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The paper investigates the properties of a class of resource allocation
algorithms for communication networks: if a node of this network has x re-
quests to transmit, then it receives a fraction of the capacity proportional to
log(1 + x), the logarithm of its current load. A detailed fluid scaling analysis
of such a network with two nodes is presented. It is shown that the interac-
tion of several time scales plays an important role in the evolution of such
a system, in particular its coordinates may live on very different time and
space scales. As a consequence, the associated stochastic processes turn out
to have unusual scaling behaviors. A heavy traffic limit theorem for the in-
variant distribution is also proved. Finally, we present a generalization to the
resource sharing algorithm for which the log function is replaced by an in-
creasing function. Possible generalizations of these results with J > 2 nodes
or with the function log replaced by another slowly increasing function are
discussed.

1. Introduction. The resource allocation problem considered in this paper in-
volves J nodes which have access to a common shared resource, for example,
a communication channel or a processing unit. The resource is assumed to have a
fixed capacity, say 1. The resource is shared among nodes in the following way: for
1 ≤ j ≤ J , if node j has nj requests pending, it receives the instantaneous fraction
of capacity

f (nj )

f (n1) + f (n2) + · · · + f (nJ )
(1)

from the resource. The algorithm is thus defined by the function x �→ f (x). There
are several situations where the capacity is allocated in this way. It should be noted
that our results are proved in the case where J = 2. The general case J ≥ 2 is
briefly sketched. See Section 9 for the conjectured behavior of this system.

1.1. Saturated node of the Internet. In this context, the nodes correspond to
TCP flows with different sources and destinations. The resource here is the pro-
cessing time of a fixed router on the path of these flows. The packets of a flow
are queued in the buffer of the router until they are routed to the next stage of
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their path. Congestion is simply the situation when the buffer is full and, there-
fore, incoming packets are lost. Because of the TCP protocol, a given flow will
increase or decrease the rate at which it sends the packets, depending on the level
of congestion of the routers on its path. There are several ways to represent this
phenomenon. It should be kept in mind that the following descriptions are mathe-
matical models of the way TCP is thought to allocate bandwidth, not of the TCP
algorithm itself. See Massoulié and Roberts [21].

(a) Processor-sharing disciplines. A popular, simplified, stochastic model of
this situation consists in considering that the router allocates its processing power
to each flow according to a slight generalization of the allocation policy given
by relation (1) with a function f depending on the node j and of the form wjn,
where 1/wj can be the round trip time between the source and the destination. This
allocation algorithm corresponds to the discriminatory processor-sharing policy.
Node j has an instantaneous fraction of capacity given by

wjnj

w1n1 + w2n2 + · · · + wJ nJ

.(2)

See Altman et al. [2] and references therein for a survey. When all the wj ’s are 1,
we obtain the classical processor-sharing policy: node j receives the fraction of
capacity nj/(n1 + · · · + nJ ), and the bandwidth is equally divided among the cur-
rent requests. Different classes of stochastic models of processor-sharing policies
have been extensively used to describe the congestion in IP networks. See Bonald
et al. [6], Kelly et al. [17] and Graham and Robert [14] and references therein.

(b) Alpha-fair disciplines. These policies have also been introduced to describe
the allocation of bandwidth in IP networks (see Mo and Walrand [16]), in terms
of an optimization problem (cf. Kelly et al. [17]). In our context, a related policy
would correspond to the case f (n) = nα , n ≥ 0, so that a nonempty node j has an
instantaneous fraction of capacity given by

nα
j

nα
1 + nα

2 + · · · + nα
J

.(3)

The case α = 1 is the processor-sharing discipline presented above.

In the wireless section below, the situation is quite different since the bandwidth
allocation algorithm is defined explicitly by relations similar to (1).

1.2. Wireless networks. This is again a simplified, but meaningful stochas-
tic model of bandwidth allocation, this time in wireless networks. The resource
here is a radio channel in a region where there are J stations/mobiles. At a given
time, because of interferences, only one station can transmit successfully in this
region. A station with nj messages waiting for transmission can detect if there
is a communication going on or not. If not, a classical backoff mechanism is
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used: the station starts transmitting after an exponentially distributed amount of
service with parameter f (nj ). If another station starts a transmission before that
time, the attempt of transmission is canceled. Consequently, if initially there is
no transmission, node j will be the first to access the channel with probability
f (nj )/(f (n1) + · · · + f (nJ )). See Abramson [1] and Metcalf and Boggs [22] for
historical references, and Tassiulas and Ephremides [30]. If a small quantum δ is
transmitted at each access, it is not difficult to see that, provided that backoff times
are small (which is the case if one of the components is large), as δ goes to 0 the
effective capacity allocated to station j is indeed given by

f (nj )

f (n1) + · · · + f (nJ )
.(4)

This is the analogue of the approximation of the round robin policy by the
processor-sharing discipline.

Fair access to resource: The choice of the function x �→ f (x). The function
f should clearly be increasing, so that the fraction of the capacity allocated may
grow with the number of requests. This is the case if f (x) = xα which corresponds
to the Alpha-fair disciplines already mentioned. However, these policies may have
a serious drawback. Indeed, if a station j has a large number of requests pend-
ing while the other stations are lightly loaded, the latter will receive a negligible
fraction of the bandwidth. The station j will therefore capture the channel for its
own benefit, until the instant when some of the other stations reach a comparable
level of congestion. This is a highly undesirable property for a network where fair-
ness issues (for nodes, not requests) are of primary importance. See Bonald and
Massoulié [5].

A possible way of solving this problem is to consider increasing functions
f which grow slowly to infinity like, for example, the concave function x �→
log(1 + x) or x �→ log log(e + x). In this way, one can expect to reduce signif-
icantly the impact of saturated nodes even if they still receive a sizable fraction
of the available capacity. Related algorithms have been considered in the context
of wireless networks; see Shah and Wischik [29] and references therein. Bouman
et al. [7] and Ghaderi et al. [13] investigate the impact of the growth of the func-
tion f on the stability and on the delays for several wireless network architectures
with a related bandwidth allocation scheme.

In this paper, we mainly investigate the case f (x) = log(1 + x). The general
case is sketched in Section 8. The instantaneous fraction of capacity of the j th
node is therefore given by

log(1 + nj )

log(1 + n1) + log(1 + n2) + · · · + log(1 + nJ )
.(5)

Note also that since the limit of xα/α when α goes to 0 is logx for x > 0, this
allocation mechanism can be seen as a limiting case of Alpha-fair disciplines de-
scribed above.
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The log function moderates the rate at which a saturated station tries to access
the resource, which is a desirable property in an heterogeneous network where
connections may have very different characteristics. In the context of wireless net-
works, a related algorithm was used to show that an optimal stability region is
possible in a quite general network. The growth properties of the log function play
an important role in the proof of the result. Basically, the log of the states of the sat-
urated stations being quite stable on some large time intervals, the schedule (the set
of stations that can transmit at some time) quickly reaches some equilibrium and
stays around it. A Lyapounov function argument can then be used to prove ergod-
icity (see Shah and Shin [28]). Up to now, apart from these stability results, little
is known about the quantitative and qualitative properties of these algorithms. As
we shall see below, the mathematical analysis of this class of algorithms presents
some challenging and unusual problems (see also Wischik [31]). We first achieve a
fluid limit scaling analysis, which gives a very precise description of the qualitative
behavior of these algorithms. Additionally, we derive a heavy traffic limit theorem
result for the invariant distribution of the associated Markov process. Before pre-
senting our main results, we briefly recall the main definitions of the fluid limit
scaling. The interested reader will find an extended presentation in Bramson [9] or
in Chapter 8 of Robert [25].

Fluid limits. Throughout the paper, it will be assumed that, for every
1 ≤ j ≤ J , the requests arriving at the j th node form a Poisson process with rate
λj > 0. Each request at node j leaves the network when it has received an ex-
ponentially distributed amount of service with parameter μj from the common
resource. The average load of the j th node is denoted by ρj = λj/μj .

The fluid limit scaling of a stochastic process (Z(t)) in R
J consists in speeding

up time and space in proportion to the norm of its initial state:

ZN(t) = Z(Nt)

N
with N = ∥∥Z(0)

∥∥.
A possible limit in distribution of the sequence of processes (ZN(t)) is called a
fluid limit of the process (Z(t)). Hence, in some sense fluid limits give a first-order
description of (Z(t)). This is a convenient tool to investigate multidimensional
processes for which general results are scarce. In the context of Markov processes,
there is an additional interest since the ergodicity of the process can be connected
to the fact that fluid limits (whose initial states lie on the unit sphere) return to
the origin. See Rybko and Stolyar [27] and Dai [10]. Note, however, that the fluid
limit scaling is well suited for processes that behave locally like random walks.
For other processes, different scalings may have to be considered.

For certain choices of f a fluid limit is obtained by standard techniques. For in-
stance, in the case of generalized processor-sharing policy defined by relation (2),
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for every 1 ≤ j ≤ J and t ≥ 0, let Xj(t) denote the number of jobs waiting at the
j th node. The evolution of this process can be represented as

Xj(t) = Xj(0)+Mj(t)+λj t −μj

∫ t

0

wjXj(s)

w1X1(s) + w2X2(s) + · · · + wJ XJ (s)
ds,

where (Mj(t)) is a martingale. The scaled process with N = ‖X(0)‖ is thus given
by

XN
j (t) = XN

j (0) + Mj(Nt)

N
(6)

+ λj t − μj

∫ t

0

wjX
N
j (s)

w1X
N
1 (s) + w2X

N
2 (s) + · · · + wJ XN

J (s)
ds.

A standard tightness criterion and the fact that the martingale((
Mj(Nt)/N

)
,1 ≤ j ≤ J

)
converges in distribution to 0 imply that any fluid limit ((xj (t)),1 ≤ j ≤ J ) should
satisfy the ordinary differential equations

dxj

dt
(t) = λj − μj

wjxj (t)

w1x1(t) + w2x2(t) + · · · + wJ xJ (t)
, 1 ≤ j ≤ J,(7)

on the interval [0, t0], provided that the vector (xj (t),1 ≤ j ≤ J ) does not hit 0
before t0. See Ben Tahar and Jean-Marie [3], Ramanan and Reiman [24] and ref-
erences therein.

Similarly, for Alpha-fair disciplines the corresponding fluid model (xj (t)) is the
solution to the ODE

dxj

dt
(t) = λj − μj

xj (t)
α

x1(t)α + x2(t)α + · · · + xJ (t)α
, 1 ≤ j ≤ J.(8)

Observe that, for these two choices of function f , the scaled process satisfies an
autonomous ODE, like (8), with a stochastic noise component that vanishes as
N gets large. Secondly, a remarkable feature of these convergence results is that
all coordinates of the scaled process are of order N . That is, as long as x(t) is
not the vector 0, one has xj (t) > 0 for all 1 ≤ j ≤ J . However, as we shall now
discuss, for instances, of interest where f increases slowly [e.g., f (x) = logx]
such standard techniques are not applicable.

Problem of fluid limits for algorithms with logarithmic weights. Let (Lj (t),

1 ≤ j ≤ J ) denote the Markov process associated to the policy with logarithmic
weights, that is, associated to relation (5). Due to the log function, the scaled pro-
cess (Lj (t)) does not have an autonomous representation analogous to (6). In fact,
it is easy to see that the corresponding stochastic equations involve both Lj(Nt)

and log(1+Lj(Nt)), two quantities which evolve on very different scales. For this
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reason, there is no way of guessing a system of plausible “fluid equations” corre-
sponding to system (7) [resp., to (8)] for discriminatory processor-sharing policy
(resp., Alpha-fair policies). See Wischik [31] and Ghaderi et al. [13]. Note that the
question of stability of the system is not an issue here. Indeed, because of the work
conserving property of these policies, a necessary and sufficient condition for the
ergodicity of (Lj (t),1 ≤ j ≤ J ) is simply given by

ρ1 + · · · + ρJ < 1 with ρj = λj

μj

,1 ≤ j ≤ J.

To the best of our knowledge, there is no explicit expression known for the in-
variant distribution. The fluid scaling gives a first order description of the behavior
of this policy. As we shall see, an interesting convergence result for the invariant
distribution just below saturation can also be derived from these results.

