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We here investigate the well-posedness of a networked integrate-and-fire
model describing an infinite population of neurons which interact with one
another through their common statistical distribution. The interaction is of
the self-excitatory type as, at any time, the potential of a neuron increases
when some of the others fire: precisely, the kick it receives is proportional
to the instantaneous proportion of firing neurons at the same time. From a
mathematical point of view, the coefficient of proportionality, denoted by α,
is of great importance as the resulting system is known to blow-up for large
values of α. In the current paper, we focus on the complementary regime and
prove that existence and uniqueness hold for all time when α is small enough.

1. Introduction. The stochastic integrate-and-fire model for the membrane
potential V across a neuron in the brain has received a huge amount of attention
since its introduction [see Sacerdote and Giraudo (2013) for a comprehensive re-
view]. The central idea is to model V by threshold dynamics, in which the potential
is described by a simple linear (stochastic) differential equation up until it reaches
a fixed threshold value VF, when the neuron emits a “spike”. Experimentally, at
this point an action potential is observed, whereby the potential increases very
rapidly to a peak (hyperpolarization phase) before decreasing quickly to a reset
value (depolarization phase).

Since spikes are stereotyped events, they are fully characterized by the times
at which they occur. The integrate-and-fire model is part of a family of spiking
neuron models which take advantage of this by modeling only the spiking times
and disregarding the nature of the spike itself. Specifically, in the integrate-and-fire
model we observe jumps in the action potential as the voltage is immediately reset
to a value VR whenever it reaches the threshold VF. Despite its simplicity, versions
of the integrate-and-fire model have been able to predict the spiking times of a
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neuron with a reasonable degree of accuracy [Jolivet, Lewis and Gerstner (2004),
Kistler, Gerstner and van Hemmen (1997)].

Many extensions of the basic integrate-and-fire model have been studied in the
neuroscientific literature, including ones in which attempts are made to include
noise and to describe the situation when many integrate-and-fire neurons are placed
in a network and interact with each other. In Lewis and Rinzel (2003), Ostojic,
Brunel and Hakim (2009), the following equation describing how the potential Vi

of the ith neuron in a network of N behaves in time is proposed:

d

dt
Vi(t) = −λVi(t) + α

N

∑
j

∑
k

δ0
(
t − τ

j
k

)
(1)

+ β

N

∑
j �=i

Vj (t) + I ext
i (t) + σηi(t)

for Vi(t) < VF and where Vi(t) is immediately reset to VR when it reaches VF.
Here, I ext

i (t) represents the external input current to the neuron, ηi(t) is the noise
(a white noise) which is importantly supposed to be independent from neuron to
neuron, and the constants λ,β,α and σ are chosen according to experimental data.
Moreover, the interaction term is described in terms of τ

j
k , which is the time of the

kth spike of neuron j , and the Dirac function δ0. Precisely, it says that whenever
one of the other neurons in the network spikes, the potential across neuron i re-
ceives a “kick” of size α/N . The Dirac mass interactions give rise to the same
kind of instantaneous behavior as the integrate-and-fire model. Although it is a
simplification of reality, it produces some interesting phenomena from a biologi-
cal perspective [see Ostojic, Brunel and Hakim (2009)].

In the case of a large network, that is, when N is large, many authors ap-
proximate the interaction term by an instantaneous rate ν(t), the so-called mean-
firing rate [see, e.g., Brunel (2000), Brunel and Hakim (1999), Ostojic, Brunel and
Hakim (2009), Renart, Brunel and Wang (2004)]. However, in the neuroscience lit-
erature, little attention is paid to how this convergence is achieved. Mathematically,
the mean-field limit as N → ∞ must be taken, but as a first step, this requires a
careful analysis of the asymptotic well-posedness. This is precisely the purpose of
the paper: to focus on the unique solvability of the resulting nonlinear limit equa-
tion (the analysis of the convergence being left to further investigations). At first
glance such a question may seem classical, given the volume of results available
that guarantee the existence of a solution to distribution dependent SDEs. How-
ever, as quickly became apparent in our analysis, in the excitatory case (α > 0) the
problem is in fact a delicate one, for which, to our knowledge, there are no existing
results available. This difficulty is due to the nature of the interactions, which intro-
duce the strong possibility of a solution that “blows up” in finite time. The validity
of the study of this question, and its nontrivial nature, is further justified by the fact
that several authors have recently been interested in exactly the same problem from



2098 DELARUE, INGLIS, RUBENTHALER AND TANRÉ

a PDE perspective [Cáceres, Carrillo and Perthame (2011), Carrillo et al. (2013)].
Despite some serious effort and very interesting related results on their part, we
understand that they were not able to prove the existence and uniqueness of global
solutions to the limit equation, which is the main result of the present paper.

1.1. Precisions. We now make precise the nonlinear equation of interest. First,
since the mathematical difficulties lie within the jump interaction term, we suppose
that there is no external input current [I ext

i (t) ≡ 0], and that the interaction term
is composed solely of the jump or reset part (β = 0). Although this is a nontrivial
simplification from a neuroscience perspective, it still captures all the mathemati-
cal complexity of the resulting mean-field equation.

Without loss of generality, we also take the firing threshold VF = 1 and the
reset value VR = 0 for notational simplicity. The nonlinear stochastic mean-field
equation under study here is then

Xt = X0 +
∫ t

0
b(Xs) ds + αE(Mt) + σWt − Mt, t ≥ 0,(2)

where X0 < 1 almost surely, α ∈ R, σ > 0, (Wt)t≥0 is a standard Brownian motion
in R and b :R → R is Lipschitz continuous. In comparison with (1), b must be
thought of as b(x) = −λx. Equation (2) is then intended to describe the potential
of one typical neuron in the infinite network, its jumps (or resets) being given by

Mt = ∑
k≥1

1[0,t](τk),

where (τk)k≥1 stands for the sequence of hitting times of 1 by the process (Xt)t≥0.
That is, (Mt)t≥0 counts the number of times Xt hits the threshold before time t ,
so that E(Mt) denotes the theoretical expected number of times the threshold is
reached before t . Such a theoretical expectation corresponds to what we would
envisage as the limit of the integral form of the interaction term

1

N

∫ t

0

∑
j

∑
k

δ
(
s − τ

j
k

)
ds = 1

N

∑
j

∑
k

1{τ j
k ≤t}

in (1) when N → ∞, assuming that neurons become asymptotically independent
[as is observed in more classical particle systems—see Sznitman (1991)].

1.2. PDE viewpoint and “blow-up” phenomenon. As mentioned above, equa-
tion (2) has been rigorously studied from the PDE viewpoint before. When σ ≡ 1,
the Fokker–Planck equation for the density p(t, y) dy = P(Xt ∈ dy) is given by

∂tp(t, y) + ∂y

[(
b(y) + αe′(t)

)
p(t, y)

]− 1
2∂2

yyp(t, y) = δ0(y)e′(t), y < 1,

where e(t) = E(Mt), subject to p(t,1) = 0, p(t,−∞) = 0, p(0, y) dy = P(X0 ∈
dy). Moreover, the condition that p(t, y) must remain a probability density trans-
lates into the fact that

e′(t) = d

dt
E(Mt) = −1

2
∂yp(t,1) ∀t > 0,
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which describes the nonlinearity of the problem. In the case when b(x) = −λx,
this nonlinear Fokker–Planck equation is exactly the one studied in Cáceres, Car-
rillo and Perthame (2011) and Carrillo et al. (2013). Therein, the authors conclude
that for some choices of parameters, no global-in-time solutions exist. The term
“blow-up” is then used to describe the situation where the solution (defined in a
weak sense) ceases to exist after some finite time. With our formulation, since e′(t)
corresponds to the mean firing rate of the infinite network, it is very natural to de-
fine a “blow-up” time as a time when e′(t) becomes infinite. Intuitively, this can
be understood as a point in time at which a large proportion of the neurons in the
network all spike at exactly the same time, that is, the network synchronizes.

In Cáceres, Carrillo and Perthame (2011) and Carrillo et al. (2013), it is shown
that, in the cases α = 0 and α < 0 (the latter one being referred to as “self-
inhibitory” in neuroscience), the nonlinear Fokker–Planck equation has a unique
solution that does not blow-up in finite time. However, in the so-called “self-
excitatory” framework, that is, for α > 0, existence of a solution for all time is
left open. Instead, a negative result is established [Cáceres, Carrillo and Perthame
(2011), Theorem 2.2], stating that, for any α > 0, it is possible to find an initial
probability distribution P(X0 ∈ dy) such that any solution must blow-up in finite
time, that is, such that e′(t) = ∞ for some t > 0.

1.3. Present contribution. In this paper, we thus investigate the case α ∈
(0,1). Our main contribution is to show that, given a starting point X0 = x0, we
can find an explicit α small enough so that there does indeed exist a unique global-
in-time solution to (2) (and hence to the associated Fokker–Planck equation) which
does not blow-up (see Theorem 2.4). In view of the above discussions, our result
complements and goes further than those found in Cáceres, Carrillo and Perthame
(2011) and Carrillo et al. (2013), and the surprising difficulty of the problem is
reflected in the rather involved nature of our proofs.

