOTHESIS 5.2. There exists a jointly measurable real valued function
θ : (0, T ] ×R

d ×R
d →R, such that for all f ∈ C∞

c (Rd) we have that

Stf (x) =
∫

f (y)θt (x, y)P x
t (x, dy) =

∫
f (y)θt (x, y)px

t (x, y) dy,

(t, x) ∈ (0, T ] ×R
d .

We assume that the function at (x, y) = θt (x, y)px
t (x, y) verifies the Hypothe-

ses 3.2 and 3.3 and that Gt(x, y) = px
t (x, y) ∈M.
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Note that the above hypothesis implies that the operator S can be extended to
the space of bounded functions.

HYPOTHESIS 5.3. For the functions (a, γ ) and the constant ρ ∈ [0,1) satis-
fying Hypothesis 3.2 and Gt(x, y) = px

t (x, y) ∈ M we assume that the Hypothe-
sis 3.8 is satisfied for some ζ ∈ (1, ρ−1).

REMARK 5.4. We remark here that Hypothesis 5.2 entails some integration by
parts property which will be made clear when dealing with examples in Section 7
[see (7.3)].

Define for (s0, x) ∈ (0, T ] ×R
d and f ∈ C∞

c (Rd) the following integral opera-
tor:

In
s0

(f )(x)
(5.1)

:=

⎧⎪⎪⎨⎪⎪⎩
∫ s0

0
ds1 · · ·

∫ sn−1

0
dsn

(
n−1∏
i=0

Ssi−si+1

)
Qsnf (x), if n ≥ 1,

Qs0f (x), if n = 0.

We denote by An the kernels associated to at (x, y) defined in (3.4). Then using the
change of variables ti = s0 −si we obtain the following representation In

s0
(f )(x) =∫

f (y)In
s0

(x, y) dy with

In
tn+1

(x, y)
(5.2)

=
∫ tn+1

0
dtn

∫
p

yn
tn+1−tn

(yn, y)An

(
(tn+1, x), (tn+1 − tn, yn)

)
dyn.

The following is the main result of this section, which is a Taylor-like expansion
of P based on Q.

THEOREM 5.5. Suppose that Hypotheses 5.1 and 5.2 hold. Then for every
f ∈ C∞

c (Rd) and t ∈ (0, T ], In
t (f ) is well defined and the sum

∑∞
n=1 In

t (f )(x)

converges absolutely and uniformly for (t, x) ∈ [0, T ] ×R
d . Moreover,

Ptf (x) =
∞∑

n=0

In
t (f )(x).(5.3)

Then for fixed t ∈ (0, T ], ∑∞
n=1 In

t (x, y) also converges absolutely and uniformly
for (x, y) ∈ R

d ×R
d and we have that Ptf (x) = ∫

f (y)pt (x, y) dy where

pt(x, y) = px
t (x, y) +

∞∑
n=1

In
t (x, y).(5.4)

Furthermore, suppose that Ptf (x) ≥ 0 for f ≥ 0 and Pt1 = 1 for all t ≥ 0. Then
pt(x, y) is a density function.
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PROOF. The linear equation on Ptf is obtained, using Hypotheses 4.1, 4.2,
5.1 and 5.2 as follows:

Ptf (x)−P x
t f (x) =

∫ t

0
∂s1

(
P x

t−s1
Ps1f

)
(x) ds1 =

∫ t0

0
P x

t0−s1

(
L−Lx)Ps1f (x) ds1.

Note that Hypothesis 5.2 ensures the finiteness of the above integral.
Using the identity in Hypothesis 4.3, Lg(x) = Lxg(x) with g(y) = Ps1f (y),

we obtain

P x
t−s1

(
L − Lx)Ps1f (x) =

∫ (
L − Lx)Ps1f (y)P x

t−s1
(x, dy)

=
∫ (

Ly − Lx)Ps1f (y)P x
t−s1

(x, dy)

= St−s1Ps1f (x).

Therefore, we have the following equation:

Ptf (x) = P x
t f (x) +

∫ t

0
ds1

∫
dy Ps1f (y)θt−s1(x, y)px

t−s1
(x, y).(5.5)

This is equation (3.1) with at (x, y) = θt (x, y)px
t (x, y). Therefore, due to Hy-

potheses 5.1 and 5.2 we obtain that the hypotheses needed for the applica-
tion of Lemma 3.4 and Theorem 3.6 are satisfied. Therefore, we obtain that∑∞

n=0 In
t (f )(x) converges absolutely and uniformly and is the unique solution

of (5.5).
Corollary 3.7 gives (5.4). Finally, one proves that as the semigroup P is positive

then pt(x, y) has to be positive locally in y for fixed (t, x) then as Pt1 = 1 one
obtains that

∫
pt(x, y) dy = 1. �

5.1. Probabilistic representation using the forward method. Our aim now is
to give a probabilistic representation for the formula (5.3) that may be useful for
simulation.

HYPOTHESIS 5.6. There exists a continuous Markov process Xπ = {Xπ
t ; t ∈

[0, T ]} such that Xπ
0 = x and for any t > s

P
(
Xπ

t ∈ dy′|Xπ
s = y

) = P
y
t−s

(
y, dy′) = p

y
t−s

(
y, y′)dy′.(5.6)

With this assumption, we have that S1f (x) = E[f (Xπ
t1
)θt1(x,Xπ

t1
)] and

Qt1f (x) = E[f (Xπ
t1
)]. Therefore, using these representations, we obtain the prob-

abilistic representation of the integrand in (5.1):(
n−1∏
j=0

Stj+1−tj

)
QT −tnf (x) = E

[
f
(
Xπ

T

)
θtn−tn−1

(
Xπ

tn−1
,Xπ

tn

) · · · θt1−t0

(
Xπ

t0
,Xπ

t1

)]
.
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Finally, to obtain the probabilistic interpretation for the representation for-
mula (5.3), we need to find the probabilistic representation of the multiple integrals
in (5.1).

For this, we consider a Poisson process (Jt )t≥0 of parameter λ = 1 and we de-
note by τj , j ∈ N, its jump times (with the convention that τ0 = 0). Conditionally
to JT = n, the jump times are distributed as the order statistics of a sequence n

independent uniformly distributed random variables on [0, T ]. Therefore, the mul-
tiple integrals in (5.1) can be interpreted as the expectation taken with respect to
these jump times given that JT = n. Therefore, for n ≥ 1 we have

In
T (f )(x) = eT

E

[
1{JT =n}f

(
Xπ

T

) n−1∏
j=0

θτj+1−τj

(
Xπ

τj
,Xπ

τj+1

)]
,

where (with a slight abuse of notation), π denotes the random time partition of
[0, T ], π ≡ π(ω) = {τi(ω) ∧ T ; i = 0, . . . , JT (ω) + 1}.

From now on, in order to simplify the notation, we denote τT ≡ τJT
. Given the

above discussion, we have the main result for this section.

THEOREM 5.7. Suppose that Hypotheses 5.1, 5.2 and 5.6 hold. Recall that
ψx

t (y) = px
t (x, y) and define 
T (x) ≡ 
T (x)(ω) as


T (x) =

⎧⎪⎪⎨⎪⎪⎩
JT −1∏
j=0

θτj+1−τj

(
Xπ

τj
,Xπ

τj+1

)
, if JT ≥ 1,

1, if JT = 0.

Then the following probabilistic representations are satisfied for f ∈ C∞
c (Rd):

PT f (x) = eT
E
[
f
(
Xπ

T

)

T (x)

]
,(5.7)

pT (x, y) = eT
E
[
ψ

Xπ
τT

T −τT
(y)
T (x)

]
.(5.8)

REMARK 5.8. 1. Extensions for bounded measurable functions f can be ob-
tained if limits are taken in (5.7).

2. The above representations (5.8) and (5.7) may be obtained using a Poisson
process of arbitrary parameter λ > 0 instead of λ = 1. In fact, if we denote {Jλ

t , t ≥
0} a Poisson process, by τλ

i the jump times and by πλ the corresponding random
time grid. Then the formula (5.8) becomes

pT (x, y) = eλT
E
[
λ−Jλ

T ψ
X

πλ
τT

T −τ
Jλ
T

(y)
T (x)
]
.

5.2. Regularity of the density using the forward method. Now that we have
obtained the stochastic representation, we will discuss the differentiability of
pT (x, y) with respect to y. This type of property is also proved when the analytical
version of the parametrix method is discussed in the particular case of fundamental
solutions of parabolic PDEs (see, e.g., Chapter 1 in [7]).
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THEOREM 5.9. Suppose that the Hypotheses 5.1, 5.2, 5.3 are satisfied. Fur-
thermore assume that (t, x, y) → (px

t (x, y), at (x, y)) is continuous in (0, T ] ×
R

d ×R
d . Then (t, x, y) → pt(x, y) is continuous on (0, T ] ×R

d ×R
d .

THEOREM 5.10. Suppose that the Hypotheses 5.1, 5.2 and 5.3 are satisfied.
Furthermore, we assume that y → px

t (x, y) is differentiable for all (t, x) ∈ R+ ×
R

d and that Hypothesis 3.8 is satisfied for ∇yp
x
t (x, y) instead of G. Then for every

(t, x) ∈ (0, T ] ×R
d , the function y → pt(x, y) is differentiable. Moreover,

∇ypT (x, y) = eT
E
[∇yp

Xπ
τT

T −τT

(
Xπ

τT
, y

)

T (x)

]
.