Additionally, an interesting phenomenon in this domain is presented. For most
of the queueing networks investigated up to now, the classic general scheme for
the fluid scaling of the associated Markov process (X(t)) is as follows: there is a
subset of the coordinates whose values are of the order of N = ‖X(0)‖ and the
other coordinates form an ergodic Markov process whose invariant distribution
determines the evolution of the large coordinates on the fluid scale. Here, the sit-
uation is different. In the case of two nodes, under some appropriate conditions,
then the coordinate (L2(t)) is of the order of N but (L1(t)) is an order of mag-
nitude smaller, Nα∗

for some 0 < α∗ < 1. There is indeed an underlying ergodic
Markov process but at the second order, namely an Ornstein–Uhlenbeck process

(Z(t)) so that L1(t) ∼ Nα∗ +
√

Nα∗ logN · Z(t). For this queueing system, the
queue lengths of underloaded queues are not proportional to load but operate on a
scale between O(1) and O(N).

Outline of the paper. Section 2 presents the main results of the paper. Sec-
tion 3 introduces the notation and the stochastic differential equations associated
to the Markov process (Lj (t),1 ≤ j ≤ J ). Sections 4, 5 and 6 are, respectively,
devoted to the scaling properties of the time scales t �→ Nt , t �→ Nα∗

logNt and
t �→ Nt . There we provide a precise description of the evolution of the network,
together with some estimates of hitting times. The key results on the fluid limits
are presented in Section 6. In Section 7, we prove a heavy traffic limit theorem
for the invariant distribution. The case of a two node network with a general f is
discussed in Section 8. The corresponding time scales are identified in this case.
Section 9 gives a brief sketch of the case of a network of J nodes.

2. Presentation of results.

2.1. The general picture. The main result of the paper is that the states of the
nodes of a network with two nodes may live on different space and time scales
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FIG. 1. A first-order picture of the network with ρ1 + ρ2 < 1, ρ1 < 1/2 and
(L1(0),L2(0)) = (0,N). The first queue grows according to step (a), then the queue behaves
as an OU process for a while according to step (b), then finally the system converges to zero
according to step (c).

depending on the set of arrival and service rates. In the next paragraph, we give a
more precise description of this phenomenon. An illustration of the different scales
is given in Figure 1, where the y-axis is on a log ·/ logN scale.

Giving an asymptotic picture of this queueing system with only two nodes is
already a challenging problem. To concentrate on the most interesting case, from
the point of view of mathematical difficulty, let us assume that the parameters
satisfy the conditions: ρ1 < 1/2 and ρ2 > 1/2 and the initial state of the process
is (LN

1 (0),LN
2 (0)) = (0,N). The other cases are discussed further in the paper, in

Proposition 8, for example.

Three time scales.

(a) The time scale t → Nt . A convergence result, Proposition 2, shows the con-
vergence in distribution, for any 0 < s0 < t0 < α∗,

lim
N→+∞

(
LN

1
(
Nt ), u < t < v

) =
((

λ1 − μ1
t

t + 1

)
Nt, s0 < t < t0

)
with

α∗ def.= ρ1

1 − ρ1
.

The process LN
2 stays at N on this time scale. The condition ρ1 < 1/2 im-

plies that α∗ < 1. Note that the prefactor of Nt vanishes at t = α∗. For this
reason, this convergence result does not prove that values of the order of Nα∗

can be reached. In fact, an extra (logN) factor is required and Proposition 3
shows that if δ < 1, the average hitting time of the value 
δNα∗� by (LN

1 (t)) is
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bounded above by K1N
α∗

logN for some K1 > 0. On the other hand, reaching the
value 
Nα∗� is slightly longer: the average hitting time of 
Nα∗� is bounded by
CNα∗

(logN)2 log log(N) for some C > 0; see relation (29) in Section 5.

(b) The time scale t → Nα∗
(logN)t . We now assume that LN

1 (0) = 
Nα∗� and
L2(0) = N . Theorem 1 proves the following convergence in distribution

lim
N→+∞

(
LN

1 (Nα∗
(logN)t) − Nα∗√
Nα∗ logN

, t ≥ 0
)

= (
Z(t)

)
,(9)

where (Z(t)) is an Ornstein–Uhlenbeck process. In other words, on this time scale
LN

1 is stabilized around the value Nα∗
. Again, the process LN

2 stays at N on this
time scale.

(c) The fluid time scale t → Nt . Theorem 3 shows the convergence in distribu-
tion,

lim
N→+∞

(
LN

1 (Nt)

Nα∗ ,
LN

2 (Nt)

N

)
= (

γ (t)α
∗
, γ (t)

)
(10)

for the convergence in distribution of processes, with

γ (t) = (
1 + (

λ2 − μ2(1 − ρ1)
)
t
)+

.

Consequently, as long as the fluid limit of (L2(t)) is not 0, the process LN
1 lives on

the space scale Nα∗
.

2.2. Properties of resource sharing with logarithmic weights. The bandwidth
allocation with logarithmic weights exhibits some interesting properties. For the
two node network described above, when the initial state is (0,N) we prove that
the fluid limit is given by((

0,1 + (
λ2 − μ2(1 − ρ1)

)
t
)+)

.

This shows that node 2 receives the capacity 1−ρ1, which is another way of saying
that node 1 is stable at the fluid level. The simplicity of this expression somewhat
hides the complexity of the situation, since the quantity α∗ does not show up. Yet,
the quantity α∗ has a crucial impact on the equilibrium distribution and on the
transient behavior.

Equilibrium: Heavy-traffic regime. Under the stability condition ρ1 + ρ2 < 1,
let (L1,ρ,L2,ρ) denote random variables with the equilibrium distribution of the
Markov process (L1(t),L2(t)). If ρ1 < 1/2 is fixed, the heavy traffic-limit Theo-
rem 5 shows the convergence in distribution

lim
ρ2↗1−ρ1

(
(1 − ρ1 − ρ2)

α∗
L1,ρ, (1 − ρ1 − ρ2)L2,ρ

) = (
Xα∗

,X
)
,

where X is an exponential random variable. Hence, at equilibrium and in the heavy
traffic regime, the relation L1 ∼ Lα∗

2 also holds as in relation (10) for fluid limits.
Note that Xα∗

has a Weibull distribution.
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Transient case. If the system is overloaded (ρ1 + ρ2 > 1) and if ρ1 < 1/2, the
size of the queue of class 1 requests grows at rate proportional to tα

∗
, with α∗ < 1.

This implies that queue 1 is stable at the fluid level, that is, that L1(t)/t goes to 0
in distribution as t becomes large. Hence, without any priority mechanism among
nodes, if a node has a light load, ρ1 < 1/2, then most of its messages will be
transmitted with success even in the case where the system is globally saturated.
Recall that in the transient case of the processor-sharing policy or even with the
Alpha-fair disciplines, this is not true at all: the states of the nodes diverge to
infinity at the same speed, linearly in time.

This is an interesting feature from the point of view of fairness issues among
nodes. Indeed, if the node is not too aggressive, ρ1 < 1/2, this result implies that
it will be able to transmit most of its traffic independently of the load of the other
node. It can be shown that an analogous property is valid for the network with J

nodes; see Section 9.
It is unlikely that a standard fluid analysis, that is, deriving directly some equa-

tions similar to relation (7), for example, can be done to investigate the qualitative
behavior of more complex networks. This is where the consideration of the various
time scales is useful. It gives a tool to explain, via a dynamic picture, the multiple
orders of magnitude of the state variables at equilibrium.

2.3. An interaction of time scales. There is an unconventional property for the
fluid scaling of a queueing system. For most of the queueing networks investigated
up to now, the classic general scheme for the fluid scaling of the associated Markov
process (X(t)) is as follows: there is a subset of the coordinates whose values are
of the order of N = ‖X(0)‖ and the other coordinates form an ergodic Markov pro-
cess whose invariant distribution determines the evolution of the large coordinates
on the fluid scale. See Malyshev [20] and Bramson [9] for some examples.

Here the situation is different. If the initial state is (0,N) and if ρ1 < 1/2, then
the large coordinate L2 is of the order of N but L1 is an order of magnitude smaller,
Nα∗

with 0 < α∗ < 1. There is indeed an underlying ergodic Markov process but
at the second order, namely an Ornstein–Uhlenbeck process scaled by a factor√

Nα∗ logN . See relation (9).
The associated stochastic model exhibits a stochastic averaging principle at the

origin of the second expansion in relation (10). The key technical result of the
paper, Theorem 2, states that when ρ1 < 1/2, on the fluid time scale, t �→ Nt , LN

1
is uniformly of the order of (LN

2 )α
∗

on any finite time interval with high probability.
Recall that:

(a) If LN
2 (0) = N and LN

1 (0) = Nα∗
, then on the time scale t �→ Nα∗

(logN)t

we have LN
2 ∼ LN

2 (0) and LN
1 is of the order of (LN

2 (0))α
∗
. Additionally, LN

1 can
be represented by an Ornstein–Uhlenbeck process around Nα∗

; see previous point,
point (b) in Section 2.1.
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(b) On the fluid time scale, LN
2 (Nt) is of the order of γ (t)LN

2 (0) with γ (t)

defined above by relation (10).

The problem lies in proving that on the fluid time scale LN
1 adapts sufficiently

quickly to preserve the relation LN
1 ∼ (LN

2 )α
∗
. A central limit result, Proposition 5,

suggests that this is not the case on the timescale of the Ornstein–Uhlenbeck pro-
cess, at least for a second-order description. On the other hand, on the fluid time
scale Theorem 2 shows that this separation of time scales holds. Its proof uses
several estimates related to average hitting times of reflected random walks and
some coupling arguments. One of the problems encountered is that the potential
natural stochastic fluctuations of the fluid time scale, of the order of

√
N , can be

large compared to Nα∗
(if α∗ < 1/2, e.g.). In particular, standard stochastic cal-

culus cannot be used as such to prove the result. It turns out that the potentially
large fluctuations are reduced by the strong ergodicity properties of the underlying
Ornstein–Uhlenbeck process. Thus, it does not seem that the classical techniques
for proving stochastic averaging results can be used here. See Has’minskiı̆ [15],
Freidlin and Wentzell [12] and Papanicolau et al. [23] for a general presentation of
methods to prove stochastic averaging principles.

3. The stochastic model. In this section, we introduce the main stochastic
processes and some notation. If h is a nonnegative Borelian function on R+, we
let Nh denote a Poisson process with rate x �→ h(x) on R+. This process can be
defined as follows. If P is a homogeneous Poisson point process on R

2+ with rate 1
and f is some nonnegative Borelian function on R+, then Nh(f ) is defined by∫

f (u)Nh(u)(du) =
∫
R

2+
f (u)P

([
0, h(u)

] × du
)
.

For ξ ≥ 0, Nξ denotes the Poisson process with rate ξ on R+, that is, correspond-
ing to the constant function equal to ξ . In addition, for any 0 ≤ a ≤ b, Nξ ([a, b])
stands for the number of points of Nξ in the interval [a, b]. Throughout the paper,
the various Poisson processes used will be assumed independent.

We consider two classes of customers. The arrival process of class j customers
is a Poisson process with rate λj , the distribution of the duration of the required
service is exponential with rate μj , and ρj denotes the ratio λj/μj . Each class
of customers has a dedicated queue and there is a single server working at unit
speed. If the state of the system is (x1, x2) ∈ N

2, where xj is the number of jobs in
queue j , then customers of class j receive the fraction of service

Wi(x1, x2)
def.= log(1 + xi)

log(1 + x1) + log(1 + x2)
, i = 1,2,(11)

from the server, with the convention that 0/0 is 0. The process of the number of
jobs in queue j ∈ {1,2} is denoted by (Lj (t)). Since we are only interested in the
total number of customers of each class, there is no need to specify the service
discipline for each queue. It can be Processor-Sharing or FIFO (First In First Out),
for example.
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Stochastic differential equation. The stochastic process (L1(t),L2(t)) can be
expressed as the solution to the following stochastic differential equation (SDE):

dLi(t) =Nλi
(dt) −NμiWi(L1(t−),L2(t−))(dt), i = 1,2,(12)

where Li(t−) denotes the left limit of Li at t and Wi is the function defined by
relation (11).