As already said, equation (2) can be thought of as of McKean–Vlasov-type,
since the process (Xt)t≥0 depends on the distribution of the solution itself. How-
ever, it is highly nonstandard, since it actually depends on the distribution of the
first hitting times of the threshold by the solution. This renders the traditional ap-
proaches to McKean–Vlasov equations and propagation of chaos, such as those
presented in Sznitman (1991), inapplicable, because we have no a priori smooth-
ness on the law of the first hitting times. Thus, our results are also new in this
context.

The general structure of the proof is at the intersection between probability and
PDEs, the deep core of the strategy being probabilistic. The main ideas are inspired
from the methods used to investigate the well-posedness of Markovian stochas-
tic differential equations involving some nontrivial nonlinearity. Precisely, the first
point is to tackle unique solvability in small time: when the parameter α is (strictly)
less than 1 and the density of the initial condition decays linearly at the threshold,
it is proved that the system induces a natural contraction in a well-chosen space
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provided the time duration is small enough. In this framework, the specific notion
of a solution plays a crucial role as it defines the right space for the contraction.
Below, solutions are sought in such a way that the mapping e : t �→ E(Mt) is con-
tinuously differentiable: this is a crucial point as it permits to handle the process
(Xt)t≥0 as a drifted Brownian motion. The second stage is then to extend exis-
tence and uniqueness from short to long times. The point is to prove that some
key quantity is preserved as time goes by. Here, we prove that the system cannot
accumulate too much mass in the vicinity of 1. Equivalently, this amounts to show-
ing that the Lipschitz constant of the mapping e : t �→ E(Mt) cannot blow-up in a
finite time. This is where the condition α small enough comes in: when α is small
enough, we manage to give some estimates for the density of Xt in the neighbor-
hood of 1, the critical value of α explicitly depending upon the available bound of
the density. Generally speaking, we make use of standard Gaussian estimates of
Aronson type for the density. Unfortunately, the estimates we use are rather poor
as they mostly neglect the right behavior of the density of Xt at the boundary, thus
yielding a nonoptimal value. Anyhow, they serve as a starting point for proving a
refined estimate of the gradient of the density at the boundary: this is the required
ingredient for proving that, at any time t , the mass of Xt decays linearly in the
neighborhood of 1, uniformly in t in compact sets, and thus to apply iteratively
the existence and uniqueness argument in small time. In this way, we prove by
induction that existence and uniqueness hold on any finite interval and thus on the
whole of [0,∞).

It is worth mentioning that the main lines for proving the a priori estimate on the
Lipschitz constant of e : t �→ E(Mt) are probabilistic, thus justifying the use of a
stochastic approach to handle the model. Indeed, the key step in the control of the
Lipschitz constant of e is an intermediate estimate of Hölder type, the proof of
which is inspired from the probabilistic arguments used in Krylov and Safonov
(1979) for establishing the Hölder regularity of solutions to nonsmooth PDEs.

1.4. Prospects. Our result is for a general Lipschitz function b, but there
are two important specific cases that we keep in mind: the Brownian case when
b ≡ 0 and the Ornstein–Uhlenbeck case when b(x) = −λx, λ ≥ 0. The Ornstein–
Uhlenbeck case is most relevant to neuroscience, but surprising difficulties remain
in the purely Brownian case. In both of these cases, we are able to give an explicit
α0 depending on the deterministic starting point x0 such that (2) has a global so-
lution for all α < α0. However, our explicit values do not appear to be optimal:
simulations suggest that for a given x0 there exist solutions that do not blow-up for
α bigger than our explicit α0, while there exist solutions that blow-up that do not
satisfy the conditions of Cáceres, Carrillo and Perthame (2011). Thus, an interest-
ing question is to determine for a given initial condition the critical value αc such
that for α < αc (2) does not exhibit blow-up.

Another point is to relax the notion of solution in order to allow the mapping
e : t �→ E(Mt) to be nondifferentiable (and thus to blow-up). From the modeling
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point of view, this would permit the description of synchronization in the network.
Actually, based on our understanding of the problem and numerical simulations,
our guess is that, in full generality, the mapping e may be decomposed into a se-
quence of continuously differentiable pieces separated by isolated discontinuities.
In that perspective, we feel that our work could serve as a basis for investigating the
unique solvability of solutions that blow-up. In order to design a proper uniqueness
theory, it seems indeed quite mandatory to understand how general solutions be-
have in the continuously differentiable regime (which is the precise purpose of the
present paper), and then how discontinuities can emerge (which is left to further
works).

The layout of the paper is as follows. We present the main results in Section 2.
Solutions are defined in Section 3 while Section 4 is devoted to proving the exis-
tence and uniqueness in small time. The proof of Theorem 2.3 is given in Section 5.

2. Main results.

2.1. Set-up. As stated in the Introduction, we are interested in solutions to the
nonlinear McKean–Vlasov-type SDE

Xt = X0 +
∫ t

0
b(Xs) ds + αE(Mt) + Wt − Mt, t ≥ 0,(3)

where X0 < 1 almost surely, α ∈ (0,1) and (Wt)t≥0 is a standard Brownian motion
with respect to a filtration (Ft )t≥0 satisfying the usual conditions. The jumps, or
resets, of the system are described by (τ0 = 0)

Mt = ∑
k≥1

1[0,t](τk) with τk = inf{t > τk−1 :Xt− ≥ 1}, k ≥ 1.(4)

We assume that b : (−∞,1] → R is Lipschitz continuous such that∣∣b(x)
∣∣ ≤ �

(|x| + 1
)
,

∣∣b(x) − b(y)
∣∣ ≤ K|x − y| ∀x, y ∈ (−∞,1].

REMARK 2.1. By the time change u = t/σ 2, we could handle more general
cases when the intensity of the noise in (3) is σ > 0 instead of 1.

As discussed in the Introduction, the key point is to look for a solution for which
t �→ E(Mt) is continuously differentiable, which would correspond to a solution
that does not exhibit a finite time blow-up. This leads to the following definition
of a solution to (3), where as usual C1[0, T ] denotes the space of continuously
differentiable functions on [0, T ].

DEFINITION 2.2 [Solution to (3)]. The process (Xt ,Mt)0≤t≤T will be said to
be a solution to (3) up until time T if (Mt)0≤t≤T satisfies (4), the map ([0, T ] �
t �→ E(Mt)) ∈ C1[0, T ] and (Xt)0≤t≤T is a strong solution of (3) up until time T .
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2.2. Statements. Our main result is given by the following two theorems. The
first guarantees that, when α is small enough, if there exists a solution to (3) on
some finite time interval, then the solution does not blow-up on this interval.

THEOREM 2.3. For a given ε ∈ (0,1), there exists a positive constant α0 ∈
(0,1], depending only upon ε, K and �, such that, for any α ∈ (0, α0) and any
positive time T > 0, there exists a constant MT , only depending on T , ε, K and �,
such that, for any initial condition X0 = x0 ≤ 1 − ε, any solution to (3) according
to Definition 2.2 satisfies (d/dt)E(Mt) ≤ MT , for all t ∈ [0, T ].

The second theorem is the main global existence and uniqueness result.

THEOREM 2.4. For any initial condition X0 = x0 < 1 and α ∈ (0, α0), where
α0 = α0(x0) is as in Theorem 2.3 (taking ε = 1−x0), there exists a unique solution
to the nonlinear equation (3) on any [0, T ], T > 0, according to Definition 2.2.

The size of the parameter α0 in Theorem 2.3 is found explicitly in terms of ε,K

and � (Proposition 5.3), but more precisely it derives from the fact that in the
course of our proof we must first show that, a priori, any solution on [0, T ] to the
nonlinear equation (3) with X0 = x0 ≤ 1 − ε satisfies2

1

dx
P(Xt ∈ dx) <

1

α
, t ∈ [0, T ],(5)

in a neighborhood of the threshold 1 (see Lemma 5.2). It is this restriction that
determines the α0 in Theorem 2.3, so that it depends only on the best a priori
estimates available for the density on the left-hand side of (5). The stated explicit
choice for α0 in Proposition 5.3 merely ensures that (5) holds for all α < α0 for
any potential solution.

2.3. Illustration: The Brownian case. To further highlight the criticality of the
system, we here illustrate the blow-up phenomenon in the Brownian case. Consider
equation (3) with b ≡ 0, set e(t) = E(Mt) and fix X0 = x0 < 1. Then the conditions
of Theorem 2.4 are trivially satisfied, and so we know that there exists a global-in-
time solution for all α ∈ (0, α0(x0)).