6. The backward method: Probabilistic representation using the adjoint
semigroup. We will now solve equation (1.7) in dual form. We start with a
remark in order to beware the reader about the nonapplicability of the forward
method directly to the dual problem.

Usually, in semigroup theory one assumes that for each t > 0, Pt maps con-
tinuously L2(Rd) into itself. Then P ∗

t can be defined and it is still a semigroup
which has as infinitesimal operator L∗ defined by 〈L∗g,f 〉 = 〈g,Lf 〉 for f ,
g ∈ C∞

c (Rd). Assume, for the sake of the present discussion, that for every x ∈ R
d ,

P x
t maps continuously L2(Rd) into itself and we define P

x,∗
t ≡ (P x

t )∗ and Lx,∗ by
〈P x,∗

t g, f 〉 = 〈g,P x
t f 〉 and 〈Lx,∗g,f 〉 = 〈g,Lxf 〉 for f , g ∈ C∞

c (Rd).
Our aim is to obtain for P ∗ a representation which is similar to the one obtained

for P in Theorem 5.7. Unfortunately, the adjoint version of the arguments given in
Section 5 do not work directly. In fact, if P

x,∗
t denotes the adjoint operator of P x

t

then the relation Lg(x) = Lxg(x) does not imply L∗g(x) = (Lx)∗g(x). To make
this point clearer, take, for example, the case of a one-dimensional diffusion pro-
cess with infinitesimal operator Lg(y) = a(y)�g(y) then Lxg(y) = a(x)�g(y)

(for more details, see Section 7). Then L∗g(y) = �(ag)(y) and (Lx)∗g(y) =
a(x)�g(y) = Lxg(y). So, letting the coefficients of L∗ be frozen at y = x does
not coincide with (Lx)∗ and, therefore, the previous argument will fail.4 In order
not to confuse the reader, we will keep using the superscript ∗ to denote adjoint
operators while other approximating operators will be denoted by the superscript ˆ
(hat).

Note that in the diffusion case, proving that for each t > 0, Pt maps continu-
ously L2(Rd) into itself is not easy in general. Therefore, instead of adding this as
a hypothesis, we will make additional hypotheses on the approximation process.

4Note that if we wanted to freeze coefficients as in the forward method one may be lead to the
study of the operator L∗,zg(y) = a(z)�g(y) + 2〈∇a(z),∇g(y)〉 + g(y)�a(z). Although this may
have an interest in itself, we do not pursue this discussion here as this will again involve derivatives
of the coefficients while in this section we are pursuing a method which may be applied when the
coefficients are Hölder continuous.
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This issue will demand us to introduce hypotheses that did not have any coun-
terpart in the forward method. Still, once the linear Volterra equation is obtained,
the arguments are parallel and we will again use the results in Section 3. Let us
introduce some notation and the main hypotheses. We define the linear operator

Q̂tf (y) := (
P

y
t

)∗
f (y) =

∫
f (x)p

y
t (x, y) dx =

∫
f (x)φ

y
t (x) dx.

We assume the following.

HYPOTHESIS 6.1. (0) Ptf (x) = ∫
f (y)Pt (x, dy) for all f ∈ Cb(R

d). In par-
ticular, Pt is an integral operator.

(i)
∫

p
y
t (x, y) dy < ∞, for all x ∈R

d and
∫

p
y
t (x, y) dx < ∞ for all y ∈ R

d .
(ii) limε→0 P

z,∗
T +εg(w) = P

z,∗
T g(w) and limε→0

∫
h(z)φz

ε(w)dz = h(w) for all
(z,w) ∈R

d ×R
d and for g,h ∈ C∞

c (Rd).
(iii) φz

t ∈ Dom(L) ∩ (
⋂

y∈Rd Dom(Ly)), for all (t, z) ∈ (0, T ] ×R
d .

With these definitions and hypotheses, we have by the semigroup property of
P z, that

P z
t φz

ε(x) = pz
t+ε(x, z) = φz

t+ε(x).(6.1)

As stated before, we remark that Q̂ �= Q∗. In fact, Q̂ is defined through a density
whose coefficients are “frozen” at the arrival point of the underlying process. Also
note that due to Hypothesis 6.1 then ‖Q̂tf ‖∞ ≤ CT ‖f ‖∞ for all t ∈ [0, T ].

Before introducing the next two hypotheses, we explain the reasoning behind
the notation to follow. In the forward method, it was clear that the dynamical sys-
tem expressed through the transition densities went from a departure point x to an
arrival point y with transition points yi , i = 0, . . . , n + 1, y0 = x and yn+1 = y.
In the backward method, the situation is reversed. The initial point for the method
is y, the arrival point is x and y0 = y and yn+1 = x. The notation to follow tries to
give this intuition.

HYPOTHESIS 6.2. We suppose that there exists a continuous function θ̂ ∈
C((0, T ]×R

d ×R
d) such that (Ly1 −Ly)φ

y
t (y1) = θ̂t (y1, y)φ

y
t (y1). Moreover, we

assume that θ̂t (y1, y)φ
y
t (y1) is integrable Ps(x, dy1) for all (s, x) ∈ [0, T ] × R

d

and (t, y) ∈ (0, T ] ×R
d .

Define the function ât (x, y) := θ̂t (y, x)px
t (y, x) = θ̂t (y, x)φx

t (y).

HYPOTHESIS 6.3. Assume that the function â satisfies the Hypotheses 3.2
and 3.3 with Gt(x, y) = px(y, x) ∈ M. Furthermore, we assume that the corre-
sponding function γ satisfies sup(t,y)∈[0,T ]×Rd

∫ |γt (x, y)|dx < ∞ and that there

exists ζ ∈ (1, ρ−1) such that for every R > 0

sup
(t,y)∈[0,T ]×Rd

∫
1{|x|≤R}

∣∣γt (x, y)
∣∣ζ dx < ∞.(6.2)
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HYPOTHESIS 6.4. For the function ât (x, y) we assume that Hypothesis 3.8 is
satisfied for some ζ ∈ (1, ρ−1).

We define now [recall (4.1) and Hypothesis 6.2]

Ŝtf (y) :=
∫

f (x)ât (y, x) dx.

For g ∈ C∞
c (Rd), we define

Î n
s0

(g)(y)
(6.3)

:=

⎧⎪⎪⎨⎪⎪⎩
∫ s0

0
ds1 · · ·

∫ sn−1

0
dsn

(
n−1∏
i=0

Ŝsi−si+1

)
Q̂sng(y), if n ≥ 1,

Q̂s0g(y), if n = 0.

Furthermore, we define the adjoint operators

Q̂∗
t f (x) :=

∫
f (y)p

y
t (x, y) dy,

Ŝ∗
t f (x) :=

∫
f (y)ât (y, x) dy.

Note that due to the Hypotheses 6.1(i) and 6.3 we have that for any f ∈ L∞

sup
t

∥∥Q̂∗
t f

∥∥∞ ≤ C‖f ‖∞,(6.4)

∥∥Ŝ∗
t f

∥∥∞ ≤ C

tρ
‖f ‖∞.(6.5)

As in (5.1), we define the following auxiliary operators for

Î
n,∗
t (f ) :=

⎧⎪⎨⎪⎩
∫ t

0
dtn · · ·

∫ t2

0
dt1Q̂

∗
t1
Ŝ∗

t2−t1
· · · Ŝ∗

t−tn
f, n ≥ 1,

Q̂∗
t f, n = 0,

Î n
t (y0, yn+1)

:=
∫ t

0
dtn · · ·

∫ t2

0
dt1

∫
dy1 · · ·

∫
dyn Ân

(
(t, y0), (t − tn, yn)

)
p

yn
tn (yn+1, yn).

Here, Ân denotes the same function defined in (3.4) where â is used instead of a.
Note that 〈Î n,∗

t0
(f ), g〉 = 〈f, Î n

t0
g〉 and Î

n,∗
t (f )(x) = ∫

f (y)Î
n,∗
t (y, x) dy for f,g ∈

C∞
c (Rd). Our main result in this section is:

THEOREM 6.5. Suppose that Hypotheses 6.1, 6.2 and 6.3. Then for every g ∈
C∞

c (Rd) the sum
∑∞

n=0 Î n
t (g)(y) converges absolutely and uniformly for (t, y) ∈
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(0, T ] ×R
d and the following representation formula is satisfied:

P ∗
t g(y) =

∞∑
n=0

Î n
t (g)(y), dy-a.s., t ∈ (0, T ].(6.6)

The above equality is understood in the following weak sense 〈P ∗
t g, h〉 =

〈g,Pth〉 = ∑∞
n=0〈Î n

t (g), h〉 for all (g,h) ∈ C∞
c (Rd) × C∞

c (Rd). Furthermore,∑∞
n=0 Î

n,∗
t (f )(x) converges absolutely and uniformly for x ∈ R

d and fixed f ∈
C∞

c (Rd), t ∈ (0, T ] and it satisfies

Ptf (x) =
∞∑

n=0

Î
n,∗
t (f )(x), dx-a.s.