A saturated system. For N ∈ N, λ, μ > 0, it will be convenient to introduce a
one-dimensional process (XN(t)) describing the evolution of the number of cus-
tomers in a given queue when the number of jobs in the other queue is “large,”
that is, of the order of N . The process (XN(t)) is thus defined as the solution to
the SDE

dXN(t) = Nλ(dt) −NμW1(x,N−1)(dt).(13)

From a Markov process point of view, (XN(t)) is simply a birth and death process
on N whose Q-matrix (q(x, y)) is defined by⎧⎨⎩

q(x, x + 1) = λ,

q(x, x − 1) = μ
log(1 + x)

log(1 + x) + logN
, x > 0.

As we shall see, when (L1(0),L2(0)) = (0,N − 1), XN(0) = 0, λ = λ1 and
μ = μ1, the two processes (L1(t)) and (XN(t)) are close enough (for our pur-
poses). Note that this is not completely clear since the process (L2(t)) may drift
away from N and therefore change the service rate received by each class. It turns
out that, because of the slow increase of the log function, this property will hold at
least at the beginning of the sample paths.

By integrating the SDE (13) one obtains that, for any t ≥ 0,

XN(t) = XN(0) +Nλ

([0, t]) −
∫ t

0
NμW1(XN(u−),N−1)(du)

(14)

= XN(0) + λt − μ

∫ t

0

log(1 + XN(u))

log(1 + XN(u)) + logN
du + MN(t),

where (MN(t)) is the martingale

MN(t) = Nλ

([0, t])−λt +
∫ t

0

[
NμW1(XN(u−),N−1)(du)−μW1

(
XN(u),N −1

)
du

]
,

whose increasing process is given by

〈MN 〉(t) = λt + μ

∫ t

0

log(1 + XN(u))

log(1 + XN(u)) + logN
du.(15)
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4. The initial phase. This section is devoted to the very beginning of the evo-
lution of the first component (LN

1 (t)), when it starts from 0 while LN
2 (0) = N . To

start with, we have the following asymptotic result on the initial growth rate of the
process (XN(t)) defined by equation (13). Here and later, we write a ∧ b for the
quantity min(a, b).

PROPOSITION 1. If XN(0) = 0 and

α∗ def .= ρ

1 − ρ
where ρ = λ

μ
,

then, for any 0 < s0 < t0 < α∗ ∧ 1, the convergence in distribution of stochastic
processes

lim
N→+∞

(
XN(Nt)

Nt
, s0 ≤ t ≤ t0

)
=

(
λ − μ

t

t + 1
, s0 ≤ t ≤ t0

)
holds.

See Chapters 2 and 3 of Billingsley [4] on the convergence in distribution of a
sequence of processes to a continuous stochastic processes.

PROOF OF PROPOSITION 1. The evolution equation (14) and a change of vari-
ables give us that for every t ≥ 0,

XN(Nt)

Nt
= XN(1) − λ − MN(1)

Nt
+ MN(Nt)

Nt

+ λ − μ

∫ t

0

log(1 + XN(Nu))

log(1 + XN(Nu)) + logN
(logN)Nu−t du.

Letting ZN(t)
def.= (1 + XN(Nt))/Nt , we thus have

ZN(t) = XN(1) + 1 − λ − MN(1)

Nt
+ MN(Nt)

Nt

(16)

+ λ − μ

∫ t

0

log(ZN(t − v)) + (t − v) logN

log(ZN(t − v)) + (t − v + 1) logN
(logN)N−v dv.

Let us first show that the martingale term does not play a role for this scaling.
Indeed, for 0 < a < b < 1, Doob’s inequality yields, for every ε > 0,

P

(
sup

a≤s≤b

|MN(Ns)|
Ns

≥ ε

)
≤ P

(
sup

Na≤x≤Nb

|MN(x)|
Na

≥ ε

)

≤ 1

ε2N2a
E
(∣∣MN

(
Nb)∣∣2) = 1

ε2N2a
E
(〈MN 〉(Nb))

≤ (λ + μ)

ε2 Nb−2a.
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The last term can be made arbitrarily small when N is large by choosing b < 2a.
Since any interval [s0, t0] ⊂ (0, α∗) can be covered by a finite number of such
intervals, the martingale term is indeed negligible with probability tending to 1
as N goes to infinity. The relation XN(1) ≤ Nλ([0,1]) implies that the first term
in the right-hand side of (16) vanishes too when divided by Nt .

Next, the inequality XN(s) ≤ Nλ([0, s]) gives us that∫ t

0

log(ZN(t − v)) + (t − v) logN

log(ZN(t − v)) + (t − v + 1) logN
(logN)N−v dv

≤ YN(t)

def.=
∫ t

0

log((1 +Nλ([0,Nt−v]))/Nt−v) + (t − v) logN

log((1 +Nλ([0,Nt−v]))/Nt−v) + (t − v + 1) logN
(logN)N−v dv.

For 0 ≤ v ≤ t ≤ b,∣∣∣∣ log((1 +Nλ([0,Nv]))/Nv) + v logN

log((1 +Nλ([0,Nv]))/Nv) + (v + 1) logN
− v

1 + v

∣∣∣∣
≤ log(1 + SN(b))

logN

1

log(1 + SN(b))/ log(N) + 1
,

with

SN(b) = sup
0≤v≤b

Nλ([0,Nv])
Nv

.

By the law of large numbers for Poisson processes, for any 0 < ε < b, the pro-
cess (Nλ([0,Ns])/Ns, ε ≤ s ≤ b) converges in distribution to (λ, ε ≤ s ≤ b). The
sequence of random variables (SN(b)) is therefore tight. One gets that

sup
a≤t≤b

∣∣∣∣YN(t) −
∫ t

0

t − v

1 + t − v
(logN)N−v dv

∣∣∣∣
converges to 0 in distribution. It is not difficult to check that the convergence

lim
N→+∞

∫ t

0

t − v

1 + t − v
(logN)N−v dv = t

t + 1
,(17)

occurs uniformly for a ≤ t ≤ b, one gets therefore the convergence in distribution

lim
N→+∞

(
YN(t), a ≤ t ≤ b

) =
(

t

t + 1
, a ≤ s ≤ b

)
.

Gathering these estimates, we obtain that for any 0 < a < b < α∗ ∧ 1 and any
ε > 0,

lim
N→+∞P

(
λ − μ

b

b + 1
− ε ≤ inf

a≤s≤b
ZN(s) ≤ sup

a≤s≤b

ZN(s) ≤ λ + ε

)
= 1,
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note that λ − μb/(b + 1) > 0 for b < α∗. Therefore, for any 0 < a0 < a ≤
b ≤ b0 < α∗, on some event E with an arbitrarily high probability, the process
(| log(ZN(s))|, a0 ≤ s ≤ b0) can be bounded by some constant. Consequently, on
this event, with a similar uniform convergence argument for (17), one gets that the
sequence of processes(∫ t−a0

0

log(ZN(t − v)) + (t − v) logN

log(ZN(t − v)) + (t − v + 1) logN
(logN)N−v dv, a0 ≤ t ≤ b0

)
converges in distribution to (t/(t + 1), a0 ≤ s ≤ b0). The remaining term con-
tributing in the integral of the right-hand side of relation (16) is∣∣∣∣∫ t

t−a0

log(ZN(t − v)) + (t − v) logN

log(ZN(t − v)) + (t − v + 1) logN
(logN)N−v dv

∣∣∣∣
≤

∫ t

t−a0

(logN)N−v dv

and thus converges to (0) as a process on [a, b]. The desired convergence in distri-
bution has thus been proved. �

The following proposition shows that, if (LN
1 (0),LN

2 (0)) = (0,N) and
XN(0) = 0, then the two processes (LN

1 (t)) and (XN(t)) are close on the time
scale t �→ Nt , 0 < t < α∗. As a consequence, it implies that the convergence result
of Proposition 1 is also valid for the process (LN

1 (t)).

PROPOSITION 2. If (LN
1 (t),LN

2 (t)) is the solution to the SDE (12) with initial
condition (0,N) and α∗ = ρ1/(1 − ρ1) with ρ1 = λ1/μ1, then the convergence

lim
N→+∞

(
LN

1 (Nt)

Nt
,0 < t < α∗ ∧ 1

)
=

(
λ1 − μ1

t

t + 1
,0 < t < α∗ ∧ 1

)
holds for the uniform topology on compact sets of (0, α∗ ∧ 1).

PROOF. The idea of the proof is quite simple. First one shows that, on the
time scale t → Nt with t < 1, the second component do not change much so that
its log is equivalent to logN . On this time scale the first coordinate grows linearly
as long as t < α∗ and for this reason its log is equivalent to t logN , so the capacity
it receives is t/(t + 1) which explains the result.

Since LN
2 (0) = N and the number of jobs of class 2 decreases at rate at most

μ1 and increases at rate λ1, for any 0 < b < 1, there exist two constants 0 < η < γ

such that if

AN
def.=

{
ηN ≤ inf

0≤s≤Nb
LN

2 (s) ≤ sup
0≤s≤Nb

LN
2 (s) ≤ γN

}
,
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then P(AN) tends to 1 as N tends to infinity. On the set AN , the jump rate for
departures of LN

1 lies between μ1W
η
1 (·,N) and μ1W

γ
1 (·,N), where

Wδ
1 (x,N) = log(1 + x)

log(1 + x) + log(δN)
.

Now if (Xδ
N(t)) denotes the solution to equation (13) with W1 replaced by Wδ

1 ,
a straightforward coupling shows that on the set AN the relation

X
η
N(s) ≤ LN

1 (s) ≤ X
γ
N(s), 0 ≤ s < Nb

holds almost surely. A glance at the proof of the convergence result of Proposi-
tion 1 shows that this result also holds for both processes (X

η
N(s)) and (X

γ
N(s)),

and so the proposition is proved. �

The above proposition shows that if α∗ < 1 (i.e., ρ1 < 1/2), then on the time
scale t �→ Nt , 0 < t < α∗, we have

LN
1
(
Nt ) ∼

(
λ1 − μ1

t

t + 1

)
Nt .

In particular, the process LN
1 reaches the quantity Nα∗−ε for any 0 < ε < α∗. Note

that, when t↗α∗, the quantity multiplying Nt vanishes, so that this convergence
result does not show that the value Nα∗

is indeed reached. In Sections 5 and 6, we
shall prove that the process LN

1 lives in fact in a “small” neighborhood of Nα∗
.

This local equilibrium around Nα∗
is the key phenomenon to grasp in order to

understand this bandwidth sharing policy. For now, we conclude this section by
proving that for any 0 < δ < 1, the value δNα∗∧1 is reached. This is done by
providing an estimation of the corresponding hitting time.

PROPOSITION 3. With the same notation and assumptions as in Proposition 2,
and if Ha denotes the hitting time of a > 0 by LN

1 ,

Ha = inf
{
t > 0 :LN

1 (t) ≥ a
}
,

then:

(a) if α∗ < 1, for any 0 < δ < 1 there exists a constant C > 0 such that for any
N ≥ 1,

E(HδNα∗ ) ≤ Cδ

log(1/δ)
Nα∗

logN,

(b) if α∗ > 1, for δ > 0 sufficiently small we have

lim sup
N→+∞

1

N
E(HδN) ≤ δ

λ1 − μ1/2
.
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PROOF. As we did for Proposition 2, let us prove these two inequalities for
the process (XN(t)). We use the simplified notation of Proposition 1.

Let us first assume that α∗ < 1. For x > 0, the elementary relation

log(1 + x)

log(1 + x) + logN
− α∗

α∗ + 1
(18)

= log((1 + x)/Nα∗
)

(α∗ + 1)(logN)(1 + α∗ + log((1 + x)/Nα∗
)/(logN))

,

together with the identity

λ = μ
α∗

1 + α∗

and equation (14) written at time Nα∗
(logN)t give the representation

ZN(t)
def.= XN(Nα∗

(logN)t)

Nα∗

= MN(Nα∗
(logN)t)

Nα∗(19)

− μ

(1 + α∗)

∫ t

0

log(N−α∗ + ZN(u))

α∗ + 1 + log(N−α∗ + ZN(u))/(logN)
du.

Let

τN = inf
{
s > 0 :XN

(
Nα∗

(logN)s
) ≥ δNα∗}

.

From Doob’s optional stopping time theorem and the fact that ZN(τN ∧ t) ≤
N−α∗�δNα∗�, we obtain the inequality

�δNα∗�
Nα∗ + μ

(1 + α∗)
log(δ + 2N−α∗

)

α∗ + 1 + log(δ + 2N−α∗
)/(logN)

E(τN) ≥ 0.

Since HδNα∗ ≤ Nα∗
(logN)τN , item (a) is proved.