One may then ask if we ever observe a blow-up phenomenon in this case. The
affirmative answer can be seen by adapting the strategy in Cáceres, Carrillo and
Perthame (2011) [note that the result in Cáceres, Carrillo and Perthame (2011) is
written for an Ornstein–Uhlenbeck type drift but a similar argument applies when
there is no drift]. For instance, choosing x0 = 0.8, computations show that global in
time solvability must fail for α ≥ 0.539. Moreover, tracking all the constants in the

2In the whole paper, we use the very convenient notation 1
dx

P(X ∈ dx) to denote the density at
point x of the random variable X (whenever it exists).
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FIG. 1. Plot of t �→ e(t) for x0 = 0.8, b(x) ≡ 0, α = 0.38 (red) and α = 0.39 (green).

proof of Theorem 2.3 below, we can find that α0(0.8) ≈ 0.104, which suggests that
the system’s behavior changes radically between these two values. Such a radical
change can be observed numerically by investigating the graphs of e(t) = E(Mt)

for different values of α in order to detect the emergence of some discontinuity.
Using a particle method to solve the nonlinear equation with b ≡ 0, we numerically
observe in Figure 1 that the graph of e is regular for α = 0.38 but has a jump for
α = 0.39. From the observations we have for other values of α, it seems that global
solvability fails for α ≥ 0.39 and holds for α ≤ 0.38.

As a summary, we present in Figure 2 the various regions of the α-parameter
space (0,1) for x0 = 0.8. The region D stands for the set of α’s for which global
solvability fails. By the numerical experiments, it seems that global solvability also
fails in region C, while by the same experiments it seems that global solutions do
exist for α in region B. In this article, we prove that global solutions exist for α ∈ A.

3. Solution as a fixed point. In this section, we identify a solution to the
nonlinear equation (3) as a fixed point of an appropriate map on an appropriate
space. This will reduce the problem of finding a solution to identifying a fixed
point of this map.

0 10.54

︸ ︷︷ ︸
D

0.39

︸ ︷︷ ︸
C

0.38

︸ ︷︷ ︸
B

α0(0.8)

︸ ︷︷ ︸
A

FIG. 2. Critical regions of α ∈ (0,1), for x0 = 0.8 and b(x) ≡ 0.
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Let T > 0. For a general function e ∈ C1[0, T ], consider the linear SDE

Xe
t = X0 +

∫ t

0
b
(
Xe

s

)
ds + αe(t) + Wt − Me

t , t ∈ [0, T ],X0 < 1 a.s.,(6)

where (Wt)t≥0 is a standard Brownian motion, α ∈ (0,1),

Me
t = ∑

k≥1

1[0,t]
(
τ e
k

)
(7)

and τ e
k = inf{t > τe

k−1 :Xe
t− ≥ 1} for k ≥ 1, τ e

0 = 0. The drift function b is assumed
to be Lipschitz as above. Note that the solution to this SDE is well defined (by
solving (6) iteratively from any τ e

k to the next τ e
k+1 and by noticing that the jumping

times (τ e
k )k≥0 cannot accumulate in finite time as the variations of (Xe

t )t≥0 on any
[τ e

k , τ e
k+1), k ≥ 0, are controlled in probability). We then define the map  by

setting

(e)(t) := E
(
Me

t

)
.(8)

We note that any fixed point of  that is continuously differentiable provides a
solution to the nonlinear equation according to Definition 2.2 and vice versa. Thus,
it is natural to look for a fixed point of  in a subspace of C1[0, T ] where we are
careful to uniformly control the size of the derivative. Moreover, since it is clear
from the definition that (e)(0) = 0 and t �→ (e)(t) is nondecreasing for any
e ∈ C1[0, T ], we in fact restrict the domain of  to the closed subspace L(T ,A) of
C1[0, T ] defined by

L(T ,A) :=
{
e ∈ C1[0, T ] : e(0) = 0, e(s) ≤ e(t) ∀s ≤ t, sup

0≤t≤T

e′(t) ≤ A
}

for some A ≥ 0. The map  is thus defined as a map from L(T ,A) into the set of
nondecreasing functions on [0, T ]. It in fact depends on A as its domain of defini-
tion depends on A; for this reason, it should be denoted by A. Anyhow, since the
family (A)A≥0 is consistent in the sense that, for any A′ ≤ A, the restriction of
A to L(T ,A′) coincides with A′

, we can use the simpler notation .
The following a priori stability result provides further information about where

to look for fixed points, the proof of which we leave until the end of the section.

PROPOSITION 3.1. Given T > 0, a > 0 and e ∈ L(T ,A) it holds that((∀t ∈ [0, T ], e(t) ≤ ga(t)
)

and
(
E
[
(X0)+

]≤ a
))

⇒ (∀t ∈ [0, T ],(e)(t) ≤ ga(t)
)
,

where (x)+ denotes the positive part of x ∈ R, with

ga(t) := a + (4 + �T 1/2)t1/2

1 − α
exp

(
2�t

1 − α

)
.(9)
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Letting g(t) := g1(t), t ≥ 0, since X0 < 1 a.s., it thus makes sense to look for
fixed points of  in the space

H(T ,A) := {
e ∈ L(T ,A) : e(t) ≤ g(t)

}
.(10)

We equip H(T ,A) with the norm ‖e‖H(T ,A) = ‖e‖∞,T + ‖e′‖∞,T inherited from
C1[0, T ]. Here and throughout the paper, ‖ · ‖∞,T denotes the supremum norm
on [0, T ]. H(T ,A) is then a complete metric space, since it is a closed subspace
of C1[0, T ].

For e ∈ H(T ,A) Proposition 3.1 implies that (e) is finite and cannot grow
faster that g, though it remains to show that (e) is differentiable and that its
derivative is bounded by A in order to check that  indeed maps H(T ,A) into
itself, for a suitable value of A and T . The stability of H(T ,A) by  is discussed
in Section 4.3.

3.1. Proof of Proposition 3.1. Fix T > 0. We first note that we may write

Me
t = sup

s≤t

⌊(
Ze

s

)
+
⌋
,

(11)
Ze

t = Xe
t + Me

t = X0 +
∫ t

0
b
(
Xe

s

)
ds + αe(t) + Wt, t ∈ [0, T ],

where �x� denotes the floor part of x ∈ R. Indeed, one can see that for t ∈
[τ e

k , τ e
k+1), k ≥ 0,

sup
s≤t

⌊(
Ze

s

)
+
⌋ = max

(
max

0≤j≤k−1

(
sup

s∈[τ e
j ,τ e

j+1)

⌊(
Xe

s + j
)
+
⌋)

, sup
s∈[τ e

k ,t)

⌊(
Xe

s + k
)
+
⌋)

= max
(

max
0≤j≤k−1

(j + 1), k
)

= Me
t ,

using the fact that Xe
t < 1 for all t ≥ 0.

Then, given t ∈ [0, T ] such that Ze
t ≥ 0, let ρe := sup{s ∈ [0, t] :Ze

s < 0}
(sup∅ = 0). Pay attention that ρe is not a stopping time and that it depends on t .
Then, for s ∈ [ρe, t],∣∣b(Xe

s

)∣∣≤ �
(
1 + ∣∣Xe

s

∣∣)≤ �
(
1 + ∣∣Ze

s

∣∣+ Me
s

) = �
(
1 + (

Ze
s

)
+ + Me

s

)
.(12)

By (11), we know that Me
s ≤ sup0≤r≤s(Z

e
r )+. Therefore,

∣∣b(Xe
s

)∣∣≤ �
(
1 + 2 sup

0≤r≤s

(
Ze

r

)
+
)
.

By (11), we obtain

Ze
t ≤ Ze

ρe + �

∫ t

ρe

(
1 + 2 sup

0≤r≤s

(
Ze

r

)
+
)
ds + αe(t) + Wt − Wρe.(13)
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If ρe > 0, then Ze
ρe = 0 as, obviously, (Ze

s )0≤s≤T is a continuous process. If
ρe = 0, then X0 = Ze

ρe ≥ 0 since Ze
ρe is nonnegative. Therefore,

(
Ze

t

)
+ ≤ (X0)+ + �

∫ t

0

(
1 + 2 sup

0≤r≤s

(
Ze

r

)
+
)
ds + αe(t) + 2 sup

0≤s≤t

|Ws |.(14)

Obviously, the above inequality still holds if Ze
t ≤ 0. We then notice that the pro-

cess (sup0≤r≤t (Z
e
r )+)0≤t≤T has finite values as (Ze

t )0≤t≤T is continuous. There-
fore, taking the supremum in the left-hand side, applying Gronwall’s lemma and
taking the expectation, we deduce that E[sup0≤t≤T (Ze

t )+] is finite. Taking directly
the expectation in (14), we see that

E

[
sup

0≤s≤t

(
Ze

s

)
+
]

(15)

≤ E
[
(X0)+

]+ �

∫ t

0

(
1 + 2E

[
sup

0≤r≤s

(
Ze

r

)
+
])

ds + αe(t) + 4t1/2,

for all t ∈ [0, T ]. In particular, if E[(X0)+] ≤ a, e(t) ≤ ga(t) for all t ∈ [0, T ]
[where ga is given by (9)], and Re is the deterministic hitting time

Re := inf
{
t ∈ [0, T ] :E

[
sup

0≤s≤t

(
Ze

s

)
+
]
> ga(t)

}
(inf∅ = +∞),

then, for any t ∈ (0,Re ∧ T ],
E

[
sup

0≤s≤t

(
Ze

s

)
+
]

≤ a + �

∫ t

0

(
1 + 2ga(s)

)
ds + αga(t) + 4t1/2

<
(
a + (

4 + �T 1/2)t1/2)[1 +
∫ t

0

2�

1 − α
exp

(
2�s

1 − α

)
ds

]
+ αga(t)

= (1 − α)ga(t) + αga(t)

= ga(t).