Finally,
∑∞

n=0 Î n
t (y, x) converges absolutely and uniformly for (x, y) ∈ R

d × R
d

for fixed t > 0 and there exists a jointly measurable function pt(x, y) such that we
have that for f ∈ C∞

c (Rd) we have Ptf (x) = ∫
f (y)pt (x, y) dy and it is given by

pt(x, y) = p
y
t (x, y) +

∞∑
n=1

Î n
t (y, x).

Furthermore, suppose that Ptf (x) ≥ 0 for f ≥ 0 and Pt1 = 1 for all t ≥ 0. Then
pt(x, y) is a density function.

PROOF. Many of the arguments are similar to the proof of Theorem 5.5. In
fact, we first establish the Volterra equations satisfied by P ∗

t . In order to do this, we
need an approximation argument. We fix ε > 0 and we recall that due to Hypothe-
ses 4.2 and 6.1(iii), we have for each z ∈ R

d that P z
T −sφ

z
ε = φz

T −s+ε = pz
s+ε(·, z) ∈

Dom(L) and Lf (x) = Lxf (x). Then from Hypotheses 6.2 and 6.3, we have that
for 0 < s < T ,

∂s

(
PsP

y0
T −s

)
φy0

ε (x) = Ps

(
L − Ly1

)
P

y0
T −sφ

y0
ε (x)

=
∫

Ps(x, dy1)
(
L − Ly0

)
P

y0
T −sφ

y0
ε (y1)

=
∫

Ps(x, dy1)âT −s+ε(y0, y1).

We take g,h ∈ C∞
c (Rd) and we note that due to Hypothesis 6.3∫

dx
∣∣g(x)

∣∣ ∫ Ps(x, dy1)

∫
dy0

∣∣h(y0)
∣∣∣∣âT −s+ε(y0, y1)

∣∣
≤ C3(T − s + ε)−ρ‖h‖∞

∫
dx

∣∣g(x)
∣∣ ∫ Ps(x, dy1)

≤ C3(T − s)−ρ‖h‖∞‖g‖1.

The above expression is integrable with respect to 1(0,T )(s) ds for ρ ∈ (0,1).
Therefore this ensures that Fubini–Tonelli’s theorem can be applied and multiple
integrals appearing in any order will be well defined.
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Furthermore, by Hypotheses 6.2, 6.3 [see (6.2)] and the fact that h ∈ C∞
c (Rd),

we have that for fixed s ∈ [0, T ) we can take limits as ε → 0 for
∫

dy0|h(y0)| ×
|âT −s+ε(y0, y1)|, and that the uniform integrability property is satisfied. Therefore,
we finally obtain that the following limit exists, is finite and the integration order
can be exchanged so that

lim
ε→0

∫ T

0
dt

∫
dy0 h(y0)

∫
dx g(x)

∫
Ps(x, dy1)âT −s+ε(y0, y1)

=
∫ T

0
dt

∫
dy0 h(y0)

∫
dx g(x)

∫
Ps(x, dy1)âT −s(y0, y1).

From the previous argument, the following sequence of equalities are valid and the
limit of the right-hand side below exists:∫

dy0 h(y0)
(〈
g,PT φy0

ε

〉− 〈
g,P

y0
T φy0

ε

〉)
=

∫
dy0 h(y0)

∫
dx g(x)

∫ T

0
∂t

(
PsP

y0
T −s

)
φy0

ε (x) dt(6.7)

=
∫ T

0
dt

∫
dy0 h(y0)

∫
dx g(x)

∫
Ps(x, dy1)âT −s+ε(y0, y1).

In order to obtain the linear Volterra type equation, we need to take limits in (6.7).
To deal with the limit of the left-hand side of (6.7), we note that given the assump-
tions g,h ∈ C∞

c (Rd) and Hypothesis 6.1(ii), we have

lim
ε→0

∫
dy0 h(y0)

〈
g,PT φy0

ε

〉 = lim
ε→0

∫
g(y1)

∫
PT (y1, dw)

∫
dy0 h(y0)φ

y0
ε (w)

= 〈PT h,g〉,
lim
ε→0

∫
dy0 h(y0)

〈
P

y0,∗
T g,φy0

ε

〉 = lim
ε→0

∫
dy0 h(y0)P

y0,∗
T +εg(y0)

=
∫

dy0 h(y0)P
y0,∗
T g(y0).

Therefore, taking limits in (6.7), we obtain

〈PT h,g〉 =
∫

dy0 h(y0)P
∗,y0
T g(y0)

+
∫

dy0 h(y0)

∫
dx g(x)

∫ T

0
ds

∫
Ps(x, dy1)âT −s(y0, y1)

= 〈
Q̂∗

T h, g
〉+ ∫ T

0

〈
PsŜ

∗
T −sh, g

〉
ds.

Rewriting this equation with the adjoint of a densely defined operator, we obtain
the Volterra-type equation

P ∗
T g(x) = Q̂T g(x) +

∫ T

0
ds

∫
dyP ∗

s g(y)âT −s(x, y).



3118 V. BALLY AND A. KOHATSU-HIGA

This equation has a solution due to the results in Section 3 as we have made the
necessary hypotheses to apply the results of Corollary 3.7. Therefore, it follows
that (6.6) is the unique solution of the above equation. The proof of the other
statements are done in the same way as in the proof of Theorem 5.5. �

REMARK 6.6. The previous proof is also valid with weaker conditions on g

and h. For example, g ∈ L1(Rd) ∩ L∞(Rd) and h ∈ Cb(R
d) will suffice with an

appropriate change of hypothesis.

6.1. Probabilistic representation and regularity using the backward method.
We deal now with the representation of the density associated with the semi-
group PT . We recall that in the Section 5.1 [see (5.6)] we have performed a similar
construction.

HYPOTHESIS 6.7. There exists a continuous Markov process {X∗,π
t (y), t ∈

[0, T ]}, y ∈R
d such that X

∗,π
0 (y) = y and for any t > s we have

P
(
X

∗,π
t (y) ∈ dy2|X∗,π

s (y) = y1
) = C−1

t−s(y1)P
y1,∗
t−s (y1, dy2)

= C−1
t−s(y1)φ

y1
t−s(y2) dy2,

Ct−s(y1) :=
∫

φ
y1
t−s(y2) dy2.

Let (Jt )t≥0 be a Poisson process of parameter λ = 1 and we denote by τj , j ∈ N,
its jump times (with the convention that τ0 = 0). Then the same arguments as in
the previous section give the representation

I
∗,n
T (g)(y)

= eT
E

[
1{JT =n}g

(
X

∗,π
T (y)

)
CT −τn

(
X∗,π

τn
(y)

)

×
n−1∏
j=0

Cτj+1−τj

(
X∗,π

τj
(y)

)
θ̂τj+1−τj

(
X∗,π

τj+1
(y),X∗,π

τj
(y)

)]
.

We define


∗
T (y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CT −τJT

(
X∗,π

τJT
(y)

) JT −1∏
j=0

Cτj+1−τj

(
X∗,π

τj
(y)

)
θ̂τj+1−τj

(
X∗,π

τj+1
(y),X∗,π

τj
(y)

)
,

if JT ≥ 1,

CT (y),

if JT = 0.
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Sometimes we may use the notation X∗,π
τj

(y) to indicate that X
∗,π
0 (y) = y. The

main result in this section is about representations of the adjoint semigroup P ∗
and its densities.

THEOREM 6.8. Suppose that Hypotheses 6.1, 6.2 and 6.7 hold then the fol-
lowing representation formula is valid for any g ∈ C∞

c (Rd):

P ∗
T g(y) = P

∗,z
T g(y) + eT

E
[
g
(
X

∗,π
T (y)

)

∗

T (y)1{JT ≥1}
]

(6.8)
= eT

E
[
g
(
X

∗,π
T (y)

)

∗

T (y)
]
.

THEOREM 6.9. Suppose that Hypotheses 6.1, 6.2 and 6.7 hold then the fol-
lowing representation formula for the density is valid:

pT (x, y) = eT
E
[
p

X∗,π
τT

(y)

T −τT

(
x,X∗,π

τT
(y)

)

∗

T (y)
]
.(6.9)

In particular, let Z be a random variable with density h ∈ L1(Rd;R+) then we
have

PT h(x) = eT
E
[
p

X∗,π
τT

(Z)

T −τT

(
x,X∗,π

τT
(Z)

)

∗

T (Z)
]
.

PROOF. Using the definition of X∗,π we have for g ∈ C∞
c (Rd) (we recall that

τT ≡ τJT
)

E
[
g
(
X

∗,π
T

)
CT −τT

(y)|τT ,X∗,π
τT

= y
] =

∫
g(x)p

∗,y
T −τT

(y, x) dx

so that (6.8) says that P ∗
T (y, dx) = p∗

T (y, x) dx with

p∗
T (y, x) = eT

E
[
p

∗,X∗,π
τT

(y)

T −τT

(
X∗,π

τT
(y), x

)

∗

T (y)
]
.(6.10)

Notice that p∗
T (y, x) = pT (x, y) so the above equality says that PT (x, dy) =

p∗
T (y, x) dy with p∗

T (y, x) given in the previous formula. We conclude that the
representation formula (6.10) proves that Pt(x, dy) is absolutely continuous and
the density is represented by

pT (x, y) − p
y
T (x, y) = eT

E
[
p

X∗,π
τT

(y)

T −τT

(
x,X∗,π

τT
(y)

)

∗

T (y)1{JT ≥1}
]
.

