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CAN LOCAL PARTICLE FILTERS BEAT THE CURSE
OF DIMENSIONALITY?1

BY PATRICK REBESCHINI AND RAMON VAN HANDEL

Princeton University

The discovery of particle filtering methods has enabled the use of nonlin-
ear filtering in a wide array of applications. Unfortunately, the approximation
error of particle filters typically grows exponentially in the dimension of the
underlying model. This phenomenon has rendered particle filters of limited
use in complex data assimilation problems. In this paper, we argue that it is
often possible, at least in principle, to develop local particle filtering algo-
rithms whose approximation error is dimension-free. The key to such devel-
opments is the decay of correlations property, which is a spatial counterpart
of the much better understood stability property of nonlinear filters. For the
simplest possible algorithm of this type, our results provide under suitable
assumptions an approximation error bound that is uniform both in time and
in the model dimension. More broadly, our results provide a framework for
the investigation of filtering problems and algorithms in high dimension.
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1. Introduction and background. A fundamental problem in a broad range
of applications is the combination of observed data and dynamical models. Partic-
ularly in highly complex systems with partial observations, the effective extraction
and utilization of the information contained in observed data can only be accom-
plished by exploiting the availability of accurate predictive models of the under-
lying dynamical phenomena of interest. Such problems arise in applications that
range from classical tracking problems in navigation and robotics to extremely
large-scale problems such as weather forecasting. In the latter setting, and in other
complex applications in the geophysical, atmospheric and ocean sciences, incor-
porating observed data into dynamical models is called data assimilation.

From a probabilistic perspective, it is in principle simple to formulate the opti-
mal solution to the data assimilation problem. We model the dynamics and obser-
vations jointly as a bivariate Markov chain (Xn,Yn)n≥0 taking values in a possibly
high-dimensional state space X × Y (throughout this paper we will consider dis-
crete time models for simplicity; continuous time models may also be considered).
The process (Xn)n≥0 describes the underlying dynamics of interest, while the pro-
cess (Yn)n≥0 denotes the observed data. To estimate the hidden state Xn based on
the observation history Y1, . . . , Yn to date, we introduce the nonlinear filter

πn = P[Xn ∈ ·|Y1, . . . , Yn].
If the conditional distribution πn can be computed, it yields an optimal (least mean
square) estimate of Xn as well as a complete representation of the uncertainty in
this estimate. Moreover, an important property of the filter is that it is recursive:
πn depends only on πn−1 and the new observation Yn. This is crucial in practice,
as it allows the filter to be implemented on-line over a long time horizon.

In practice, however, the optimal filter is almost never directly computable: it
requires the propagation of an entire conditional distribution, which generally does
not admit any efficiently computable sufficient statistics. The practical implemen-
tation of nonlinear filtering was therefore long considered to be intractable until the
discovery of a class of surprisingly efficient sequential Monte Carlo algorithms,
known as particle filters, for approximating the filter. The simplest such algorithm
simply inserts a random sampling step in the filtering recursion and approximates
the filter πn by the resulting empirical measure π̂n (cf. Section 1.1 below). It is not
difficult to show that this gives rise to a standard Monte Carlo error

sup
|f |≤1

E
∣∣πn(f ) − π̂n(f )

∣∣ ≤ C√
N

,
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where N denotes the number of particles. Moreover, a crucial insight is that the
constant C typically does not depend on time n due to the stability property of
nonlinear filters [5, 6], so that the particle filter can indeed function in an on-
line fashion. Particle filters have proved to perform extraordinarily well in many
classical applications and are widely used in practice. We refer to [5] for a detailed
overview of particle filtering algorithms and their analysis.

Unfortunately, despite their widespread success, particle filters have nonethe-
less proved to be essentially useless in truly complex data assimilation problems.
The reason for this, long known to practitioners, has only recently been subjected
to mathematical analysis in the work of Bickel et al. [3, 16]. Roughly speaking,
the constant C in the above bound, while independent of time n, must typically
be exponential in the dimension of the state space of the underlying model. This
curse of dimensionality does not affect most classical tracking problems, whose
dimension is typically of order unity, but becomes absolutely prohibitive in large-
scale data assimilation problems such as weather forecasting where model dimen-
sions of order 107 are routinely encountered [1]. While the curse of dimensionality
problem in particle filters is now fairly well understood, there exists no rigorous
approach to date for alleviating this problem [2, 15, 19]. Practical data assimilation
in high-dimensional models is therefore generally performed by means of ad-hoc
algorithms, frequently based on (questionable) Gaussian approximations, that pos-
sess limited theoretical justification [1, 9, 11]. The development of ideas that could
enable the principled use of particle filters in high-dimensional settings remains a
fundamental open problem in data assimilation and in numerous other complex fil-
tering problems (e.g., multitarget tracking, tracking the spread of epidemics, traffic
flow prediction in freeway networks, etc.).

At the same time, the mathematical theory of nonlinear filtering in high dimen-
sion has remained essentially in its infancy. Despite that the study of large-scale
interacting systems is an important topic in contemporary probability theory (fre-
quently motivated by problems in statistical mechanics, e.g., [8, 12]), almost noth-
ing is known about the emergence of high-dimensional phenomena in the setting
of conditional distributions. It is not even entirely clear how filtering problems in
high dimension can be fruitfully formulated, and what type of models should be
investigated in this setting. Moreover, most mathematical tools used in nonlinear
filtering theory (cf. [5]) are ill-suited to the investigation of the much more delicate
problems that arise in high dimension. We have recently begun to explore high-
dimensional probabilistic phenomena in nonlinear filtering [13, 18]. The present
paper arose from the realization that such phenomena are not only of interest in
their own right, but that they can provide mechanisms that enable the development
and analysis of particle filtering algorithms in high dimension.

The central idea of this paper is that the decay of correlations property of high-
dimensional filtering models, which is in essence a spatial counterpart of the much
better understood stability property of nonlinear filters, can be exploited to de-
velop local particle filters that avoid the curse of dimensionality. For the simplest
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FIG. 1. Dependency graph of a hidden Markov model.

possible algorithm of this type, we will prove under suitable assumptions an ap-
proximation error bound that is uniform both in time and in the model dimension.
While it is far from clear whether this simple algorithm is of immediate practi-
cal utility in the most complex real-world applications (a question far beyond the
scope of this paper; cf. Section 2.3), our results provide the first rigorous proof of
concept that it is in fact possible, at least in principle, to develop particle filtering
algorithms whose approximation error is dimension-free. A broader goal of this
paper is to introduce a natural foundation for the investigation of filtering prob-
lems and algorithms in high dimension, as well as some basic mathematical tools
for this purpose.

In the remainder of this section, we provide some essential background on non-
linear filtering, particle filtering algorithms and the curse of dimensionality, as well
as a brief overview of the general ideas and contributions of this paper.

1.1. Classical filtering models and particle filters. A hidden Markov model is
a Markov chain (Xn,Yn)n≥0 whose transition probability P can be factored as

P
(
(x, y),A

) =
∫

1A

(
x′, y′)p(

x, x′)g(
x′, y′)ψ(

dx′)ϕ(
dy′).

Thus, (Xn)n≥0 is itself a Markov chain in a Polish state space X with transition
density p :X × X → R+ with respect to a given reference measure ψ , while
(Yn)n≥0 are conditionally independent given (Xn)n≥0 in a Polish state space Y
with transition density g :X × Y → R+ with respect to a reference measure ϕ.
This dependence structure is illustrated in Figure 1. We interpret (Xn)n≥0 as an
underlying dynamical process that is not directly observable, while the observable
process (Yn)n≥0 consists of partial and noisy observations of (Xn)n≥0.

In the following, we will assume that the process (Xn,Yn)n≥0 is realized on its
canonical probability space, and denote for any probability measure μ on X by Pμ

the probability measure under which (Xn,Yn)n≥0 is a hidden Markov model with
transition probability P as above and with initial condition X0 ∼ μ. For x ∈X, we
write for simplicity Px := Pδx . As the process (Xn)n≥0 is unobservable, a central
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problem in this setting is to track the unobserved state Xn given the observation
history Y1, . . . , Yn, that is, we aim to compute the nonlinear filter

πμ
n := Pμ[Xn ∈ ·|Y1, . . . , Yn].

It is well known, and easily verified using the Bayes formula, that the filter π
μ
n can

be computed recursively, that is, we have the recursion (see, e.g., [5])

π
μ
0 = μ, πμ

n = Fnπ
μ
n−1 (n ≥ 1),

where

(Fnρ)(f ) :=
∫

f (x′)g(x′, Yn)p(x, x′)ψ(dx′)ρ(dx)∫
g(x′, Yn)p(x, x′)ψ(dx′)ρ(dx)

.

It is instructive to write the recursion Fn := CnP in two steps

π
μ
n−1

prediction−→ π
μ
n− = Pπ

μ
n−1

correction−→ πμ
n = Cnπ

μ
n−,

where

(Pρ)(f ) :=
∫

f
(
x′)p(

x, x′)ψ(
dx′)ρ(dx),

(Cnρ)(f ) :=
∫

f (x)g(x,Yn)ρ(dx)∫
g(x,Yn)ρ(dx)

.

In the prediction step, the filter π
μ
n−1 is propagated forward using the dynamics

of the underlying unobserved process (Xn)n≥0 to compute the predictive distribu-
tion π

μ
n− := Pμ[Xn ∈ ·|Y1, . . . , Yn−1]. Then, in the correction step, the predictive

distribution is conditioned on the new observation Yn to obtain the filter π
μ
n .

The recursive structure of the nonlinear filter is of central importance, as it al-
lows the filter to be computed on-line over a long time horizon. Nonetheless, the
recursion is still at the level of probability measures, and in general no finite-
dimensional sufficient statistics exist. Therefore, the practical implementation of
nonlinear filters typically proceeds by Monte Carlo approximation. The most com-
mon algorithm of this type simply inserts a sampling step in the filtering recursion:
π

μ
n is approximated by the empirical distribution π̂

μ
n computed by the recursion

π̂
μ
0 = μ, π̂μ

n = F̂nπ̂
μ
n−1 (n ≥ 1),

where F̂n := CnSNP consists of three steps

π̂
μ
n−1

prediction−→ Pπ̂
μ
n−1

sampling−→ π̂
μ
n− = SNPπ̂

μ
n−1

correction−→ π̂μ
n = Cnπ̂

μ
n−.

Here, N ≥ 1 is the number of particles used in the algorithm, and SN is the sam-
pling operator that defines for a probability measure ρ the random measure

SNρ := 1

N

N∑
i=1

δx(i),
(
x(i)

)
i=1,...,N are i.i.d. samples ∼ ρ



2814 P. REBESCHINI AND R. VAN HANDEL

Algorithm 1: Bootstrap particle filter

Let π̂
μ
0 = μ;

for k = 1, . . . , n do
Sample i.i.d. x̂k−1(i), i = 1, . . . ,N from the distribution π̂

μ
k−1;

Sample xk(i) ∼ p(x̂k−1(i), ·) dψ , i = 1, . . . ,N ;
Compute wk(i) = g(xk(i), Yk)/

∑N
�=1 g(xk(�), Yk), i = 1, . . . ,N ;

Let π̂
μ
k = ∑N

i=1 wk(i)δxk(i);
end

FIG. 2. The classical bootstrap particle filtering algorithm.

[if ρ is a random measure, then (x(i))i=1,...,N are drawn conditionally given ρ].
This yields the bootstrap particle filtering algorithm described in Figure 2. This al-
gorithm is exceedingly simple to implement, and it is easily shown that the particle
filter π̂

μ
n converges to the exact filter π

μ
n as N → ∞. We refer to [5] for a detailed

overview of particle filtering algorithms and their analysis.
To gain some insight into the approximation properties of the particle filter, let

us perform the simplest possible error analysis. We define the distance∣∣∣∣∣∣ρ − ρ′∣∣∣∣∣∣ := sup
|f |≤1

E
[∣∣ρ(f ) − ρ′(f )

∣∣2]1/2

between two random measures ρ,ρ′ on X. It is an easy exercise to show that∣∣∣∣∣∣Pρ − Pρ′∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ρ − ρ′∣∣∣∣∣∣, ∣∣∣∣∣∣ρ − SNρ
∣∣∣∣∣∣ ≤ 1√

N
.

Let us assume for simplicity that the observation density g is bounded away from
zero and infinity, that is, κ ≤ g(x, y) ≤ κ−1 for some 0 < κ < 1. As

(Cnρ)(f ) − (
Cnρ

′)(f )

= κ−1

ρ(gn)

{
ρ(κfgn) − ρ′(κfgn)

} + ρ′(fgn)

ρ′(gn)

κ−1

ρ(gn)

{
ρ′(κgn) − ρ(κgn)

}
with gn(x) := g(x,Yn), and as |κgn| ≤ 1 and ρ(gn) ≥ κ , we obtain∣∣∣∣∣∣Cnρ − Cnρ

′∣∣∣∣∣∣ ≤ 2κ−2∣∣∣∣∣∣ρ − ρ′∣∣∣∣∣∣.
Putting these bounds together, we find that∣∣∣∣∣∣πμ

n − π̂μ
n

∣∣∣∣∣∣ ≤ 2κ−2
{

1√
N

+ ∣∣∣∣∣∣πμ
n−1 − π̂

μ
n−1

∣∣∣∣∣∣} ≤
∑n

i=1(2κ−2)i√
N

,

where the second inequality is obtained by iterating the first inequality n times. We
therefore find that the bootstrap particle filter does indeed approximate the exact
nonlinear filter with the typical Monte Carlo 1/

√
N -rate.

It should be noted that our crude error bound grows exponentially in time n. If
the error were in fact to grow exponentially in time, this would make the particle
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filter largely useless in practice as it could not be run reliably for more than a few
time steps (in particular, it could not be run on-line over a long time horizon). For-
tunately, however, the exponential growth of the error is an artifact of our crude
bound and typically does not occur in practice. We have omitted to take into ac-
count an essential phenomenon: ergodicity of the underlying model will cause the
filter to be stable, that is, π

μ
n forgets its initial condition μ as n → ∞. The stability

property provides a dissipation mechanism that mitigates the accumulation of ap-
proximation errors over time. A more sophisticated analysis that exploits this idea
yields a time-uniform error bound; see Section 3.1 below.

1.2. The curse of dimensionality. We have stated that particle filters suffer
from the curse of dimensionality. It is, however, far from obvious at this point
why this should be the case: no explicit notion of dimension appears in the above
error bound. To understand why the above bound is typically exponential in the
model dimension, we must consider a suitable class of models in which the depen-
dence on dimension can be explicitly investigated. In Section 2, we will introduce
a general class of high-dimensional filtering models that is prototypical of many
data assimilation problems. In the present section, however, we consider a much
simpler class of trivial models that is useless in any application, but is nonetheless
helpful for developing intuition for dimensionality issues in particle filters.

In a d-dimensional model, Xn,Yn are each described by d coordinates Xi
n,Y

i
n,

i = 1, . . . , d . To construct a trivial d-dimensional model, we simply start with a
given one-dimensional model and duplicate it d times. That is, let (X̃n, Ỹn)n≥0

be a hidden Markov model on X̃ × Ỹ with transition density p̃ and observation
density g̃ with respect to reference measures ψ̃ and ϕ̃, respectively. Then we set

X= X̃d, Y = Ỹd, ψ = ψ̃⊗d, ϕ = ϕ̃⊗d

and

p(x, z) =
d∏

i=1

p̃
(
xi, zi), g(x, y) =

d∏
i=1

g̃
(
xi, yi),

so that each coordinate (Xi
n, Y

i
n)n≥0 is an independent copy of (X̃n, Ỹn)n≥0. Note

that we have used the term d-dimensional in the sense that our model has d in-
dependent degrees of freedom: each degree of freedom can itself in principle take
values in a high- or even infinite-dimensional state space X̃× Ỹ. This is, however,
precisely the notion of dimension that is relevant to the curse of dimensionality
(in [3, 16] this idea is sharpened by a notion of “effective dimension”).

In this trivial setting, it is now easily seen how the curse of dimensionality arises
in our error bound. Indeed, let us assume again for simplicity that κ ≤ g̃(x̃, ỹ) ≤
κ−1 for some 0 < κ < 1. Then κd ≤ g(x, y) ≤ κ−d , so we obtain a bound that is
exponential in the dimension d even after only one time step:∣∣∣∣∣∣πμ

1 − π̂
μ
1

∣∣∣∣∣∣ ≤ 2κ−2d

√
N

.
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An inspection of our bound clarifies the source of this exponential growth: even
though the Monte Carlo sampling itself is dimension-free (|||ρ − SNρ||| ≤ N−1/2

independent of dimension), the correction operator Cn blows up the sampling error
exponentially in high dimension (this is a manifestation of the fact that the prior
ρ and posterior Cnρ measures are nearly singular in high dimension, so that ran-
dom samples drawn from ρ have exponentially small likelihood under Cnρ). In
particular, it is evidently the dimension of the observations, rather than that of the
underlying model, that controls the exponential growth in our error bound.

Of course, the above analysis is far from convincing. First, we have only proved
a rather crude upper bound on the approximation error: could a more sophisticated
bound eliminate the exponential dependence on dimension as was done using the
filter stability property to eliminate the exponential dependence on time? Second,
one could argue that a good approximation of πn(f ) for any function f (as is
implicit in the definition of the ||| · |||-norm) is too much to ask for in high di-
mension: could a local notion of approximation avoid the exponential dependence
on dimension? Unfortunately, neither of these ideas can help us avoid the curse
of dimensionality of the bootstrap particle filter, which is a genuine phenomenon
and not a mathematical deficiency of our analysis. As a simple illustration of this
phenomenon, we note that even if f (x) is a function that depends on a single di-
mension xi only [any reasonable approximation of πn(f ) should work at least for
such local functions] and if μ = δx , the asymptotic variance σ 2

f in the central limit
theorem

√
N

{
π

μ
1 (f ) − π̂

μ
1 (f )

} �⇒ N
(
0, σ 2

f

)
as N → ∞

grows exponentially in the dimension d (the computation of σf is a simple exercise
that is left to the interested reader), which suggests that our crude upper bound is
qualitatively correct. The more delicate analysis of Bickel et al. [3, 16], which al-
lows d to grow with N , demonstrates conclusively that the bootstrap particle filter
cannot approximate the filter unless the number of particles N grows exponen-
tially in the dimension d . Nonetheless, both the ideas raised above to eliminate the
exponential dependence on dimension will play an important role in the remainder
of this paper, as will be explained in the next section.