The strict inequality remains true when t = 0 since E[(X0)+] ≤ a < ga(0). Now,
by the continuity of the paths of Ze and by the finiteness of E[sup0≤t≤T (Ze

t )+],
we deduce that E[sup0≤s≤t (Z

e
s )+] is continuous in t . Therefore, if Re < T , then

E[sup0≤s≤Re(Ze
s )+] must be equal to g(Re), but by the above inequalities, this

sounds as a contradiction. By (11), this proves the announced bound.

4. Existence and uniqueness in small time. The main result of this section
is the following.

THEOREM 4.1. Suppose there exist β, ε > 0 such that P(X0 ∈ dx) ≤ β(1 −
x)dx for any x ∈ (1 − ε,1] and that the density of X0 on the interval (1 − ε,1] is
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differentiable at point 1. Then there exist constants A1 ≥ 0 and T1 ∈ (0,1], depend-
ing upon β, ε,α,� and K only, such that (H(T1,A1)) ⊂ H(T1,A1). Moreover,
for all e1, e2 ∈ H(T1,A1),∥∥(e1) − (e2)

∥∥
H(T1,A1)

≤ 1
2‖e1 − e2‖H(T1,A1).

Hence, there exists a unique fixed point of the restriction of  to H(T1,A1), which
provides a solution to (3) according to Definition 2.2 up until time T1 (such that
[0, T1] � t �→ E(Mt) is in the space H(T1,A1)).

4.1. Representation of . Let T > 0. As a first step toward understanding the
map  defined above, we note that, given e ∈ L(T ,A), using the definitions we
can write

(e)(t) = E
(
Me

t

) = E

(∑
k≥1

1[0,t]
(
τ e
k

))

= ∑
k≥1

∫ t

0
P
(
τ e
k+1 ∈ (s, t]|τ e

k = s
)
P
(
τ e
k ∈ ds

)+ P
(
τ e

1 ≤ t
)
,

where P(τ e
k ∈ ds) is a convenient abuse of notation for denoting the law of τ e

k

and B(R) � A �→ P(τ e
k+1 ∈ A|τ e

k = s) stands for the conditional law of τ e
k+1 given

τ e
k = s. Here, B(R) is the Borel σ -algebra on R. Moreover, observing that the

solution Xe to (6) is a Markov process (which restarts from 0 at time τ e
k when

k ≥ 1), we may write

(e)(t) = E
(
Me

t

)
(16)

= ∑
k≥1

∫ t

0
P
(
τ e�s

1 ≤ t − s|Xe�s

0 = 0
)
P
(
τ e
k ∈ ds

)+ P
(
τ e

1 ≤ t
)
,

where e�s stands for the mapping ([0, T − s] � t �→ e(t + s)−e(s)) ∈ L(T − s,A).
With this decomposition it is clear that in order to analyze (e), and more im-

portantly the derivative of (e) [recall we are looking for a fixed point in H(T ,A)],
we must analyze the densities of the first hitting times of a barrier by a nonhomoge-
neous diffusion process with a general Lipschitz drift term. Indeed, formally taking
the derivative with respect to t in (16) introduces terms involving the density of τ e

1 ,
where we recall that

τ e
1 = inf

{
t > 0 :Xe

t− ≥ 1
} = inf

{
t > 0 :X0 +

∫ t

0
b
(
Xe

s

)
ds + Wt ≥ 1 − αe(t)

}
.

The analysis of such densities is well known to be a difficult problem. These prob-
lems remain even in the case where b ≡ 0. However, the fact that e is continuously
differentiable at least guarantees that the densities exist. In the case b ≡ 0, we refer
to [Peskir and Shiryaev (2006), Theorem 14.4]. In the general case, existence of
these densities will be guaranteed in the next section by Lemma 4.2.
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4.2. General bounds for the density of the first hitting time for a nonhomoge-
neous diffusion process. Fix T > 0, and for e ∈ C1[0, T ] consider the stochastic
process (χe

t )0≤t≤T which satisfies

dχe
t = b

(
χe

t

)
dt + αe′(t) dt + dWt, t ∈ [0, T ], χe

0 < 1 a.s.,(17)

together with the stopping time

τ e := inf
{
t ∈ [0, T ] :χe

t ≥ 1
}
, (inf∅ = ∞).

Here, α ∈ (0,1) and the drift b is globally Lipschitz, exactly as above.

LEMMA 4.2. Let e ∈ C1[0, T ]. Suppose there exist β, ε > 0 such that P(χ0 ∈
dx) ≤ β(1 − x)dx for any x ∈ (1 − ε,1] and that the density of χ0 on the interval
(1 − ε,1] is differentiable at point 1. Then:

(i) For any t ∈ (0, T ], the law of the diffusion χe
t killed at the threshold is

absolutely continuous with respect to the Lebesgue measure.
(ii) Denoting the density of χe

t killed at the threshold by

pe(t, y) := 1

dy
P
(
χe

t ∈ dy, t < τe), t ∈ [0, T ], y ≤ 1,(18)

pe(t, y) is continuous in (t, y) and continuously differentiable in y on (0, T ] ×
(−∞,1] and admits Sobolev derivatives of order 1 in t and of order 2 in y in any
Lς , ς ≥ 1, on any compact subset of (0, T ] × (−∞,1). When χ0 ≤ 1 − ε a.s. it is
actually continuous and continuously differentiable in y on any compact subset of
([0, T ] × (−∞,1]) \ ({0} × (−∞,1 − ε]).

(iii) Almost everywhere on (0, T ] × (−∞,1), pe satisfies the Fokker–Planck
equation:

∂tpe(t, y) + ∂y

[(
b(y) + αe′(t)

)
pe(t, y)

]− 1
2∂2

yype(t, y) = 0,(19)

with the Dirichlet boundary condition pe(t,1) = 0 and the measure-valued ini-
tial condition pe(0, y) dy = P(χ0 ∈ dy), pe(t, y) and ∂ype(t, y) decaying to 0 as
y → −∞.

(iv) The first hitting time, τ e has a density on [0, T ], given by

d

dt
P
(
τ e ≤ t

) = −1

2
∂ype(t,1), t ∈ [0, T ],(20)

the mapping [0, T ] � t �→ ∂ype(t,1) being continuous and its supremum norm
being bounded in terms of T , α, ‖e′‖∞,T , β and b only.

Lemma 4.2 is quite standard. The analysis of the Green function of killed pro-
cesses with smooth coefficients may be found in [Garroni and Menaldi (1992),
Chapter VI]. The need for considering Sobolev derivatives follows from the fact
that b is Lipschitz only. The argument to pass from the case b smooth to the case b
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Lipschitz only is quite standard: it follows from Calderon and Zygmund estimates,
see [Stroock and Varadhan (1979), equation (0.4), Appendix A], that permit the
control of the Lς norm of the second-order derivatives on any compact subset of
(0, T ] × (−∞,1). A complete proof may be also found in the unpublished notes
of Delarue et al. (2013).

When χ0 = x0 for some deterministic x0 < 1, the conditions of the above lemma
are certainly satisfied. Therefore, for e ∈ C1[0, T ] it makes sense to consider the
density pe(t, y), t ∈ (0, T ], y ≤ 1 of the process killed at 1 started at x0. We will
write pe(t, y) = p

x0
e (t, y) in this case. The following two key results on ∂ype(t,1)

are standard adaptations of heat kernel estimates [see, e.g., Friedman (1964), Chap-
ter 1] for killed processes. The first one may be found in [Garroni and Menaldi
(1992), Chapter VI, Theorem 1.10] when b is smooth and bounded. As explained
in the beginning of [Garroni and Menaldi (1992), Chapter VI, Section 1.5] it re-
mains true when b is Lipschitz continuous and bounded. The argument for remov-
ing the boundedness assumption on b is explained in Delarue and Menozzi (2010)
in the case of a nonkilled process. As shown in the unpublished notes [Delarue
et al. (2013), Corollary 4.3], it can be adapted to the current case. The second
result then follows from the so-called parametric perturbation argument follow-
ing [Friedman (1964), Chapter 1]. Again, the complete proof can be found in the
unpublished notes [Delarue et al. (2013), Corollary 5.3].

PROPOSITION 4.3. Let e ∈ C1[0, T ]. Then there exists a constant κ(T ) (de-
pending only on T and the drift function b) which increases with T such that for
all x0 < 1,

∣∣∂yp
x0
e (t,1)

∣∣≤ κ(T )
(∥∥e′∥∥∞,T + 1

)1

t
exp

(
−(1 − x0)

2

κ(T )t

)

for all t ≤ min{[(‖e′‖∞,T +1)κ(T )]−2, T }. In particular, κ(T ) is independent of e.