Assume now that α∗ > 1, that is, that ρ > 1/2. Equation (14) written at time Nt

gives the relation

XN(Nt) = MN(Nt) + λNt − μ

∫ Nt

0

log(1 + XN(s))

log(1 + XN(s)) + logN
ds,

from which we can write that

�δN� ≥ E
(
XN

(
HδN ∧ (Nt)

))
≥ E

(
HδN ∧ (Nt)

)(
λ − μ

log(1 + �δN�)
log(1 + �δN�) + logN

)
.
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Letting t go to infinity, the monotone convergence theorem gives us that

lim sup
N→+∞

1

N
E(HδN) ≤ δ

λ − μ/2
.(20)

If we now choose δ sufficiently small so that, with high probability, the component
LN

2 (t) is still of the order of N at time δN/(λ − μ/2), a straightforward coupling
between LN

1 and some X
η
N (recall the notation X

η
N from the proof of Proposition 2)

ensures that (20) holds as well for the process (LN
1 (t)). This completes the proof

of Proposition 3. �

5. A local equilibrium. This section is essentially devoted to the behavior of
our two-dimensional process on the time scale t �→ Nα∗

(logN)t , when the initial
state is (LN

1 (0),LN
2 (0)) = (δNα∗

,N) and ρ1 < 1/2. The following result, Propo-
sition 4, shows that on this time scale the sample paths of (LN

1 (t)) have values of
the order of xNα∗

, where 0 < x < 1. When the initial value of (LN
1 (t)) is Nα∗

, we
shall prove in Theorem 1 that the process is stabilized around Nα∗

. At first sight,
the interest of Proposition 4 and of the associated central limit theorem (Propo-
sition 5 below) may seem marginal. This is not true at all since, as we shall see
in Section 6, the process is also of the order of γ (t)Nα∗

on the fluid time scale
t �→ Nt . Furthermore, the main difficulty in the key technical result of Theorem 2
is precisely connected to the interaction of these two time scales t �→ Nα∗

(logN)t

and t �→ Nt .
Recall the notation α∗ = ρ1/(1 − ρ1).

PROPOSITION 4. If ρ1 < 1/2 and (LN
1 (t),LN

2 (t)) is the solution to the
SDE (12) with initial conditions LN

2 (0) = N and LN
1 (0) ∼ δNα∗

for some δ ∈
(0,1], then the sequence of stochastic processes(

LN
1 (Nα∗

(logN)t)

Nα∗

)
converges in distribution to (h(t)) defined by⎧⎪⎨⎪⎩

h ≡ 1, if δ = 1,∫ h(t)

δ

1

log(u)
du = − μt

(1 + α∗)2 , if δ �= 1.
(21)

PROOF. As we did for Proposition 2, the convergence is proved for the process
(XN(t)). The result for (LN

1 (t)) follows from a similar coupling argument.
Let us first show that if XN(0) = 
δNα∗�, then XN(t)/Nα∗

remains within
[δ/3,3] on a given time interval [0,Nα∗

(logN)T ] with probability tending to 1.
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Indeed, writing Ha for the hitting time of a by XN(Nα∗
(logN)·), the strong

Markov property of (XN(t)) gives us that

P(H3Nα∗ ≤ T ) = E
(
1{H

2Nα∗ <T }P�2Nα∗�(H3Nα∗ ≤ T − H2Nα∗ |H2Nα∗ ≤ T )
)

(22)
≤ P(H2Nα∗ < T )P�2Nα∗�(H3Nα∗ ≤ T ).

Now, due to the monotonicity properties of the service rate of (XN(t)), if XN(0) =
2Nα∗

then we can couple (XN(t)) with the process (2Nα∗ + RN(t)) defined by:

– RN → RN + 1 at rate λ,
– RN → RN − 1 at rate

μ
log(2Nα∗

)

log(2Nα∗
) + logN

= μ
α∗

α∗ + 1
+ C

logN
,

for some C > 0,
– RN(0) = 0 and (RN(t)) reflects at 0,

in such a way that XN(t) ≤ 2Nα∗ + RN(t) for every t ≥ 0. Hence, there remains
to prove that (RN(t)) does not reach Nα∗

in less than Nα∗
(logN)T units of time.

But by Kingman’s inequality (see Kingman [19] or relation (3.3) of Theorem 3.5
in Robert [25]) and the fact that λ = μα∗/(1 + α∗), if θN stands for the time span
of the first excursion of (RN(t)) away from 0 we have

P1

(
sup

s∈[0,θN ]
RN(s) > Nα∗) ≤ exp

(
−C′Nα∗

logN

)
for some explicit C′ > 0. Since the ith pair of consecutive excursions is separated
by the amount Ei , an exponentially distributed random variable with parameter λ,
and, since these exponential times are independent of each other, a Chernoff bound
on Poisson random variables gives the relation

P
(
more than 2λNα∗

(logN)T excursions before time Nα∗
(logN)T

)
≤ P

(2λNα∗
(logN)T∑

i=1

Ei ≤ Nα∗
(logN)T

)
≤ e−C′′Nα∗

(logN)T

for some C′′ > 0. Coming back to (22), we obtain that

P(H3Nα∗ ≤ T ) ≤ e−C′′Nα∗
(logN)T + 2λNα∗

(logN)T exp
{
−C′Nα∗

logN

}
,

which tends to 0 as N tends to infinity. Finally, since the infinitesimal drift of
XN(t) is positive when XN(t) < Nα∗

, the same method can be used to show
that (XN(t)) remains above (δ/3)Nα∗

on the time interval [0,Nα∗
(logN)T ], with

overwhelming probability.
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Now let (wf (ξ)) denote the modulus of continuity of the function (f (t)) on
[0, T ]. That is,

wf (ξ) = sup
s,t≤T

|s−t |≤ξ

∣∣f (s) − f (t)
∣∣.

Let us also write again

ZN(t)
def.= XN(Nα∗

(logN)t)

Nα∗ .

Using the bounds on (XN(t)) we have just obtained, we can deduce the existence
of a constant A independent of N such that, with probability tending to 1, we have,
for any s < t ∈ [0, T ],∫ t

s

∣∣∣∣ log(N−α∗ + ZN(u))

α∗ + 1 + log(N−α∗ + ZN(u))/(logN)

∣∣∣∣du ≤ A(t − s).

Together with relation (19) and the fact that its martingale term vanishes as N gets
large, we can conclude that for any ε > 0 and η > 0, there exists ξ > 0 such that

P
(
wZN

(ξ) > η
) ≤ ε

holds for all N . By the tightness criterion of the modulus of continuity (see Theo-
rem 8.3 in Billingsley [4]), the sequence of processes (ZN(t)) is thus tight and any
limiting point h satisfies the relation

h(t) = δ − μ

(1 + α∗)2

∫ t

0
log

(
h(u)

)
du.

It is easily seen that there is a unique solution to this integral equation and that its
solution can be expressed as the solution to the fixed point equation (21). Proposi-
tion 4 is proved. �

The above proposition can be seen as a kind of law of large numbers, with

LN
1
(
Nα∗

log(N)t
) ∼ h(t)Nα∗

as N → ∞.

It is thus natural to expect for the corresponding central limit theorem that(
LN

1 (Nα∗
log(N)t) − h(t)Nα∗√
Nα∗ log(N)

)
should converge in distribution to some Gaussian process (R(t)). However, the
following proposition shows that such a convergence cannot hold: the centering
term h(t) has to be replaced by a deterministic term hN(t) which depends on N .
As we shall see, hN is such that the following expansion holds:

hN(t) = h(t) − μ1

(α∗ + 1)3 logN

∫ t

0
log

(
h(u)

)2 du + o

(
1

logN

)
.
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In particular, (hN(t)) converges “slowly” to (h(t)) at the rate 1/ logN instead of a
rate 1/Nα∗/2+ε for which a “classic” centering procedure would be enough. In the
end, this second limit theorem gives the representation

L1
(
Nα∗

log(N)t
) = hN(t)Nα∗ + O

(√
Nα∗ logN

)
.

PROPOSITION 5 (Central limit theorem). If ρ1 < 1/2 and (LN
1 (t),LN

2 (t)) is
the solution to the SDE (12) with the initial conditions LN

2 (0) = N and LN
1 (0)

being such that

lim
N→+∞

LN
1 (0) − δNα∗√
Nα∗ logN

= y,

for some 0 < δ ≤ 1 and y ∈ R. Then we have

lim
N→+∞

(
LN

1 (Nα∗
(logN)t) − hN(t)Nα∗√

Nα∗ logN

)
= (

R(t)
)
,

for the convergence in distribution, where (hN(t)) is the solution to the ordinary
differential equation

ḣN (t) = − μ1

(1 + α∗)
loghN(t)

(α∗ + 1 + log(hN(t))/ logN)
,

with hN(0) = δ and (R(t)) is the solution to the following SDE:

dR(t) = √
2λ1 dB(t) − μ1

(1 + α∗)2

R(t)

h(t)
dt,(23)

with R(0) = y, (B(t)) denoting standard Brownian motion on R and (h(t)) being
defined in (21).

PROOF. From relations (15) and (18), the increasing process of the martingale

(
MN(t)

) def.=
(

MN(Nα∗
(logN)t)√

Nα∗ logN

)

is given by(
2λt + μ

(1 + α∗) logN

∫ t

0

log(N−α∗ + ZN(u))

α∗ + 1 + log(N−α∗ + ZN(u))/(logN)
du

)
.

By Proposition 4, this quantity converges in distribution to (2λt). Hence, using
the martingale criterion for convergence to a Brownian motion (see Theorem 1.4,
page 339 of Ethier and Kurtz [11]) we can conclude that (MN(t)) converges in
distribution to Brownian motion run at speed 2λ.
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With the same notation as in the proof of the previous proposition, the relation
satisfied by (ZN(t)) yields

ZN(t)
def.=

√
Nα∗

logN

(
ZN(t) − hN(t)

)
= ZN(0) + MN(t)(24)

− μ

(1 + α∗)2

∫ t

0

√
Nα∗

logN

(
dN

(
N−α∗ + ZN(u)

) − dN

(
hN(u)

))
du,

where

dN(x) = logx

1 + (logx)/((α∗ + 1) logN)
.

Let T > 0 and ε > 0, and let AN be the event

AN =
{

inf
0≤s≤T

ZN(s) ≥ δ

2

}
.

By Proposition 4 and the fact that (h(t)) is nondecreasing with h(0) = δ, there
exists N0 such that for any N ≥ N0, P(Ac

N) ≤ ε.
The properties of the derivate d ′

N of dN are used to analyze the limit of (ZN(t)).
Observe that

d ′
N(x) =

{
x

(
1 + logx

(α∗ + 1) logN

)}−1

.(25)

On the event AN , we obtain from relation (24) and the fact that for N large enough,

sup
[δ/2,∞)

d ′
N ≤ 4

δ

that for any t ≤ T ,∣∣ZN(t)
∣∣ ≤ ∣∣ZN(0)

∣∣ + ∣∣MN(t)
∣∣ + 4μ

δ(1 + α∗)2

∫ t

0

∣∣ZN(u)
∣∣du.

As a consequence, Gronwall’s lemma gives us that on the set AN

sup
0≤t≤T

∣∣ZN(t)
∣∣ ≤ (∣∣ZN(0)

∣∣ + sup
0≤t≤T

∣∣MN(t)
∣∣)eCT ,

where C = 4μ/(2(1 + α∗)2). Using the fact that the sequence of processes
(MN(t)) is tight for the topology of uniform convergence, together with our as-
sumption on XN(0), we obtain that there exist N1 and K > 0 such that for any
N ≥ N1

P
(
Bc

N,K

) ≤ ε where BN,K =
{

inf
0≤s≤T

ZN(s) ≥ δ

2
, sup

0≤t≤T

∣∣ZN(t)
∣∣ ≤ K

}
.
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Next, recall the notation wf for the modulus of continuity of the function f . On
the event BN,K , relation (24) gives us that for any ξ > 0,

wZN
(ξ) ≤ wMN

(ξ) + C sup
s,t≤T

|s−t |≤ξ

∫ t

s

∣∣ZN(u)
∣∣du ≤ wMN

(ξ) + CKξ.

The sequence of processes (MN(t)) being tight, this relation and the fact that
P(BN,K) > 1 − ε show that for any η > 0, there exists ξ0 such that for every
ξ ≤ ξ0 and N ≥ N0,

P
(
wZN

(ξ) ≥ η
) ≤ 3ε.