REMARK 1.1. The problem of sampling from a weighted measure of the form
(Cρ)(dx) := g(x)ρ(dx)/

∫
g(z)ρ(dz) appears in numerous applications in statis-

tics, computer science and physics. The naive approximation Cρ ≈ CSNρ is well
known to be useless in large-scale problems: instead, Markov Chain Monte Carlo
(MCMC) methods are almost universally used for this purpose. However, even if
we were able to sample exactly from the weighted measure Cρ, this would still not
resolve our problems in the filtering context. Indeed, if we implement the “optimal
proposal” (cf. [15]) particle filtering recursion F̂n = SNCnP rather than the boot-
strap filter F̂n = CnSNP, then the error between π̂

μ
1 = F̂1μ and π

μ
1 = F1μ would
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be dimension-free, but the error between π̂
μ
2 = F̂2π̂

μ
1 and π

μ
2 = F2π

μ
1 would again

exhibit exponential dependence on the dimension due to the sampling performed
in the first time step. The curse of dimensionality would therefore still arise essen-
tially as above due to the recursive nature of the filtering problem.

If, instead of computing the filter P[Xn ∈ ·|Y1, . . . , Yn], we wish to compute
the full conditional path distribution P[X0, . . . ,Xn ∈ ·|Y1, . . . , Yn] (known as the
smoothing problem), MCMC methods can be successfully employed in high di-
mension. However, this procedure requires the entire history of observations and
is not recursive, so that it cannot be implemented on-line and is impractical over
a long time horizon (cf. [2]). The crucial question to be addressed is therefore
whether it is possible to develop filtering algorithms that are both recursive and
that admit error bounds that are uniform in time and in the model dimension.

1.3. Contributions of this paper. While the curse of dimensionality in particle
filters is now fairly well understood, it is far from clear how one could go about
addressing this problem. Several fundamental questions arise directly:

1. What sort of filtering models are natural to investigate in high dimension?
2. What sort of mechanism might allow to surmount the curse of dimensional-

ity? How can such a mechanism be exploited algorithmically?
3. What sort of mathematical tools are needed to address such problems?

We aim to address each of these questions in the sequel. We will presently provide
an informal discussion of some basic ideas in this paper; much of the remainder of
the paper will be devoted to making these ideas precise.

Some basic insight can be obtained by considering again the trivial model of the
previous section. Despite that the bootstrap particle filter suffers from the curse of
dimensionality when applied to the full model, it is obvious in this case that one
can surmount this problem in a trivial fashion: as each of the coordinates is inde-
pendent, one can simply run an independent bootstrap filter in each coordinate. It
is evident that the local error of this algorithm (i.e., the error of the marginal of the
filter in each coordinate) is, by construction, independent of the model dimension
(i.e., the number of coordinates). Even though this approach exploits a very special
property of the trivial model—the independence of the coordinates—we will see
that the same basic idea can be implemented in a much more general setting.

In most data assimilation problems, the high-dimensional nature of the model
is essentially due to its spatial structure: the aim of the problem is to track the
dynamics of a random field (e.g., the atmospheric pressure and temperature fields
in the case of weather forecasting). In this paper, we take as a starting point the
notion that the coordinates Xv

n,Y
v
n (v ∈ V ) of our hidden Markov model are in-

dexed by a large graph G = (V ,E) that represents the spatial degrees of freedom
of the model, and that its interactions are local: the dynamics and observations at
a spatial location depends only on the states at locations in a neighborhood, as is
illustrated in Figure 3 below. While the law of the model at each spatial location
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FIG. 3. Dependency graph of a high-dimensional filtering model of the type considered in this
paper.

is no longer independent as in the trivial model of the previous section, large-scale
interacting systems can nonetheless exhibit an approximate version of this prop-
erty: this is the decay of correlations phenomenon that has been particularly well
studied in statistical mechanics [8]. Informally speaking, while the states Xv

n and
Xw

n at two sites v,w ∈ V are probably quite strongly correlated when v and w are
close together, one might expect that Xv

n and Xw
n are nearly independent when v

and w are far apart with respect to the natural distance in the graph G.2

The core idea of this paper is that the decay of correlations property can pro-
vide a mechanism to surmount the curse of dimensionality. A speculative back-
of-the-envelope computation explains how this might work. Due to the decay of
correlations, the conditional distribution of the site Xv

n given the new observation
Yn should not depend significantly on observations Yw

n at sites w distant from v.
Suppose we can develop a local particle filtering algorithm that at each site v only
uses observations in a local neighborhood K of v to update the filtering distri-
bution. As we have seen in the previous section, the sampling error is controlled
by the dimension of the observations: as we have now restricted to observations
in K , the sampling error at each site will be exponential only in cardK rather than
in the full dimension cardV . On the other hand, the truncation to observations in
K is only approximate: the decay of correlations property suggests that the bias
introduced by this truncation should decay exponentially in diamK . Therefore,

error = bias + variance ≈ e−diamK + ecardK

√
N

.

2The precise formulation of the decay of correlations property that will be used in our analysis is
determined by the mathematical machinery that will be used in the proofs; cf. Sections 3.2 and 4.2.
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If the size of the neighborhoods K is chosen so as to optimize the error, then the
resulting algorithm is evidently consistent (with a slower convergence rate than the
standard 1/

√
N Monte Carlo rate: this is likely unavoidable in high dimension)

with an error bound that is independent of the model dimension cardV .
The main result of this paper is that these speculative ideas can be made precise

at least for one particularly simple local filtering algorithm: the block particle fil-
ter (Section 2.2). While the above back-of-envelope computation provides a basic
template for our approach, the rigorous implementation of these ideas requires the
introduction of mathematical machinery that has not previously been applied in
the study of nonlinear filtering. Just as in the case of the filter stability property
(see [18] and the references therein), it is far from clear that any decay of correla-
tions properties of the underlying model are inherited by the filter as we have taken
for granted above: in fact, striking counterexamples show that such inheritance can
fail in surprising ways [13]. More generally, the development of machinery for the
local analysis of high-dimensional filtering problems forms an essential part of our
proofs. An outline of the main steps and ideas in the proof of our main result will
be given in Section 3; detailed proofs are given in Section 4.

It should be emphasized that our result, while providing a first rigorous analysis
of a local particle filtering algorithm in high dimension, is essentially a proof of
concept. The general idea to exploit decay of correlations provides a promising
approach to the curse of dimensionality problem (such a possibility has also been
occasionally mentioned in the applied literature, e.g., [16, 19]); however, the block
particle filter that we analyze is the simplest possible algorithm of its type, and
possesses some inherent limitations that can potentially be addressed by the devel-
opment of more sophisticated local particle filters. In Section 2.3, we will discuss
some limitations of our results and potential directions for further investigation.

2. Main result and discussion.

2.1. Filtering models in high dimension. This paper is concerned with filtering
problems in high dimension. In order to investigate such problems systematically,
we presently introduce a class of high-dimensional filtering models that will pro-
vide the basic framework to be investigated throughout this paper. In these models,
the state (Xn,Yn) at each time n is a random field (Xv

n,Y
v
n )v∈V indexed by a (fi-

nite) undirected graph G = (V ,E). The graph G describes the spatial degrees of
freedom of the model, and the underlying dynamics and observations are local with
respect to the graph structure in a sense to be made precise below. The dimension
of the model should be interpreted as the cardinality of the vertex set V , which is
typically assumed to be large. Our aim is to develop quantitative results that are,
under appropriate assumptions, independent of the dimension cardV .

We now define the hidden Markov model (Xn,Yn)n≥0 to be considered in the
sequel (we will adopt throughout the basic setting and notation introduced in Sec-
tion 1.1). The state spaces X and Y of Xn and Yn, and the reference measures ψ
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and ϕ of the transition densities p and g, respectively, are of product form

X= ∏
v∈V

Xv, Y = ∏
v∈V

Yv, ψ = ⊗
v∈V

ψv, ϕ = ⊗
v∈V

ϕv,

where ψv and ϕv are reference measures on the Polish spaces Xv and Yv , respec-
tively. The transition densities p and g are given by

p(x, z) = ∏
v∈V

pv(
x, zv)

, g(x, y) = ∏
v∈V

gv(
xv, yv)

,

where pv :X × Xv → R+ and gv :Xv × Yv → R+ are transition densities with
respect to the reference measures ψv and ϕv , respectively.

The spatial graph G is endowed with its natural distance d [i.e., d(v, v′) is
the length of the shortest path in G between v, v′ ∈ V ]. Let us fix throughout a
neighborhood size r ∈ N, and define for each vertex v ∈ V the r-neighborhood

N(v) = {
v′ ∈ V :d

(
v, v′) ≤ r

}
.

We will assume that the dynamics of the underlying process (Xn)n≥0 is local in the
sense that pv(x, zv) depends on xN(v) only [we write xJ = (xj )j∈J for J ⊆ V ]:

pv(
x, zv) = pv(

x̃, zv)
whenever xN(v) = x̃N(v).

That is, the conditional distribution of Xv
n given X0, . . . ,Xn−1 depends on X

N(v)
n−1

only. Similarly, by construction, the observations are local in that the conditional
distribution of Y v

n given Xn depends on Xv
n only. This dependence structure is

illustrated in Figure 3 (in the simplest case of a linear graph G with r = 1).
Markov models of the form introduced above appear in the literature under var-

ious names, such as locally interacting Markov chains or probabilistic cellular au-
tomata [7, 10]. Such models arise naturally in numerous complex and large-scale
applications, including percolation models of disease spread or forest fires, free-
way traffic flow models, probabilistic models on networks and large-scale queue-
ing systems, and various biological, ecological and neural models. Moreover, lo-
cal Markov processes of this type arise naturally from finite-difference approxi-
mation of stochastic partial differential equations, and are therefore in principle
applicable to a diverse set of data assimilation problems that arise in areas such
as weather forecasting, oceanography and geophysics (cf. Section 2.3.3). While
more general models are certainly of substantial interest, the model defined above
is prototypical of a broad range of high-dimensional data assimilation problems
and provides a basic setting for the investigation of filtering problems in high di-
mension.

2.2. Block particle filter: Dimension-free bounds. As was explained in Sec-
tion 1.2, the bootstrap particle filter is not well suited to high-dimensional models:
the approximation error generally grows exponentially in the model dimension
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cardV . To surmount this problem, we aim to develop local particle filtering algo-
rithms that can exploit decay of correlations properties of the underlying filtering
model. In this paper, we will investigate in detail the simplest possible algorithm
of this type, the block particle filter, that will be introduced presently. While this
algorithm possesses some inherent limitations (see below), it is the simplest local
algorithm both mathematically and computationally and, therefore, provides an
ideal starting point for the investigation of particle filters in high dimension.

To define the block particle filtering algorithm, we begin by introducing a par-
tition K of the vertex set V into nonoverlapping blocks, that is, we have

V = ⋃
K∈K

K, K ∩ K ′ =∅ for K �= K ′,K,K ′ ∈ K.

We now define the blocking operator

Bρ := ⊗
K∈K

BKρ,

where for any measure ρ on X = ∏
v∈V Xv and J ⊆ V we denote by BJ ρ the

marginal of ρ on
∏

v∈J X
v . The random field described by the measure Bρ on X is

independent across different blocks defined by the partition K, while the marginal
on each block agrees with the original measure ρ. The block particle filter inserts
an additional blocking step into the bootstrap particle filter recursion, that is,

π̂
μ
0 = μ, π̂μ

n = F̂nπ̂
μ
n−1 (n ≥ 1),

where F̂n := CnBSNP consists of four steps

π̂
μ
n−1

prediction/sampling−→ π̂
μ
n− = SNPπ̂

μ
n−1

blocking/correction−→ π̂μ
n = CnBπ̂

μ
n−.

The resulting algorithm is given in Figure 4. In the special case K= {V }, the block
particle filter reduces to the bootstrap particle filter, so that the former is a strict

Algorithm 2: Block particle filter

Let π̂
μ
0 = μ;

for k = 1, . . . , n do
Sample i.i.d. x̂k−1(i), i = 1, . . . ,N from the distribution π̂

μ
k−1;

Sample xv
k (i) ∼ pv(x̂k−1(i), ·) dψv , i = 1, . . . ,N , v ∈ V ;

Compute wK
k (i) =

∏
v∈K gv(xv

k (i),Y v
k )∑N

�=1
∏

v∈K gv(xv
k (�),Y v

k )
, i = 1, . . . ,N , K ∈ K;

Let π̂
μ
k = ⊗

K∈K
∑N

i=1 wK
k (i)δxK

k (i);
end

FIG. 4. The block particle filtering algorithm considered in this paper. Note that sampling x̂ from
a product distribution

⊗
K∈K ρK is implemented by sampling independently x̂K ∼ ρK , K ∈K.
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generalization of the latter (we have therefore not introduced a separate notation
for the bootstrap particle filter: in the sequel, the notation π̂

μ
n always refers to the

block particle filter). The introduction of independent blocks allows to localize the
algorithm, however, which will be crucial in the high-dimensional setting.

It is immediately evident from inspection of the block particle filtering algo-
rithm that only observations in block K are used by the algorithm to update the
filtering distribution in block K . Therefore, following the heuristic ideas of Sec-
tion 1.3, we expect that the sampling error of the algorithm is exponential in cardK

rather than in the model dimension cardV . To control the bias introduced by the
blocking step, note that the blocking operator Bρ decouples the distribution ρ at
the boundaries of the blocks. The decay of correlations property (if it can be estab-
lished) should cause the influence of such a perturbation on the marginal distribu-
tion at a vertex v ∈ K to decay exponentially in the distance from v to the boundary
of the block K . Thus, the back-of-the-envelope computation in Section 1.3 applies
to the local error at “most” vertices, as the boundaries of the blocks only constitute
a small fraction of the total number of vertices. On the other hand, the error will
necessarily be larger for vertices closer to the block boundaries. This spatial in-
homogeneity of the local error is an inherent limitation of the block particle filter
that one might hope to alleviate by the development of more sophisticated local
particle filters. We postpone further discussion of this point to Section 2.3.2.

Having introduced the block particle filtering algorithm, we now proceed to
formulate the main result of this paper (Theorem 2.1 below).

Recall that we have introduced the neighborhoods

N(v) := {
v′ ∈ V :d

(
v, v′) ≤ r

}
above, where the neighborhood size r is fixed throughout this paper [in our model,
the state of vertex v depends only on the states of vertices in N(v) in the previous
time step]. Given a set J ⊆ V , we denote the r-inner boundary of J as

∂J := {
v ∈ J :N(v) � J

}
(i.e., ∂J is the subset of vertices in J that can interact with vertices outside J in
one step of the dynamics). We also define the following quantities:

|K|∞ := max
K∈K

cardK,

� := max
v∈V

card
{
v′ ∈ V :d

(
v, v′) ≤ r

}
,

�K := max
K∈K

card
{
K ′ ∈ K :d

(
K,K ′) ≤ r

}
,

where we define as usual d(J, J ′) := minv∈J minv′∈J ′ d(v, v′) for J,J ′ ⊆ V . Thus,
|K|∞ is the maximal size of a block in K, while � (�K) is the maximal number
of vertices (blocks) that interact with a single vertex (block) in one step of the
dynamics. It should be emphasized that r , � and �K are local quantities that
depend on the geometry but not on the size of the spatial graph G.
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Finally, we introduce for J ⊆ V the local distance∣∣∣∣∣∣ρ − ρ′∣∣∣∣∣∣
J := sup

f ∈XJ : |f |≤1
E

[∣∣ρ(f ) − ρ′(f )
∣∣2]1/2

between random measures ρ,ρ′ on X, where XJ denotes the class of measurable
functions f :X →R such that f (x) = f (x̃) whenever xJ = x̃J .

THEOREM 2.1. There exists a constant 0 < ε0 < 1, depending only on the
local quantities � and �K, such that the following holds.

Suppose there exist ε0 < ε < 1 and 0 < κ < 1 such that

ε ≤ pv(
x, zv) ≤ ε−1, κ ≤ gv(

xv, yv) ≤ κ−1 ∀v ∈ V,x, z ∈ X, y ∈ Y.

Then for every n ≥ 0, x ∈ X, K ∈ K and J ⊆ K we have∣∣∣∣∣∣πx
n − π̂x

n

∣∣∣∣∣∣
J ≤ α cardJ

[
e−β1d(J,∂K) + eβ2|K|∞

√
N

]
,

where the constants 0 < α,β1, β2 < ∞ depend only on ε, κ , r , � and �K.

The key point of this result is that both the assumptions and the resulting error
bound depend only on local quantities. In particular, the assumptions and error
bound depend neither on time n nor on the model dimension cardV .

REMARK 2.2. A threshold requirement of the form ε > ε0 is essential in or-
der to obtain the decay of correlations property, which can fail if ε > 0 is too small
(a phenomenon known as phase transition in statistical mechanics). Otherwise, the
assumptions of Theorem 2.1 are comparable to assumptions commonly imposed in
the literature to obtain error bounds for the bootstrap particle filter [5, 6] and pos-
sess similar limitations. We postpone discussion of these issues to Section 2.3.1.

REMARK 2.3. In Theorem 2.1, we have considered πx
n := π

δx
n and π̂x

n := π̂
δx
n

with a nonrandom initial condition x ∈ X. This is a choice of convenience: the
proof of Theorem 2.1 yields the same conclusion for more general initial condi-
tions that satisfy a suitable decay of correlations property. On the other hand, the
stability property of the filter (Corollary 4.7 below) ensures that π

μ
n forgets its ini-

tial condition μ exponentially fast uniformly in the dimension, so there is little loss
of generality in choosing a computationally convenient initial condition.

REMARK 2.4. The particle filter π̂
μ
n depends both on the random samples

that are drawn in the algorithm and on the random sequence of the observations.
However, the randomness of the observations plays no role in our proofs. One can
therefore interpret the expectation in the definition of ||| · |||J as being taken only
with respect to the random sampling mechanism in the block particle filter, and
the bound of Theorem 2.1 as holding uniformly with respect to the observation
sequence.
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To provide a concrete illustration of Theorem 2.1, we consider in the remainder
of this section the example where the spatial graph G is a square lattice, that is,

V = {−d, . . . , d}q (d, q ∈ N)

endowed with its natural edge structure. Note that in this case, the graph distance
d(v, v′) is simply the �1-distance between the corresponding vectors of integers.
To define the partition K, we cover V by blocks of radius b ∈ N, that is,

K= {(
x + {−b, . . . , b}q) ∩ V :x ∈ (2b + 1)Zq}

.