PROPOSITION 4.4. Let e1, e2 ∈ C1[0, T ] and let A = max{‖e′
1‖∞,T ,

‖e′
2‖∞,T }. Then there exists a constant κ(T ) (depending only on T and the drift

function b) which increases with T such that for all x0 < 1,

∣∣∂yp
x0
e1

(t,1) − ∂yp
x0
e2

(t,1)
∣∣

≤ κ(T )(A + 1)
1√
t

exp
(
−(1 − x0)

2

κ(T )t

)∥∥e′
1 − e′

2
∥∥∞,t ,

for all t ≤ min{[(A + 1)κ(T )]−2, T }. In particular, κ(T ) is independent of
e1 and e2.
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4.3. Application to . In this section, we return to the setting of Section 3, and
apply the results of the previous subsection to complete the proof of Theorem 4.1.

The first result ensures the differentiability of (e) whenever e ∈ L(T ,A),
which is the first step in showing that  is stable on the space H(T ,A) for some A

(recall that H is simply a growth controlled subspace of L).

PROPOSITION 4.5. Let e ∈ L(T ,A) and X0 be such that there exist β, ε > 0
with P(X0 ∈ dx) ≤ β(1−x)dx for any x ∈ (1−ε,1], and suppose that the density
of X0 on the interval (1 − ε,1] is differentiable at point 1. Then the mapping
[0, T ] � t �→ (e)(t) is continuously differentiable. Moreover,

d

dt

[
(e)

]
(t) = −

∫ t

0

1

2
∂yp

(0,s)
e (t − s,1)

d

ds

[
(e)

]
(s) ds − 1

2
∂ype(t,1),

(21)
t ∈ [0, T ],

where pe represents the density of the process Xe killed at 1 and p
(0,s)
e represents

the density of the process Xe�s killed at 1 with Xe�s

0 = 0.

PROOF. We first check that (e) is Lipschitz continuous on [0, T ]. Consider-
ing a finite difference in (16) and using (20), we get, for t, t + h ∈ [0, T ],

(e)(t + h) − (e)(t)

= ∑
k≥1

∫ t+h

t
P
(
τ e�s

1 ≤ t + h − s|Xe�s

0 = 0
)
P
(
τ e
k ∈ ds

)
(22)

− 1

2

∑
k≥1

∫ t

0

∫ t+h−s

t−s
∂yp

(0,s)
e (r,1) drP

(
τ e
k ∈ ds

)

− 1

2

∫ t+h

t
∂ype(s,1) ds.

By Lemma 4.2(ii), we can handle the two last terms in the above to find a constant
C > 0 (which depends on e) such that

(e)(t + h) − (e)(t)

≤ ∑
k≥1

∫ t+h

t
P
(
τ e�s

1 ≤ t + h − s|Xe�s

0 = 0
)
P
(
τ e
k ∈ ds

)
+ Ch

(
1 + (e)(T )

)
,

the last term in the right-hand side being finite thanks to (14) and the argument
following it. Moreover, by (14) and Gronwall’s lemma, we deduce that

lim
h↘0

sup
0≤s≤T −h

P
(
τ e�s

1 ≤ h|Xe�s

0 = 0
)

(23)
= lim

h↘0
sup

0≤s≤T −h

P

(
sup

0≤r≤h

Ze�s

r ≥ 1|Xe�s

0 = 0
)

= 0,
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where Ze�s is given by (11). Therefore, there exists a mapping η :R+ → R+
matching 0 at 0 and continuous at 0 such that

(e)(t + h) − (e)(t) ≤ η(h)
[
(e)(t + h) − (e)(t)

]+ Ch
(
1 + (e)(T )

)
.

Choosing h small enough, Lipschitz continuity easily follows.
As a consequence, we can divide both sides of (22) by h and then let h tend

to 0. By (23), we have for a given t ∈ [0, T ),

lim
h↘0

h−1
∑
k≥1

∫ t+h

t
P
(
τ e�s

1 ≤ t + h − s|Xe�s

0 = 0
)
P
(
τ e
k ∈ ds

)

≤ lim
h↘0

[
sup

0≤s≤T −h

P
(
τ e�s

1 ≤ h|Xe�s

0 = 0
)(e)(t + h) − (e)(t)

h

]
= 0.

Handling the second term in (22) by Lemma 4.2 and using the Lebesgue dominated
convergence theorem, we deduce that

d

dt
(e)(t) = −∑

k≥1

∫ t

0

1

2
∂yp

(0,s)
e (t − s,1)P

(
τ e
k ∈ ds

)− 1

2
∂ype(t,1).

By Lemma 4.2, we know that ∂yp
(0,s)
e (·,1) and ∂ype(·,1) are continuous (in t).

This proves that (d/dt)(e) is continuous as well.
Formula (21) then follows from the relationship

(e)(t) = ∑
k≥1

∫ t

0
P
(
τ e
k ∈ ds

)
, t ∈ [0, T ].(24)

�

The second idea is to show that the difference between the derivatives of (e1)

and (e2) is uniformly small in terms of the distance between two functions e1

and e2 in the space H(T ,A) in small time.

PROPOSITION 4.6. Let T > 0 and X0 be such that there exist β, ε > 0 with
P(X0 ∈ dx) ≤ β(1 − x)dx for any x ∈ (1 − ε,1], and suppose that the density of
X0 on the interval (1 − ε,1] is differentiable at point 1.

Suppose e1, e2 ∈ H(T ,A) for some A ≥ 0. Then there exists a constant κ(T ),
independent of A, β and ε, and increasing in T , and a constant κ̃(T ,β, ε), inde-
pendent of A and increasing in T , such that for any e1, e2 ∈ H(T ,A),

sup
0≤s≤t

∣∣∣∣ d

ds

[
(e1) − (e2)

]
(s)

∣∣∣∣≤ (A + 1)κ̃(T ,β, ε)
√

t
∥∥e′

1 − e′
2
∥∥∞,t ,

for t ≤ min{[(A + 1)κ(T )]−2, T }.
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PROOF. We have by (21)∣∣∣∣ d

dt

[
(e1) − (e2)

]
(t)

∣∣∣∣
≤ 1

2

∫ 1

−∞
∣∣[∂yp

x
e1

− ∂yp
x
e2

]
(t,1)

∣∣P(X0 ∈ dx)

+ 1

2

∫ t

0

∣∣[∂yp
(0,s)
e1

− ∂yp
(0,s)
e2

]
(t − s,1)

∣∣ d

ds
(e1)(s)(25)

+ 1

2

∫ t

0

∣∣∂yp
(0,s)
e2

(t − s,1)
∣∣∣∣∣∣ d

ds

[
(e1) − (e2)

]
(s)

∣∣∣∣ds

:= 1

2
(L1 + L2 + L3).

Suppose t ≤ T and
√

t ≤ [(A+1)κ(T )]−1, where κ(T ) is as in Proposition 4.4.
The value of κ(T ) will be allowed to increase when necessary below. Considering
the first term only, we can use Proposition 4.4 to see that

L1 ≤ (A + 1)βκ(T )

(∫ 1

1−ε

1√
t

exp
(
−(1 − x)2

κ(T )t

)
(1 − x)dx

)∥∥e′
1 − e′

2
∥∥∞,t

+ (A + 1)κ(T )

(∫ 1−ε

−∞
1√
t

exp
(
−(1 − x)2

κ(T )t

)
P(X0 ∈ dx)

)∥∥e′
1 − e′

2
∥∥∞,t .

We deduce that there exists a constant κ̃(T ,β, ε) > 0, which is independent of
A and which is allowed to increase as necessary from line to line below, such that

L1 ≤ (A + 1)βκ(T )
√

t

(∫ ∞
0

z exp
(
− z2

κ(T )

)
dz

)∥∥e′
1 − e′

2
∥∥∞,t

+ (A + 1)κ(T )
1√
t

exp
(
− ε2

κ(T )t

)∥∥e′
1 − e′

2
∥∥∞,t(26)

≤ (A + 1)κ̃(T ,β, ε)
√

t
∥∥e′

1 − e′
2
∥∥∞,t .

We can then use Proposition 4.4 again to see that

L2 ≤ (A + 1)κ(T ) sup
0<s≤t

[
s−1/2 exp

(
− 1

κ(T )s

)]
(e1)(t)

∥∥e′
1 − e′

2
∥∥∞,t .

By Proposition 3.1 [since e1 ∈H(T ,A)], we deduce that

L2 ≤ (A + 1)κ(T )
√

t
∥∥e′

1 − e′
2
∥∥∞,t ,(27)

where κ(T ) has been increased as necessary, and we have used the elementary
inequality exp(−1/v) ≤ v for all v ≥ 0. We finally turn to L3 in (25). By Proposi-
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tion 4.3, we have that

∣∣∂yp
(0,s)
e2

(t − s,1)
∣∣ ≤ κ(T )(A + 1)

1

(t − s)
exp

(
− 1

κ(T )(t − s)

)
(28)

≤ κ(T )(A + 1),

again by increasing κ(T ). Thus, from (25), (26), (27) and (28), we deduce∣∣∣∣ d

dt

[
(e1) − (e2)

]
(t)

∣∣∣∣ ≤ (A + 1)κ̃(T ,β, ε)
√

t
∥∥e′

1 − e′
2
∥∥∞,t

+ (A + 1)κ(T )

∫ t

0

∣∣∣∣ d

ds

[
(e1) − (e2)

]
(s)

∣∣∣∣ds.