Since we can apply this reasoning to any ε > 0, here again the tightness criterion
of the modulus of continuity enables us to conclude that the sequence of processes
(ZN(t)) is tight.

Let (R(t)) be one of the limiting points. By using Skorohod’s representation
theorem (see Ethier and Kurtz [11]) up to a change of probability space, we can
assume that the convergence to (R(t)) holds almost surely on [0, T ] for the uni-
form norm. But on the set BN,K , (25) and Lebesgue’s differentiation theorem (see
Rudin [26], e.g.) guarantees that the integral term on the right-hand side of equa-
tion (24) converges almost surely to∫ t

0

R(u)

h(u)
du.

Consequently (R(t)) satisfies the SDE (23) with R(0) = y, and the uniqueness of
such a solution gives us the convergence in distribution we were seeking. �

A direct consequence of this result is that, starting from Nα∗
, the process

(LN
1 (t)) behaves like an Ornstein–Uhlenbeck process around Nα∗

.

THEOREM 1 [A stable regime for (LN
1 (t))]. If ρ1 < 1/2, LN

2 (0) = N and
LN

1 (0) is such that, for some y ∈ R,

lim
N→+∞

LN
1 (0) − Nα∗√
Nα∗ logN

= y,

then the sequence of processes(
LN

1 (Nα∗
(logN)t) − Nα∗√
Nα∗ logN

)
converges in distribution to an Ornstein–Uhlenbeck process (Z(t)), that is, the
solution to the SDE

dZ(t) = √
2λ1 dB(t) − μ1

(α∗ + 1)2 Z(t)dt, Z(0) = y,(26)

where (B(t)) denotes standard Brownian motion.
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To complete this section on the time scale t → Nα∗
logN , the following propo-

sition shows that, if ρ1 < 1/2 and LN
2 (0) = N , then the process (LN

1 (t)) always

reaches the stable regime around Nα∗
described in the previous theorem. In par-

ticular, if LN
1 (0) = 0, the hitting time of 
Nα∗� is smaller than Nβ for any β > α∗.

PROPOSITION 6. Let

TN
def .= inf

{
s > 0 :LN

1 (s) ∈ Nα∗ + [−√
Nα∗ logN,

√
Nα∗ logN

]}
.

If ρ1 < 1/2, LN
2 (0) = N and LN

1 (0) ≤ Nβ for some β ∈ (α∗,1), then

lim
N→+∞P

(
TN

Nβ(logN)2 ≤ 1
)

= 1.

PROOF. As before, the result is proved for the process (XN(t)) instead of
(LN

1 (t)). Suppose that XN(0) = 
Nβ�. The SDE (14) and relation (18) show that
for any stopping time τ , one has

E
(
XN(t ∧ τ)

) = XN(0)

− μ

(α∗ + 1) logN
(27)

×E

(∫ t∧τ

0

log((1 + XN(u))/Nα∗
)

1 + α∗ + log((1 + XN(u))/Nα∗
)/ logN

du

)
.

Defining again

Hx
def.= inf

{
s > 0 :L1(s) = 
x�},

and setting xN
0 = 2�Nα∗�, the above relation gives

0 ≤ XN(0) − μ

(α∗ + 1) logN

log 2

1 + α∗ + (log 2)/ logN
E(t ∧ HxN

0
).

Consequently, letting t and then N go to infinity yields

lim sup
N→+∞

E(HxN
0
)

Nβ logN
< +∞.

We can therefore assume that XN(0) = 2�Nα∗�. Setting this time xN
1 = 
Nα∗� +


Nα∗−ε�, where ε > 0 is such that α∗ + ε < β , the same argument gives us that

xN
1 ≤ XN(0) − μ

(α∗ + 1) logN

log(1 + 1/Nε)

1 + α∗ + log(1 + 1/Nε)/ logN
E(HxN

1
),

and thus

lim sup
N→+∞

E(HxN
1
)

Nα∗+ε logN
< +∞.(28)
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Similarly, if xN
2 = 
Nα∗� + 
Nα∗−2ε� and if we choose XN(0) = xN

1 , the above
equation gives for τ = HxN

2

⌊
Nα∗−2ε⌋ ≤ ⌊

Nα∗−ε⌋− μ

(α∗ + 1) logN

log(1 + 1/N2ε)

1 + α∗ + log(1 + 1/N2ε)/ logN
E(HxN

2
),

so that relation (28) also holds for HxN
2

. Setting xN
i = Nα∗ + Nα∗−iε , we can

proceed by induction until the smallest integer i∗ such that i∗ε > α∗/2. Finally,
we obtain that as N → ∞,

E(TN)

Nβ(logN)2 =
E(HxN

0
)

Nβ(logN)2 +
i∗∑

i=1

E(HxN
i

− HxN
i−1

)

Nβ(logN)2 → 0.

We conclude by using the Markov inequality.
Up to now we have been dealing with the case XN(0) > Nα∗

. There remains
to consider the case XN(0) < Nα∗

. First, Proposition 3 shows that we can assume
directly that XN(0) = 
xNα∗� for some x ∈ (0,1). We can then proceed as before
by estimating HNα∗−Nα∗−ε for ε sufficiently small and by decreasing the exponent
by ε at each step until it falls below α∗/2. This completes the proof of Proposi-
tion 6. �

REMARK. Proposition 6 completes the results of Section 4. Indeed, it shows in
particular that if LN

1 (0) = 0 and LN
2 (0) = 0, then the average hitting time E(TN)

of the neighborhood of Nα∗
is, up to a constant, upper bounded by Nβ for any

β > α∗. With the same arguments as in the previous proof, it can be shown in fact
that there exists a constant C > 0, such that

E(0,N)(TN) ≤ C1
Nα∗

log(N)2 log log(N)

log log log(N)
.(29)

6. The fluid time scale. Recall that the fluid scaling of (L(t)) = (L1(t),

L2(t)) consists in speeding up the time scale of the Markov process proportionally
to the norm of its initial state and by scaling the state variable by the same quantity.
Hence, if ‖LN(0)‖ = max(LN

1 (0),LN
2 (0)) = N , we are interested in the process

(
LN(t)

) def.= 1

N

(
L(Nt)

)
.

Without loss of generality, it can be assumed that

lim
N→+∞LN(0) = lim

N→+∞

(
L1(0)

N
,
L2(0)

N

)
= (x,1 − x),

for some 0 ≤ x ≤ 1. See, for example, Bramson [9] and Robert [25].



2650 P. ROBERT AND A. VÉBER

The initial fluid state considered up to now in Propositions 4 and 6 corresponds
to the case x = 0,

lim
N→+∞LN(0) = (0,1).

It has been shown in Proposition 6 of Section 5 that in this setting the hitting time
of Nα∗

by (L1(t)) is negligible compared to N . Consequently, on the fluid time
scale, L1(t) is immediately of the order of Lα∗

2 .
The following proposition completes this result. It shows that for any initial

fluid state, then the first time L1 is close to Lα∗
2 is of the order of N and, therefore,

that this event occurs on the fluid time scale.

PROPOSITION 7. Suppose that ρ1 < 1/2, ρ2 > 1/2, and that (LN
1 (t),LN

2 (t))

is the solution to the SDE (12) with initial conditions LN
2 (0) = N and LN

1 (0) such
that

lim
N→+∞LN

1 (0)/N = x ∈ R+.

Let TN be defined by

TN = inf
{
s > 0 :LN

1 (s) ∈ LN
2 (s)α

∗

+
[
−
√

LN
2 (s)α

∗ logLN
2 (s),

√
LN

2 (s)α
∗ logLN

2 (s)
]}

.

Then, for the convergence in distribution we have

lim
N→+∞

TN

N
= t0(x)

def .= 2x

μ1 − 2λ1
.

PROOF. To start with, note that for both i ∈ {1,2} and all t ≥ 0, Li(t) ≤
Li(0) + Nλi

([0, t]). Hence, by the law of large numbers for Poisson processes,
for every η > 0 and K > 0 there exists N0 ∈ N, such that with probability greater
than 1 − η, the relations

L1(Nt) ≤ (1 + 2λ1K)N and L2(Nt) ≤ (1 + 2λ2K)N

hold for all t ≤ K and N ≥ N0.
Let us now define τN

0 = inf{s ≥ 0 :LN
1 (s) ≤ N/(logN)2}. Of course, this time

is 0 when LN
1 (0) ≤ N/(logN)2. By the remark made in the previous paragraph,

with probability at least 1 − η we have for every s ≤ τN
0 ∧ (KN)

logN − 2 log logN

log(1 + 2λ2K) − 2 log logN + 2 logN
≤ logLN

1 (s)

logLN
1 (s) + logLN

2 (s)
(30)

and

logLN
2 (s)

logLN
1 (s) + logLN

2 (s)
≤ log(1 + 2λ2K) + logN

log(1 + 2λ2K) − 2 log logN + 2 logN
.
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Hence, on this time interval the service capacity offered to class 1 jobs (resp.,
class 2 jobs) is at least (resp., at most) 1/2 in the limit. Since ρ2 > 1/2, this implies
that the process (LN

2 (s)) is increasing on the time interval [0, τN
0 ∧ (KN)]. That

is, for N sufficiently large we have with probability greater than 1 − η

inf
s≤τN

0 ∧(KN)

LN
2 (s) ≥ N − logN.

Consequently, relations (30) can be completed by the inequality

logLN
1 (s)

logLN
1 (s) + logLN

2 (s)
≤ log(x + 2λ1K) + logN

log(x + 2λ1K) + log(1 − (logN)/N) + 2 logN
.

This shows that, with high probability, as N gets large the two queues receive
the capacity 1/2. As a straightforward consequence, we have the convergence in
distribution

lim
N→∞

τN
0

N
= 2x

μ1 − 2λ1
= t0(x).

Next, let us suppose that LN
1 (0) ≤ 
N/(logN)2� and let us define

τN
1 = inf

{
s > 0 :LN

1 (s) ≤ 2Nα∗}
.

Since LN
2 (Nt) grows at linear rate (recall that ρ2 > 1/2), we can again compare

LN
1 to (XN(t)) and conclude from relation (27) applied to the stopping time τN

1
that

μ1

(α∗ + 1) logN

log(2)

1 + α∗ + log(2)/ logN
E
(
τN

1
) ≤ LN

1 (0).

Consequently,

lim
N→+∞E

(
τN

1
)
/N = 0.

We can thus assume that LN
1 (0) = 2
Nα∗�, and Proposition 6 shows that in this

case,

lim
N→∞E(TN)/N = 0.

Coming back to the initial question (with an arbitrary x) and using the strong
Markov property of LN combined with the last two limits, we obtain that TN =
τN

0 + (τN
1 − τN

0 ) + (TN − τN
1 ), where

τN
0

N

(d)→ t0(x),
τN

1 − τN
0

N

(d)→ 0 and
TN − τN

1

N

(d)→ 0

as N → ∞. By Slutzky’s lemma, we can conclude that TN → t0(x) in law. �
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The following theorem is a key result in the analysis of the fluid limits of this
system. It states that if ρ1 < 1/2 and L1(0) is of the order of L2(0)α

∗
, there is

nonempty time interval on the fluid time scale on which the relation L1 ∼ Lα∗
2

holds.

THEOREM 2. Suppose that ρ1 < 1/2, ρ1 + ρ2 < 1 and let κ > 0. Then there
exists η0 > 0 such that for any sequence (lN1 ) satisfying

lim sup
N→+∞

∣∣∣∣ lN1
Nα∗ − 1

∣∣∣∣ ≤ κ,

if (LN
1 (t),LN

2 (t)) is the solution to the stochastic differential equation (12) with
initial condition (L1(0),L2(0)) = (lN1 ,N), then

lim
N→+∞P

(
sup

0≤s≤η0N

∣∣∣∣ LN
1 (s)

(LN
2 (s))α

∗ − 1
∣∣∣∣ > κ

)
= 0.(31)

PROOF. The main argument consists in controlling the upward jumps of L1
on sufficiently small fluid time scale intervals by an ergodic reflected random walk.
It gives the excursions of L1 on the interval are upper bounded by the excursions
of the reflected random walk and, therefore, cannot be too large by Kingman’s
inequality. The same argument applies to the downward jumps. Since L1 remains
close to Lα∗

2 at the end of the time interval it gives finally the result.
Let us write a0 = 1 + κ , and let us prove that there exists η0 > 0 such that

lim
N→+∞P

(
sup

0≤s≤η0N

LN
1 (s)

(LN
2 (s))α

∗ > a0

)
= 0.(32)

The other inequality can then be shown by using the same technique, and so we
omit the details.