We assume for simplicity in the sequel that b ≥ r , and that (2d + 1)/(2b + 1) ∈N
is integer so that all K ∈ K are translates of {−b, . . . , b}q (this slightly simplifies
our arguments below but is not essential to our results). We can easily compute

|K|∞ = (2b + 1)q, � ≤ (2r + 1)q, �K ≤ 3q .

Note that these local quantities do not depend on the size d of our lattice. In a data
assimilation application one might have, for example, q = 2, r = 1, d ∼ 103.

Consider the block K = {−b, . . . , b}q . Note that for u = 0, . . . , b − r{
v ∈ K :d(v, ∂K) > u

} = {−(b − r − u), . . . , b − r − u
}q

.

Fix 0 < δ < 1 and choose u = �δ(2b + 1)/2q − r�. Then

card{v ∈ K :d(v, ∂K) > u}
cardK

=
(

2(b − r − u) + 1

2b + 1

)q

≥ 1 − δ,

where we have used 1 − (1 − δ)1/q ≥ δ/q . The same conclusion evidently holds
for every block K ∈ K. Thus, Theorem 2.1 gives the following corollary.

COROLLARY 2.5. In the square lattice setting V = {−d, . . . , d}q , there exists
a constant 0 < ε0 < 1, depending only on r and q , such that the following holds.

Suppose there exist ε0 < ε < 1 and 0 < κ < 1 such that

ε ≤ pv(
x, zv) ≤ ε−1, κ ≤ gv(

xv, yv) ≤ κ−1 ∀v ∈ V,x, z ∈ X, y ∈ Y.

Then for every x ∈X, n ≥ 0 and 0 < δ < 1 we have

card
{
v ∈ V :

∣∣∣∣∣∣πx
n − π̂x

n

∣∣∣∣∣∣
v ≤ α′e−β ′

1δ(2b+1) + α′ eβ ′
2(2b+1)q

√
N

}
≥ (1 − δ) cardV,

where the constants 0 < α′, β ′
1, β

′
2 < ∞ depend only on ε, κ , r and q .

In particular, if we choose the block size b = �1
2(4β ′

2)
−1/q log1/q N − 1

2�, then

card
{
v ∈ V :

∣∣∣∣∣∣πx
n − π̂x

n

∣∣∣∣∣∣
v ≤ c1e

−c2δ log1/q N} ≥ (1 − δ) cardV

and (using E|Z| = ∫ ∞
0 P[|Z| ≥ t]dt)

1

cardV

∑
v∈V

∣∣∣∣∣∣πx
n − π̂x

n

∣∣∣∣∣∣
v ≤ c3

log1/q N
,

where the constants 0 < c1, c2, c3 < ∞ depend only on ε, κ , r and q .
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Corollary 2.5 makes precise the notion that a properly tuned block particle filter
can avoid the curse of dimensionality: choosing the block size b ∼ log1/q N , we
obtain a local error that can be made arbitrarily small, uniformly both in time
n and in the lattice size d , by choosing a sufficiently large sample size N . More
precisely, we see that the local error at most locations is of order e−c log1/q N , which
is polynomial for q = 1 and subpolynomial otherwise, while the average local error
is similarly uniform in n and d albeit with a very slow convergence rate. It appears
that these results are chiefly limited by the spatial inhomogeneity that is inherent in
the block particle filtering algorithm, as will be discussed in Section 2.3.2 below.

REMARK 2.6. Theorem 2.1 and Corollary 2.5 should be viewed as a theoret-
ical proof of concept that it is possible, in principle, to design particle filters that
avoid the curse of dimensionality. In practice, the slow rate b ∼ log1/q N suggests
that the block size must typically be quite small (of order unity) for realistic val-
ues of the sample size N , which yields a large bias term in our bounds. We have
nonetheless observed in simple simulations that the algorithm can work quite well
even with the choice b = 0, so that the practical utility of the algorithm may not be
fully captured by our mathematical results. Moreover, specific features of certain
data assimilation applications, such as sparsity of observations, could make it pos-
sible to choose substantially larger blocks. A systematic investigation of the em-
pirical performance of local particle filtering algorithms in applications is beyond
the scope of this paper, however. The practical implementation of local particle fil-
ters for data assimilation will likely require further advances in all mathematical,
methodological and applied aspects of high-dimensional filtering.

2.3. Discussion.

2.3.1. Mixing assumptions and the ergodicity threshold. The basic assump-
tion of Theorem 2.1 is that the local transition densities are bounded above and
below:

ε ≤ pv(
x, zv) ≤ ε−1, κ ≤ gv(

xv, yv) ≤ κ−1.

This is a local counterpart of the mixing assumptions that are routinely employed
in the analysis of particle filters [5, 6]. The global mixing assumption ε ≤ p(x, z) ≤
ε−1 would imply that the underlying Markov chain is strongly ergodic (in the sense
that its transition kernel is a strict contraction with respect to the total variation
distance) and is often used to establish the stability property of the filter; this is
essential to obtain a time-uniform bound on the particle filter error. See Section 3.1
below. The local mixing assumption ε ≤ pv(x, zv) ≤ ε−1 employed here should
similarly be viewed as a local ergodicity assumption on the model.

It is well known that strong mixing assumptions impose some constraints on the
underlying model. In particular, they typically hold only in a compact state space:
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in a noncompact state space the likelihood ratio p(x, z)/p(x′, z) is typically un-
bounded as |z| → ∞, while ε ≤ p(x, z) ≤ ε−1 would imply that p(x, z)/p(x′, z)
is uniformly bounded. While qualitative results in this area have been obtained in
much more general settings (cf. [18] and the references therein), it has proved to be
more difficult to obtain quantitative results under assumptions weaker than strong
mixing conditions. These technical issues are however unrelated to the problems
that arise in high dimension, and we do not address them here.

On the other hand, there is a crucial assumption in Theorem 2.1 that does not
arise in finite dimension. In classical results on particle filters, it is assumed that
ε ≤ p(x, z) ≤ ε−1 with ε > 0. For the local assumption ε ≤ pv(x, zv) ≤ ε−1, how-
ever, it is not sufficient to assume that ε > 0; we must assume that ε > ε0 for some
strictly positive threshold ε0 > 0. Some assumption of this form is absolutely es-
sential in the high-dimensional setting. Unlike the global mixing assumption, the
local mixing assumption is not in itself sufficient to ensure that the underlying
model will remain ergodic as the dimension cardV → ∞: the cumulative effect
of the interactions can create long-range correlations that break both ergodicity
and any decay of correlations properties. Typically, the model is ergodic when the
mixing constant ε is sufficiently large, but ergodicity breaks abruptly as ε drops
below a threshold value ε0. Such phenomena, called phase transitions in statistical
mechanics, are very common in large-scale interacting systems; see [7, 10] for a
number of examples. When the underlying model fails to exhibit ergodicity and
decay of correlations, we lack the mechanism that we aim to exploit by developing
local particle filters. Therefore, some assumption of the form ε > ε0 is essential in
Theorem 2.1 in order to ensure the presence of decay of correlations.

Unfortunately, the actual constant ε0 that arises in the proof of Theorem 2.1 is
almost certainly far from optimal. The Dobrushin machinery [8], Chapter 8, that
forms the basis of our proof already does not yield sharp estimates of the phase
transition point even in the simplest classical models of statistical mechanics. It is
also far from clear whether the block particle filter should necessarily possess the
same phase transition point as the underlying model: it may be that the algorithm
only works in a strict subset of the regime in which the underlying model possesses
the decay of correlations property. The mathematical tools used in this paper are
not sufficiently powerful to address questions of this type. The practical relevance
of Theorem 2.1 is therefore of a qualitative nature—we show that the block par-
ticle filter can beat the curse of dimensionality above a certain phase transition
point—but should not be relied upon to provide quantitative guidance in specific
situations. The development of sharper quantitative results will require new prob-
abilistic tools for the investigation of filtering problems in high dimension.

One drawback of the assumptions of Theorem 2.1 is that mixing in space and
time are treated on the same footing: as ε → 1, both the spatial and temporal
interactions disappear. To ensure that ergodicity and decay of correlations hold,
it should suffice to assume only that the spatial interactions are weak. Such an
improvement can be obtained using more refined mathematical tools that make it
possible to separate the temporal and spatial ergodicity assumptions [14].
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2.3.2. Local algorithms and spatial homogeneity. The major drawback of the
block particle filtering algorithm is the spatial inhomogeneity of the bias. The con-
sequences of this inhomogeneity are manifested quantitatively in Corollary 2.5.
Near the block boundaries, Theorem 2.1 gives a bound of order unity. By excluding
a small fraction of spatial locations, however, we eliminate the block boundaries
to retain an error of order e−c log1/q N at “most” spatial locations:

card
{
v ∈ V :

∣∣∣∣∣∣πx
n − π̂x

n

∣∣∣∣∣∣
v � e−cδ log1/q N} ≥ (1 − δ) cardV.

If, on the other hand, we compute the spatial average of the error, we obtain an
exceedingly slow convergence rate that is much worse than the “typical” rate:

1

cardV

∑
v∈V

∣∣∣∣∣∣πx
n − π̂x

n

∣∣∣∣∣∣
v �

1

log1/q N
.

Note that the block boundaries constitute a fraction ∼ 1/b of spatial locations,
where b is the block size; therefore, as b ∼ log1/q N in Corollary 2.5, we see that
the error at the block boundaries dominates our bound on the average error.

The behavior of the errors described above seems to be an inherent limitation of
the block particle filtering algorithm. It is therefore of significant interest to explore
the possibility that one could develop alternative local particle filtering algorithms
that are spatially homogeneous. Conceptually, as explained in Section 1.3, such
an algorithm should update the filtering distribution at each site v using sites in a
centered neighborhood Nb(v) := {v′ ∈ V :d(v, v′) ≤ b}; the decay of correlations
should then yield a bias that decays exponentially in b. In this case, we would
expect to obtain a spatially uniform error bound of the form

sup
v∈V

∣∣∣∣∣∣πx
n − π̂x

n

∣∣∣∣∣∣
v � e−c log1/q N

for the optimized neighborhood size b ∼ log1/q N . Whether it is in fact possible to
design a local particle filtering algorithm that attains such a uniform error bound
is perhaps the most immediate open question that arises from our results.

It is, of course, not at all obvious how one might go about developing a spatially
homogeneous algorithm. We will presently discuss one possible idea that could
be of interest in this setting. It should be emphasized the following discussion
is intended to be heuristic, as we do not know how to analyze algorithms of the
type that we will discuss. However, our aim is to illustrate that the general idea of
local particle filters could be much broader than is suggested by the block particle
filtering algorithm—and that the mathematical analysis developed in this paper
could in itself provide inspiration for further methodological developments.

At the heart of our results lies the decay of correlations. In our proofs, we will
use an intuitive notion of decay of correlations of essentially the following form:
a probability measure ρ on X possesses the decay of correlations property if the
effect on the conditional distribution ρ(Xv ∈ ·|XV \{v} = xV \{v}) of a perturbation
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to xv′
decays exponentially in the distance d(v, v′) (cf. Sections 3.2 and 4.2). The

blocking operation evidently replaces these conditional distributions by

(Bρ)
(
Xv ∈ A|XV \{v} = xV \{v}) = ρ

(
Xv ∈ A|XK\{v} = xK\{v})

for every K ∈ K and v ∈ K . Therefore, if ρ possesses the decay of correlations
property, then the bias at site v ∈ K incurred by the blocking operation decays
exponentially in the distance between v and the boundary of K . From this per-
spective, an approach to spatially homogeneous algorithms readily suggests itself:
we should aim to replace B with another operator M that satisfies

(Mρ)
(
Xv ∈ A|XV \{v} = xV \{v}) = ρ

(
Xv ∈ A|XNb(v)\{v} = xNb(v)\{v})

for every v ∈ V . The bias incurred by this operation decays exponentially in b

uniformly for all v (it is therefore spatially homogeneous). On the other hand, as

(CnMPρ)
(
Xv ∈ A|XV \{v} = xV \{v})

=
∫

1A(xv)gv(xv, Y v
n )

∏
w∈Nb(v) p

w(z, xw)ρ(dz)ψv(dxv)∫
gv(xv, Y v

n )
∏

w∈Nb(v) p
w(z, xw)ρ(dz)ψv(dxv)

,

the sampling error incurred if we replace ρ by SNρ in this expression should only
be exponential in cardNb(v) (which is ∼ bq for the square lattice) rather than in
the model dimension cardV . This suggests that the local particle filter defined by
the recursion F̂n = SNCnMP should yield a spatially homogeneous algorithm in
accordance with our intuition. To implement this algorithm, one needs to sam-
ple from the measure CnMPρ, which we have defined only implicitly in terms of
its conditional distributions. This is however precisely the task to which MCMC
methods such as the Gibbs sampler are well suited. One would therefore ostensibly
obtain a spatially homogeneous local particle filtering algorithm that is recursive in
time and that uses MCMC to sample the spatial degrees of freedom (regularization
using M is still key to avoiding the curse of dimensionality; cf. Remark 1.1).

Conceptually, the idea introduced here is quite natural. The general idea of lo-
cal particle filters is that one should introduce a spatial regularization step into
the filtering recursion that enables local sampling. In the block particle filter, this
regularization is provided by the blocking operation B that projects a probability
measure on the class of measures that are independent across blocks. In the above
algorithm, we aim to regularize instead by the operation M that projects a proba-
bility measure on the class of Markov random fields of order b. The fatal flaw in
our reasoning is that the operator M that we have defined implicitly above does
not exist: the truncated conditional distributions ρ(Xv ∈ ·|XNb(v)\{v} = xNb(v)\{v})
are typically not consistent, so there exists no single probability measure that sat-
isfies our definition of Mρ. Nonetheless, the basic idea introduced here could be
fruitful if one can develop a practical approach to approximating random fields by
Markov random fields [e.g., one could attempt to substitute the above expression
for (CnMPρ)(Xv ∈ ·|XV \{v}) in a Gibbs sampler regardless of its inconsistency].
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The development of such ideas evidently presents some interesting mathematical
as well as methodological challenges that should be investigated further.

Let us finally observe that, by their nature, local particle filtering algorithms are
well suited to distributed computation: as the particles are updated locally in the
spatial graph, this opens the possibility of implementing each local neighborhood
on a separate processor. While this was not the original intention of the algorithms
we propose, such properties could prove to be advantageous in their own right for
the practical implementation of filtering algorithms in very large-scale systems.

2.3.3. High-dimensional models in data assimilation. The basic model that
we have introduced in Section 2.1 is prototypical of many data assimilation prob-
lems and provides a particularly convenient mathematical setting for the investiga-
tion of filtering problems in high dimension. While such models could be directly
relevant to many high-dimensional applications, there remains a substantial gap
between relatively simple models of this form and realistic models used in the most
complex applications, particularly in the geophysical, atmospheric and ocean sci-
ences, that frequently consist of coupled systems of partial differential equations.
The investigation of such complex problems, and the associated numerical, physi-
cal and practical issues, is far beyond the scope of this paper. We therefore restrict
our discussion of such problems to a few brief comments.

In principle, discrete models as defined in Section 2.1 arise naturally as finite-
difference approximations of stochastic partial differential equations with space–
time white noise forcing. As the resulting state spaces Xv are not compact, such
systems cannot satisfy strong mixing assumptions (cf. Section 2.3.1), but this is
likely a mathematical rather than a practical problem. More importantly, it is not
clear whether the discretized models will be in the regime of decay of correlations
(i.e., above the phase transition point) even if the original continuum model pos-
sesses such properties. It is possible that this requirement would place constraints
on the spatial and temporal discretization steps, in the spirit of the von Neumann
stability criterion in numerical analysis. The physics of such problems could also
impose constraints on the design of local particle filters; for example, it is sug-
gested in [19], page 4107, that discontinuities (such as might be introduced at the
block boundaries in the block particle filtering algorithm) could generate spurious
gravity waves in ocean models. Such numerical and practical issues are distinct
from the fundamental problems in high dimension that we aim to address in this
paper, but can ultimately play an equally important role in complex applications.

Let us also note that models considered in the data assimilation literature are of-
ten deterministic partial differential equations without stochastic forcing; the only
randomness in such models comes from the initial condition (cf. [1, 9]). In de-
terministic chaotic dynamical systems, it is impossible to obtain time-uniform ap-
proximations using classical particle filters as there is no dissipation mechanism
for approximation errors (the filter cannot be stable in this case; cf. Section 3.1).
This issue is not directly related to dimensionality issues in particle filters: such
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problems arise in every deterministic filtering problem. It is natural to regularize
deterministic systems by adding dynamical noise to the model (there is an exten-
sive literature on random perturbations of chaotic dynamics; see, e.g., [4]); a sim-
ilar observation has been made by practitioners in the context of ad-hoc filtering
algorithms; cf. [9], Section 5. To our knowledge, a rigorous analysis of such ideas
in the setting of particle filters has yet to be performed.

3. Outline of the proof.

3.1. Error decomposition. The goal of Theorem 2.1 is to bound the error be-
tween the filter π

μ
n and the block particle filter π̂

μ
n . Recall that both the filter (Sec-

tion 1.1) and block particle filter (Section 2.2) are defined recursively:

πμ
n = Fn · · ·F1μ, π̂μ

n = F̂n · · · F̂1μ,

where Fn := CnP and F̂n := CnBSNP. We introduce also the block filter

π̃μ
n = F̃n · · · F̃1μ

with F̃n := CnBP. By the triangle inequality, we have∣∣∣∣∣∣πμ
n − π̂μ

n

∣∣∣∣∣∣
J ≤ ∣∣∣∣∣∣πμ

n − π̃μ
n

∣∣∣∣∣∣
J + ∣∣∣∣∣∣π̃μ

n − π̂μ
n

∣∣∣∣∣∣
J .

The first term on the right-hand side quantifies the bias introduced by the pro-
jection on independent blocks, while the second term quantifies the error due to
the variance of the random sampling in the algorithm. Each term will be bounded
separately to obtain the two terms in the error bound of Theorem 2.1.

The challenges encountered in bounding the bias term (cf. Section 3.3) and
the variance term (cf. Section 3.4) are quite different in nature. Nonetheless, both
bounds are based on a basic scheme of proof that was invented in order to prove
time-uniform bounds for the bootstrap particle filter [5, 6]. We therefore begin by
reviewing this general idea, which is based on a simple error decomposition.