By taking the supremum over all s ≤ t in the above, we have, for t ≤ (2κ(T )(A +
1))−1 [which actually follows from the aforementioned condition t ≤ (κ(T )(A +
1))−2 by assuming w.l.o.g. κ(T ) ≥ 2],

sup
0≤s≤t

∣∣∣∣ d

ds

[
(e1) − (e2)

]
(s)

∣∣∣∣≤ 2(A + 1)κ̃(T ,β, ε)
√

t
∥∥e′

1 − e′
2
∥∥∞,t . �

We can then finally complete this section with the proof of Theorem 4.1.

PROOF OF THEOREM 4.1. Choose A1 = 2 sup0≤t≤1 |(d/dt)(0)(t)|+1. Note
that A1 depends on β . Then choose T1 ≤ min{[(A1 + 1)κ(1)]−2,1} such that√

T1κ̃(1, β, ε)(A1 + 1) ≤ 1
4 ,(29)

where κ(1) and κ̃(1, β, ε) are as in Proposition 4.6. By that result, if e ∈ H(T1,A1)

then ∣∣∣∣ d

dt
(e)(t)

∣∣∣∣ = d

dt
(e)(t) ≤ √

t κ̃(T1, β, ε)(A1 + 1)A1 + d

dt
(0)(t)

for all t ≤ min{[(A1 + 1)κ(T1)]−2, T1} = T1. By definition, we have T1 ≤ 1 so that
κ(T1) ≤ κ(1) and κ̃(T1, β, ε) ≤ κ̃(1, β, ε). Therefore,

d

dt
(e)(t) ≤ √

t κ̃(1, β, ε)(A1 + 1)A1 + d

dt
(0)(t)

for all t ≤ T1. Hence, for all t ≤ T1

d

dt
(e)(t) ≤ A1

2
+ sup

0≤t≤1

(
d

dt
(0)(t)

)
≤ A1

by (29), so that (e) ∈ H(T1,A1).
To prove that  is a contraction on H(T1,A1), first note that for e ∈H(T1,A1)∥∥e′∥∥∞,T1

≤ ‖e‖H(T1,A1) ≤ 2
∥∥e′∥∥∞,T1
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by the mean-value theorem, since e(0) = 0 and T1 ≤ 1. Thus, for any e1, e2 ∈
H(T1,A1)∥∥(e1) − (e2)

∥∥
H(T1,A1)

≤ 2
∥∥(e1)

′ − (e2)
′∥∥∞,T1

≤ 2
√

T1κ̃(T1, β, ε)(A1 + 1)
∥∥e′

1 − e′
2
∥∥∞,T1

≤ 1
2‖e1 − e2‖H(T1,A1),

by our choice of T1 and using Proposition 4.6 once more. Since H(T1,A1) is a
closed subspace of C1[0, T ] (a complete metric space), the existence of a fixed
point for  follows from the Banach fixed-point theorem. �

5. Long-time estimates. In order to extend the existence and uniqueness
from small time to any arbitrarily prescribed interval, we need an a priori bound
for the Lipschitz constant of e : t �→ E(Mt) on any finite interval [0, T ], which is
given by Theorem 2.3. The purpose of this section is to prove this result.

As already mentioned, the key point is inequality (5). Loosely, it says that,
in (1), the particles that are below 1 − dx at time t receive a kick of order
αP(Xt ∈ dx) < dx. In other words, only the particles close to 1 can jump, which
guarantees some control on the continuity of e. Precisely, Proposition 5.3 gives a
bound for the 1/2-Hölder constant of e. Inequality (5) is proved by using a priori
heat kernel bounds when α is small enough, this restriction determining the value
of α0 in Theorem 2.3. Once the 1/2-Hölder constant of e has been controlled,
we provide in Lemma 5.5 a Hölder estimate of the oscillation (in space) of p in
the neighborhood of 1. The proof is an adaptation of Krylov and Safonov (1979).
Finally, in Proposition 5.6, a barrier technique yields a bound for the Lipschitz
constant of p in the neighborhood of 1.

In the whole section, for a given initial condition X0 = x0 < 1, we thus assume
that there exists a solution to (3) according to Definition 2.2, that is, such that
e : [0, T ] � t �→ E(Mt) is continuously differentiable.

5.1. Reformulation of the equation and a priori bounds for the solution. In
the whole proof, we shall use a reformulated version of (3), in a similar way to
Proposition 3.1 [see (11)]. Indeed, given a solution (Xt ,Mt)0≤t≤T to (3) on some
interval [0, T ] according to Definition 2.2, we set Zt = Xt + Mt , t ∈ [0, T ]. Then
(Zt )0≤t≤T has continuous paths and satisfies

Zt = X0 +
∫ t

0
b(Xs) ds + αE(Mt) + Wt, t ∈ [0, T ],(30)

where

Mt =
⌊(

sup
0≤s≤t

Zs

)
+
⌋

= sup
0≤s≤t

⌊
(Zs)+

⌋
.(31)

The following is easily proved by adapting the proof of Proposition 3.1:
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LEMMA 5.1. There exists a constant B(T ,α, b), only depending upon T , α,
b and nondecreasing in α, such that

sup
0≤t≤T

e(t) = e(T ) ≤ E

[
sup

0≤t≤T

(Zt )+
]
≤ B(T ,α, b).(32)

A possible choice for B is

B(T ,α, b) = E[(X0)+] + 4T 1/2 + �T

1 − α
exp

(
2�T

1 − α

)
.

5.2. Local Hölder bound of the solution. We now turn to the critical point of
the proof. Indeed, in the next subsection, we shall prove that, for α small enough,
the function t �→ e(t) = E(Mt) generated by some solution to (3) according to Def-
inition 2.2 (so that e is continuously differentiable) satisfies an a priori 1/2-Hölder
bound, with an explicit Hölder constant. This acts as the keystone of the argument
to extend the local existence and uniqueness result into a global one. As a first step,
the proof consists of establishing a local Hölder bound for e in the case when the
probability that the process X lies in the neighborhood of 1 is not too large.

LEMMA 5.2. Consider a solution (Xt)0≤t≤T to (3) on some interval [0, T ],
with T > 0 and initial condition X0 = x0 < 1. Assume in addition that there exists
some time t0 ∈ [0, T ] and two constants ε ∈ (0,1) and c ∈ (0,1/α) such that for
any Borel subset A ⊂ [1 − ε,1],

P(Xt0 ∈ A) ≤ c|A|,(33)

where |A| stands for the Lebesgue measure of A. Then, with

B0 = exp(2�)[(8 + 5c + 8ε−1)� + 4(2 + c + ε−1)]
1 − cα

,

it holds that, for any h ∈ (0,1),

B0 exp(2�h)h1/2 ≤ ε/2
t0 + h ≤ T

}
⇒ e(t0 + h) − e(t0) ≤ B0h

1/2.

PROOF. By the Markov property, we can assume t0 = 0, with T being under-
stood as T − t0. Indeed, setting

X
�t0
t := Xt0+t , t ∈ [0, T − t0],(34)

we observe that, for t ∈ [0, T − t0],
X

�t0
t = Xt0 +

∫ t

0
b
(
X

�t0
r

)
dr + αE(Mt+t0 − Mt0)

(35)
+ Wt+t0 − Wt0 − (Mt+t0 − Mt0).
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Here Mt+t0 − Mt0 represents the number of times the process X reaches 1 within
the interval (t0, t + t0]. Therefore, this also matches the number of times the pro-
cess X�t0 hits 1 within the interval (0, t], so that X�t0 indeed satisfies the nonlinear

equation (3) on [0, T − t0], with X
�t0
0 = Xt0 as initial condition and with respect to

the shifted Brownian motion (W
�t0
t := Wt0+t −Wt0)0≤t≤T −t0 . In what follows, t0 is

thus assumed to be zero, the new T standing for the previous T − t0 and the new
X0 matching the previous Xt0 and thus satisfying (33).