The process (LN
2 (s)) is stochastically bounded from above by (Q

N

2 (s)) describ-
ing the number of class 2 jobs in the priority system where class 1 jobs have the
priority of service, that is, queue 2 is served only when queue 1 is empty. For this
system, it is not difficult to show that the convergence in distribution

lim
N→+∞

(
Q

N

2 (Ns)

N
, s < 1

)
= (

1 + μ2(ρ1 + ρ2 − 1)s, s < 1
)

holds. Similarly, the process (LN
2 (s)) is stochastically bounded from below by

(QN
2 (s)) describing the number of class 2 jobs when they have priority, and one

has the corresponding convergence in distribution

lim
N→+∞

(QN
2 (Ns)

N
, s < 1

)
= (

1 + μ2(ρ2 − 1)s, s < 1
)
.



BANDWIDTH SHARING ALGORITHM 2653

Fix 0 < η0 < 1 such that

a0
(
1 + 2μ2(ρ2 − 1)η0

)α∗
> 1.

Let also E be the event defined by

E =
{

sup
0≤s≤η0N

LN
2 (s)

N
≤ 3

2
, inf

0≤s≤η0N

LN
2 (s)

N
≥ 1 + 3

2
μ2(ρ2 − 1)η0

}
.

The above convergence in distribution results show in particular that, for any ε > 0,
there exists N0 such that for every N ≥ N0,

P
(
Ec) ≤ P

(
sup

0≤s≤η0N

Q
N

2 (s)

N
>

3

2

)

+ P

(
inf

0≤s≤η0N

QN
2 (s)

N
< 1 + 3

2
μ2(ρ2 − 1)η0

)
≤ ε.

By relation (18), the service rate of queue 1 at time s is given by

�(s)
def.= λ1 + μ1

log[(1 + LN
1 (s))/(LN

2 (s))α
∗]

(α∗ + 1)((α∗ + 1) log(LN
2 (s)) + log[(1 + LN

1 (s))/(LN
2 (s))α

∗]) .

If for some y > 1 and some s < 1 LN
1 (s) ≥ y(LN

2 (s))α
∗
, then

�(s) ≥ λ1 + μ1
log(y)

(α∗ + 1)((α∗ + 1) log(LN
2 (s)) + log(y))

.

Furthermore,

�(s) ≥ μN(y)
(33)

def.= λ1 + μ1
log(y)

(α∗ + 1)((α∗ + 1)(log(3/2) + log(N)) + log(y))

holds on the event E .
Denote by (Xy(u)) the birth and death process on Z whose +1 (resp., −1)

jumps have rate λ1 [resp., μN(y)] and starting at 0.
Define

a1 = a0

(
1 + 3

2
μ2(ρ2 − 1)η0

)α∗
and a2 = 1 + a1

2
.

Since ρ2 < 1, the definition of η0 gives that a1 > 1 and, therefore, a2 > 1. Note
that a0 > a2. Suppose first that lN1 /Nα∗ → a0.

A simple coupling argument gives that the processes (LN
1 (s)) and (Xa2(s)) can

be constructed so that, on the event E , the relation

LN
1 (s) ≤ lN1 + Xa2(s)(34)
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holds for every s ≤ inf{u :LN
1 (u)/(LN

2 (u))α
∗ ≤ a2}.

For every x ≥ 0, Kingman’s inequality (see again Kingman [19] or relation (3.3)
of Theorem 3.5 in Robert [25]) gives us the estimate

P

(
sup
s≥0

Xa2(s) ≥ x
)

≤ exp
(−x

(
μN(a2) − λ1

))
.(35)

In particular, the random variable

1

Nα∗ sup
s≥0

Xa2(s)

converges in distribution to 0 since

μN(a2) ∼ λ1 + μ1 log(a2)

(α∗ + 1)2 logN
,

as N goes to infinity. Let

TN = inf
{
s > 0 : lN1 + Xa2(s) ≤ a2N

α∗}
.

In a similar way as in the proof of Proposition 6, for example, a simple drift anal-
ysis shows that

E(TN) ≤ (α∗ + 1)((α∗ + 1)(log(3/2) + log(N)) + log(a2))

μ1 log(a2)
lN1 ,

and consequently

lim
N→+∞P

(
TN > N/(logN)

) = 0.

From relation (34), one gets that with probability tending to 1, (LN
1 (t)/Nα∗

) does
not grow above (lN1 (t)/Nα∗

) until the time TN , which itself occurs much before N .
As a consequence, it is enough to prove identity (32) with the assumption that
LN

2 (0) = N and

lim
N→+∞

LN
1 (0)

Nα∗ = a2.

The reflected process of the birth and death process (Xy(u)) is denoted by
(X+

y (u)). This is in fact an M/M/1 queue with input rate λ1 and service rate
μN(y). As before, with inequality (33), one can construct a coupling such that the
relation

LN
1 (s) ≤ LN

1 (0) + X+
a2

(s),(36)

holds for every s ≤ η0N on the event E .
For every y > 0, let us define

τy = inf
{
s ≥ 0 :X+

a2
(s) ≥ y

}
and H = inf

{
s ≥ 0 :

LN
1 (s)

(LN
2 (s))α

∗ > a0

}
.
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The proposition will be proved if one shows that P(H ≤ η0N) converges to 0 as N

goes to infinity.
On the event E , if 0 ≤ s ≤ η0N is such that LN

1 (s) ≥ a0(L
N
2 (s))α

∗
then

LN
1 (s) ≥ a0

(
1 + 3

2μ2(ρ2 − 1)η0
)α∗

Nα∗ = a1N
α∗

.

Consequently, equation (36) and the definition of a2 give that for every N ≥ N0,

P(H ≤ η0N) ≤ ε + P(τNα∗
(a1−1)/2 ≤ η0N).(37)

But using the same technique as in the first part of the proof of Proposition 4, we
can show that the probability that X+

a2
reaches Nα∗

(a1 − 1)/2 in one excursion
away from 0 is so low, that the probability that it reaches this height during one
of the O(N) excursions it does in the interval [0, η0N ] tends to 0 as N tends to
infinity. Therefore, we can conclude that

P(H ≤ η0N) ≤ 2ε,

for N large enough. Since this property holds for every ε > 0, Theorem 2 is proved.
�

COROLLARY 1. Under the assumptions of Theorem 2, the convergence in dis-
tribution

lim
N→+∞

(
LN

2 (Nt)

N
,0 ≤ t < t0

)
= (

γ (t),0 ≤ t < t0
)

holds, with t0 = 1/(μ2(1 − ρ1 − ρ2)) and γ (t) = 1 + μ2(ρ1 + ρ2 − 1)t .
In addition, for every t < t0 we have

lim
N→+∞P

(
sup

0≤s≤t

∣∣∣∣ LN
1 (Ns)

(LN
2 (Ns))α

∗ − 1
∣∣∣∣ > κ

)
= 0.(38)

PROOF. Let us first prove the convergence

lim
N→+∞

(
LN

2 (Nt)

N
,0 ≤ t ≤ η0

)
= (

γ (t),0 ≤ t ≤ η0
)
.(39)

The SDE (12) is used in the same way as before, and so we only sketch the proof.
By Theorem 2, we have

lim
N→+∞P

(
sup

0≤s≤η0

∣∣∣∣ LN
1 (Ns)

(LN
2 (Ns))α

∗ − 1
∣∣∣∣ ≤ κ

)
= 1.

Thus, LN
1 (Ns) is at most of the order of Nα∗

with arbitrarily large probability. This
implies that for any s ≤ η0, all the arrivals at queue 1 up to time Ns are processed.
Hence, queue 1 uses the fraction ρ1 of the capacity of the server, and the remaining
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capacity is devoted to queue 2. The convergence (39) is proved. Furthermore, from
relation (31) we obtain that

lim
N→+∞P

(∣∣∣∣ LN
1 (Nη0)

(LN
2 (Nη0))α

∗ − 1
∣∣∣∣ ≤ κ

)
= 1,

and LN
2 (Nη0) ∼ γ (η0)N . Consequently, Theorem 2 applied with the initial condi-

tion (LN
1 (Nη0),L

N
2 (Nη0)) shows that the convergence (39) and relation (31) can

be extended to the interval [0, η0(1 + γ (η0))]. That is,

lim
N→+∞P

(
sup

0≤s≤η0(1+γ (η0))

∣∣∣∣ LN
1 (Ns)

(LN
2 (Ns))α

∗ − 1
∣∣∣∣ > κ

)
= 0.(40)

Proceeding by induction, as long as γ (x) �= 0 if the convergence (39) and inequal-
ity (40) hold on [0, x], these relations can be extended to [0, x + γ (x)η0]. The
corollary is proved. �

The following theorem is the main result of this section. Propositions 4 and 6
show that if LN

2 (0) = N then quickly, on a time scale faster than t →
Nα log(N)2 · t , the first coordinate is very close to Nα∗

. Since the component
L2 does not change much on this time scale, this can be rephrased as follows:
very quickly L1 ∼ Lα∗

2 . This theorem establishes this property on the fluid time
scale: L2 is decreasing linearly on this time scale and L1 adapts very quickly to
the new values of L2 so that L1 ∼ Lα∗

2 . This is of course a much stronger result
than Propositions 4 and 6.

THEOREM 3. Suppose that ρ1 < 1/2 and ρ1 + ρ2 < 1. If (LN
1 (t),LN

2 (t)) is
the solution to the SDE (12) with LN

2 (0) = N and

lim
N→+∞

LN
1 (0)

Nα∗ = 1,

then we have for the convergence in distribution

lim
N→+∞

([
LN

1 (Nt)

Nα∗ ,
LN

2 (Nt)

N

]
,0 ≤ t < t0

)
= ([

γ (t)α
∗
, γ (t)

]
,0 ≤ t < t0

)
,

where t0 = 1/(μ2(1 − ρ1 − ρ2)) and γ (t) = 1 + μ2(ρ1 + ρ2 − 1)t .

PROOF. From Corollary 1, we obtain that relation (38) holds for any κ > 0.
Hence, the process (

LN
1 (Ns)

(LN
2 (Ns))α

∗ ,0 ≤ s < t0

)
converges in distribution to the process constant equal to 1 on [0, t0) as N goes to
infinity. We conclude with the convergence of (LN

2 (Nt)/N,0 ≤ t < t0). �
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We can now state a fluid limit result concerning this network under the assump-
tion ρ1 < 1/2 and ρ2 > 1/2 and with the more general initial conditions consid-
ered in Section 4. Analogous statements for the other cases are available, but for
the sake of simplicity we do not give them here.

THEOREM 4 (Fluid limits). Suppose that ρ1 < 1/2 and ρ2 > 1/2. If (LN
1 (t),

LN
2 (t)) is the solution to the SDE (12) with initial conditions such that

lim
N→+∞

(
LN

1 (0)

N
,
LN

2 (0)

N

)
= (x,1 − x),

for some x ∈ [0,1] then, for the convergence in distribution, we have

lim
N→+∞

(
LN

1 (Nt)

N
,
LN

2 (Nt)

N

)
= (

�1(t), �2(t)
)
,

where the pair (�1, �2) is defined as follows: if t1(x) = 2x/(μ1 − 2λ1),

(
�1(t), �2(t)

) =
⎧⎪⎨⎪⎩

(
x +

[
λ1 − μ1

2

]
t, (1 − x) +

[
λ2 − μ2

2

]
t

)
, t≤t1,(

0,
(
�2(t1) + [

λ2 − μ2(1 − ρ1)
]
(t − t1)

)+)
, t≥t1.

PROOF. We give only a sketch of the proof. Until the time Nt1, both queues
are of the same asymptotic order for the log function. Consequently, as it has been
already seen in the proof of Proposition 7, they both receive half of the capacity.
Notice that on the time interval [0,Nt1], because of our assumptions the variable
(LN

1 (t)) decreases whereas (LN
2 (t)) increases. After time Nt1, from Proposition 7

and Theorem 3, the variable (LN
1 (t)) is of the order of Nα∗

and is therefore negli-
gible for the fluid scaling. �

The following proposition completes the description of fluid limits of the sys-
tem. Its proof follows the same line as the above proposition, it is omitted.