The representation for PT h can be obtained by integrating
∫

h(y)pT (x, y) dy us-
ing (6.9). �

As before, we also have that the following generalized formulas with a general
Poisson process with parameter λ are valid:

pT (x, y) − p
y
T (x, y) = eλT

E
[
λ−Jλ

T p

X∗,π
τ
Jλ
T

(y)

T −τ
Jλ
T

(
x,X∗,π

τ
Jλ
T

(y)
)

∗

T (y)1{Jλ
T ≥1}

]
.

We discuss now the regularity of pt(x, y).
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THEOREM 6.10. Suppose Hypotheses 6.1, 6.2 and 6.3.

(i) Furthermore assume that (t, x, y) → (p
y
t (x, y), ât (x, y)) is continuous in

(0, T ] ×R
d ×R

d . Then (t, x, y) → pt(x, y) is continuous on (0,∞) ×R
d ×R

d .
Moreover,

pT (x, y) = eT
E
[
p

X∗,π
τT

(y)

T −τ
T

(
x,X∗,π

τT
(y)

)

̂T (y)

]
.

(ii) Furthermore, we assume that x → p
y
t (x, y) is differentiable for all (t, y) ∈

R+ ×R
d and that the Hypothesis 3.8 is satisfied for ∇xp

y
t (x, y) instead of G. Then

the function x → pt(x, z) is one time differentiable. Moreover,

∇xpT (x, y) = E
[∇xp

X∗,π
τT

(y)

T −τ
T

(
x,X∗,π

τT
(y)

)

̂T (y)

]
.

7. Examples: Applications to stochastic differential equations. In this sec-
tion, we will consider the first natural example for our previous theoretical de-
velopments, that is, the case of multidimensional diffusion processes. The for-
ward method will need smooth coefficients and the backward method will require
Hölder continuous coefficients.

7.1. Example 1: The forward method for continuous SDE’s with smooth coeffi-
cients. We consider the following d-dimensional SDE:

Xt = x +
m∑

j=1

∫ t

0
σj (Xs) dWj

s +
∫ t

0
b(Xs) ds.(7.1)

Here, σj , b :Rd → R
d , σj ∈ C2

b(Rd;Rd) is uniformly elliptic (i.e., 0 < aI ≤ a ≤
aI for a, a ∈ R with a = σσ ∗), b ∈ C2

b(Rd;Rd) and W is a m-dimensional Wiener
process. Under these conditions, there exists a unique pathwise solution to the
above equation. Then we define the semigroup Ptf (x) = E[f (Xt)] which has in-
finitesimal generator given by Lf (x) = 1

2
∑

i,j ai,j (x)∂2
i,j f (x) + ∑

i b
i(x)∂if (x)

for f ∈ C∞
c (Rd) and ai,j (x) = ∑

k σ i
k(x)σ

j
k (x). Clearly, Ptf (x) is jointly measur-

able and bounded and, therefore, Hypothesis 4.1 is satisfied. We will consider the
following approximation process:

Xz
t (x) = x +

m∑
j=1

σj (z)W
j
t + b(z)t,

which defines the semigroup

P z
t f (x) = E

[
f
(
Xz

t (x)
)] =

∫
f (y)qta(z)

(
y − x − b(z)t

)
dy,(7.2)
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for f ∈ C∞
c (Rd), with jointly continuously differentiable probability kernel

pz
t (x, y) = qta(z)(y − x − b(z)t). Furthermore, its associated infinitesimal oper-

ator [for f ∈ C2
c (Rd)] is given by

Lxf (y) = 1

2

∑
i,j

ai,j (x)∂2
i,j f (y) +∑

i

bi(x)∂if (y).

Therefore, Hypotheses 4.2 and 4.3 are clearly satisfied. Hypothesis 5.1 is clearly
satisfied as ai,j , bi ∈ C2

b(Rd) for i, j ∈ {1, . . . , d}. Now we proceed with the veri-
fication of Hypothesis 5.2. Using integration by parts, we have for f ∈ C∞

c (Rd)

Stf (x) =
∫ (

Ly − Lx)f (y)P x
t (x, dy)

= 1

2

∑
i,j

∫ (
ai,j (y) − ai,j (x)

)
qta(x)

(
y − x − b(x)t

)
∂2
i,j f (y) dy

+∑
i

∫ (
bi(y) − bi(x)

)
qta(x)

(
y − x − b(x)t

)
∂if (y) dy(7.3)

=
∫

dy f (y)

(
1

2

∑
i,j

∂2
i,j

((
ai,j (y) − ai,j (x)

)
qta(x)

(
y − x − b(x)t

)))

−∑
i

∫
dy f (y)∂i

((
bi(y) − bi(x)

)
qta(x)

(
y − x − b(x)t

))
.

In view of (A.3), we have

∂2
i,j

((
ai,j (y) − ai,j (x)

)
qta(x)

(
y − x − b(x)t

)) = θ
i,j
t (x, y)qta(x)

(
y − x − b(x)t

)
,

∂i

((
bi(y) − bi(x)

)
qta(x)

(
y − x − b(x)t

)) = ρi
t (x, y)qta(x)

(
y − x − b(x)t

)
,

where we define for the Hermite polynomials H (see Section A.2)

θ
i,j
t (x, y) = ∂2

i,j a
i,j (y) + ∂ja

i,j (y)hi
t (x, y) + ∂ia

i,j (y)h
j
t (x, y)

+ (
ai,j (y) − ai,j (x)

)
h

i,j
t (x, y),

ρi
t (x, y) = ∂ib

i(y) + (
bi(y) − bi(x)

)
hi

t (x, y),

hi
t (x, y) = Hi

ta(x)

(
y − x − b(x)t

)
,(7.4)

h
i,j
t (x, y) = H

i,j
ta(x)

(
y − x − b(x)t

)
.(7.5)

So we obtain

Stf (x) =
∫

dy f (y)qta(x)

(
y − x − b(x)t

)
θt (x, y)

(7.6)
=

∫
f (y)θt (x, y)P x

t (x, dy).
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Therefore, we have that

θt (x, y) = 1

2

∑
i,j

θ
i,j
t (x, y) −∑

i

ρi
t (x, y).

Now, we verify Hypotheses 5.2 and 5.3. We have verified the first part of Hy-
pothesis 5.2 by the definition of θ in (7.6). In order to verify the rest of the condi-
tions in Hypothesis 5.2, we see that by (A.3) and (A.4) with α = 1

px
t (x, y)

∣∣θt (x, y)
∣∣ ≤ C

(‖a‖2,∞ + ‖b‖1,∞
) 1

t1/2 qcta(y − x)

for a constant C > 1 and c ∈ (0,1), and consequently all the conditions in Hypoth-
esis 5.2 are satisfied with ρ = 1

2 + ρ0 and γt (x, y) = βt(x, y) = tρ0qcta(y − x).

Here, ρ0 ∈ (
ζ−1

2 , 1
2).

Similarly, Hypothesis 5.3 is satisfied under the ξ(x) = C for (3.10) by using that
1{∑n−1

i=1 |yi |≤R} ≤ 1. For (3.11), one uses that

1{∑n−1
i=1 |yi |>R} ≤

n−1∑
i=1

d∑
j=1

1{|yj
i |>R/(n

√
d)}.

Next, one performs the change of variables y1 = x1, yi − yi+1 = xi+1 for i =
1, . . . , n − 2 in the integral of (3.11) and use the inequality 1{|yj

i |>R/(n
√

d)} ≤
n2d|yj

i |2
R2 to obtain the following bound:

n−1∑
i=1

d∑
j=1

n2d

R2 sup
(y0,yn)∈B(z0,r)×B(zn,r)

∫
dx1 · · ·

∫
dxn−1

∣∣∣∣∣
i∑

k=1

x
j
k

∣∣∣∣∣
2

qcδ0a(x1 − y0)

(7.7)

×
n−2∏
i=1

qcδia(xi+1)qcδn−1a

(
yn −

n−1∑
i=1

xi

)
.

Without loss of generality, using a further change of variables z1 = x1 − y0, we
may consider the case where y0 = 0. Next, we use the inequality |∑i

k=1 x
j
k |2 ≤

n
∑i

k=1 |xj
k |2. Then one rewrites the integral in a probabilistic way using Gaussian

random variables. This becomes E[|Zj
k |2/Z0 + · · · + Zn−1 = yn]pZ0+···+Zn−1(yn)

where Zi is a d-dimensional Gaussian random vector with mean 0 and covariance
matrix cδiaI . The conditional variance can be computed explicitly and the density
can be bounded by its maximum value (i.e., yn = 0). Finally, we obtain that (7.7)
is bounded by C n4d2

R2
√

δ
(|yn|2 + δ) with δ = ∑n−1

i=0 δi . Therefore, condition (3.11)

will be satisfied taking Rε = ε−1/2 and ξ(δ) = δ−1/2 + δ1/2 and the upper bound
in (3.11) becomes C2nξ(δ). We leave the details of the calculation for the reader.
Therefore, the existence of the density follows.
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In order to obtain further regularity, we need to verify the uniform integra-
bility condition for ζ ∈ (1, ρ−1). In this case, we first note that due to (A.4),
|∇yp

x
t (x, y)| ≤ C

t1/2 qcta(y − x). Therefore, we may choose any ρ ∈ (1
2 , 2

3) and

let ζ = 1
2(1−ρ)

> 1. Finally, we define γt (x, y) = t (1/2)(1−ζ−1)qcta(y − x) and
ξ(x) = C in order to obtain (3.10). One also obtains (3.11) as in the proof of
continuity. Therefore, the hypotheses in Theorem 5.10 are satisfied.