Suppose for sake of illustration that we aim to bound directly the error between
π

μ
n and π̂

μ
n . The basic idea is to write π

μ
n − π̂

μ
n as a telescoping sum:

πμ
n − π̂μ

n =
n∑

s=1

{Fn · · ·Fs+1Fs F̂s−1 · · · F̂1μ − Fn · · ·Fs+1F̂s F̂s−1 · · · F̂1μ}.

By the triangle inequality,

∣∣∣∣∣∣πμ
n − π̂μ

n

∣∣∣∣∣∣ ≤
n∑

s=1

∣∣∣∣∣∣Fn · · ·Fs+1Fs π̂
μ
s−1 − Fn · · ·Fs+1F̂s π̂

μ
s−1

∣∣∣∣∣∣.
The term s in this sum could be interpreted as the contribution to the total error at
time n due to the filter approximation made in time step s.
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The key insight is now that one can employ the filter stability property to control
this sum uniformly in time. In its simplest form, this property can be proved in the
following form: if ε ≤ p(x, z) ≤ ε−1 for all x, z ∈X, then [5, 6]∣∣∣∣∣∣Fn · · ·Fs+1ρ − Fn · · ·Fs+1ρ

′∣∣∣∣∣∣ ≤ ε−2(
1 − ε2)n−s ∣∣∣∣∣∣ρ − ρ′∣∣∣∣∣∣.

Thus, the filter forgets its initial condition at an exponential rate. However, this
also means that past approximation errors are forgotten at an exponential rate: if
we substitute the stability property in the above error decomposition, we obtain

∣∣∣∣∣∣πμ
n − π̂μ

n

∣∣∣∣∣∣ ≤
n∑

s=1

ε−2(
1 − ε2)n−s ∣∣∣∣∣∣Fs π̂

μ
s−1 − F̂s π̂

μ
s−1

∣∣∣∣∣∣ ≤ ε−4 sup
n,ρ

∣∣∣∣∣∣Fnρ − F̂nρ
∣∣∣∣∣∣.

Thus, if we can control the error |||Fnρ − F̂nρ||| in a single time step, we obtain a
time-uniform bound of the same order. In the case of the bootstrap particle filter, if
κ ≤ g(x, y) ≤ κ−1, we proved that |||Fnρ − F̂nρ||| ≤ 2κ−2/

√
N in Section 1.1, and

we obtain a time-uniform version of the crude error bound given there.
The basic error decomposition discussed above allows us to separate the prob-

lem of obtaining time-uniform bounds into two parts: the one-step approximation
error and the stability property. It is important to note, however, that both parts
become problematic in high dimension. We have already seen (Section 1.2) that
the one-step approximation error of the bootstrap particle filter is exponential in
the model dimension; we will surmount this problem by working with the block
particle filtering algorithm and performing a local analysis of the one-step error
using the decay of correlations property (which must itself be established). On the
other hand, the filter stability bound used above also becomes exponentially worse
in high dimension: a local bound of the form ε ≤ pv(x, zv) ≤ ε−1 only yields
εcardV ≤ p(x, z) ≤ ε− cardV , which is exponential in the model dimension cardV .
To surmount this problem, we must develop a much more precise understanding
of the filter stability property in high dimension, which proves to be closely re-
lated to the decay of correlations property. The development of these ingredients
constitutes the bulk of the proof of Theorem 2.1.

3.2. Dobrushin comparison method. How can one control the approximation
error of high-dimensional distributions? The basic idea that we aim to exploit,
both algorithmically and mathematically, is that the decay of correlations property
leads to a form of localization: the effect on the distribution in some spatial set J

of a perturbation made in another set J ′ decays rapidly in the distance d(J, J ′).
Therefore, as long as we measure the error locally (in ||| · |||J rather than ||| · |||),
one would hope to control the spatial accumulation of approximation errors much
as we controlled the accumulation of approximation errors in time using the filter
stability property. We will presently introduce a powerful (albeit blunt) tool—the
Dobrushin comparison theorem—that makes this idea precise in a very general
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setting. This fundamental result, which plays an important role in statistical me-
chanics [8], Chapter 8, is the main workhorse that will be used repeatedly in our
proofs.

Let I be a finite set, and let S = ∏
i∈I S

i where Si is a Polish space for each
i ∈ I . Define the coordinate projections Xi :x �→ xi for x ∈ S an i ∈ I . For any
probability ρ on S, we fix a version ρi· of the regular conditional probability

ρi
x(A) = ρ

(
Xi ∈ A|XI\{i} = xI\{i}).

We also define for J ⊆ I the local total variation distance∥∥ρ − ρ′∥∥
J := sup

f ∈SJ : |f |≤1

∣∣ρ(f ) − ρ′(f )
∣∣,

where SJ is the class of measurable functions f :S → R such that f (x) = f (z)

whenever xJ = zJ . For J = I , we write ‖ρ − ρ′‖ for simplicity.
We can now state the Dobrushin comparison theorem [8], Theorem 8.20.3

THEOREM 3.1 (Dobrushin). Let ρ, ρ̃ be probability measures on S. Define

Cij = 1

2
sup

x,z∈S : xI\{j}=zI\{j}

∥∥ρi
x − ρi

z

∥∥, bj = sup
x∈S

∥∥ρj
x − ρ̃j

x

∥∥.
Suppose that the Dobrushin condition holds:

max
i∈I

∑
j∈I

Cij < 1.

Then the matrix sum D := ∑
n≥0 Cn is convergent, and we have for every J ⊆ I

‖ρ − ρ̃‖J ≤ ∑
i∈J

∑
j∈I

Dijbj .

This result could be informally interpreted as follows. Cij measures the degree
to which a perturbation of site j directly affects site i under the distribution ρ.
However, perturbing site j might also indirectly affect i: it could affect another
site k which in turn affects i, etc. The aggregate effect of a perturbation of site j

on site i is captured by the quantity Dij . In this setting, a useful manifestation of
the decay of correlations property is that Dij decays exponentially in the distance
d(i, j). If this is in fact the case, then Theorem 3.1 yields, for example, ‖ρ −
ρ̃‖i �

∑
j e−d(i,j)bj , where bj measures the local error at site j between ρ and ρ̃

(in terms of the conditional distributions ρ
j· and ρ̃

j· ). The decay of correlations
property therefore controls the accumulation of local errors much as one might
expect.

3Note that our definition of ‖ · ‖J differs by a factor 2 from that in [8].
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Let us now explain how Theorem 3.1 will be applied in the filtering setting. For
sake of illustration, consider the problem of obtaining a local filter stability bound:
that is, we would like to bound ‖πx

n −πx̃
n ‖J for x, x̃ ∈ X and J ⊆ V . It would seem

natural to apply Theorem 3.1 directly with I = V , S = X, and ρ = πx
n , ρ̃ = πx̃

n .
This is not useful, however, as we do not know how to control the corresponding
local quantities such as ρv

z = Px[Xv
n ∈ ·|Y1, . . . , Yn,X

V \{v}
n = zV \{v}].

Instead, define I = {0, . . . , n} × V and S = Xn+1, and let

ρ = Px[
(X0, . . . ,Xn) ∈ ·|Y1, . . . , Yn

]
,

ρ̃ = Px̃[
(X0, . . . ,Xn) ∈ ·|Y1, . . . , Yn

]
.

As ∥∥πx
n − πx̃

n

∥∥
J = ‖ρ − ρ̃‖{n}×J ,

we can now apply Theorem 3.1 to the smoothing distributions ρ, ρ̃. Unlike the
filters πx

n ,πx̃
n , however, ρ and ρ′ are Markov random fields on I (cf. Figure 3),

so that the conditional distributions ρk,v
z and ρ̃k,v

z can be easily computed and
controlled in terms of the local densities pv(x, zv) and gv(xv, yv). For example,
as

ρ(A) ∝
∫

1A(x, x1, . . . , xn)

n∏
k=1

∏
v∈V

pv(
xk−1, x

v
k

)
gv(

xv
k , Y v

k

)
ψv(

dxv
k

)
,

and as pv(xk−1, x
v
k ) depends only on xw

k−1 for d(w,v) ≤ r , we obtain

ρk,v
z (B) ∝

∫
1B

(
zv
k

)
pv(

zk−1, z
v
k

)
gv(

zv
k, Y

v
k

) ∏
w∈N(v)

pw(
zk, z

w
k+1

)
ψv(

dzv
k

)
for 0 < k < n and v ∈ V (the proportionality is up to a normalization factor). We
will repeatedly exploit expressions of this type to obtain explicit bounds on the
quantities Cij and bj that appear in Theorem 3.1. It should be emphasized that
ρk,v

z is a genuinely local quantity: the product inside the integral contains at most
cardN(v) ≤ � factors. We will consequently be able to use Theorem 3.1 to obtain
bounds that do not depend on the model dimension cardV .

3.3. Bounding the bias: Decay of correlations. To bound the bias ‖πx
n − π̃x

n ‖J ,
we follow the basic error decomposition scheme described above, that is,

∥∥πx
n − π̃x

n

∥∥
J ≤

n∑
s=1

∥∥Fn · · ·Fs+1Fs π̃
x
s−1 − Fn · · ·Fs+1F̃s π̃

x
s−1

∥∥
J .

To implement our program, we must now obtain suitable local bounds on the sta-
bility of the filter and on the one-step approximation error. Both these problems
will be approached by application of the Dobrushin comparison theorem.
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In its most basic form, one can prove a filter stability property of the following
type: provided ε > ε0, there exists β > 0 (depending only on � and r) such that

‖Fn · · ·Fs+1μ − Fn · · ·Fs+1ν‖J ≤ 4 cardJe−β(n−s)

for any probability measures μ,ν on X and J ⊆ V , n ≥ 0 (cf. Corollary 4.7). This
bound is evidently dimension-free, unlike the crude filter stability bound described
in Section 3.1. Nonetheless, this filter stability bound would yield a trivial result
when substituted in the error decomposition, as it does not provide any control in
terms of the distance between μ and ν (and, therefore, in terms of the one-step
error). Instead, we will prove in Section 4.2 the local stability bound

‖Fn · · ·Fs+1μ − Fn · · ·Fs+1ν‖J ≤ 2e−β(n−s)
∑
v∈J

max
v′∈V

e−βd(v,v′)Dv′(μ, ν),

where Dv′(μ, ν) is a suitable measure of the local error between μ and ν at site v′
that arises naturally from the Dobrushin comparison theorem (see Proposition 4.4
for precise expressions). This filter stability bound is genuinely local: the stability
on the spatial set J ⊆ V depends predominantly on the local distance of the initial
conditions near J (i.e., the spatial accumulation of errors is mitigated). This local-
ization comes at a price, however; the local filter stability bound holds only if the
initial condition μ satisfies a priori a decay of correlations property.

Once the local filter stability bound is substituted in the error decomposition, it
remains to prove a bound on the one-step error Dv(Fs π̃

x
s−1, F̃sπ̃

x
s−1) with respect

to the local distance prescribed by the filter stability bound. This will be done in
Section 4.3: we will show that for a constant C that depends only on �,r, ε,

Dv(Fsμ, F̃sμ) ≤ Ce−βd(v,∂K)

for every K ∈ K and v ∈ K , provided again that μ satisfies a priori a decay of
correlations property. This is precisely what we expect: as B only introduces errors
at the block boundaries, the decay of correlations should ensure that the error at
site v decays exponentially in the distance to the nearest block boundary. The
Dobrushin comparison theorem allows to make this intuition precise.

The decay of correlations property evidently plays a dual role in our setting: it
controls the approximation error of the block filter, which is the basic principle be-
hind the block particle filtering algorithm; at the same time, it mitigates the spatial
accumulation of approximation errors, which is essential for proving dimension-
free bounds. In order to apply the above bounds, the key step that remains is to
prove that the appropriate decay of correlations property does in fact hold, uni-
formly in time, for the block filter π̃x

n . The latter will be shown in Section 4.4 by
iterating a one-step decay of correlations bound that is obtained once again us-
ing the Dobrushin comparison theorem. We conclude by putting together all these
ingredients in Section 4.5 to obtain a bound on the bias of the form∥∥πx

n − π̃x
n

∥∥
J ≤ C cardJe−βd(J,∂K)
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for J ⊆ K (Theorem 4.14). This proves the first half of Theorem 2.1 (note that,
as the bias does not depend on the random sampling in the block particle filtering
algorithm, we can trivially replace ‖πx

n − π̃x
n ‖J by |||πx

n − π̃x
n |||J in this bound).

3.4. Bounding the variance: The computation tree. To bound the variance
term |||π̃x

n − π̂x
n |||J , we once again start from the basic error decomposition

∣∣∣∣∣∣π̃x
n − π̂x

n

∣∣∣∣∣∣
J ≤

n∑
s=1

∣∣∣∣∣∣F̃n · · · F̃s+1F̃s π̂
x
s−1 − F̃n · · · F̃s+1F̂s π̂

x
s−1

∣∣∣∣∣∣
J
.

The difficulties encountered in controlling this expression are quite different in
nature, however, than what was needed to control the bias term.

Dimension-free bounds on the bias exploit decay of correlations: the core dif-
ficulty is to obtain local control of the error inside the blocks. The variance term,
on the other hand, will already grow exponentially in the size of the blocks due to
the exponential dependence of the sampling error on the dimension of the obser-
vations. There is therefore no need bound the error on a finer scale than a single
block. This makes the analysis of the variance much less delicate than controlling
the bias, and it is indeed not difficult to obtain a variance bound of the right order
on a finite time horizon (but growing exponentially in time n).

The chief difficulty in controlling the variance is to obtain a time-uniform
bound. Note that, in the error decomposition for the variance term, it is not stability
of the filter π

μ
n that enters the picture but rather stability of the block filter π̃

μ
n . Un-

like the filter, however, which has by construction an interpretation as the marginal
of a smoothing distribution, the block filter is defined by a recursive algorithm and
not as a conditional expectation. It is therefore not entirely obvious how one could
adapt the approach outlined in Section 3.2 to this setting.

The key idea that will be used to establish stability is that the block filter can
nonetheless be viewed as the marginal of a suitably defined Markov random field,
just like the filter can be viewed as the marginal of a smoothing distribution. This
random field, however, lives on a much larger index set than the original model.
The basic idea behind the construction is illustrated in Figure 5 (disregarding the
observations for simplicity of exposition). When we apply the transition opera-
tor P, each block interacts with its �K neighbors in the previous time step. How-
ever, if we subsequently apply the blocking operator B, then each block is replaced
by an independent copy. This could be modeled equivalently by introducing inde-
pendent duplicates of the blocks in the previous time step, and having each block
interact with its own set of duplicates. This unravels the original dependency graph
into a tree. By iterating this process, we can express the block filter as the marginal
of a Markov random field defined on a tree that contains many independent dupli-
cates of each block. We call this construction the computation tree in analogy with
a similar notion that arises in the analysis of belief propagation algorithms [17].

With this construction in place, we can now obtain a stability bound for the
block filter by applying the Dobrushin comparison theorem to the computation
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FIG. 5. For a linear spatial graph G partitioned into blocks A–E (with r = 1), the dependencies
between the blocks at subsequent times are illustrated here. The left dependency graph represents
BCP2μ, the right graph represents BCPBPμ. The blocking operation unravels the original graph
into a tree by introducing independent duplicates (dotted boxes) of blocks in the previous time step.

tree. This will be done in Section 4.6 to obtain a bound of the following form:
provided ε > ε0, there exist β,β ′ > 0 (depending only on �,�K, r) such that

max
K∈K

‖F̃n · · · F̃s+1μ − F̃n · · · F̃s+1ν‖K ≤ eβ ′|K|∞e−β(n−s) max
K∈K

∥∥μK − νK
∥∥

for any pair of initial conditions of product form μ = ⊗
K∈K μK , ν = ⊗

K∈K νK

(cf. Corollary 4.18). Combining this bound with the error decomposition, we ob-
tain in Section 4.7 a time-uniform bound on the variance term of the form

max
K∈K

∣∣∣∣∣∣π̃x
n − π̂x

n

∣∣∣∣∣∣
K ≤ C

eβ ′|K|∞
√

N
,

where we bound the one-step error in the same spirit as the computation for the
bootstrap particle filter in Section 1.1 (however, a more involved argument is
needed here to surmount the fact that the block filter stability bound is given in
a total variation norm rather than the weaker norm ||| · |||K ). Thus, Theorem 2.1 is
proved.

4. Proof of Theorem 2.1. Theorem 2.1 yields a bound on |||πμ
n − π̂

μ
n |||J . As∣∣∣∣∣∣πμ

n − π̂μ
n

∣∣∣∣∣∣
J ≤ ∣∣∣∣∣∣πμ

n − π̃μ
n

∣∣∣∣∣∣
J + ∣∣∣∣∣∣π̃μ

n − π̂μ
n

∣∣∣∣∣∣
J ,

it suffices to bound each term in this inequality. As was explained in Section 3.1,
the first term quantifies the bias of the block particle filter, while the second term
quantifies the variance of the random sampling. The bias term will be bounded in
Theorem 4.14 below, while the variance will be bounded in Theorem 4.23. The
combination of these two results immediately yields Theorem 2.1.



LOCAL PARTICLE FILTERS 2837

4.1. Preliminary lemmas. The Dobrushin comparison method introduced in
Section 3.2 is the main workhorse of our proof. To use this method, we must be
able to bound the quantities Cij , bj and Dij that appear in Theorem 3.1. The goal
of this preliminary section is to collect some elementary lemmas for this purpose.

We start with a rather trivial lemma that will be used to bound Cij .

LEMMA 4.1. Let probability measures ν, ν′, γ, γ ′ and ε > 0 be such that
ν(A) ≥ εγ (A) and ν′(A) ≥ εγ ′(A) for every measurable set A. Then∥∥ν − ν′∥∥ ≤ 2(1 − ε) + ε

∥∥γ − γ ′∥∥.
In particular, if γ = γ ′, then ‖ν − ν′‖ ≤ 2(1 − ε).

PROOF. As μ = (1−ε)−1(ν −εγ ) and μ′ = (1−ε)−1(ν′ −εγ ′) are probabil-
ity measures and ν − ν′ = (1 − ε)(μ − μ′) + ε(γ − γ ′), the result follows readily.

�

Next, we state a simple lemma on the distance between weighted measures. We
have already used this result in Section 1.1 to bound |||Cnρ − Cnρ

′|||.

LEMMA 4.2. Let μ,ν be (possibly random) probability measures and let �

be a bounded and strictly positive measurable function. Define

μ�(A) :=
∫

1A(x)�(x)μ(dx)∫
�(x)μ(dx)

, ν�(A) :=
∫

1A(x)�(x)ν(dx)∫
�(x)ν(dx)

.