PROPOSITION 8. If (LN
1 (t),LN

2 (t)) is the solution to the SDE (12) with initial
conditions such that

lim
N→+∞

(
LN

1 (0)

N
,
LN

2 (0)

N

)
= (x,1 − x),

then, for the convergence in distribution, we have

lim
N→+∞

(
LN

1 (Nt)

N
,
LN

2 (Nt)

N

)
= (

�1(t), �2(t)
)
,

where the pair (�1, �2) is defined as follows:
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– If ρ1 > 1/2 and ρ2 > 1/2, then(
�1(t), �2(t)

) =
(
x +

[
λ1 − μ1

2

]
t, (1 − x) +

[
λ2 − μ2

2

]
t

)
, t ≥ 0.

– If ρ1 < 1/2 and ρ2 < 1/2, when x is such that

t1
def .= x

μ1/2 − λ1
≤ t2

def .= 1 − x

μ2/2 − λ2

then

(
�1(t), �2(t)

) =
⎧⎪⎨⎪⎩

(
x +

[
λ1 − μ1

2

]
t, (1 − x) +

[
λ2 − μ2

2

]
t

)
, t≤t1,(

0,
(
�2(t1) + [

λ2 − μ2(1 − ρ1)
]
(t − t1)

)+)
, t≥t1,

and similarly for t2 ≤ t1.

REMARK. Note that the constant α∗ does not play a role in the fluid limit,
but clearly enough this result is much weaker that Theorem 3. As we shall see in
Section 7, the constant α∗ plays an important qualitative role in the expression of
the invariant distribution when the regime is close to saturation.

7. Heavy traffic regime. When ρ1 + ρ2 < 1, since the queueing system is
work conserving the Markov process (L1(t),L2(t)) has an invariant distribu-
tion πρ , where ρ = (ρ1, ρ2). In the following, (Lρ,1,Lρ,2) stands for a random
variable with distribution πρ . Obtaining explicit expressions to describe πρ seems
to be quite difficult: because of the logarithmic weights, the double generating
function of (πρ(m,n), (m,n) ∈ N) does not satisfy an autonomous equation as it
is often the case, for example, in classic two-dimensional reflected random walks.
A precise result on the asymptotic behavior of πρ when ρ1 + ρ2 is close to 1 can
nevertheless be obtained. Its proof relies heavily on the scaling results of the pre-
vious sections.

THEOREM 5 (Heavy traffic limit of invariant distribution). If ρ = (ρ1, ρ2) and
ρ1 < 1/2 is fixed, then as ρ̄ = ρ1 + ρ2 tends to 1, we have the convergence in
distribution

lim
λ2↗μ2(1−ρ1)

(
(1 − ρ̄)α

∗
Lρ,1, (1 − ρ̄)Lρ,2

) = (
Eα∗

η ,Eη

)
,

where here again α∗ = ρ1/(1 − ρ1) and Eη denotes an exponentially distributed
random variable whose parameter η is given by

η−1 = μ2√
2

√
1 + (μ1 − μ2)2

μ1μ2
ρ1(1 − ρ1).
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PROOF. The proof uses the fact that the load of this system, that is, the sum
of the services to be processed, is the same as for a classical M/G/1 FIFO queue
for which a classical heavy traffic limit results holds. It gives that, for ρ̄ ∼ 1, the
relation Lρ,1/μ1 + Lρ,2/μ2 ∼ X/(1 − ρ̄) holds in distribution for a convenient
exponential random variable. This shows that at least one of the variables must
be large. Then one considers the process (L1(t),L2(t)) with initial state given by
(Lρ,1,Lρ,2) so that it is stationary. The results of the previous sections show that
if the initial state is large, very quickly L1 will be of the order of Lα∗

2 , but since the
process is stationary it implies that this is also true for Lρ,1 and Lα∗

ρ,2.
For every ξ > 0, let Eξ denote, as before, an exponential random variable with

parameter ξ . All the variables used here will be assumed to be independent. The
total workload of the system is independent of the service allocation and so has
the same (invariant) distribution as the workload of an M/G/1 queue, with arrival
rate λ1 + λ2 and with the same service distribution as

σ
def.= BEμ1 + (1 − B)Eμ2,

where B is a Bernoulli random variable with parameter λ1/(λ1 +λ2). Hence, King-
man’s heavy traffic result for the workload at equilibrium (see Kingman [18] or
Proposition 3.10 of Robert [25]) gives the convergence in distribution

lim
λ2↗μ2(1−ρ1)

(1 − ρ̄)

(
Lρ,1

μ1
+ Lρ,2

μ2

)
= Eη0,(41)

where η0 is the constant given by

η0 = lim
λ2↗μ2(1−ρ1)

2

(λ1 + λ2)
√

Var(σ − Eλ1+λ2)

= √
2
/√

1 + (μ1 − μ2)2

μ1μ2
ρ1(1 − ρ1).

In particular, the family of random variables[
(1 − ρ̄)(Lρ,1), (1 − ρ̄)(Lρ,2)

]
(42)

is tight as ρ̄ ↗ 1. Let us denote a possible limit by (X1,X2), corresponding to a
sequence (ρ̄n) converging to 1. For every n ≥ 1, let us define (Lρn,1(t),Lρn,2(t)) as
the process with initial condition (Lρn,1,Lρn,2), which is thus a stationary process.

The strategy of the proof can be described as follows: use the results of Sec-
tions 4 and 6 to prove that, for a fixed time tn, Lρn,2(tn) is large and Lρn,1(tn) is
close to (Lρn,2(tn))

α∗
. Consequently, by stationarity, the equivalence Lρn,1 ∼ Lα∗

ρn,2
holds and relation (41) then gives us the desired result.

To start with, let us assume that P(X2 = 0) > 0. Then there exists δ > 0 with
the property that for any η > 0, there exists n0 ∈ N such that for every n ≥ n0,

P

(
Lρn,2 ≤ η

1 − ρ̄n

)
≥ δ.(43)
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Now, relation (41) tells us that P(X1 + X2 > 0) = 1. Consequently, for any ε > 0
there exists η0 > 0 and n0 such that if n ≥ n0 and η1 + η2 < 2η0,

P

(
Lρn,1 ≤ η1

1 − ρ̄n

,Lρn,2 ≤ η2

1 − ρ̄n

)
≤ ε.(44)

Let s0 > 0 and η1 > 0, and set tn = s0/(1 − ρ̄n). For n large enough, we have

δ ≤ P

(
Lρn,2 ≤ η1

1 − ρ̄n

)
= P

(
Lρn,2(tn) ≤ η1

1 − ρ̄n

)

≤ P

(
Lρn,2(tn) ≤ η1

1 − ρ̄n

, sup
[0,tn]

Lρn,2(s) >
η0

3(1 − ρ̄n)

)
+ ε

(45)

+ P

(
Lρn,2(tn) ≤ η1

1 − ρ̄n

,

sup
[0,tn]

Lρn,2(s) ≤ η0

3(1 − ρ̄n)
,Lρn,1(0) >

η0

1 − ρ̄n

)
.

Clearly enough since (L2(t)) decreases at rate at most μ2, as n increases the first
term on the right-hand side of (45) can be made arbitrarily small by choosing η1
and s0 in such a way that

η1 <
η0

3
+ (λ2 − μ2)s0 = η0

3
− μ2(1 − ρ2)s0.(C1)

The third term in the right-hand side of relation (45) can be upper bounded by

P

(
Lρn,1(0) >

η0

1 − ρ̄n

, inf[0,tn]Lρn,1(s) <
2η0

3(1 − ρ̄n)

)
(46)

+ P

(
Lρn,2(tn) ≤ η1

1 − ρ̄n

, sup
[0,tn]

Lρn,2(s) ≤ η0

3(1 − ρ̄n)
,

(47)

Lρn,1(0) >
η0

1 − ρ̄n

, inf[0,tn]Lρn,1(s) ≥ 2η0

3(1 − ρ̄n)

)
.

As before, the quantity in (46) will tend to 0 as n → ∞ if we choose s0 such that
η0

3
− μ1(1 − ρ1)s0 > 0.(C2)

Finally, if

sup
[0,tn]

Lρn,2(s) ≤ η0

3(1 − ρ̄n)
and inf[0,tn]Lρn,1(s) ≥ 2η0

3(1 − ρ̄n)
,

the infinitesimal drift �ρn,2(s) of Lρn,2 satisfies on [0, tn]
�ρn,2(s) ≥ μ2

(
ρ2 − log(η0/(3(1 − ρ̄n)))

log(η0/(3(1 − ρ̄n))) + log(2η0/(3(1 − ρ̄n)))

)

∼ μ2

(
ρ2 − 1

2

)
,



BANDWIDTH SHARING ALGORITHM 2661

as n goes to infinity. But ρn,2 converges to 1 − ρ1 > 1/2 by assumption, which
means that the quantity in (47) will tend to 0 as n gets large whenever

η1 < μ2(1/2 − ρ1)s0.(C3)

Choosing first s0 small enough to match (C1) and (C3), and then η1 small enough
to satisfy (C1) and (C3), we can conclude that the right-hand side of relation (45)
can be made smaller than δ/2, which yields a contradiction. We have thus proved
that P(X2 > 0) = 1.

As a consequence, for any ε > 0, one can find η0 and n0 ∈ N such that for every
n ≥ n0,

P

(
Lρn,2 ≥ η0

1 − ρ̄n

)
≥ 1 − ε.

The last step follows an analogous path, in that we choose a convenient time tn to
first show that, for any β > α∗, the quantity

P

(
Lρn,2 ≥ η1

1 − ρ̄n

,Lρn,1 ≥ 1

(1 − ρ̄n)β

)
is arbitrarily small with the help of Proposition 6, and next that for K sufficiently
large,

Lρn,1 ∈ (Lρn,2)
α∗ + [−K

√
(Lρn,2)α

∗ log(Lρn,2),K
√

(Lρn,2)α
∗ log(Lρn,2)

]
with high probability by Proposition 7.

Since Lρn,1 is of the order of (Lρn,2)
α∗

and that α∗ < 1, relation (41) gives the
desired convergence result. �

8. General functions for resource sharing. In this section, we consider the
case where the function (logx) describing the access to the resource is replaced by
some other function (f (x)). For a two node network, the corresponding Q-matrix
is given by: for every x ∈N

2+,⎧⎨⎩
q(x, x + ei) = λi,

q(x, x − ei) = μi

f (xi)

f (x1) + f (x2)
.

(48)

To concentrate on the most interesting case, throughout this section we assume that
ρ1 < 1/2. We analyze only the first two time scales in order to stress the difference
with the log function, at least concerning the scaling parameters. The proofs of the
results presented here are similar to those in the log case, and so most of the time
we only sketch them.

8.1. The log log function. Here, we consider the function f (x) = log(log(e +
x)). To simplify the notation, we use instead the function x → log2(x)

def.=
log(logx). This, of course, does not change the convergence results obtained in
the following paragraphs.
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Initial phase. The first time scale is t �→ φN(t) with

φN(t) = exp
[
(logN)t

]
.

The stochastic evolution equation is in this case

L1
(
φN(t)

) = L1(0) + λ1φN(t)
(49)

− μ1

∫ φN(t)

0

log2(L1(u))

log2(L1(u)) + log2(N)
du + MN

(
φN(t)

)
,

where (MN(t)) is a local martingale. Since φN(t) � N as long as t < 1, the second
coordinate L2 stays at N at least up to t ≈ 1. This justifies the fact that in the above
expression, the term log2(L2(u)) has been replaced by log2(N).

Let us now define ZN(t) = L1(φN(t))/φN(t). We have

ZN(t) = ZN(1) + λ1 − 1

φN(t)

− μ1

φN(t)

∫ t

0

log2(ZN(u)φN(u))

log2(ZN(u)φN(u)) + log2(N)
φ′

N(u)du + MN(φN(t))

φN(t)
.

Note that, for every u ≥ 0,

log2
(
ZN(u)φN(u)

) = log2
(
φN(u)

) + log
(

1 + log(ZN(u))

log(φN(u))

)
and

log2
(
φN(u)

) = u log2(N).