Now, we give the description of the stochastic representation. Given a Poisson
process with parameter λ = 1 and jump times {τi, i = 0, . . .}. Given that JT = n

and ti := τi ∧T we define the process (Xπ
ti
)i=0,...,n+1 for π = {ti; i = 0, . . . , n+1},

with 0 = t0 < t1 < · · · < tn ≤ tn+1 = T is then defined as compositions of Xz(x)

as follows:

Xπ
tk+1

= Xz
tk+1−tk

(x)|z=x=Xπ
tk
,

for k = 0, . . . , n. Here Xπ
0 = x and the noise used for Xz

tk+1−tk
(x) is independent

of Xπ
tj

for all j = 0, . . . , k and of the Poisson process J .

THEOREM 7.1. Suppose that a ∈ C2
b(Rd;Rd ×R

d), b ∈ C2
b(Rd;Rd) and a ≥

a ≥ a. Define


T (x) =

⎧⎪⎪⎨⎪⎪⎩
JT −1∏
j=0

θτj+1−τj

(
Xπ

τj
,Xπ

τj+1

)
, if JT ≥ 1,

1, if JT = 0.

Then for any f ∈ C∞
c (Rd) we have

PT f (x) = eT
E
[
f
(
Xπ

T

)

T (x)

]
and, therefore,

pT (x, y) = eT
E
[
p

Xπ
τT

T −τT

(
Xπ

τT
, y

)

T (x)

]
,

where (Xπ
t )t∈π is the Euler scheme with Xπ

0 = x and random partition π =
{τi; i = 0, . . . , τJT

} ∪ {T } where 0 = τ0 < · · · < τJT
≤ T where the random times

{τi}i are the associated jump times of the simple Poisson process J , indepen-
dent of Xπ with E[JT ] = T . Moreover, (t, x, y) → pt(x, y) is continuous on
(0,∞) × R

d × R
d and for every t > 0 the function (x, y) → pt(x, y) is continu-

ously differentiable. We also have

∂yipT (x, y) = eT
E

[
hi

T −τT

(
Xπ

τT
, y

)
p

Xπ
τT

T −τT

(
Xπ

τT
, y

) JT −1∏
j=0

θτj+1−τj

(
Xπ

τj
,Xπ

τj+1

)]
,

where hi is defined in (7.5).
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PROOF. As a consequence of Theorems 5.7, 5.9 and 5.10, we obtain most of
the mentioned results. The fact that y → pt(x, y) is continuously differentiable
will follow from the backward method concerning the adjoint semigroup that we
present in the following section (since a is differentiable it is also Hölder continu-
ous so the hypotheses in the next section are verified). �

7.2. Example 2: The backward method for continuous SDEs with Hölder con-
tinuous coefficients. In this section, we will assume the same conditions as in the
previous section except the regularity hypothesis on a and b. We will assume that a

is a Hölder continuous function of order α ∈ (0,1) and b is a bounded measurable
function. We suppose the existence of a unique weak solution to (7.1). For further
references on this matter, see [16]. The approximating semigroup is the same as in
the previous section and is given by (7.2). Therefore we have, as before,

pz
t (x, y) = qta(z)

(
y − x − b(z)t

)
,

φz
t (x) = qta(z)

(
z − x − b(z)t

)
.

In this case, note that for fixed z ∈ R
d , φz is a smooth density function and

therefore Ct(x) = 1. Furthermore, as in the previous section, Hypotheses 4.1, 4.2
and 4.3 are satisfied. Similarly, Hypothesis 6.1 can be easily verified. We will now
check Hypothesis 6.2. We define

θ̂t (x, z) = 1

2

∑
i,j

(
ai,j (x) − ai,j (z)

)
ĥ

i,j
t (x, z) −∑

i

(
bi(x) − bi(z)

)
ĥi

t (x, z),

ĥi
t (x, z) = Hi

ta(z)

(
z − x − b(z)t

)
,

ĥ
i,j
t (x, z) = H

i,j
ta(z)

(
z − x − b(z)t

)
so that, by (A.3),(

Lx − Lz)φz
t (x) = 1

2

∑
i,j

(
ai,j (x) − ai,j (z)

)
∂2
i,j qta(z)

(
z − x − b(z)t

)
−∑

i

(
bi(x) − bi(z)

)
∂iqta(z)

(
z − x − b(z)t

)
= θ̂t (x, z)qta(z)

(
z − x − b(z)t

)
.

Using (A.4) and the Hölder continuity of ai,j , we obtain∣∣(ai,j (x) − ai,j (z)
)
∂2
i,j φ

z
t (x)

∣∣
≤ C|x − z|α∣∣∂2

i,jφ
z
t (x)

∣∣
≤ C

(∣∣z − x − b(z)t
∣∣α + ‖b‖α∞tα

)∣∣∂2
i,j qta(z)

(
z − x − b(z)t

)∣∣
≤ Ct−(1−α/2)qat

(
z − x − b(z)t

)
.
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And using (A.4)(ii) with α = 0, we obtain∣∣(bi(x) − bi(z)
)
∂iφ

z
t (x)

∣∣ ≤ 2

t1/2 ‖b‖∞qta

(
z − x − b(z)t

)
.

Finally, we have∣∣θ̂t (x, z)
∣∣ ≤ C

t1−α/2

(
1 + ‖b‖∞

)
qta

(
z − x − b(z)t

)
.

We also have φz
t (x) ≤ Cqta(z − x − b(z)t) so we obtain

φz
t (x)

∣∣θ̂t (x, z)
∣∣ ≤ C

t1−α/2

(
1 + ‖b‖∞

)
q2ta

(
z − x − b(z)t

)
.

We conclude that Hypothesis 6.2 is verified. The verification of Hypothesis 6.3 is
done like in the previous section using ρ ∈ (2−α

2 , 3−α
3 ) and ζ = (3 − α − 2ρ)−1 ∈

(1, ρ−1). Therefore, we have the following result.

PROPOSITION 7.2. Suppose that a is Hölder continuous of order α ∈ (0,1),
a ≥ a ≥ a and b is measurable and bounded. Then

pT (x, y) = eT
E

[
p

X∗,π
τT

(y)

T −τT

(
x,X∗,π

τT
(y)

) JT −1∏
j=0

θ̂τj+1−τj

(
X∗,π

τj+1
(y),X∗,π

τj
(y)

)]
,

where X∗,π (y) is the Euler scheme with X
∗,π
0 = y and drift coefficient −b.

Moreover, (t, x, y) → pt(x, y) is continuous on (0,∞) × R
d × R

d and for ev-
ery (t, y) ∈ (0,∞) ×R

d the function x → pt(x, y) is continuously differentiable.
Moreover,

∂xipT (x, y)

= −eT
E

[
ĥi

T −τT

(
x,X∗,π

τT
(y)

)
p

X∗,π
τT

(y)

T −τT

(
x,X∗,π

τT
(y)

)

×
JT −1∏
j=0

θ̂τj+1−τj

(
X∗,π

τj+1
(y),X∗,π

τj
(y)

)]
.

7.3. Example 3: One-dimensional Lévy driven SDE with Hölder type coeffi-
cients. Although we may consider various other situations where the forward
and the backward method can be applied and to test their limits, we prefer to con-
centrate in this section on the backward method for a one-dimensional jump type
SDEs driven by a Lévy process of a particular type: we assume that the inten-
sity measure of the Lévy process is a mixture of Gaussian densities. This a quite
general class as it can be verified from Schoenberg’s theorem; see [15].

For this, let N(dx, dc, ds) denote the Poisson random measure associated with
the compensator given by qc(x) dx ν(dc) ds where ν denotes a nonnegative mea-
sure on R+ := (0,∞) which satisfies the following.
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HYPOTHESIS 7.3. ν(R+) = ∞ and Cν := ∫
R+ cν(dc) < ∞.

We refer the reader to [8] for notation and detailed definitions on Poisson ran-
dom measures. Therefore, heuristically speaking, x stands for the jump size which
arises from a Gaussian distribution with random variance obtained from the mea-
sure ν.

We define ην(u) := ν(u,∞) and we assume that there exists some s∗ ≥ 0 and
h,C∗ > 0 such that we have the following.

HYPOTHESIS 7.4.
∫∞

0 e−uην(
u
s
) du ≥ C∗sh

∫∞
0 e−uην(u) du ∀s ≥ s∗.

For example, if ν(dc) = 1(0,1](c)c−(1+β) dc with 0 < β < 1 then Hypothesis 7.3
is satisfied and Hypothesis 7.4 is satisfied with h = β .