For a given h ∈ (0,1), such that h ≤ T , and a given B0 > 0 (the value of which
will be fixed later), we then define the deterministic hitting time:

R = inf
{
t ∈ [0, h] :E(Mt) = e(t) ≥ B0h

1/2}.
Following the proof of (14) [see more specifically (12)], we have, for any t ∈
[0, h ∧ R],

Mt ≤ sup
0≤s≤t

(Zs)+

≤ (X0)+ + �

∫ t

0

(
1 + (Zs)+ + Ms

)
ds + αe(t) + 2 sup

0≤s≤t

|Ws |

≤ (X0)+ + 2�

∫ t

0
(1 + Ms)ds + αB0h

1/2 + 2 sup
0≤s≤t

|Ws |

≤ (X0)+ + 2�h + 2�

∫ t

0
Ms ds + αB0h

1/2 + 2 sup
0≤s≤t

|Ws |,

where we have used (31) to pass from the first to the second line. By Gronwall’s
lemma, we obtain

Mt ≤ exp(2�h)
[
(X0)+ + 2�h + αB0h

1/2 + 2 sup
0≤s≤h

|Ws |
]

(36)
≤ (X0)+ + exp(2�h)

[
4�h + αB0h

1/2 + 2 sup
0≤s≤h

|Ws |
]
,

as exp(2�h) ≤ 1 + 2�h exp(2�h) and (X0)+ ≤ 1.
Assume that B0 exp(2�h)h1/2 ≤ ε/2 ≤ 1/2. Then, by Doob’s L2 inequality for

martingales,∑
k≥2

P(Mt ≥ k) ≤ ∑
k≥2

P

(
exp(2�h)

[
4�h + 2 sup

0≤s≤h

|Ws |
]
≥ k − 3/2

)

≤ 2 exp(2�h)E
[
4�h + 2 sup

0≤s≤h

|Ws |
]

(37)

≤ exp(2�h)
[
8�h + 8h1/2].
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Moreover,

P(Mt ≥ 1)

≤ P

(
(X0)+ + exp(2�h)

[
4�h + αB0h

1/2 + 2 sup
0≤s≤h

|Ws |
]
≥ 1

)

≤ P

(
X0 ∈ [1 − ε,1],X0 + exp(2�h)

[
4�h + αB0h

1/2 + 2 sup
0≤s≤h

|Ws |
]
≥ 1

)

+ P

(
exp(2�h)

[
4�h + 2 sup

0≤s≤h

|Ws |
]
≥ ε/2

)
:= I1 + I2,

where we have used B0 exp(2�h)h1/2 ≤ ε/2 in the third line.
By Doob’s L1 maximal inequality, we deduce that

I2 ≤ 2 exp(2�h)ε−1
E
[
4�h + 2|Wh|]≤ exp(2�h)ε−1[8�h + 4h1/2].(38)

We now switch to I1. By independence of X0 and (Ws)0≤s≤T and by (33),

I1 ≤ c

∫ ε

0
P

(
exp(2�h)

[
4�h + αB0h

1/2 + 2 sup
0≤s≤h

|Ws |
]
≥ x

)
dx

≤ c

∫ +∞
0

P

(
exp(2�h)

[
4�h + αB0h

1/2 + 2 sup
0≤s≤h

|Ws |
]
≥ x

)
dx

= c exp(2�h)E
[
4�h + αB0h

1/2 + 2 sup
0≤s≤h

|Ws |
]
.

By Doob’s L2 inequality,

I1 ≤ c exp(2�h)
[
4�h + αB0h

1/2 + 4h1/2].
Together with (38), we deduce that

P(Mt ≥ 1) ≤ exp(2�h)
[
4
(
c + 2ε−1)�h + 4

(
c + ε−1)h1/2 + cαB0h

1/2].
From (37), we finally obtain, for t ≤ R ∧ h,

E(Mt) = ∑
k≥1

P(Mt ≥ k)

≤ exp(2�h)
[
4
(
2 + c + 2ε−1)�h + 4

(
2 + c + ε−1)h1/2 + cαB0h

1/2]
≤ exp(2�h)

[(
8 + 5c + 8ε−1)�h + 4

(
2 + c + ε−1)h1/2]+ cαB0h

1/2,

provided B0 exp(2�h)h1/2 ≤ ε/2 ≤ 1/2, which implies

cαB0 exp(2�h)h1/2 ≤ cαB0h
1/2 + c�h,
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using the fact that exp(2�h) ≤ 1 + 2�h exp(2�h). Therefore, if R ≤ h, then we
can choose t = R in the left-hand side above. By continuity of e on [0, T ], it then
holds e(R) = B0h

1/2, so that

(1 − cα)B0h
1/2 ≤ exp(2�h)

[(
8 + 5c + 8ε−1)�h + 4

(
2 + c + ε−1)h1/2]

< exp(2�)
[(

8 + 5c + 8ε−1)� + 4
(
2 + c + ε−1)]h1/2,

which is not possible when

B0 = exp(2�)[(8 + 5c + 8ε−1)� + 4(2 + c + ε−1)]
1 − cα

.

Precisely, with B0 as above and B0 exp(2�h)h1/2 ≤ ε/2 it cannot hold R ≤ h. �

5.3. Global Hölder bound. In this subsection, we shall prove the following.

PROPOSITION 5.3. Let ε ∈ (0,1). Then there exists a positive constant α0 ∈
(0,1], only depending upon ε, K and �, such that: whenever α < α0, there exists
a constant B, only depending on α, ε, K and �, such that, for all positive times
T > 0 and initial conditions X0 = x0 ≤ 1 − ε, any solution to (3) according to
Definition 2.2 satisfies

Bh1/2 ≤ ε/2
t0 + h ≤ T

}
⇒ e(t0 + h) − e(t0) ≤ Bh1/2,

for any h ∈ (0,1) and t0 ∈ [0, T ]. Note that B above may differ from B0 in the
statement of Lemma 5.2. The constant α0 can be described as follows. Defining T0
as the largest time less than 1 such that

(1 − ε) exp(�T0) ≤ 1 − 7ε/8, �T0 exp(�T0) ≤ ε/8,

α0 can be chosen as the largest (positive) real satisfying [with B(T0, α0, b) as in
Lemma 5.1]

α0B(T0, α0, b) ≤ ε/4,

α023/2(c′)3/2 exp
(−1

2

)[
ε−1 + B(T0, α0, b)

] ≤ 1,

α0
[
c′T −1/2

0 + 23/2(c′)3/2 exp
(−1

2

)
B(T0, α0, b)

] ≤ 1.

Here, the constant c′ is defined by the following property: c′ > 0, depending on K

only, is such that for any diffusion process (Ut )0≤t≤1 satisfying

dUt = F(t,Ut ) dt + dWt, t ∈ [0,1],
where U0 = 0 and F : [0, T ] × R → R is K-Lipschitz in x such that F(t,0) = 0
for any t ∈ [0,1], it holds that

1

dx
P(Ut ∈ dx) ≤ c′

√
t

exp
(
− x2

c′t

)
, x ∈ R, t ∈ (0,1].
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The proof relies on the following.

LEMMA 5.4. Given an initial condition X0 = x0 ≤ 1 − ε, with ε ∈ (0,1), and
a solution (Xt)0≤t≤T to (3) on some interval [0, T ] according to Definition 2.2,
the random variable Xt has a density on (−∞,1], for any t ∈ (0, T ]. Moreover,
defining T0 as in the statement of Proposition 5.3 and choosing α ≤ α1 satisfying

α1B(T0, α1, b) ≤ ε/4,

it holds, for x ∈ [1 − ε/4,1),

1

dx
P(Xt ∈ dx) ≤ 23/2(c′)3/2 exp

(
−1

2

)[
ε−1 + B(T0, α, b)

]
if t ≤ T0,

1

dx
P(Xt ∈ dx) ≤ c′T −1/2

0 + 23/2(c′)3/2 exp
(
−1

2

)
B(T0, α, b) if t > T0,

where the constant c′ is also as in the statement of Proposition 5.3.

Before we prove Lemma 5.4, we introduce some materials. As usual, we set
e(t) = E(Mt), for t ∈ [0, T ], the mapping e being assumed to be continuously
differentiable on [0, T ]. Moreover, with (Xt)0≤t≤T , we associate the sequence of
hitting times (τk)k≥0 given by (4). We then investigate the marginal distributions
of (Xt)0≤t≤T . Given a Borel subset A ⊂ (−∞,1], we write in the same way as in
the proof of (16)

P(Xt ∈ A) = P(Xt ∈ A,τ1 > t)
(39)

+ ∑
k≥1

∫ t

0
P(Xt ∈ A,τk+1 > t |τk = s)P(τk ∈ ds),

where the notation P(·|τk = s) stands for the conditional law given τk = s. Follow-
ing (34) and (35), we can shift the system by length s ∈ [0, T ]. Precisely, we know
that (X

�s
r := Xs+r )0≤r≤T −s satisfies

X�s
r = Xs +

∫ r

0
b
(
X�s

u

)
du + αe�s (r) + Ws+r − Ws − M�s

r ,(40)

with

e�s (r) := e(s + r) − e(s), M�s
r := Ms+r − Ms and

τ
�s

k := inf
{
u > τ

�s

k−1 :Xs+u− ≥ 1
}

for k ≥ 1, (τ �s

0 := 0). Conditionally on τk = s, the law of (X
�s
r )0≤r≤T −s until τ

�s

1

coincides with the law of (Ẑ
�s ,0
r )0≤r≤T −s until the first time it reaches 1, where, for

a given F0-measurable initial condition ζ with values in (−∞,1), (Ẑ�s ,ζ
r )0≤r≤T −s

stands for the solution of the SDE:

Ẑ�s,ζ
r = ζ +

∫ r

0
b
(
Ẑ�s ,ζ

u

)
du + αe�s (r) + Wr, r ∈ [0, T − s].(41)
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Below, we will write Ẑ
ζ
r for Ẑ

�0,ζ
r . By (39),

P(Xt ∈ A) ≤ P
(
Ẑ

X0
t ∈ A

)+ ∑
k≥1

∫ t

0
P
(
Ẑ

�s ,0
t−s ∈ A

)
P(τk ∈ ds)

(42)

= P
(
Ẑ

X0
t ∈ A

)+
∫ t

0
P
(
Ẑ

�s ,0
t−s ∈ A

)
e′(s) ds,

for any Borel set A ⊂ (−∞,1], the passage from the first to the second line fol-
lowing from (24).