Then

‖μ� − ν�‖ ≤ 2
supx �(x)

infx �(x)
‖μ − ν‖.

The same conclusion holds if the ‖ · ‖-norm is replaced by the ||| · |||-norm.

PROOF. The result follows readily from the identity

μ�(f ) − ν�(f ) = 1

μ(�)

[{
μ(f �) − ν(f �)

} + ν(f �)

ν(�)

{
ν(�) − μ(�)

}]
using the definition of the norms ‖ · ‖ or ||| · |||. �

Finally, we give a lemma that will be essential for bounding Dij . In essence,
the lemma states that if Cij decays exponentially in the distance between i and j

at a sufficiently rapid rate, then Dij will also decay exponentially in the distance
between i and j . This is essential in order to establish the decay of correlations
property using only bounds on Cij , which can be obtained in explicit form. While
the lemma should be interpreted in the spirit of decay of correlations, it is essen-
tially a simple lemma about matrices and will be stated as such.
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LEMMA 4.3. Let I be a finite set and let m be a pseudometric on I . Let
C = (Cij )i,j∈I be a matrix with nonnegative entries. Suppose that

max
i∈I

∑
j∈I

em(i,j)Cij ≤ c < 1.

Then the matrix D = ∑
n≥0 Cn satisfies

max
i∈I

∑
j∈I

em(i,j)Dij ≤ 1

1 − c
.

In particular, this implies that

∑
j∈J

Dij ≤ e−m(i,J )

1 − c

for every J ⊆ I .

PROOF. Define for any matrix A with nonnegative entries the norm

‖A‖m := max
i∈I

∑
j∈I

em(i,j)Aij .

Using m(i, j) ≤ m(i, k) + m(k, j), we compute

‖AB‖m = max
i∈I

∑
j∈I

em(i,j)
∑
k∈I

AikBkj

≤ max
i∈I

∑
k∈I

em(i,k)Aik

∑
j∈I

em(k,j)Bkj

≤ ‖A‖m‖B‖m,

so ‖A‖m is a matrix norm. Therefore,

‖D‖m ≤ ∑
n≥0

‖C‖n
m ≤ ∑

n≥0

cn = 1

1 − c
.

As

em(i,J )
∑
j∈J

Dij ≤ ∑
j∈J

em(i,j)Dij ≤ ‖D‖m,

the last statement of the lemma follows immediately. �

4.2. Local stability of the filter. The main goal of this section is to prove a
local stability bound for the nonlinear filter. We begin, however, by introducing a
number of objects that will appear several times in the sequel.
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For any probability measure μ on X and x, z ∈ X, v ∈ V , we define

μv
x,z(A) := Pμ[

Xv
0 ∈ A|XV \{v}

0 = xV \{v},X1 = z
]

=
∫

1A(xv)
∏

w∈N(v) p
w(x, zw)μv

x(dxv)∫ ∏
w∈N(v) p

w(x, zw)μv
x(dxv)

(recall the notation μv
x := Pμ[Xv

0 ∈ ·|XV \{v}
0 = xV \{v}] in Section 3.2). Let

C
μ

vv′ := 1

2
sup
z∈X

sup
x,x̃∈X:xV \{v′}=x̃V \{v′}

∥∥μv
x,z − μv

x̃,z

∥∥
for v, v′ ∈ V . The quantity

Corr(μ,β) := max
v∈V

∑
v′∈V

eβd(v,v′)Cμ

vv′

could be viewed as a measure of the degree of correlation decay of the measure
μ at rate β > 0. It will turn out that this (not entirely obvious) measure of decay
of correlations is precisely tuned to the needs of the proof of Theorem 2.1. This is
due to the fact that the measures μv

x,z arise naturally when applying the Dobrushin
comparison method to the smoothing distributions as discussed in Section 3.2.

We recall once and for all that the interaction radius r and neighborhood size �

that will appear repeatedly in the following results are defined in Section 2.2.

PROPOSITION 4.4 (Local filter stability). Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X.

Let μ,ν be probability measures on X, and suppose that

Corr(μ,β) + 3
(
1 − ε2�)

e2βr�2 ≤ 1
2

for a sufficiently small constant β > 0. Then we have

‖Fn · · ·Fs+1μ − Fn · · ·Fs+1ν‖J

≤ 2e−β(n−s)
∑
v∈J

max
v′∈V

e−βd(v,v′) sup
x,z∈X

∥∥μv′
x,z − νv′

x,z

∥∥
for every J ⊆ V and s < n.

REMARK 4.5. There is nothing magical about the constant 1/2 in the decay
of correlations assumption; any constant c < 1 would work at the expense of a
constant 1/(1−c) rather than 2 in the filter stability bound. As our methods are not
expected to yield tight quantitative bounds, we have taken the liberty to fix various
constants of this sort throughout the following sections for aesthetic purposes.
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REMARK 4.6. Note that by Lemma 4.2∥∥μv′
x,z − νv′

x,z

∥∥ ≤ 2

ε2�

∥∥μv′
x − νv′

x

∥∥.
This yields a slightly cleaner bound in Proposition 4.4 with a worse constant. For
our purposes, however, it will be just as easy to bound ‖μv′

x,z − νv′
x,z‖ directly.

PROOF OF PROPOSITION 4.4. Define the smoothing distributions

ρ = Pμ[X0, . . . ,Xn ∈ ·|Y1, . . . , Yn],
ρ̃ = Pν[X0, . . . ,Xn ∈ ·|Y1, . . . , Yn].

We will apply Theorem 3.1 to ρ, ρ̃ with I = {0, . . . , n} × V and S = Xn+1 as
discussed in Section 3.2. To this end, we must bound the quantities Cij and bj . We
begin by bounding Cij with i = (k, v) and j = (k′, v′). We distinguish three cases.

Case k = 0. The key observation in this case is that ρi
x = μv

x0,x1
by the Markov

property (or by direct computation). Note that as cardN(v) ≤ �, we have

μv
x,z(A) =

∫
1A(xv)

∏
w∈N(v) p

w(x, zw)μv
x(dxv)∫ ∏

w∈N(v) p
w(x, zw)μv

x(dxv)
≥ ε2�μv

x(A),

so ‖μv
x,z − μv

x,z′‖ ≤ 2(1 − ε2�) for any z, z′ ∈ X by Lemma 4.1. Therefore,

Cij ≤
⎧⎪⎨⎪⎩

C
μ

vv′, if k′ = 0,

1 − ε2�, if k′ = 1 and v′ ∈ N(v),
0, otherwise.

This evidently implies that∑
(k′,v′)∈I

eβk′
eβd(v,v′)C(0,v)(k′,v′) ≤ Corr(μ,β) + (

1 − ε2�)
eβ(r+1)�.

Case 0 < k < n. Now we have (cf. Section 3.2)

ρi
x(A) =

∫
1A(xv

k )pv(xk−1, x
v
k )gv(xv

k , Y v
k )

∏
w∈N(v) p

w(xk, x
w
k+1)ψ

v(dxv
k )∫

pv(xk−1, x
v
k )gv(xv

k , Y v
k )

∏
w∈N(v) p

w(xk, x
w
k+1)ψ

v(dxv
k )

.

By inspection, ρi
x does not depend on xv′

k′ except in the following cases: k′ = k − 1
and v′ ∈ N(v); k′ = k + 1 and v′ ∈ N(v); k′ = k and v′ ∈ ⋃

w∈N(v) N(w). As

ρi
x(A) ≥ ε2�

∫
1A(xv

k )pv(xk−1, x
v
k )gv(xv

k , Y v
k )ψv(dxv

k )∫
pv(xk−1, x

v
k )gv(xv

k , Y v
k )ψv(dxv

k )

as well as

ρi
x(A) ≥ ε2

∫
1A(xv

k )gv(xv
k , Y v

k )
∏

w∈N(v) p
w(xk, x

w
k+1)ψ

v(dxv
k )∫

gv(xv
k , Y v

k )
∏

w∈N(v) p
w(xk, x

w
k+1)ψ

v(dxv
k )

,
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we can use Lemma 4.1 to estimate

Cij ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − ε2, if k′ = k − 1 and v′ ∈ N(v),
1 − ε2�, if k′ = k + 1 and v′ ∈ N(v),
1 − ε2�, if k′ = k and v′ ∈ ⋃

w∈N(v)

N(w),

0, otherwise.

This yields∑
(k′,v′)∈I

eβ|k−k′|eβd(v,v′)C(k,v)(k′,v′) ≤ (
1 − ε2�){

e2βr�2 + 2eβ(r+1)�
}

≤ 3
(
1 − ε2�)

e2βr�2,

where we have used that r ≥ 1 and � ≥ 1 in the last inequality.
Case k = n. Now we have

ρi
x(A) =

∫
1A(xv

n)pv(xn−1, x
v
n)gv(xv

n, Y v
n )ψv(dxv

n)∫
pv(xn−1, xv

n)gv(xv
n, Y v

n )ψv(dxv
n)

≥ ε2
∫

1A(xv
n)gv(xv

n, Y v
n )ψv(dxv

n)∫
gv(xv

n, Y v
n )ψv(dxv

n)
,

and we obtain precisely as above

Cij ≤
{

1 − ε2, if k′ = n − 1 and v′ ∈ N(v),
0, otherwise.

We therefore find∑
(k′,v′)∈I

eβ|k−k′|eβd(v,v′)C(n,v)(k′,v′) ≤ (
1 − ε2)

eβ(r+1)�.

Combining the above three cases and the assumption of the proposition yields

max
(k,v)∈I

∑
(k′,v′)∈I

eβ{|k−k′|+d(v,v′)}C(k,v)(k′,v′) ≤ 1

2
.

Thus, Lemma 4.3 gives

max
(k,v)∈I

∑
(k′,v′)∈I

eβ{|k−k′|+d(v,v′)}D(k,v)(k′,v′) ≤ 2.

Now consider the quantities bj in Theorem 3.1. By the Markov property, it is
evident that ρi

x = ρ̃i
x whenever i = (k, v) with k ≥ 1. On the other hand, for k = 0

we obtain ρi
x = μv

x0,x1
and ρ̃i

x = νv
x0,x1

. Applying Theorem 3.1 therefore yields∥∥πμ
n − πν

n

∥∥
J = ‖ρ − ρ̃‖{n}×J ≤ ∑

v∈J

∑
v′∈V

D(n,v)(0,v′) sup
x,z∈X

∥∥μv′
x,z − νv′

x,z

∥∥.
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However, note that∑
v′∈V

D(n,v)(0,v′) sup
x,z∈X

∥∥μv′
x,z − νv′

x,z

∥∥
= e−βn

∑
v′∈V

eβ{n+d(v,v′)}D(n,v)(0,v′)e
−βd(v,v′) sup

x,z∈X
∥∥μv′

x,z − νv′
x,z

∥∥
≤ 2e−βn max

v′∈V
e−βd(v,v′) sup

x,z∈X
∥∥μv′

x,z − νv′
x,z

∥∥,
using the above estimate on the matrix D. Substituting this into the bound for
‖πμ

n − πν
n‖J yields the statement of the proposition for the special case s = 0.

To obtain the result for any s < n, note that Fn · · ·Fs+1μ and π
μ
n−s differ only

in that a different sequence of observations (Ys+1, . . . , Yn versus Y1, . . . , Yn−s) is
used in the computation of these quantities. As our bound holds uniformly in the
observation sequence, however, the general result follows immediately. �

As a corollary of Proposition 4.4, let us derive a simple filter stability statement
that illustrates the role of decay of correlations (this will not be used elsewhere).

COROLLARY 4.7 (Filter stability). Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X,

and such that

ε > ε0 =
(

1 − 1

6�2

)1/2�

.

Then for any probability measures μ,ν on X and J ⊆ V , n ≥ 0, we have∥∥πμ
n − πν

n

∥∥
J ≤ 4 cardJγ n/2r ,

where γ = 6�2(1 − ε2�) < 1.

PROOF. We first apply Proposition 4.4 with μ = δx . Then Corr(μ,β) = 0 for
any β > 0. Choosing β = −(2r)−1 logγ > 0, we find that

Corr(μ,β) + 3
(
1 − ε2�)

e2βr�2 = 1
2 ,

so that the assumption of Proposition 4.4 is satisfied. Therefore,∥∥πx
n − πν

n

∥∥
J ≤ 4 cardJe−βn = 4 cardJγ n/2r .

To obtain the result for arbitrary μ, note that

πμ
n (A) = Pμ[Xn ∈ A|Y1, . . . , Yn]

= Eμ[
Pμ[Xn ∈ A|X0, Y1, . . . , Yn]|Y1, . . . , Yn

]
= Eμ[

π
δX0
n (A)|Y1, . . . , Yn

]
.
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Therefore, by Jensen’s inequality,∥∥πμ
n − πν

n

∥∥
J ≤ Eμ[∥∥πδX0

n − πν
n

∥∥
J |Y1, . . . , Yn

] ≤ sup
x∈X

∥∥πx
n − πν

n

∥∥
J ,

which yields the result. �

While Proposition 4.4 requires a decay of correlations assumption on the ini-
tial condition [Corr(μ,β) must be sufficiently small], Corollary 4.7 works for any
initial condition provided that ε > ε0 is sufficiently large (which is necessary in
general, see Section 2.3.1). Thus, no assumption is needed on the initial condition
if we want to show only that the filter is stable in time. On the other hand, Propo-
sition 4.4 controls not only the stability in time, but also the spatial accumulation
of error between μ and ν by virtue of the damping factor e−βd(v,v′): the decay of
correlations property of the initial condition is essential to obtain this type of local
control. The latter is of central importance if we wish to obtain local error bounds
for filter approximations that are uniform in time and in the model dimension.

4.3. The block projection error. The proof of a time-uniform error bound be-
tween π

μ
n and π̃

μ
n requires two ingredients: we need the filter stability property

of π
μ
n , developed in the previous section, in order to mitigate the accumulation of

approximation errors over time; and we need to control the approximation error
between π

μ
n and π̃

μ
n in one time step. The latter is the purpose of this section.

We will in fact consider two separate cases. To control the total error ‖πμ
n −

π̃
μ
n ‖J , we need to consider the one-step error made in each time step s = 1, . . . , n.

For time steps s < n (for which the error is dissipated by the stability of the filter),
the error must be measured in terms of the quantities that appear in Proposition 4.4:
that is, we must control ‖(Fsν)vx,z − (F̃sν)vx,z‖. On the other hand, in the last time
step s = n, we must control directly ‖Fnν − F̃nν‖J . While the proofs of these cases
are quite similar, each must be considered separately in the following.

We begin by bounding the error in time steps s < n.

PROPOSITION 4.8 (Block error, s < n). Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X.

Let ν be a probability measure on X, and suppose that

Corr(ν,β) + (
1 − ε2)

eβ(r+1)� ≤ 1
2

for a sufficiently small constant β > 0. Then we have

sup
x,z∈X

∥∥(Fsν)vx,z − (F̃sν)vx,z

∥∥ ≤ 4e−β(
1 − ε2�)

e−βd(v,∂K)

for every s ∈ N, K ∈ K and v ∈ K .



2844 P. REBESCHINI AND R. VAN HANDEL

This result makes precise the idea that was heuristically expressed in Sec-
tion 2.2: if the measure ν possesses the decay of correlations property, then the
error at site v incurred by applying the block filter rather than the true filter decays
exponentially in the distance between v and the boundary of the block that it is in.

PROOF OF PROPOSITION 4.8. We begin by writing out the definitions

(Fsν)(A) =
∫

1A(x)
∏

w∈V pw(x0, x
w)gw(xw,Yw

s )ν(dx0)ψ(dx)∫ ∏
w∈V pw(x0, xw)gw(xw,Yw

s )ν(dx0)ψ(dx)
,

(F̃sν)(A) =
∫

1A(x)
∏

K ′∈K[∫ ∏
w∈K ′ pw(x0, x

w)gw(xw,Yw
s )ν(dx0)]ψ(dx)∫ ∏

K ′∈K[∫ ∏
w∈K ′ pw(x0, xw)gw(xw,Yw

s )ν(dx0)]ψ(dx)
.

Let us fix K ∈ K, v ∈ K throughout the proof. Then

(Fsν)vx(A) =
∫

1A(xv)gv(xv, Y v
s )

∏
w∈V pw(x0, x

w)ν(dx0)ψ
v(dxv)∫

gv(xv, Y v
s )

∏
w∈V pw(x0, xw)ν(dx0)ψv(dxv)

,

(F̃sν)vx(A) =
∫

1A(xv)gv(xv, Y v
s )

∏
w∈K pw(x0, x

w)ν(dx0)ψ
v(dxv)∫

gv(xv, Y v
s )

∏
w∈K pw(x0, xw)ν(dx0)ψv(dxv)

.

Define I = ({0} × V ) ∪ (1, v) and S =X×Xv , and the probability measures on S

ρ(A)

=
∫

1A(x0, x
v)gv(xv,Y v

s )
∏

w∈V pw(x0, x
w)

∏
u∈N(v) p

u(x, zu)ν(dx0)ψ
v(dxv)∫

gv(xv,Y v
s )

∏
w∈V pw(x0, xw)

∏
u∈N(v) p

u(x, zu)ν(dx0)ψv(dxv)
,

ρ̃(A)

=
∫

1A(x0, x
v)gv(xv,Y v

s )
∏

w∈K pw(x0, x
w)

∏
u∈N(v) p

u(x, zu)ν(dx0)ψ
v(dxv)∫

gv(xv,Y v
s )

∏
w∈K pw(x0, xw)

∏
u∈N(v) p

u(x, zu)ν(dx0)ψv(dxv)
.

Then we have by construction∥∥(Fsν)vx,z − (F̃sν)vx,z

∥∥ = ‖ρ − ρ̃‖(1,v).

We will apply Theorem 3.1 to bound ‖ρ − ρ̃‖(1,v). To this end, we must bound Cij

and bi with i = (k′, v′) and j = (k′′, v′′). We distinguish two cases.
Case k′ = 0. In this case, we have

ρi
(x0,x

v)(A) =
∫

1A(xv′
0 )

∏
w∈N(v′) p

w(x0, x
w)νv′

x0
(dxv′

0 )∫ ∏
w∈N(v′) pw(x0, xw)νv′

x0
(dxv′

0 )
,

ρ̃i
(x0,x

v)(A) =
∫

1A(xv′
0 )

∏
w∈N(v′)∩K pw(x0, x

w)νv′
x0

(dxv′
0 )∫ ∏

w∈N(v′)∩K pw(x0, xw)νv′
x0

(dxv′
0 )

.