Ñ(dx, dc, ds) = N(dx, dc, ds) − qc(x) dx ν(dc) ds denotes the compensated
Poisson random measure. We also define the following auxiliary processes and
driving process Z:

Vt =
∫ t

0

∫
R+×R

cN(dx, dc, ds),

Zt =
∫ t

0

∫
R+×R

xN(dx, dc, ds),

Nν(dx, ds) =
∫
R+

N(dx, dc, ds).

With a slight variation of some classical proofs (see, e.g., Chapter 2 in [1]) one can
obtain the following generalization of the Lévy–Khinchine formula.

PROPOSITION 7.5. Assume Hypothesis 7.3. Let h :R×R+ →R be such that
| ∫

R×R+(eiθh(x,c) − 1)qc(x) dx dν(c)| < ∞. Then the stochastic process Ut(h) :=∫ t
0
∫
R+×R

h(x, c)N(dx, dc, ds) has independent increments with characteristic
function given by

E
[
exp

(
iθUt(h)

)] = exp
(
t

∫
R×R+

(
eiθh(x,c) − 1

)
qc(x) dx dν(c)

)
the density of Zt at y can be written as E[qVt (y)].

PROOF. The first part of the proof is classical, while in order to obtain the rep-
resentation for the density of Zt , one takes h(x, c) = x to obtain the characteristic
function associated with Zt under Hypothesis 7.3. On the other hand, one only
needs to compute the characteristic function associated with the density function
E[qVt (y)] to finish the proof. �
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Notice that due to Hypothesis 7.3 we have that

E
[
Z2

t

] = t

∫
R×R+

|u|2qc(u)ν(dc) du = t

∫
R+

cν(dc) < ∞.(7.8)

Therefore, Z is a Lévy process of finite variance. Nν(dx, ds) is a Poisson ran-
dom measure with compensator μν(dx) ds := ∫

R+ qc(x)ν(dc) dx ds and we de-
note by Ñν(dx, ds) the compensated Poisson random measure. Then we consider
the solution of the following stochastic differential equation driven by Z and its
corresponding approximation obtained after freezing the jump coefficient. That is,

Xν
t (x) = x +

∫ t

0

∫
R

σ
(
Xν

s−(x)
)
uÑν(ds, du),(Eν)

X
ν,z
t (x) = x +

∫ t

0

∫
R

σ(z)uÑν(ds, du).(Ez
ν)

We assume that σ :R→R verifies the following conditions.

HYPOTHESIS 7.6. (i) There exists σ,σ > 0 such that σ ≤ σ(x) ≤ σ for all
x ∈ R.

(ii) There exists α ∈ (0,1] such that |σ(x) − σ(y)| ≤ Cα|x − y|α .

If α = 1, then (Eν) has a unique solution. Here, rather than entering into the
discussion of existence and uniqueness results for other values of α ∈ (0,1], we
refer the reader to a survey article by Bass and the references therein (see [4]).
Therefore, from now on, we suppose that a unique weak solution to (Eν) exists so
that P ν

t f (x) = E[f (Xν
t (x))] is a semigroup with infinitesimal operator [note that∫

uμν(du) = 0]

Lνf (x) =
∫
R

(
f
(
x + σ(x)u

)− f (x)
)
μν(du).

Therefore, Hypothesis 4.1 is clearly satisfied.
Similarly, Xν,z(x), defines a semigroup P ν

t f (x) = E[f (X
ν,z
t (x))] with in-

finitesimal operator

Lν,zf (x) =
∫
R

(
f
(
x + σ(z)u

)− f (x)
)
μν(du).(7.9)

Our aim is to give sufficient conditions in order that the law of Xν
t (x) is abso-

lutely continuous with respect to the Lebesgue measure and to represent the den-
sity pt(x, y) using the backward method as introduced in Section 6. In order to
proceed with the verification of Hypothesis 4.2, we need to prove the following
auxiliary lemma.
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LEMMA 7.7. Suppose that Hypotheses 7.3 and 7.4 holds for some h > 0. Then
for every p > 0 there exists a constant C such that for every t > 0

E
[
V

−p
t

] ≤ Ct−p/h.(7.10)

PROOF. Recall that the Laplace transform of Vt is given by

E
[
e−aVt

] = exp
(
−t

∫
R+

(
1 − e−ac)ν(dc)

)
.

We use the change s′ = sVt and we obtain∫ ∞
0

sp−1e−sVt ds = cpV
−p
t

with cp = ∫∞
0 sp−1e−s ds. It follows that

cpE
[
V

−p
t

] =
∫ ∞

0
sp−1

E
[
e−sVt

]
ds =

∫ ∞
0

sp−1 exp
(
−t

∫
R+

(
1 − e−sc)ν(dc)

)
ds.

For s > s∗ we have using the integration by parts formula and the change of vari-
ables sc = u,∫ ∞

0

(
1 − e−sc)ν(dc) =

∫ ∞
0

due−uην

(
u

s

)
≥ C∗sh

∫ ∞
0

due−uην(u) =: shαν

with αν ∈ R+. Therefore, again by change of variables, we have that∫ ∞
s∗

sp−1 exp
(
−t

∫
R+

(
1 − e−sc)ν(dc)

)
ds ≤

∫ ∞
s∗

sp−1e−tshαν ds

≤ t−p/hC(ν,p,h)

with

C(ν,p,h) = h−1
∫ ∞

0
u−(1−p/h)e−uαν du < ∞.

Since
∫ s∗

0 sp−1 ds = 1
p
s
p∗ the conclusion follows by taking s∗ = t−1/h. �

Now we can verify Hypothesis 4.2. For this, we need to compute as explicitly
as possible the density pz

t (x, y) of the law of X
ν,z
t (x). In fact, the following is a

corollary of Proposition 7.5 and the previous lemma which is used together with
Lemma A.2 in order to obtain the needed uniform integrability properties.

COROLLARY 7.8. Suppose that Hypotheses 7.3 and 7.6 are verified. Then the
law of X

ν,z
t (x) is absolutely continuous with respect to the Lebesgue measure with

strictly positive continuous density given by

pz
t (x, y) = E

[
qσ 2(z)Vt

(x − y)
]
.

Therefore, for each fixed (t, z) ∈ (0, T ] × R, we have that pz
t ∈ C2

b(R × R) and
pz

t (x, y) is jointly continuous in (t, z, x, y).
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Note that due to the above result Hypothesis 4.2 is satisfied and φ
y
t (x) =

E[qσ 2(z)Vt
(x −y)]. Furthermore, as it is usually the case Hypotheses 4.3 and 6.1(0)

are trivially satisfied. For Hypothesis 6.1(i), one only needs to apply Corollary 7.8.
Hypothesis 6.1(ii) follows from the joint continuity of pz

t (x, y) and Hypothe-
sis 6.1(iii) follows from the regularity of pz

t (x, y) as stated in the above Corol-
lary 7.8 and (7.8).

We are now ready to proceed and verify Hypotheses 6.2 and 6.3. We have
by (7.9),

∫
uqc(u) du = 0 and properties of convolution that(

Lν,x − Lν,z)φz
t (x) =

∫
R+×R

(
φz

t

(
x + σ(x)u

)− φz
t

(
x + σ(z)u

))
qc(u)ν(dc) du

=
∫
R+×R

(
E
[
qσ 2(z)Vt

(
x − z + σ(x)u

)]
−E

[
qσ 2(z)Vt

(
x − z + σ(z)u

)])
qc(u)ν(dc) du

=
∫
R

E
[
qσ 2(x)c+σ 2(z)Vt

(x − z) − qσ 2(z)c+σ 2(z)Vt
(x − z)

]
ν(dc).

In particular, Hypothesis 6.2 holds with

θ̂t (x, y) = 1

E[qσ 2(y)Vt
(x − y)]

(7.11)

×
{∫

R+
E
[
qσ 2(x)c+σ 2(y)Vt

(x − y) − qσ 2(y)c+σ 2(y)Vt
(x − y)

]
ν(dc)

}
.

THEOREM 7.9. Suppose that Hypotheses 7.3, 7.4 and 7.6 hold with h > 1 −
α
2 . Then the law of Xν

T (x) is absolutely continuous with respect to the Lebesgue
measure and its density pT (x, y) satisfies

pT (x, y) = eT
E

[
p

X∗,π
τT

(y)

T −τ
T

(
x,X∗,π

τT
(y)

) JT −1∏
j=0

θ̂τj+1−τj

(
X∗,π

τj+1
(y),X∗,π

τj
(y)

)]
,

where X
∗,π
t (y) is the Euler scheme given in the backward method starting at

X
∗,π
0 (y) = y. Moreover, (t, x, y) → pt(x, y) is continuous on (0,∞) × R × R

and for every (t, y) ∈ (0,∞) ×R the function x → pt(x, y) is differentiable and

∂xpT (x, y) = eT
E

[
∂xp

X∗,π
τT

(y)

T −τ
T

(
x,X∗,π

τT
(y)

) JT −1∏
j=0

θ̂τj+1−τj

(
X∗,π

τj+1
(y),X∗,π

τj
(y)

)]
.