Hence, using the same methods as in Section 4, we obtain the following equiva-
lence for the convergence in distribution of processes, uniformly over any compact
subset of (0, α∗):

(
ZN(t)

) ∼
(
λ1 − μ1

φN(t)

∫ t

0

u

u + 1
φ′

N(u)du

)
∼

(
λ1 − μ1

t

t + 1

)
.

The following proposition is the analogue of Proposition 2 for the log log function.
Recall that α∗ = ρ1/(1 − ρ1) < 1 since ρ1 < 1/2.

PROPOSITION 9. If (LN
1 (t),LN

2 (t)) is the Markov process with Q-matrix (48)
and with initial condition (0,N), then the convergence in distribution

lim
N→+∞

(
LN

1 (exp[(logN)t ])
exp[(logN)t ] ,0 < t < α∗

)
=

(
λ1 − μ1

t

t + 1
,0 < t < α∗

)
holds for the uniform topology on compact sets of (0, α∗).
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The local equilibrium. The last proposition together with the results obtained
in Section 5 suggest that, if ρ1 < 1/2, the process should remain stable around
the value exp[(logN)α

∗]. As in Section 5, let us assume that LN
1 (0) = δφN(α∗)

for some δ ≤ 1, while LN
2 (0) = N . Using the relation ρ1 = α∗/(1 + α∗) and the

evolution equation (49), we obtain that for every t ≥ 0

LN
1 (t) = LN

1 (0)

− μ1

α∗ + 1

∫ t

0

log[log(LN
1 (u))/(logN)α

∗]
log[log(LN

1 (u))/(logN)α
∗] + (α∗ + 1) log2(N)

du

+ MN(t).

As we shall see, the appropriate scaling of time around φN(α∗) turns out to be
t �→ ψNt , where

ψN
def.= φN

(
α∗)(logN)α

∗
log2(N) = exp

[
(logN)α

∗]
(logN)α

∗
log log(N).

Indeed, let ẐN(t) = LN
1 (ψNt)/φN(α∗). For every u > 0, we have

log
[

log(LN
1 (ψNu))

(logN)α
∗

]
= log

[
1 + log(ẐN(u))

(logN)α
∗

]
,

so that

ẐN(t) − ẐN(0) − MN(ψNt)

φN(α∗)
+ MN(1)

φN(α∗)

= − μ1

(α∗ + 1)φN(α∗)

×
∫ ψNt

0

log[log(LN
1 (u))/(logN)α

∗]
log[log(LN

1 (u))/(logN)α
∗] + (α∗ + 1) log2(N)

du

∼ −μ1(logN)α
∗

log2(N)

(α∗ + 1)

∫ t

0

log(ẐN(u))

log(ẐN(u)) + (α∗ + 1)(logN)α
∗ log2(N)

du.

With the same tightness argument as in the proof of Proposition 4, we obtain the
corresponding convergence result detailed below. It is remarkable that the limit is
the same as in Proposition 4.

PROPOSITION 10. If (LN
1 (t),LN

2 (t)) is the Markov process with Q-mat-
rix (48), and initial conditions LN

2 (0) = N and LN
1 (0) ∼ δ exp[(logN)α

∗] for some
δ ∈ (0,1], then for the convergence in distribution of processes we have

lim
N→+∞

(
LN

1 (ψNt)e−(logN)α
∗ ) = (

h(t)
)
,

where

ψN = exp
[
(logN)α

∗]
(logN)α

∗
log logN
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and (h(t)) is the function defined by relation (21).
Furthermore, if LN

1 (0) ∼ exp[(logN)α
∗] + y

√
ψN for some y ∈ R, then the

sequence of processes (
LN

1 (ψNt) − e(logN)α
∗

√
ψN

)
converges in distribution to the Ornstein–Uhlenbeck process defined by rela-
tion (26).

REMARK. If ρ1 < 1/2 and if the initial condition is (0,N), we obtain that L1
is of the order of

exp
[
(logN)α

∗]
on the time scale t �→ ψNt . This is much smaller that the quantity Nα∗

corre-
sponding to the log policy. One can then take a function f growing more slowly to
infinity, such as log log log. Under the same assumptions, the variable LN

1 live in
a region with an even smaller order of magnitude. By pushing this scheme a little
further, we would obtain a policy similar to the Head of the Line Processor-Sharing
(see Bramson [8]), where node j receives the bandwidth

1{ni �=0}
1{n1 �=0} + · · · + 1{nJ �=0}

.

The main drawback of this policy is that a node with many jobs has the same
fraction of the capacity as a node with only a few of them. For this reason, it is
more likely that local congestion will occur more frequently.

8.2. The time scales for a general function. Finally, let us return to the gen-
eral case. Let us assume that the function x �→ f (x) is an increasing continuous
function on R+, tending to infinity as x → ∞, and suppose that there exist two
functions x �→ Af (x) and x �→ Bf (x) on R+ such that for any t > 0 and z ≥ 0,

lim
x→+∞

f −1(tf (x))

x
= 0, lim

x→+∞
f (zx) − f (x)

Af (x)
= Bf (z).(F1)

The first time scale for the initial phase is given by

φN : t �→ f −1(tf (N)
)
,(50)

where f −1 denotes the inverse function of f . If (LN
1 (t),LN

2 (t)) is the Markov
process with Q-matrix (48) and initial condition (0,N), then the convergence in
distribution

lim
N→+∞

(
LN

1 (φN(t))

φN(t)
,0 < t < α∗

)
=

(
λ1 − μ1

t

t + 1
,0 < t < α∗

)
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holds for the uniform topology on compact sets of (0, α∗). Indeed, the first relation
in condition (F1) ensures that the second coordinate LN

2 stays at N while LN
1 is

of the order of φN(t), so that exactly the same techniques as in Section 4 can be
applied.

The second time scale of interest is t �→ ψNt , where

ψN = φN(α∗)f (N)

Af (φN(α∗))
.(51)

If (LN
1 (t),LN

2 (t)) is the Markov process with Q-matrix (48) and initial conditions
L2(0) = N and L1(0) ∼ δφN(α∗) for some δ ∈ (0,1], then we conjecture that the
convergence in distribution of processes

lim
N→+∞

(
LN

1 (ψNt)

φN(α∗)

)
= (

h(t)
)
,

should hold, where (h(t)) is the function defined by⎧⎪⎨⎪⎩
h ≡ 1, if δ = 1,∫ h(t)

δ

1

Bf (u)
du = − μt

(1 + α∗)2 , if δ �= 1.
(52)

Some regularity properties (required to use Lebesgue’s differentiation theorem,
e.g.) are clearly necessary to justify this convergence, but then the rest of the proof
should follow the lines of the proof of the corresponding result for the log case.

Some examples.

(a) f (x) = log log(x). In this case, Af (x) = 1/ logx and Bf (x) = logx, and
we recover the expression of the time scales obtain in Section 8.1 for the log log
function, that is,

φN(t) = exp
[
(logN)t

]
and ψN = (logN)α

∗
log log(N) exp

(
(logN)α

∗)
.

(b) f (x) = (logx)β . Here, Af (x) = 1/[β(logx)β−1] and Bf (x) = logx, we
gives the two time scales

φN(t) = Nt1/β

and ψN = βα∗1−1/β
Nα∗1/β

(logN)2β−1.

In particular, we recover the time scales of the log case which have already been
identified.

Note that the functions x �→ xα , α > 0, do not satisfy the first relation in condi-
tion (F1).
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9. The network with J > 2 nodes. In this section, we briefly describe the
case of J > 2 nodes competing for the single resource. A special case is considered
to illustrate the similarities and also the differences in qualitative behaviors. The
motivation of this section is to show that the analysis of the two node network
gives the main ideas to start the investigation of more complicated situations. New
difficulties are indicated in the text, and the proofs of these results will be the
subject of a further work in a more general setting.

Let us assume that

ρ1 < ρ2 < · · · < ρJ and
J∑
1

ρj < 1.

If the state of the system is (nj )1≤j≤J , the kth station receives the fraction of
service

log(1 + nk)

log(1 + n1) + log(1 + n2) + · · · + log(1 + nJ )
.

From now on, we consider the case where Lj(0) = 0 for j = 1, . . . , J − 1, and
LJ (0) = N . As before (LN

j (t)) denotes the Markov process describing the number
of requests in each queue and with this initial condition.

9.1. Initial phase. The following proposition is analogous to Proposition 2,
and can be proved in the same way.

PROPOSITION 11. If (LN
j (t)) is the solution of the SDE (12) with the initial

condition Lj(0) = 0 for 1 ≤ j ≤ J − 1, and LJ = N , and if

t1
def .= ρ1

1 − (J − 1)ρ1
< 1, i.e., ρ1 <

1

J
,

then, for every 1 ≤ j ≤ J − 1, the convergence

lim
N→+∞

(LN
j (Nt)

Nt
,0 < t < t1

)
=

(
λj − μj

t

(J − 1)t + 1
,0 < t < t1

)
holds for the uniform topology on compact sets of (0, t1).

Observe that the quantity t1 is precisely the first time t for which

λ1 = μ1
t

1 + (J − 1)t
.
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9.2. Second phase. Let us now give a more heuristic description of the evo-
lution of the network after “time” Nt1 , but still on the time scale t �→ Nt . As
we shall see, for the second phase the exponent in N of the random variables
(Lj (N

t),2 ≤ j ≤ J − 1) are still t , but the exponent α2,1(t) of LN
1 becomes a

linear function of t with slope less than 1.
Let us use the different phenomena observed in the two node case to infer the

behavior of the J -node system.
First, since ρj > ρ1 for every j ≥ 2, the infinitesimal drift of Lj(N

t) remains
positive at least for a small amount of time after t1. Hence, one should have the
following convergence in distribution: for 2 ≤ j ≤ J − 1,

lim
N→+∞

(LN
j (Nt)

Nt
, t1 < t < t2

)
=

(
λj − μj

t

α1,2(t) + (J − 2)t + 1
, t1 < t < t2

)
,

where t2 is the first time t at which

λ2 = μ2
t

α1,2(t) + (J − 2)t + 1
.

Second, the station 1 should remain at a local equilibrium in the sense that the
coefficient α1,2(t) should be determined as follows:

λ1 = μ1
α1,2(t)

α1,2(t) + (J − 2)t + 1
.

Combining these relations, we obtain that

α1,2(t) = ρ1

1 − ρ1

(
1 + (J − 2)t

)
and t2 = ρ2

1 − ρ1 − (J − 2)ρ2
.

Of course, t2 has to be strictly less than 1.

9.3. Subsequent phases. Let us now give a, still heuristic, description of the
kth phase for 1 < k < J − 1. The first k − 1 stations are at a “local” equilibrium.
Denoting the exponent of the j th station in the kth phase by αj,k(t), the equilib-
rium is characterized by the relation

αj,k(t)

α1,k(t) + α2,k(t) + · · · + αk−1,k(t) + (J − k)t + 1
= ρj

for 1 ≤ j ≤ k − 1. The end of the kth phase, tk , corresponds to the situation when
the kth station reaches an equilibrium, that is, tk satisfies

tk

α1,k(tk) + α2,k(tk) + · · · + αk−1,k(tk) + (J − k)tk + 1
= ρk.
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Consequently, we obtain that

αj,k(t) = ρj

1 − ∑k−1
i=1 ρi

(
1 + (J − k)t

)
, 1 ≤ j ≤ k − 1

and

tk = ρk

1 − ∑k−1
i=1 ρi − (J − k)ρk

.

The time tk is such that tk < 1 if

k−1∑
i=1

ρi + (J − k + 1)ρk < 1.

9.4. Final phase. Provided that tJ−1 is strictly less that 1, at the time NtJ−1

all the stations are at a local equilibrium around Nαj,J where αj,J is given by

αj,J = ρj

1 − ∑J−1
i=1 ρi

.

Keep in mind that strictly speaking, the local equilibrium of the j th station is
on the time scale t �→ Nαj,J logNt . Hence, the whole process can be thought as
a collection of stationary processes evolving on different time scales. See Fig-
ure 2.

The difficult technical problem to solve here is for the J phases in between,
during which some of the exponents depend on time, adapting to the linear growth
of the other exponents. One of our main problems throughout this work has been
that we did not succeed in proving convergence of the log(Lj )/ logN variables
without showing a more demanding result, namely a convergence result for the
variables Lj . This difficulty is even more serious here since the exponents depend
on time.

FIG. 2. The network with J > 2 nodes on the t �→ Nt time scale when tJ−1 < 1.
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