In particular, ρi
(x0,x

v) = νv′
x0,x

, so Cij ≤ Cν
v′v′′ if k′′ = 0. Moreover, as

ρi
(x0,x

v)(A) ≥ ε2

∫
1A(xv′

0 )
∏

w∈N(v′)\{v} pw(x0, x
w)νv′

x0
(dxv′

0 )∫ ∏
w∈N(v′)\{v} pw(x0, xw)νv′

x0
(dxv′

0 )
,
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we have Cij ≤ 1 − ε2 if k′′ = 1 (so v′′ = v) and v ∈ N(v′) by Lemma 4.1, and
Cij = 0 otherwise. We therefore immediately obtain the estimate∑

(k′′,v′′)∈I

eβk′′
eβd(v′,v′′)C(0,v′)(k′′,v′′) ≤ Corr(ν,β) + (

1 − ε2)
eβ(r+1).

On the other hand, note that ρi
(x0,x

v) = ρ̃i
(x0,x

v) if N(v′) ⊆ K , and that we have

ρi
(x0,x

v) ≥ ε2�νv′
x0

and ρ̃i
(x0,x

v) ≥ ε2�νv′
x0

. Therefore, by Lemma 4.1

bi = sup
(x0,x

v)∈S
∥∥ρi

(x0,x
v) − ρ̃i

(x0,x
v)

∥∥ ≤
{

0, for v′ ∈ K \ ∂K ,
2
(
1 − ε2�

)
, otherwise.

Case k′ = 1. In this case, we have

ρi
(x0,x

v)(A) = ρ̃i
(x0,x

v)(A)

=
∫

1A(xv)gv(xv, Y v
s )pv(x0, x

v)
∏

u∈N(v) p
u(x, zu)ψv(dxv)∫

gv(xv, Y v
s )pv(x0, xv)

∏
u∈N(v) p

u(x, zu)ψv(dxv)
.

Thus, bi = 0, and estimating as above we obtain Cij ≤ 1 − ε2 whenever k′′ = 0
and v′′ ∈ N(v), and Cij = 0 otherwise. In particular, we obtain∑

(k′′,v′′)∈I

eβ|1−k′′|eβd(v,v′′)C(1,v)(k′′,v′′) ≤ (
1 − ε2)

eβ(r+1)�.

Combining the above two cases and the assumption of the proposition yields

max
(k′,v′)∈I

∑
(k′′,v′′)∈I

eβ{|k′−k′′|+d(v′,v′′)}C(k′,v′)(k′′,v′′) ≤ 1

2
.

Applying Theorem 3.1 and Lemma 4.3 gives∥∥(Fsν)vx,z − (F̃sν)vx,z

∥∥ = ‖ρ − ρ̃‖(1,v)

≤ 2
(
1 − ε2�) ∑

v′∈V \(K\∂K)

D(1,v)(0,v′)

≤ 4e−β(
1 − ε2�)

e−βd(v,∂K).

As the choice of x, z ∈ X was arbitrary, the proof is complete. �

We now use a similar argument to bound the error in time step n.

PROPOSITION 4.9 (Block error, s = n). Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X.

Let ν be a probability measure on X, and suppose that

Corr(ν,β) + (
1 − ε2)

eβ(r+1)� ≤ 1
2
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for a sufficiently small constant β > 0. Then we have

‖Fnν − F̃nν‖J ≤ 4e−β(
1 − ε2�)

e−βd(J,∂K) cardJ

for every K ∈ K and J ⊆ K .

PROOF. Define I = {0,1} × V and S = X2. Fix K ∈ K, and let

ρ(A) =
∫

1A(x0, x1)
∏

v∈V pv(x0, x
v
1 )gv(xv

1 , Y v
n )ν(dx0)ψ(dx1)∫ ∏

v∈V pv(x0, x
v
1 )gv(xv

1 , Y v
n )ν(dx0)ψ(dx1)

,

ρ̃(A) =
∫

1A(x0, x1)
∏

v∈K pv(x0, x
v
1 )

∏
w∈V gw(xw

1 , Yw
n )ν(dx0)ψ(dx1)∫ ∏

v∈K pv(x0, x
v
1 )

∏
w∈V gw(xw

1 , Yw
n )ν(dx0)ψ(dx1)

.

Then for any J ⊆ K , we have

‖Fnν − F̃nν‖J = ‖ρ − ρ̃‖{1}×J .

We will apply Theorem 3.1 to bound ‖ρ − ρ̃‖{1}×J . To this end, we must bound
Cij and bi with i = (k, v) and j = (k′, v′). We distinguish two cases.

Case k = 0. In this case, we have

ρi
x(A) =

∫
1A(xv

0 )
∏

w∈N(v) p
w(x0, x

w
1 )νv

x0
(dxv

0 )∫ ∏
w∈N(v) p

w(x0, x
w
1 )νv

x0
(dxv

0 )
,

ρ̃i
x(A) =

∫
1A(xv

0 )
∏

w∈N(v)∩K pw(x0, x
w
1 )νv

x0
(dxv

0 )∫ ∏
w∈N(v)∩K pw(x0, x

w
1 )νv

x0
(dxv

0 )
.

In particular, ρi
x = νv

x0,x1
, so Cij ≤ Cν

vv′ if k′ = 0. Moreover, as

ρi
x(A) ≥ ε2

∫
1A(xv

0 )
∏

w∈N(v)\{v′} pw(x0, x
w
1 )νv

x0
(dxv

0 )∫ ∏
w∈N(v)\{v′} pw(x0, x

w
1 )νv

x0
(dxv

0 )
,

we have Cij ≤ 1 − ε2 if k′ = 1 and v′ ∈ N(v) by Lemma 4.1, and Cij = 0 other-
wise. We therefore immediately obtain the estimate∑

(k′,v′)∈I

eβk′
eβd(v,v′)C(0,v)(k′,v′) ≤ Corr(ν,β) + (

1 − ε2)
eβ(r+1)�.

On the other hand, note that ρi
x = ρ̃i

x if N(v) ⊆ K , and that we have ρi
x ≥ ε2�νv

x0

and ρ̃i
x ≥ ε2�νv

x0
. Therefore, we obtain by Lemma 4.1

bi = sup
x∈S

∥∥ρi
x − ρ̃i

x

∥∥ ≤
{ 0, for v ∈ K \ ∂K ,

2
(
1 − ε2�

)
, otherwise.

Case k = 1. In this case, we have

ρi
x(A) =

∫
1A(xv

1 )pv(x0, x
v
1 )gv(xv

1 , Y v
n )ψv(dxv

1 )∫
pv(x0, x

v
1 )gv(xv

1 , Y v
n )ψv(dxv

1 )
,
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while ρ̃x
i = ρx

i if v ∈ K and

ρ̃i
x(A) =

∫
1A(xv

1 )gv(xv
1 , Y v

n )ψv(dxv
1 )∫

gv(xv
1 , Y v

n )ψv(dxv
1 )

,

otherwise. Thus, we obtain from Lemma 4.1

bi = sup
x∈S

∥∥ρi
x − ρ̃i

x

∥∥ ≤
{ 0, for v ∈ K ,

2
(
1 − ε2)

, otherwise.

On the other hand, we can readily estimate as above∑
(k′,v′)∈I

eβ|1−k′|eβd(v,v′)C(1,v)(k′,v′) ≤ (
1 − ε2)

eβ(r+1)�.

Combining the above two cases and the assumption of the proposition yields

max
(k,v)∈I

∑
(k′,v′)∈I

eβ{|k−k′|+d(v,v′)}C(k,v)(k′,v′) ≤ 1

2
.

Applying Theorem 3.1 and Lemma 4.3 gives

‖Fnν − F̃nν‖J = ‖ρ − ρ̃‖{1}×J

≤ 2
(
1 − ε2�) ∑

v∈J

{ ∑
v′∈(V \K)∪∂K

D(1,v)(0,v′) + ∑
v′∈V \K

D(1,v)(1,v′)

}

≤ 4e−β(
1 − ε2�)

e−βd(J,∂K) cardJ

for every J ⊆ K . �

4.4. Decay of correlations of the block filter. To idea behind the block filter π̃
μ
n

is that the error should decay exponentially in the block size by virtue of the decay
of correlations property. While we have developed above the two ingredients (filter
stability and one-step error bound) required to obtain a time-uniform error bound
between π

μ
n and π̃

μ
n , we have done this by imposing the decay of correlations

property as an assumption. Thus, perhaps the crucial point remains to be proved:
we must show that decay of correlations does indeed hold, that is, Corr(π̃μ

n ,β) can
be controlled uniformly in time. This is the goal of the present section.

Unfortunately, Corr(π̃μ
n ,β) is not straightforward to control directly. We there-

fore introduce an alternative measure of correlation decay that will be easier to
control. For any probability measure μ on X and x, z ∈ X, v ∈ V , K ∈ K, let

μv,K
x,z (A) := Pμ[

Xv
0 ∈ A|XV \{v}

0 = xV \{v},XK
1 = zK ]

=
∫

1A(xv)
∏

w∈N(v)∩K pw(x, zw)μv
x(dxv)∫ ∏

w∈N(v)∩K pw(x, zw)μv
x(dxv)

.
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We now define

C̃
μ

vv′ := 1

2
max
K∈K

sup
z∈X

sup
x,x̃∈X:xV \{v′}=x̃V \{v′}

∥∥μv,K
x,z − μ

v,K
x̃,z

∥∥
for v, v′ ∈ V . The quantity

C̃orr(μ,β) := max
v∈V

∑
v′∈V

eβd(v,v′)C̃μ

vv′

is a measure of correlation decay that is well adapted to the block filter. In order
for this quantity to be useful, we must first show that it controls Corr(μ,β).

LEMMA 4.10. For any probability measure μ and β > 0, we have

Corr(μ,β) ≤ (
1 − ε2�)

e2βr�2 + 2ε−2� C̃orr(μ,β).

PROOF. By definition

μv
x,z(A) =

∫
1A(xv)

∏
w∈N(v)\K pw(x, zw)μv,K

x,z (dxv)∫ ∏
w∈N(v)\K pw(x, zw)μ

v,K
x,z (dxv)

.

Let x, x̃ ∈ X be such that xV \{v′} = x̃V \{v′}. If v′ /∈ ⋃
w∈N(v) N(w), then∥∥μv

x,z − μv
x̃,z

∥∥ ≤ 2ε−2�
∥∥μv,K

x,z − μ
v,K
x̃,z

∥∥
by Lemma 4.2. On the other hand, note that

μv
x,z(A) ≥ ε2�μv,K

x,z (A), μv
x̃,z(A) ≥ ε2�μ

v,K
x̃,z

(A).

We can therefore estimate using Lemma 4.1 for v′ ∈ ⋃
w∈N(v) N(w)∥∥μv

x,z − μv
x̃,z

∥∥ ≤ 2
(
1 − ε2�) + ε2�

∥∥μv,K
x,z − μ

v,K
x̃,z

∥∥.
Thus, we obtain

Corr(μ,β) ≤ (
1 − ε2�)

max
v∈V

∑
v′∈⋃

w∈N(v) N(w)

eβd(v,v′) + 2ε−2� C̃orr(μ,β)

≤ (
1 − ε2�)

e2βr�2 + 2ε−2� C̃orr(μ,β).

As μ and β were arbitrary, the proof is complete. �

We now aim to establish a time-uniform bound on C̃orr(π̃μ
n ,β). To this end, we

first prove a one-step bound which will subsequently be iterated.
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PROPOSITION 4.11. Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X.

Let ν be a probability measure on X, and suppose that

C̃orr(ν,β) + (
1 − ε2)

eβ(r+1)� ≤ 1
2

for a sufficiently small constant β > 0. Then we have

C̃orr(F̃sν, β) ≤ 2
(
1 − ε2�)

e2βr�2

for any s ∈N.

PROOF. Let K,K ′ ∈ K, v ∈ K , v′ ∈ V (v′ �= v), and let z, x, x̃ ∈ X such that
xV \{v′} = x̃V \{v′}. These choices will be fixed until further notice.

Define I = ({0} × V ) ∪ (1, v) and S = X×Xv , and let

ρ(A)

=
∫

1A(x0, x
v)gv(xv, Y v

s )
∏

w∈K pw(x0, x
w)

∏
u∈N(v)∩K ′ pu(x, zu)ν(dx0)ψ

v(dxv)∫
gv(xv, Y v

s )
∏

w∈K pw(x0, xw)
∏

u∈N(v)∩K ′ pu(x, zu)ν(dx0)ψv(dxv)
,

ρ̃(A)

=
∫

1A(x0, x̃
v)gv(x̃v, Y v

s )
∏

w∈K pw(x0, x̃
w)

∏
u∈N(v)∩K ′ pu(x̃, zu)ν(dx0)ψ

v(dx̃v)∫
gv(x̃v, Y v

s )
∏

w∈K pw(x0, x̃w)
∏

u∈N(v)∩K ′ pu(x̃, zu)ν(dx0)ψv(dx̃v)
.

Then we have by construction∥∥(F̃sν)v,K ′
x,z − (F̃sν)

v,K ′
x̃,z

∥∥ = ‖ρ − ρ̃‖(1,v).

We will apply Theorem 3.1 to bound ‖ρ − ρ̃‖(1,v). To this end, we must bound Cij

and bi with i = (k, t) and j = (k′, t ′). We distinguish two cases.
Case k = 0. In this case, we have

ρi
(x0,x

v)(A) =
∫

1A(xt
0)

∏
w∈N(t)∩K pw(x0, x

w)νt
x0

(dxt
0)∫ ∏

w∈N(t)∩K pw(x0, xw)νt
x0

(dxt
0)

,

ρ̃i
(x0,x̃

v)(A) =
∫

1A(xt
0)

∏
w∈N(t)∩K pw(x0, x̃

w)νt
x0

(dxt
0)∫ ∏

w∈N(t)∩K pw(x0, x̃w)νt
x0

(dxt
0)

.

Note that ρi
(x0,x

v) = νt,K
x0,x

. We therefore have Cij ≤ C̃ν
tt ′ when k′ = 0. Moreover,

ρi
(x0,x

v)(A) ≥ ε2

∫
1A(xt

0)
∏

w∈N(t)∩(K\{v}) pw(x0, x
w)νt

x0
(dxt

0)∫ ∏
w∈N(t)∩(K\{v}) pw(x0, xw)νt

x0
(dxt

0)

implies Cij ≤ 1 − ε2 if k′ = 1 and v ∈ N(t) by Lemma 4.1, and Cij = 0 otherwise.
On the other hand, note that as xV \{v′} = x̃V \{v′} we have ρi

(x0,x
v) = ρ̃i

(x0,x̃
v)

if

v′ /∈ N(t) ∩ K , while both ρi
(x0,x

v)(A) and ρ̃i
(x0,x̃

v)
(A) dominate

ε2

∫
1A(xt

0)
∏

w∈N(t)∩(K\{v′}) pw(x0, x
w)νt

x0
(dxt

0)∫ ∏
w∈N(t)∩(K\{v′}) pw(x0, xw)νt

x0
(dxt

0)
.
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Therefore, by Lemma 4.1

b(0,t) ≤
{

0, for v′ /∈ N(t) ∩ K ,
2
(
1 − ε2)

, otherwise.

Case k = 1. In this case, we have

ρi
(x0,x

v)(A) =
∫

1A(xv)gv(xv, Y v
s )pv(x0, x

v)
∏

u∈N(v)∩K ′ pu(x, zu)ψv(dxv)∫
gv(xv, Y v

s )pv(x0, xv)
∏

u∈N(v)∩K ′ pu(x, zu)ψv(dxv)
,

ρ̃i
(x0,x̃

v)(A) =
∫

1A(x̃v)gv(x̃v, Y v
s )pv(x0, x̃

v)
∏

u∈N(v)∩K ′ pu(x̃, zu)ψv(dx̃v)∫
gv(x̃v, Y v

s )pv(x0, x̃v)
∏

u∈N(v)∩K ′ pu(x̃, zu)ψv(dx̃v)
.

Estimating as above, we obtain Cij ≤ 1 − ε2 whenever k′ = 0 and t ′ ∈ N(v), and
Cij = 0 otherwise. Similarly, arguing again as above, we obtain

b(1,v) ≤
⎧⎪⎨⎪⎩

0, for v′ /∈ ⋃
w∈N(v)∩K ′

N(w),

2
(
1 − ε2�

)
, otherwise.

Define the matrix {Cij (v)}i,j∈I with the following entries:

C(0,t)(0,t ′)(v) = C̃ν
tt ′,

C(0,t)(1,v)(v) = C(1,v)(0,t)(v) = (
1 − ε2)

1t∈N(v),

C(1,v)(1,v)(v) = 0.

Combining the above two cases yields Cij ≤ Cij (v), and we readily compute∑
(k′,t ′)∈I

eβ{|k−k′|+d(t,t ′)}C(k,t)(k′,t ′)(v) ≤ C̃orr(ν,β) + (
1 − ε2)

eβ(r+1)� ≤ 1

2

where we have used the assumption of the proposition. By Theorem 3.1∥∥(F̃sν)v,K ′
x,z − (F̃sν)

v,K ′
x̃,z

∥∥ = ‖ρ − ρ̃‖(1,v)

≤ 2
(
1 − ε2)

1v′∈K

∑
t ′∈N(v′)

D(1,v)(0,t ′)(v)

+ 2
(
1 − ε2�)

1v′∈⋃
w∈N(v)∩K′ N(w)D(1,v)(1,v)(v),

where D(v) := ∑
n≥0 C(v)n. But note that the right-hand side does not depend on

K ′ or z, x, x̃ (provided xV \{v′} = x̃V \{v′}). We therefore obtain

C̃
F̃sν
vv′ ≤ (

1 − ε2)
1v′∈K

∑
t ′∈N(v′)

D(1,v)(0,t ′)(v)

+ (
1 − ε2�)

1v′∈⋃
w∈N(v)∩K′ N(w)D(1,v)(1,v)(v)
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for every K ∈ K, v ∈ K and v′ ∈ V . In particular, we have∑
v′∈V

eβd(v,v′)C̃F̃sν
vv′ ≤ (

1 − ε2) ∑
v′∈K

eβd(v,v′) ∑
t ′∈N(v′)

D(1,v)(0,t ′)(v)

+ (
1 − ε2�)

D(1,v)(1,v)(v)
∑

v′∈⋃
w∈N(v)∩K′ N(w)

eβd(v,v′).