PROOF. We have already verified Hypotheses 6.1, 6.2 and the differentiability
of pz

t . It remains to verify the hypotheses in Lemma 3.9 and Theorem 3.10. For
this, we have to estimate∣∣θ̂t (x, y)

∣∣φy
t (x) ≤

∫
R+

E
[∣∣qσ 2(x)c+σ 2(y)Vt

(x − y) − qσ 2(y)c+σ 2(y)Vt
(x − y)

∣∣]ν(dc).
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Let us denote a = x − y and

s′ = σ 2(y)c + σ 2(y)Vt , s′′ = σ 2(x)c + σ 2(y)Vt .

We assume that s′ ≤ s′′ (the other case is similar) and note the inequality (with
a, b, b′, c > 0)

b ≥ b′ ⇒ a + cb

a + cb′ ≤ b

b′ .

From this inequality, we obtain

s′′

s′ ≤ σ 2

σ 2 and

(7.12)
|s′′ − s′|

s′ ≤ c|σ 2(x) − σ 2(y)|
σ 2(x)c + σ 2(y)Vt

≤ cCα|a|α
σ 2(c + Vt)

,

where Cα is the Hölder constant of σ 2. Finally, from Lemma A.3 and (7.12) this
gives

∣∣qs′′(a) − qs′(a)
∣∣ ≤ CCα

σ 2

σ 2

c|a|α
σ 2(c + Vt)

qσ 2(c+Vt )
(a)

≤ CCα

σ 2+α

σ 4

c

(c + Vt)1−α/2 q(σ 2/2)(c+Vt )
(a).

Returning to our main proof, we obtain (with C = CCασ 2+ασ−4)∣∣θ̂t (x, y)
∣∣φy

t (x)
(7.13)

≤ C

∫
R+

E
[
(c + Vt)

−(1−α/2)q(σ 2/2)(c+Vt )
(x − y)

]
cν(dc).

A first step is to obtain estimates for the right-hand side of the above inequality,
so as to be able to define γ . For this, we define

gt (x, y) =
∫
R+

E
[
V

−(1−α/2)
t q(σ 2/2)(c+Vt )

(x − y)
]
ν(dc),

(7.14)

ν(dc) = 1(c > 0)

Cν

cν(dc), Cν =
∫
R+

cν(dc).

We denote

χ =
(

1 − α

2

)
ζ + ζ − 1

2
and ρ = χ

h
.

Since 1 − α
2 < h, there exists ζ ∈ (1, ρ−1) with ρ ∈ (0,1). We fix such a ζ . We

define now

γt (x, y) := tχ/hgt (x, y)
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and we notice that by (7.13)∣∣θ̂t (x, y)
∣∣φy

t (x) ≤ Cgt(x, y) = Ct−χ/hγt (x, y) = Ct−ργt (x, y).

We also define Gt(x, y) := E[qσ 2(y)Vt
(x −y)] = p

y
t (x, y), and we use Lemma A.2

in order to define γ 3

∣∣∂xp
y
t (x, y)

∣∣ ≤ E

[ |x − y|
σ 2(y)Vt

qσ 2(y)Vt
(x − y)

]
≤ CE

[
V

−1/2
t qσ 2(y)Vt

(x − y)
]

=: Ct−1/(2h)γ 3
t (x, y).

With these definitions, we need to check that (3.10) and (3.11) holds. We verify the
former as the latter is similar to (7.7) if one uses (7.16) at the end of the calculation.
To verify (3.10), it is enough to prove that for n ∈N, δi > 0, i = 1, . . . , n

sup
y0,yn+1∈Rd

∫
dy1 · · ·

∫
dyn

n∏
i=0

γδi
(yi, yi+1)

ζ ≤ Cn

(δ1 + · · · + δn)1/(2h)
,(7.15)

where C is a constant which depends on ζ , p, h and s∗ which appear in Hypoth-
esis 7.4 and in (7.10). Notice first that for every a > 0 and x ∈ R one has for a
positive constant C, (

qa(x)
)ζ = Ca−(ζ−1)/2qa/ζ (x).

Using Hölder’s inequality and the definition of χ , we obtain

gδi
(yi, yi+1)

ζ ≤
∫
R+

E
[
V

−(1−α/2)ζ
δi

q(σ 2/2)(c+Vδi
)(yi − yi+1)

ζ ]ν(dc)

≤ C

∫
R+

E
[
V

−χ
δi

q(σ 2/2(ζ ))(c+Vδi
)(yi − yi+1)

]
ν(dc).

We consider (V i
t )t≥0, i = 1, . . . , n to be independent copies of (Vt )t≥0 and we

write∫
dy1 · · ·

∫
dyn

n∏
i=0

gδi
(yi, yi+1)

ζ

≤ C−n
E

[
n∏

i=1

(
V i

δi

)−χ
∫

ν(dc1) · · ·
∫

ν(dcn)

∫
dy1 · · ·

∫
dyn

×
n∏

i=1

q(σ 2/(2ζ ))(ci+V i
δi

)(yi − yi+1)

]

= C−n
E

[
n∏

i=1

(
V i

δi

)−χ
∫

ν(dc1) · · ·



3132 V. BALLY AND A. KOHATSU-HIGA

×
∫

ν(dcn)q(σ 2/(2ζ ))
∑n

i=1(ci+V i
δi

)(y0 − yn+1)

]

≤ C−n

(
E

[
n∏

i=1

(
V i

δi

)−2χζ

])1/2

×
(
E

[∫
ν(dc1) · · ·

∫
ν(dcn)q

2
(σ 2/(2ζ ))

∑n
i=1(ci+V i

δi
)
(y0 − yn+1)

])1/2

.

Notice that V is a Lévy processes, therefore,
∑n

i=1 V i
δi

has the same law as
Vδ1+···+δn so

E

[∫
ν(dc1) · · ·

∫
ν(dcn)q

2
(σ 2/(2ζ ))

∑n
i=1(ci+V i

δi
)
(y0 − yn+1)

]

= E

[∫
ν(dc1) · · ·

∫
ν(dcn)q

2
(σ 2/(2ζ ))(

∑n
i=1 ci+Vδ1+···+δn )

(y0 − yn+1)

]
(7.16)

≤ E

[∫
ν(dc1) · · ·

∫
ν(dcn)

2ζ

σ 2(
∑n

i=1 ci + Vδ1+···+δn)

]

≤ 2ζ

σ 2E

[
1

Vδ1+···+δn

]
≤ Cζ

σ 2(δ1 + · · · + δn)1/h
.

The last inequality is a consequence of (7.10). Again by (7.10),(
E

[
n∏

i=1

(
V i

δi

)−2χζ

])1/2

=
n∏

i=1

(
E
[(

V i
δi

)−2χζ ])1/2 ≤ Cn
n∏

i=1

δ
−χζ/h
i

so (7.15) is proved. �

We give now a probabilistic representation for the density of the solution of
(Eν). We consider the Poisson process J of parameter λ = 1 with jump times
{τi; i ∈ N}, and a sequence of i.i.d. standard normal random variables (�j )j∈N.

First, note that using the mean value theorem, we can rewrite (7.11) as

θ̂t (x, y)φ
y
t (x) = Cν

∫
R+

∫ σ 2

σ 2
1{σ 2(x)∧σ 2(y)≤u≤σ 2(x)∨σ 2(y)} sgnσ (x, y)

×E
[
∂tquc+σ 2(y)Vt

(x − y)
]
duν(dc).

Here, we define

sgnσ (x, y) =
{

1, if σ 2(x) > σ 2(y),
−1, if σ 2(x) ≤ σ 2(y).

Therefore, we have that if we consider Ui ∼ Unif[σ 2, σ 2] an i.i.d. sequence of
random variables independent of all other random variables, we can represent
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θ̂t (x, y)φ
y
t (x) as

θ̂t (x, y)φ
y
t (x)

= Cν

2

(
σ̄ 2 − σ 2)

×
∫
R

sgnσ (x, y)E
[
1{σ 2(x)∧σ 2(y)≤U≤σ 2(x)∨σ 2(y)}

× h
1,1
Uc+σ 2(y)Vt

(x, y)qUc+σ 2(y)Vt
(x − y)

]
ν(dc).

Here, h1,1 is the Hermite polynomial defined in (7.5). In this case, the approximat-
ing Markov chain is defined as Y

∗,π
0 (y) = y

Y ∗,π
τi+1

(y) = Y ∗,π
τi

(y) + �i

(
UiZi + σ 2(Y ∗,π

τi
(y)

)
(Vτi+1 − Vτi

)
)1/2

.

The corresponding weight is given by


π
T (y) =

(
Cν

2

(
σ̄ 2 − σ 2))JT

×
JT∏
i=1

sgnσ

(
Y ∗,π

τi+1
(y), Y ∗,π

τi
(y)

)
× 1{σ 2(Y

∗,π
τi+1 (y))∧σ 2(Y

∗,π
τi

(y))≤Ui≤σ 2(Y
∗,π
τi+1 (y))∨σ 2(Y

∗,π
τi

(y))}

× h
1,1
UiZi+σ 2(Y

∗,π
τi

(y))Vt

(
Y ∗,π

τi+1
(y), Y ∗,π

τi
(y)

)
.

COROLLARY 7.10. Under the hypothesis of Theorem 7.9, we have

pT (x, y) = eT
E
[
p

Y ∗,π
τT

(y)

T −τT

(
x,Y ∗,π

τT
(y)

)

π

T (y)
]
,

∂xpT (x, y) = eT
E
[
∂xp

Y ∗,π
τT

(y)

T −τT

(
x,Y ∗,π

τT
(y)

)

π

T (y)
]
.

7.3.1. Examples of Lévy measures. We conclude this section with two exam-
ples of Lévy measures that satisfy Hypotheses 7.3 and 7.4.

EXAMPLE 7.11. Let ck = k−ρ for some ρ > 1 and define the discrete measure
ν(dc) = ∑∞

k=1 δck
(dc).

We verify that all the hypotheses required in Section 7.3 are satisfied in this
example. First of all, we consider Hypothesis 7.3. Clearly, ν(R+) = ∞, and if
ρ > 1 then

∫
c dν(c) < ∞.

Now we verify Hypothesis 7.4. One has ην(a) = card{k : ck > a} = [a−1/ρ] −
1(a−1/ρ ∈ N) for a > 0. We define η′

ν(a) = a−1/ρ . Then clearly η′
ν satisfies the

Hypothesis 7.4 with h = 1
ρ

. Furthermore, s−1/ρην(
u
s
)−η′

ν(u) converges uniformly
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to zero as s → ∞. Then as ην ≤ η′
ν then Hypothesis 7.4 is verified for ην with

h = 1
ρ

. So we may use Corollary 7.10 or Theorem 7.9 for equations with α-Hölder

coefficient σ with α >
2(ρ−1)

ρ
and the Lévy measure μν(du) = qν(u) du with

qν(u) = 1√
2π

∞∑
k=1

kρ/2e−kρu2/2.

EXAMPLE 7.12. We consider the measure ν(dc) = 1[0,1](c)c−(1+β) dc with
1
2 < β < 1. Then ν(R+) = ∞ and

∫
c dν(c) < ∞. One has ην(a) = 1

β
(a−β − 1)

for a ∈ (0,1) so that Hypothesis 7.4 holds with h = β ∈ [0,1). Therefore, Corol-
lary 7.10 or Theorem 7.9 can be applied for an α-Hölder coefficient σ with
α ∈ (2(1 − β),1). One may also compute

qν(u) = 22β

u1−β
√

2π

∫ ∞
u2/2

y−1−2βe−y dy

so we have the following asymptotic behavior around 0 for qν :

lim
u→0

u2βqν(u) = 22β

√
2π

∫ ∞
0

yβ−1e−y dy < ∞.

Therefore, the Lévy measure generated by this example is of stable-like behavior
around 0.

8. Some conclusions and final remarks. The parametrix method has been a
successful method in the mathematical analysis of fundamental solutions of PDEs
and we wanted to show the reader the possibility of other directions of possible
generalization. One of them is to use the current set-up to introduce stochastic
processes representing a variety of different operators which are generated by a
parametrized operator Lz. Therefore, allowing the stochastic representation for
various nontrivial operators.

The adjoint method we introduced here seems to allow for the analysis of the
regularity of the density requiring Hölder continuity of the coefficients through an
explicit expression of the density.

Finally, the stochastic representation can be used for simulation purposes. In
that case, the variance of the estimators explode due to the instability of the weight
function θ in the forward method or θ̂ in the backward method. In fact, the repre-
sentations presented here have a theoretical infinite variance although the mean is
finite. In that respect, the way that the Poisson process and the exponential jump
times appear maybe considered somewhat arbitrary. In fact, one can think of vari-
ous other representations which may lead to variance reduction methods. Prelim-
inary simulations show that different interpretations of the time integrals in the
parametrix method may lead to finite variance simulation methods. Many of these
issues will be taken up in future work.
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APPENDIX

A.1. On some Beta type coefficients. For t0 ∈ R, a ∈ [0,1), b > −1 and
n ∈N, define

cn(t0, a, b) :=
∫ t0

0
dt1 · · ·

∫ tn−1

0
dtnt

b
n

n−1∏
j=0

(tj − tj+1)
−a.

LEMMA A.1. Let a ∈ [0,1) and b > −1. Then we have

cn(t0, a, b) ≤ t
b+n(1−a)
0


(1 + b)
n(1 − a)

[1 + b + n(1 − a)]! for n ≥ 1 − b

1 − a
.

In particular, for b = 0,

cn(t0, a) := cn(t0, a, b) ≤ t
n(1−a)
0


n(1 − a)

[1 + n(1 − a)]! for n ≥ (1 − a)−1.(A.1)

PROOF. Let b > −1 and 0 ≤ a < 1 and use the change of variable s = ut so
that ∫ t

0
(t − s)−asb ds = tb+1−a

∫ 1

0
(1 − u)−aub du = tb+1−aB(1 + b,1 − a),

where B(x, y) = ∫ 1
0 tx−1(1− t)y−1 dt is the standard Beta function and b+1−a >

−1. Using this repeatedly, we obtain

cn(t0, a, b) = t
b+n(1−a)
0

n−1∏
i=0

B
(
1 + b + i(1 − a),1 − a

)
= t

b+n(1−a)
0


(1 + b)
n(1 − a)


(1 + b + n(1 − a))
.

The last equality being a consequence of the identity B(x, y) = 
(x)
(y)

(x+y)

. The func-
tion 
(x) is increasing for x ≥ 2 so the result follows. Letting b = 0, we get (A.1).

�

A.2. Some properties of Gaussian type kernels. In this section, we intro-
duce some preliminary estimates concerning Gaussian kernels. We consider a
d dimensional square symmetric nonnegative definite matrix a. We assume that
0 < aI ≤ a ≤ aI for a, a ∈ R and we define ρa := a

a
. The Gaussian density of

mean zero and covariance matrix a is denoted by

qa(y) = 1

(2π)d/2
√

deta
exp

(
−1

2

〈
a−1y, y

〉)
.
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For a strictly positive real number λ, we abuse the notation, denoting by qλ(y) ≡
qa(y) for a = λI where I is the identity matrix. In particular, q1 is the standard
Gaussian kernel on R

d . Then we have the following immediate inequalities:

(i) qs(y) ≤
(

t

s

)d/2

qt (y) ∀s < t,

(A.2)
(ii) ρ−d/2

a qa(y) ≤ qa(y) ≤ ρd/2
a qa(y).

We define for a ∈ R
d×d , the Hermite polynomials in R

d as

Hi
a(y) = −(

a−1y
)i

, H i,j
a (y) = (

a−1y
)i(

a−1y
)j − (

a−1)i,j .
Direct computations give

∂iqa(y) = Hi
a(y)qa(y), ∂2

i,j qa(y) = Hi,j
a (y)qa(y).(A.3)

We will use the following basic estimates.

LEMMA A.2. For α ∈ [0,1], we have for all i, j ∈ {1, . . . , d}, y ∈ R
d and

t > 0,

(i) |y|α∣∣∂2
i,j qta(y)

∣∣ ≤ Ca

1

t1−α/2 qta/2(y) and
(A.4)

(ii) |y|α∣∣∂iqta(y)
∣∣ ≤ C′

a

1

t (1−α)/2 qta/2(y)

with

Ca = (2ρa)
d/2a−1(4a)α/2(4ρa + 1), C′

a = a−1(4a)(1+α)/2(2ρa)
d/2.

PROOF. We have ∣∣Hi,j
ta (y)

∣∣ ≤ |y|2
a2t2 + 1

at

so that

|y|α∣∣∂2
i,j qta(y)

∣∣ ≤ 1

at1−α/2

|y|α
tα/2

( |y|2
at

+ 1
)
qta(y).

We use (A.2) and we obtain

qta(y) ≤ ρd/2
a qta(y) = (2ρa)

d/2 exp
(
−|y|2

4ta

)
qta/2(y).

We may find a constant cα such that vλe−v ≤ cα for every 0 ≤ λ ≤ 2 + α. Using
this inequality twice with λ = 2+α

2 and λ = α
2 and for v = 1

4ta
|y|2, we obtain

|y|α∣∣∂2
i,j qta(y)

∣∣ ≤ (2ρa)
d/2

at1−α/2 (4a)α/2(4ρa + 1)qta/2(y).

The proof of (ii) is similar. �
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LEMMA A.3. Let 0 < s ′ ≤ s′′ and y ∈R then

∣∣qs′′(y) − qs′(y)
∣∣ ≤

√
2s′′
s′ qs′′(y)

(
s′′ − s′

s′
)
.

PROOF. Using the fact that q solves the heat equation, we have using (A.2)
and (A.4)

∣∣qs′′(y) − qs′(y)
∣∣ ≤ ∫ s′′

s′
∣∣∂sqs(y)

∣∣ds = 1

2

∫ s′′

s′
∣∣∂2

aqs(y)
∣∣ds ≤ C

∫ s′′

s′
1

s
qs/2(y) ds

≤
√

s′′
s′ qs′′/2(y)

∫ s′′

s′
1

s
ds ≤

√
2s′′
s′ qs′′(y) ln

(
s′′

s′
)

(A.5)

=
√

2s′′
s′ qs′′(y) ln

(
1 +

(
s′′

s′ − 1
))

≤
√

2s′′
s′ qs′′(y)

(
s′′ − s′

s′
)
.

From here, the result follows. �
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