To proceed, we note that∑
v′∈K

eβd(v,v′) ∑
t ′∈N(v′)

D(1,v)(0,t ′)(v) ≤ eβr�
∑
v′∈V

eβd(v,v′)D(1,v)(0,v′)(v),

where we have used that d(v, v′) ≤ d(v, t ′) + r for t ′ ∈ N(v′). Similarly, we have∑
v′∈⋃

w∈N(v)∩K′ N(w)

eβd(v,v′) ≤ e2βr�2.

We can therefore estimate∑
v′∈V

eβd(v,v′)C̃F̃sν
vv′ ≤ (

1 − ε2�)
e2βr�2

∑
(k′,v′)∈I

eβ{|1−k′|+d(v,v′)}D(1,v)(k′,v′)(v).

Applying Lemma 4.3 to C(v) yields the result. �

We now iterate the above result.

COROLLARY 4.12. Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X,

and such that

ε > ε0 =
(

1 − 1

16�2

)1/2�

.

Let μ be a probability measure on X such that

C̃orr(μ,β) ≤ 1
8 ,

where β = −(2r)−1 log 16�2(1 − ε2�) > 0. Then

C̃orr
(
π̃μ

n , β
) ≤ 1

8 for all n ≥ 0.

In particular, the latter holds whenever μ = δx for any x ∈ X.

PROOF. The assumption ε > ε0 implies β > 0 and(
1 − ε2)

eβ(r+1)� ≤ 1
16 .

Therefore, if C̃orr(ν,β) ≤ 1/8, then Proposition 4.11 yields

C̃orr(F̃sν, β) ≤ 2
(
1 − ε2�)

e2βr�2 ≤ 1
8 .
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Thus, if C̃orr(μ,β) ≤ 1/8, then C̃orr(π̃μ
n ,β) ≤ 1/8 for all n ≥ 0. Moreover, as

C̃orr(δx, β) = 0, the result holds automatically for μ = δx . �

We finally obtain the requisite bound on Corr(π̃μ
n ,β) using Lemma 4.10.

COROLLARY 4.13 (Decay of correlations). Suppose there exists ε > 0 with

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X,

such that

ε > ε0 =
(

1 − 1

16�2

)1/2�

.

Let β = −(2r)−1 log 16�2(1 − ε2�) > 0. Then

Corr
(
π̃x

n , β
) ≤ 1

3

for every n ≥ 0 and x ∈ X.

PROOF. By Corollary 4.12 and Lemma 4.10, we can estimate

Corr
(
π̃x

n , β
) ≤ 1

16 + 1
4ε−2� ≤ 1

3 ,

where we used that ε2� ≥ 1 − 1/16. �

4.5. Bounding the bias. In the previous sections, we have proved a local filter
stability bound (Proposition 4.4), a local one-step error bound (Propositions 4.8
and 4.9), and decay of correlations of the block filter (Corollary 4.13). We can
now combine these results to obtain a time-uniform error bound between the filter
and the block filter; this controls the bias of the block particle filtering algorithm.

THEOREM 4.14 (Bias term). Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X,

and such that

ε > ε0 =
(

1 − 1

18�2

)1/2�

.

Let β = −(2r)−1 log 18�2(1 − ε2�) > 0. Then

∥∥πx
n − π̃x

n

∥∥
J ≤ 8e−β

1 − e−β

(
1 − ε2�)

cardJe−βd(J,∂K)

for every n ≥ 0, x ∈ X, K ∈K and J ⊆ K .
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PROOF. We begin with the elementary error decomposition

∥∥πx
n − π̃x

n

∥∥
J ≤

n∑
s=1

∥∥Fn · · ·Fs+1Fs π̃
x
s−1 − Fn · · ·Fs+1F̃s π̃

x
s−1

∥∥
J .

We will bound each term in the sum.
Case s = n. To bound this term, note that

Corr
(
π̃x

n−1, β
) + (

1 − ε2)
eβ(r+1)� ≤ 1

3 + 1
18 ≤ 1

2

by Corollary 4.13. Therefore, applying Proposition 4.9 with ν = π̃x
n−1, we obtain∥∥Fnπ̃

x
n−1 − F̃nπ̃

x
n−1

∥∥
J ≤ 4e−β(

1 − ε2�)
e−βd(J,∂K) cardJ.

Case s < n. To bound this term, note that by Corollary 4.13

Corr
(
π̃x

s , β
) + 3

(
1 − ε2�)

e2βr�2 ≤ 1
3 + 1

6 = 1
2 .

Applying Proposition 4.4 with μ = π̃x
s and ν = Fs π̃

x
s−1 yields∥∥Fn · · ·Fs+1Fs π̃

x
s−1 − Fn · · ·Fs+1F̃s π̃

x
s−1

∥∥
J

≤ 2e−β(n−s)
∑
v∈J

max
v′∈V

e−βd(v,v′) sup
x,z∈X

∥∥(
Fs π̃

x
s−1

)v′
x,z − (

F̃s π̃
x
s−1

)v′
x,z

∥∥.
On the other hand, as by Corollary 4.13

Corr
(
π̃x

s−1, β
) + (

1 − ε2)
eβ(r+1)� ≤ 1

3 + 1
18 ≤ 1

2 ,

we have by Proposition 4.8 with ν = π̃x
s−1

sup
x,z∈X

∥∥(
Fs π̃

x
s−1

)v′
x,z − (

F̃s π̃
x
s−1

)v′
x,z

∥∥ ≤ 4e−β(
1 − ε2�)

e−βd(v′,∂K).

We therefore obtain the estimate∥∥Fn · · ·Fs+1Fs π̃
x
s−1 − Fn · · ·Fs+1F̃s π̃

x
s−1

∥∥
J

≤ 8e−β(
1 − ε2�)

e−β(n−s)e−βd(J,∂K) cardJ,

where we have used d(v, v′) + d(v′, ∂K) ≥ d(v, ∂K).
Substituting the above two cases into the error decomposition and summing the

geometric series yields the statement of the theorem. �

4.6. Local stability of the block filter. As was explained in Section 3.4, the
chief difficulty in obtaining a time-uniform bound on the variance term is to estab-
lish stability of the block filter. This will be done in the present section.

We first establish a stability bound for nonrandom initial conditions.
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PROPOSITION 4.15. Suppose there exists ε > 0 such that

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X,

and such that

ε > ε0 =
(

1 − 1

6�2

)1/2�

.

Let β = − log 6�2(1 − ε2�) > 0. Then∥∥F̃n · · · F̃s+1δz − F̃n · · · F̃s+1δz′
∥∥
J ≤ 4 cardJe−β(n−s)

for every s < n, z, z′ ∈ X, K ∈ K, and J ⊆ K .

PROOF. Fix throughout the proof n > 0, K ∈ K, and J ⊆ K . We will also
assume throughout the proof for notational simplicity that s = 0 (the ultimate con-
clusion will extend to any s < n as in the proof of Proposition 4.4).

We begin by constructing the computation tree as explained in Section 3.4. For
future reference, let us work first in the more general setting where the initial dis-
tributions μ = ⊗

K ′∈K μK ′
and ν = ⊗

K ′∈K νK ′
are independent across the blocks

(rather than the special case of point masses δx and δx′ ). Define for K ′ ∈ K

N
(
K ′) = {

K ′′ ∈K :d
(
K ′,K ′′) ≤ r

}
,

that is, N(K ′) is the collection of blocks that interact with block K ′ in one step of
the dynamics [recall that cardN(K ′) ≤ �K]. Then we can evidently write

BK ′
F̃sμ = CK ′

s PK ′ ⊗
K ′′∈N(K ′)

μK ′′
,

where we have defined for any probability η on XK ′

(
CK ′

s η
)
(A) :=

∫
1A(xK ′

)
∏

v∈K ′ gv(xv, Y v
s )η(dxK ′

)∫ ∏
v∈K ′ gv(xv, Y v

s )η(dxK ′
)

,

and for any probability η on X
⋃

K′′∈N(K′) K ′′

(
PK ′

η
)
(A) :=

∫
1A

(
xK ′) ∏

v∈K ′
pv(

z, xv)
ψv(

dxv)
η(dz).

We therefore have

BK F̃n · · · F̃1μ

= CK
n PK

⊗
Kn−1∈N(K)

[
C

Kn−1
n−1 PKn−1

⊗
Kn−2∈N(Kn−1)

[
C

Kn−2
n−2 PKn−2 · · ·

⊗
K1∈N(K2)

[
CK1

1 PK1
⊗

K0∈N(K1)

μK0

]
· · ·

]]
.



LOCAL PARTICLE FILTERS 2855

The structure of the computation tree is now readily visible in this expression. To
formalize the construction, we introduce the tree index set

T := {[Ku · · ·Kn−1] : 0 ≤ u < n,Ks ∈ N(Ks+1) for u ≤ s < n
} ∪ {[∅]},

where we write Kn := K for simplicity (recall that K and n are fixed throughout).
The root of the tree [∅] represents the block K at time n, while [Ku · · ·Kn−1] rep-
resents the duplicate of block Ku at time u that affects block K at time n along the
branch Ku → Ku+1 → ·· · → Kn−1 → K (cf. Figure 5 for a simple illustration).
The vertex set corresponding to the computation tree is defined as

I = {[Ku · · ·Kn−1]v : [Ku · · ·Kn−1] ∈ T , v ∈ Ku

} ∪ {[∅]v :v ∈ K
}
,

and the corresponding state space is given by

S = ∏
i∈I

Xi , X[t]v = Xv for [t]v ∈ I.

It will be convenient in the sequel to introduce some additional notation. First, we
will specify the children c(i) of an index i ∈ I as follows:

c
([Ku · · ·Kn−1]v) := {[Ku−1 · · ·Kn−1]v′ :Ku−1 ∈ N(Ku), v

′ ∈ N(v)
}
,

and similarly for c([∅]v). Denote the depth d(i) and location v(i) of i ∈ I as

d
([Ku · · ·Kn−1]v) := u,

([∅]v) := n, v
([t]v) := v.

We define the index set of nonleaf vertices in I as

I+ := {
i ∈ I : 0 < d(i) ≤ n

}
,

and the set of leaves of the tree T as

T0 := {[K0 · · ·Kn−1] :Ks ∈ N(Ks+1) for 0 ≤ s < n
}
.

Finally, it will be natural to identify [t] ∈ T with the corresponding subset of I :

[Ku · · ·Kn−1] = {[Ku · · ·Kn−1]v :v ∈ Ku

}
,

together with the analogous identification for [∅].
We now define the probability measures ρ, ρ̃ on S as follows:

ρ(A)

=
∫

1A(x)
∏

i∈I+ pv(i)(xc(i), xi)gv(i)(xi, Y
v(i)
d(i) )ψ

v(i)(dxi)
∏

[t]∈T0
μ[t](dx[t])∫ ∏

i∈I+ pv(i)(xc(i), xi)gv(i)(xi, Y
v(i)
d(i) )ψ

v(i)(dxi)
∏

[t]∈T0
μ[t](dx[t])

,

ρ̃(A)

=
∫

1A(x)
∏

i∈I+ pv(i)(xc(i), xi)gv(i)(xi, Y
v(i)
d(i) )ψ

v(i)(dxi)
∏

[t]∈T0
ν[t](dx[t])∫ ∏

i∈I+ pv(i)(xc(i), xi)gv(i)(xi, Y
v(i)
d(i) )ψ

v(i)(dxi)
∏

[t]∈T0
ν[t](dx[t])

,
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where we write μ[K0···Kn−1] := μK0 and ν[K0···Kn−1] := νK0 for simplicity. Then,
by construction, the measure BK F̃n · · · F̃1μ coincides with the marginal of ρ on
the root of the computation tree, while BK F̃n · · · F̃1ν coincides with the marginal
of ρ̃ on the root of the computation tree. In particular, we obtain

‖F̃n · · · F̃1μ − F̃n · · · F̃1ν‖J = ‖ρ − ρ̃‖[∅]J .

We will use Theorem 3.1 to obtain a bound on this expression.
Throughout the remainder of the proof, we specialize to the case that μ = δz

and ν = δz′ . To apply Theorem 3.1, we must bound the quantities Cij and bi with
i = [Ku · · ·Kn−1]v and j = [K ′

u′ · · ·K ′
n−1]v′. We distinguish three cases.

Case u = 0. As μ = δz is nonrandom we evidently have ρi
x = δzv , so that Cij =

0. On the other hand, as ρ̃i
x = δz′v , we cannot do better than bi ≤ 2.

Case 0 < u < n. Now we have

ρi
x(A) = ρ̃i

x(A)

=
∫

1A(xi)gv(xi, Y v
u )pv(xc(i), xi)

∏
�∈I+ : i∈c(�) p

v(�)(xc(�), x�)ψv(dxi)∫
gv(xi, Y v

u )pv(xc(i), xi)
∏

�∈I+ : i∈c(�) p
v(�)(xc(�), x�)ψv(dxi)

.

Thus, bi = 0. Moreover, by inspection, ρi
x does not depend on xj except in the

following cases: j ∈ c(i); i ∈ c(j); j ∈ c(�) for some � ∈ I+ such that i ∈ c(�). As
card c(�) ≤ � for every � ∈ I+, we estimate using Lemma 4.1

Cij ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − ε2, if j ∈ c(i),
1 − ε2, if i ∈ c(j),
1 − ε2�, if j ∈ ⋃

�∈I+ : i∈c(�)

c(�),

0, otherwise.

This yields∑
j∈I

eβ|d(i)−d(j)|Cij ≤ 2
(
1 − ε2)

eβ� + (
1 − ε2�)

�2 ≤ 3
(
1 − ε2�)

eβ�2,

where we have used that β > 0 and � ≥ 1 in the last inequality.
Case u = n. Now i = [∅]v, so we have

ρi
x(A) = ρ̃i

x(A) =
∫

1A(xi)gv(xi, Y v
n )pv(xc(i), xi)ψv(dxi)∫

gv(xi, Y v
n )pv(xc(i), xi)ψv(dxi)

.

Arguing precisely as above, we obtain bi = 0 and∑
j∈I

eβ|d(i)−d(j)|Cij ≤ (
1 − ε2)

eβ�.

Combining the above three cases, we obtain

max
i∈I

∑
j∈I

eβ|d(i)−d(j)|Cij ≤ 3
(
1 − ε2�)

eβ�2 = 1

2
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by the assumption of the proposition. Thus, by Theorem 3.1

‖F̃n · · · F̃1δz − F̃n · · · F̃1δz′‖J = ‖ρ − ρ̃‖[∅]J ≤ 4 cardJe−βn,

where we have used Lemma 4.3 with m(i, j) = β|d(i) − d(j)|. The proof is com-
pleted by extending to general s < n as in the proof of Proposition 4.4. �

The proof of Proposition 4.15 was simplified by the fact that the resulting bound
holds uniformly for all point mass initial conditions (this could be used to obtain a
uniform bound for all initial measures along the same lines as the proof of Corol-
lary 4.7). To obtain a bound on the variance term, however, we require a more
precise stability bound for the block filter that provides explicit control in terms of
the initial conditions. We will shortly deduce such a bound from Proposition 4.15.
Before we can do so, however, we must prove a refinement of Lemma 4.2.

LEMMA 4.16. Let μ = μ1 ⊗ · · · ⊗ μd and ν = ν1 ⊗ · · · ⊗ νd be product
probability measures on S = S1 × · · · × Sd , and let � :S → R be a bounded and
strictly positive measurable function. Define the probability measures

μ�(A) :=
∫

1A(x)�(x)μ(dx)∫
�(x)μ(dx)

, ν�(A) :=
∫

1A(x)�(x)ν(dx)∫
�(x)ν(dx)

.

Suppose that there exists a constant ε > 0 such that the following holds: for every
i = 1, . . . , d , there is a measurable function �i :S →R such that

ε�i(x) ≤ �(x) ≤ ε−1�i(x) for all x ∈ S

and such that �i(x) = �i(x̃) whenever x{1,...,d}\{i} = x̃{1,...,d}\{i}. Then

‖μ� − ν�‖ ≤ 2

ε2

d∑
i=1

∥∥μi − νi
∥∥.

PROOF. Define for i = 0, . . . , d the measures

ρi := ν1 ⊗ · · · ⊗ νi ⊗ μi+1 ⊗ · · · ⊗ μd, ρi,�(A) :=
∫

1A(x)�(x)ρi(dx)∫
�(x)ρi(x)

(by convention, ρ0 = μ and ρd = ν). Then we can estimate

‖μ� − ν�‖ ≤
d∑

i=1

‖ρi,� − ρi−1,�‖.

Now note that we can estimate for |f | ≤ 1∣∣ρi,�(f ) − ρi−1,�(f )
∣∣ ≤ 1

ερi(�i)

[∣∣ρi(f �) − ρi−1(f �)
∣∣ + ∣∣ρi(�) − ρi−1(�)

∣∣]
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as in the proof of Lemma 4.2. Moreover, we can write

∣∣ρi(f �) − ρi−1(f �)
∣∣ = ρi(�

i)

ε

∣∣∣∣∫ f i(x)νi(dxi) −
∫

f i(x)μi(dxi)∣∣∣∣,
∣∣ρi(�) − ρi−1(�)

∣∣ = ρi(�
i)

ε

∣∣∣∣∫ gi(x)νi(dxi) −
∫

gi(x)μi(dxi)∣∣∣∣,
where f i and gi are functions on Si defined by

f i(xi) := ε

ρi(�i)

∫
f (x)�(x)ν1(

dx1) · · ·νi−1(
dxi−1)

μi+1(
dxi+1) · · ·μd(

dxd)
,

gi(xi) := ε

ρi(�i)

∫
�(x)ν1(

dx1) · · ·νi−1(
dxi−1)

μi+1(
dxi+1) · · ·μd(

dxd)
.

Evidently |f i | ≤ 1 and |gi | ≤ 1, and the proof follows directly. �

We can now obtain a stability bound with control on the initial conditions.

PROPOSITION 4.17. Suppose there exists ε > 0 with

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X

such that

ε > ε0 =
(

1 − 1

6�2

)1/2�

.

Let β = − log 6�2(1 − ε2�) > 0. Then for any product probability measures

μ = ⊗
K∈K

μK, ν = ⊗
K∈K

νK,

we have

‖F̃n · · · F̃s+1μ − F̃n · · · F̃s+1ν‖J ≤ 4

ε2|K|∞ cardJe−β(n−s)
∑
K∈K

αK

∥∥μK − νK
∥∥

for every s < n, K ∈ K, and J ⊆ K . Here, (αK)K∈K are nonnegative integers,
depending on J and n − s only, such that

∑
K∈K αK ≤ �n−s

K .

PROOF. We fix s = 0, n > 0, K ∈ K, J ⊆ K as in the proof of Proposi-
tion 4.15, and adopt the notation used there. Define the functions

hA

(
xT0

) :=
∫

1A

(
x[∅]J ) ∏

i∈I+
pv(i)(xc(i), xi)gv(i)(xi, Y

v(i)
d(i)

)
ψv(i)(dxi),

h
(
xT0

) :=
∫ ∏

i∈I+
pv(i)(xc(i), xi)gv(i)(xi, Y

v(i)
d(i)

)
ψv(i)(dxi)
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on the leaves T0 of the computation tree, for every measurable A ⊆ XJ . Then

(F̃n · · · F̃1μ)(A) =
∫

hA(xT0)
∏

[t]∈T0
μ[t](dx[t])∫

h(xT0)
∏

[t]∈T0
μ[t](dx[t])

=
∫

hA(xT0)

h(xT0)
μ̃

(
dxT0

)
,

where we define the measure

μ̃(A) :=
∫

1A(xT0)h(xT0)
∏

[t]∈T0
μ[t](dx[t])∫

h(xT0)
∏

[t]∈T0
μ[t](dx[t])

.

The measure ν̃ is defined analogously, and we have

‖F̃n · · · F̃1μ − F̃n · · · F̃1ν‖J = 2 sup
A⊆XJ

∣∣∣∣∫ hA

h
dμ̃ −

∫
hA

h
dν̃

∣∣∣∣,
where the supremum is taken only over measurable sets. But note that hA/h is
precisely the filter obtained when the initial condition is a point mass on the leaves
of the computation tree (albeit not with the special duplication pattern induced by
the unravelling of the original model; however, this was not used in the proof of
Proposition 4.15). Therefore, the proof of Proposition 4.15 yields

2 sup
z,z̃∈XT0

sup
A⊆XJ

∣∣∣∣hA(z)

h(z)
− hA(z̃)

h(z̃)

∣∣∣∣ ≤ 4 cardJe−βn.

In particular, using the identity |μ(f ) − ν(f )| ≤ 1
2 oscf ‖μ − ν‖, we obtain

‖F̃n · · · F̃1μ − F̃n · · · F̃1ν‖J ≤ 2 cardJe−βn‖μ̃ − ν̃‖.
We now aim to apply Lemma 4.16 to estimate ‖μ̃ − ν̃‖.

To this end, consider a block [t] ∈ T0. The integrand in the definition of h(xT0)

depends only on x[t] through the terms pv(i)(xc(i), xi) with c(i) ∩ [t] �= ∅. If we
write [t] = [K0 · · ·Kn−1], then c(i) ∩ [t] �= ∅ requires at least i ∈ [K1 · · ·Kn−1]
and therefore card{i ∈ I+ : c(i) ∩ [t] �=∅} ≤ cardK1 ≤ |K|∞. Thus, we have

ε|K|∞h[t](z) ≤ h(z) ≤ ε−|K|∞h[t](z)

for every z ∈XT0 and [t] ∈ T0, where

h[t](xT0
) :=

∫ ∏
i∈I+:c(i)∩[t]=∅

pv(i)(xc(i), xi) ∏
i∈I+

gv(i)(xi, Y
v(i)
d(i)

)
ψv(i)(dxi)

does not depend on x[t]. By Lemma 4.16, we obtain

‖μ̃ − ν̃‖ ≤ 2

ε2|K|∞
∑

[t]∈T0

∥∥μ[t] − ν[t]∥∥ = 2

ε2|K|∞
∑

K ′∈K
αK ′

∥∥μK ′ − νK ′∥∥,
where we define αK ′ = card{[K0 · · ·Kn−1] ∈ T0 :K0 = K ′}. As the computa-
tion tree has a branching factor of at most �K, we evidently have

∑
K∈K αK =
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cardT0 ≤ �n
K. The result therefore follows directly for the case s = 0, and the

general case s < n is immediate as in the proof of Proposition 4.4. �

We finally state the block filter stability bound in its most useful form.

COROLLARY 4.18 (Block filter stability). Suppose there exists ε > 0 with

ε ≤ pv(
x, zv) ≤ ε−1 for all v ∈ V,x, z ∈ X

such that

ε > ε0 =
(

1 − 1

6�K�2

)1/2�

.

Let β = − log 6�K�2(1 − ε2�) > 0.
Then for any (possibly random) product probability measures

μ = ⊗
K∈K

μK, ν = ⊗
K∈K

νK,

we have

E
[∥∥F̃n · · · F̃s+1μ − F̃n · · · F̃s+1ν

∥∥2
J

]1/2

≤ 4

ε2|K|∞ cardJe−β(n−s) max
K∈K

E
[∥∥μK − νK

∥∥2]1/2

for every s < n, K ∈K, and J ⊆ K .

PROOF. The result follows readily from Proposition 4.17 (note that we have
now absorbed the branching factor �n−s

K in the definition of β). �

4.7. Bounding the variance. To complete the proof of Theorem 2.1, it now
remains to bound the variance term |||π̃n − π̂n|||J uniformly in time. This is the
goal of the present section. We will first obtain bounds on the one-step error, and
then combine these with the block filter stability bound of Corollary 4.18 to obtain
time-uniform control of the error. The main remaining difficulty is to properly
account for the fact that Corollary 4.18 is phrased in terms of the total variation
norm ‖ ·‖J , which is too strong to control the sampling error (we do not know how
to prove an analogous result to Corollary 4.18 in the weaker ||| · |||J -norm). To this
end, we retain one time step of the block filter dynamics in the one-step error (we
control ‖F̃s+1F̃s π̂

x
s−1 − F̃s+1F̂s π̂

x
s−1‖K rather than |||F̃s π̂

x
s−1 − F̂s π̂

x
s−1|||K ), which

allows us to exploit the fact that the dynamics P has a density.
Let us begin with the most trivial result: a one-step bound in the ||| · |||J -norm.

This estimate will be used to bound the error in the last time step s = n.
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LEMMA 4.19 (Sampling error, s = n). Suppose there exists κ > 0 such that

κ ≤ gv(
xv, yv) ≤ κ−1 for all v ∈ V,x ∈ X, y ∈ Y.

Then

max
K∈K

∣∣∣∣∣∣F̃nπ̂
μ
n−1 − F̂nπ̂

μ
n−1

∣∣∣∣∣∣
K

≤ 2κ−2|K|∞
√

N
.

PROOF. Note that∣∣∣∣∣∣F̃nπ̂
μ
n−1 − F̂nπ̂

μ
n−1

∣∣∣∣∣∣
K

= ∣∣∣∣∣∣CK
n BKPπ̂

μ
n−1 − CK

n BKSNPπ̂
μ
n−1

∣∣∣∣∣∣
≤ 2κ−2 cardK

∣∣∣∣∣∣Pπ̂
μ
n−1 − SNPπ̂

μ
n−1

∣∣∣∣∣∣ ≤ 2κ−2 cardK

√
N

,

where the first inequality is Lemma 4.2 and the second inequality follows from the
simple estimate

∣∣∣∣∣∣μ − SNμ||| ≤ 1/
√

N that holds for any probability μ. �

For the error in steps s < n, the requisite one-step bound (Proposition 4.22) is
more involved. Before we prove it, we must first introduce an elementary lemma
about products of empirical measures that will be needed below.

LEMMA 4.20. For any probability measure μ, we have∣∣∣∣∣∣μ⊗d − μ̂⊗d
∣∣∣∣∣∣ ≤ 4d√

N
,

where μ̂ = 1
N

∑N
k=1 δXk

and X1, . . . ,XN are i.i.d. ∼ μ.

PROOF. We assume throughout that N ≥ d2 without loss of generality (other-
wise the bound is trivial). Let |f | ≤ 1 be a measurable function. Then

μ̂⊗d(f ) = 1

Nd

N∑
k1,...,kd=1

f (Xk1, . . . ,Xkd
).

We begin by bounding

Var
[
μ̂⊗d(f )

] = 1

N2d

N∑
k1,...,kd=1

N∑
k′

1,...,k
′
d=1

E[Fk1,...,kd
Fk′

1,...,k
′
d
],

where

Fk1,...,kd
:= f (Xk1, . . . ,Xkd

) − E
[
f (Xk1, . . . ,Xkd

)
]
.

Note that E[Fk1,...,kd
Fk′

1,...,k
′
d
] = 0 when {k1, . . . , kd} ∩ {k′

1, . . . , k
′
d} = ∅. Thus

Var
[
μ̂⊗d(f )

] ≤ 4

N2d

N∑
k1,...,kd=1

N∑
k′

1,...,k
′
d=1

1{k1,...,kd }∩{k′
1,...,k

′
d }�=∅,
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where we use |Fk1,...,kd
| ≤ 2. But for each choice of k1, . . . , kd , there are at least

(N − d)d choices of k′
1, . . . , k

′
d such that {k1, . . . , kd} ∩ {k′

1, . . . , k
′
d} = ∅, so

Var
[
μ̂⊗d(f )

] ≤ 4
(

1 − Nd(N − d)d

N2d

)
= 4

(
1 −

(
1 − d

N

)d)
≤ 4d2

N
.

We can therefore estimate∣∣∣∣∣∣μ⊗d − μ̂⊗d
∣∣∣∣∣∣ ≤ ∥∥μ⊗d − E

[
μ̂⊗d]∥∥ + ∣∣∣∣∣∣E[

μ̂⊗d] − μ̂⊗d
∣∣∣∣∣∣

≤ ∥∥μ⊗d − E
[
μ̂⊗d]∥∥ + 2d√

N
.

It remains to estimate the first term. To this end, note that E[f (Xk1, . . . ,Xkd
)] =

μ⊗d(f ) whenever k1 �= · · · �= kd . Therefore, we evidently have

∣∣E[
μ̂⊗d(f )

] − μ⊗d(f )
∣∣ ≤ 1

Nd

N∑
k1,...,kd=1

∣∣E[
f (Xk1, . . . ,Xkd

)
] − μ⊗d(f )

∣∣
≤ 2

(
1 − 1

Nd

N !
(N − d)!

)
≤ 2

(
1 −

(
1 − d

N

)d)
≤ 2d2

N
.

But as N ≥ d2, we have d2/N ≤ d/
√

N . The result follows. �

This result will be used in the following form.

COROLLARY 4.21. For any subset of blocks L⊆ K, we have∣∣∣∣∣∣∣∣∣∣∣∣ ⊗
K∈L

BKμ − ⊗
K∈L

BKSNμ

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 4 cardL√
N

for every probability measure μ on X and s ≥ 1.

PROOF. Write μ̂ := SNμ and d = cardL, and let us enumerate the blocks
L= {K1, . . . ,Kd}. Then for any bounded function f :X∪L →R, we can write( ⊗

K∈L
BKμ

)
(f ) =

∫
f

(
x

K1
1 , . . . , x

Kd

d

)
μ(dx1) · · ·μ(dxd),

( ⊗
K∈L

BKSNμ

)
(f ) =

∫
f

(
x

K1
1 , . . . , x

Kd

d

)
μ̂(dx1) · · · μ̂(dxd).

Thus, evidently ∣∣∣∣∣∣∣∣∣∣∣∣ ⊗
K∈L

BKμ − ⊗
K∈L

BKSNμ

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣μ⊗d − μ̂⊗d
∣∣∣∣∣∣,

and the result follows from Lemma 4.20. �

We now proceed to prove a one-step error bound for time steps s < n.
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PROPOSITION 4.22 (Sampling error, s < n). Suppose there exist ε, κ > 0 with

ε ≤ pv(
x, zv) ≤ ε−1, κ ≤ gv(

xv, yv) ≤ κ−1 ∀v ∈ V,x, z ∈ X, y ∈ Y.

Then

max
K∈K

E
[∥∥F̃s+1F̃s π̂

μ
s−1 − F̃s+1F̂s π̂

μ
s−1

∥∥2
K

]1/2 ≤ 16�Kε−2|K|∞κ−4|K|∞�K√
N

for every 0 < s < n.

PROOF. We begin by bounding using Lemma 4.2∥∥F̃s+1F̃s π̂
μ
s−1 − F̃s+1F̂s π̂

μ
s−1

∥∥
K = ∥∥CK

s+1BKPF̃s π̂
μ
s−1 − CK

s+1BKPF̂s π̂
μ
s−1

∥∥
≤ 2κ−2|K|∞∥∥BKPF̃s π̂

μ
s−1 − BKPF̂s π̂

μ
s−1

∥∥.
Now note that

(BKPF̃s π̂
μ
s−1)(dxK)

ψK(dxK)

=
∫ ∏

v∈K pv(z, xv)
∏

K ′∈N(K)

∏
v′∈K ′ gv′

(zv′
, Y v′

s )(BK ′
Pπ̂

μ
s−1)(dzK ′

)∫ ∏
K ′∈N(K)

∏
v′∈K ′ gv′

(zv′
, Y v′

s )(BK ′Pπ̂
μ
s−1)(dzK ′

)
,

(BKPF̂s π̂
μ
s−1)(dxK)

ψK(dxK)

=
∫ ∏

v∈K pv(z, xv)
∏

K ′∈N(K)

∏
v′∈K ′ gv′

(zv′
, Y v′

s )(BK ′
SNPπ̂

μ
s−1)(dzK ′

)∫ ∏
K ′∈N(K)

∏
v′∈K ′ gv′

(zv′
, Y v′

s )(BK ′SNPπ̂
μ
s−1)(dzK ′

)
,

where ψK(dxK) := ∏
v∈K ψv(dxv), and we can write∥∥BKPF̃s π̂

μ
s−1 − BKPF̂s π̂

μ
s−1

∥∥
=

∫ ∣∣∣∣(BKPF̃s π̂
μ
s−1)(dxK)

ψK(dxK)
− (BKPF̂s π̂

μ
s−1)(dxK)

ψK(dxK)

∣∣∣∣ψK(
dxK)

.

We therefore have by Minkowski’s integral inequality

E
[∥∥BKPF̃s π̂

μ
s−1 − BKPF̂s π̂

μ
s−1

∥∥2]1/2

≤
∫

E
[∣∣∣∣(BKPF̃s π̂

μ
s−1)(dxK)

ψK(dxK)
− (BKPF̂s π̂

μ
s−1)(dxK)

ψK(dxK)

∣∣∣∣2]1/2

ψK(
dxK)

≤ ψK(
XK)

sup
xK∈XK

E
[∣∣∣∣(BKPF̃s π̂

μ
s−1)(dxK)

ψK(dxK)
− (BKPF̂s π̂

μ
s−1)(dxK)

ψK(dxK)

∣∣∣∣2]1/2

.
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As we have

εψv(
Xv) ≤

∫
pv(

x, zv)
ψv(

dzv) = 1,
∏
v∈K

pv(
z, xv) ≤ ε−|K|∞

and

κ |K|∞�K ≤ ∏
K ′∈N(K)

∏
v′∈K ′

gv′(
zv′

, Y v′
s

) ≤ κ−|K|∞�K,

we can apply Lemma 4.2 to estimate

E
[∥∥BKPF̃s π̂

μ
s−1 − BKPF̂s π̂

μ
s−1

∥∥2]1/2

≤ 2ε−2|K|∞κ−2|K|∞�K

∣∣∣∣∣∣∣∣∣∣∣∣ ⊗
K ′∈N(K)

BK ′
Pπ̂

μ
s−1 − ⊗

K ′∈N(K)
BK ′

SNPπ̂
μ
s−1

∣∣∣∣∣∣∣∣∣∣∣∣.
By Corollary 4.21 (applied conditionally given π̂

μ
s−1), we obtain

E
[∥∥BKPF̃s π̂

μ
s−1 − BKPF̂s π̂

μ
s−1

∥∥2]1/2 ≤ 8�Kε−2|K|∞κ−2|K|∞�K√
N

.

The result follows immediately. �

We finally put everything together.

THEOREM 4.23 (Variance term). Suppose there exist ε, κ > 0 with

ε ≤ pv(
x, zv) ≤ ε−1, κ ≤ gv(

xv, yv) ≤ κ−1 ∀v ∈ V,x, z ∈ X, y ∈ Y

such that

ε > ε0 =
(

1 − 1

6�K�2

)1/2�

.

Let β = − log 6�K�2(1 − ε2�) > 0. Then

∣∣∣∣∣∣π̃x
n − π̂x

n

∣∣∣∣∣∣
J ≤ cardJ

64�Keβ

1 − e−β

ε−4|K|∞κ−4|K|∞�K√
N

for every n ≥ 0, x ∈ X, K ∈K and J ⊆ K .

PROOF. We begin with the elementary error decomposition

∣∣∣∣∣∣π̃x
n − π̂x

n

∣∣∣∣∣∣
J ≤

n∑
s=1

∣∣∣∣∣∣F̃n · · · F̃s+1F̃s π̂
x
s−1 − F̃n · · · F̃s+1F̂s π̂

x
s−1

∣∣∣∣∣∣
J
.

The term s = n in this sum is bounded in Lemma 4.19:∣∣∣∣∣∣F̃nπ̂
x
n−1 − F̂nπ̂

x
n−1

∣∣∣∣∣∣
J

≤ 2κ−2|K|∞
√

N
.
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The term s = n − 1 is bounded in Proposition 4.22:

∣∣∣∣∣∣F̃nF̃n−1π̂
x
s−1 − F̃nF̂n−1π̂

x
s−1

∣∣∣∣∣∣
J

≤ 16�Kε−2|K|∞κ−4|K|∞�K√
N

.

Now suppose s < n − 1. Then we can estimate using Corollary 4.18∣∣∣∣∣∣F̃n · · · F̃s+1F̃s π̂
x
s−1 − F̃n · · · F̃s+1F̂s π̂

x
s−1

∣∣∣∣∣∣
J

≤ 4

ε2|K|∞ cardJe−β(n−s−1) max
K∈K

E
[∥∥F̃s+1F̃s π̂

x
s−1 − F̃s+1F̂s π̂

x
s−1

∥∥2
K

]1/2
.

Applying Proposition 4.22 yields∣∣∣∣∣∣F̃n · · · F̃s+1F̃s π̂
x
s−1 − F̃n · · · F̃s+1F̂s π̂

x
s−1

∣∣∣∣∣∣
J

≤ cardJe−β(n−s−1) 64�Kε−4|K|∞κ−4|K|∞�K√
N

.

Substituting the above three cases into the error decomposition and summing the
geometric series yields the statement of the theorem. �

Theorems 4.14 and 4.23 now immediately yield Theorem 2.1.
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