PROOF OF LEMMA 5.4. Given an initial condition x0 ∈ (−∞,1 − ε] for ε ∈
(0,1), we know from Delarue and Menozzi (2010) that Ẑ

x0
t has a density for any

t ∈ (0, T ] (and thus Ẑ
�s,0
t−s as well for 0 ≤ s < t). From (42), we deduce that the

law of Xt has a density on (−∞,1] since P(Xt ∈ A) = 0 when |A| = 0, where |A|
stands for the Lebesgue measure of A. Moreover, there exists a constant c′ ≥ 1,
depending on K only, such that, for any t ∈ [0, T ∧ 1]:

1

dx
P
(
Ẑ

x0
t ∈ dx

) ≤ c′
√

t
exp

(
−[x − ϑ

x0
t ]2

c′t

)
,(43)

where ϑ
x0
t is the solution of the ODE:

d

dt
ϑt = b(ϑt ) + αe′(t), t ∈ [0, T ],(44)

with ϑ
x0
0 = x0. Above, the function [0, T ] � t �→ e(t) represents [0, T ] � t �→

E(Mt) given X0 = x0, which means that the initial condition x0 of X0 upon which
e depends is fixed once and for all, independently of the initial condition of ϑ .
In particular, as the initial condition of ϑ varies, the function e does not. We em-
phasize that c′ is independent of e and can be taken to be that defined in Proposi-
tion 5.3. Indeed, we can write P(Ẑ

x0
t ∈ dx) as P(Ẑ

x0
t − ϑ

x0
t ∈ d(x − ϑ

x0
t )), with

d
(
Ẑ

x0
t − ϑ

x0
t

) = F
(
t, Ẑ

x0
t − ϑ

x0
t

)
dt + dWt, t ∈ [0, T ], Ẑx0

0 − ϑ
x0
0 = 0;

F(t, x) = b
(
x + ϑ

x0
t

)− b
(
ϑ

x0
t

)
, t ∈ [0, T ], x ∈ R.

We then notice that F(t, ·) is K-Lipschitz continuous (since b is) and satisfies
F(t,0) = 0, so that, referring to Delarue and Menozzi (2010), all the parameters
involved in the definition of the constant c′ are independent of e. The fact that c′ is
independent of e is crucial. As a consequence, we can bound (1/dx)P(Ẑ

�s ,0
t−s ∈ dx)

in a similar way, that is, with the same constant c′ as in (43): for any 0 ≤ s < t ≤ T ,
with t − s ≤ 1,

1

dx
P
(
Ẑ

�s ,0
t−s ∈ dx

) ≤ c′
√

t − s
exp

(
−[x − ϑ

�s,0
t−s ]2

c′(t − s)

)
,(45)
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where ϑ�s,0 is the solution of the ODE:
d

dt
ϑ

�s
t = b

(
ϑ

�s
t

)+ α
d

dt
e�s (t), t ∈ [0, T − s],

with ϑ
�s,0
0 = 0 as initial condition.

Bound of the density in small time. Keep in mind that X0 = x0 ≤ 1 − ε. There-
fore, by the comparison principle for ODEs, ϑ

x0
t ≤ ϑ1−ε

t for any t ∈ [0, T ], so that
by Gronwall’s lemma

ϑ
x0
t ≤ ϑ1−ε

t ≤ (
1 − ε + �T + αe(T )

)
exp(�T ).

By Lemma 5.1, we know that e(T ) ≤ B(T ,α, b), so that

ϑ
x0
t ≤ (

1 − ε + �T + αB(T ,α, b)
)
exp(�T ).(46)

Now choose T0 as in Proposition 5.3, that is, T0 ≤ 1 such that

(1 − ε) exp(�T0) ≤ 1 − 7ε/8, �T0 exp(�T0) ≤ ε/8,

and then take α1 ∈ (0,1) such that

α1B(T0, α1, b) exp(�T0) ≤ ε/4.

Then, whenever α ≤ α1, it holds that

ϑ
x0
t ≤ 1 − ε/2, t ∈ [0, T0 ∧ T ].

Therefore, for x ≥ 1 − ε/4,

exp
(
−[x − ϑ

x0
t ]2

c′t

)
≤ exp

(
− ε2

16c′t

)
, t ∈ [0, T0 ∧ T ].(47)

Similarly,

ϑ
�s,0
t−s ≤ 3ε/8 ≤ 3/8, 0 ≤ s ≤ t ≤ T0 ∧ T .

Indeed, e�s (T − s) ≤ e(T ) for s ∈ [0, T ], so that (46) applies to ϑ
�s,0
t−s with 1 − ε

therein being replaced by 0. Therefore, for x ≥ 1 − ε/4, it holds that x − ϑ
�s,0
t−s ≥

3/4 − 3/8 = 3/8 ≥ 1/4, so that

exp
(
−[x − ϑ

�s,0
t−s ]2

c′(t − s)

)
≤ exp

(
− 1

16c′(t − s)

)
, 0 ≤ s < t ≤ T0 ∧ T .(48)

In the end, for x ∈ (1 − ε/4,1) and t ≤ T0 ∧ T , we deduce from (42), (43), (45),
(47), (48) and Lemma 5.1 again, that

1

dx
P(Xt ∈ dx) ≤ c′�0

[
ε−1 + e(T ∧ T0)

]≤ c′�0
[
ε−1 + B(T0, α, b)

]
,(49)

where

�0 = sup
t>0

[
t−1/2 exp

(
− 1

16c′t

)]
= 4

√
c′ sup

u>0

[
u exp

(−u2)]= 23/2
√

c′ exp
(
−1

2

)
.
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Bound of the density in long time. We now discuss what happens for T > T0 and
t ∈ [T0, T ]. Then

1

dx
P(Xt ∈ dx)

≤ 1

dx
P
(
Xt ∈ dx, τ

�t−T0
1 ≤ T0

)+ 1

dx
P
(
Xt ∈ dx, τ

�t−T0
1 > T0

)
(50)

= π1 + π2,

with τ
�t−T0
1 = inf{u > 0 :Xt−T0+u− ≥ 1} = inf{u > 0 :X

�t−T0
u− ≥ 1}. The above ex-

pression says that we split the event (Xt is in the neighborhood of x) into two
disjoint parts according to the fact that X reaches the threshold or not within the
time window [t − T0, t]. We have chosen this interval to be of length T0 in order
to apply the results in small time.

We first investigate π2. The point is that, on the event that τ
�t−T0
1 > T0 and

within the time window [t − T0, t], X behaves as a standard diffusion process
without any jumps, namely as a process with the same dynamics as Ẑ�t−T0 ,Xt−T0 .
Following (43), we then have

π2 = 1

dx
P
(
Ẑ

�t−T0 ,Xt−T0
T0

∈ dx, τ
�t−T0
1 > T0

)
≤ 1

dx
P
(
Ẑ

�t−T0 ,Xt−T0
T0

∈ dx
)

(51)

≤ sup
z≤1

1

dx
P
(
Ẑ

�t−T0 ,z

T0
∈ dx

)
≤ c′T −1/2

0 .

We now turn to π1. Here, we write

π1 = 1

dx
P
(
Xt ∈ dx, τ

�t−T0
1 ≤ T0

)
= ∑

k≥1

1

dx
P
(
Xt ∈ dx, τ

�t−T0
k ≤ T0 < τ

�t−T0
k+1

)

= ∑
k≥1

∫ T0

0

1

dx
P
(
Xt ∈ dx,T0 < τ

�t−T0
k+1 |τ �t−T0

k = s
)
P
(
τ

�t−T0
k ∈ ds

)

= ∑
k≥1

∫ T0

0

1

dx
P
(
Ẑ

�s+t−T0 ,0
T0−s ∈ dx,T0 < τ

�t−T0
k+1

)
P
(
τ

�t−T0
k ∈ ds

)
,

since on the event {τ �t−T0
k ≤ T0 < τ

�t−T0
k+1 }, given that the kth (and last) jump of

X in the interval [t − T0, t] occurs at time t − T0 + s with s ∈ [0, T0], we have
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that the process Xr for r ∈ [t − T0 + s, t] coincides with the process Ẑ
�s+t−T0 ,0
u for

u ∈ [0, T0 − s]. Thus,

π1 ≤ ∑
k≥1

∫ T0

0

1

dx
P
(
Ẑ

�s+t−T0 ,0
T0−s ∈ dx

)
P
(
τ

�t−T0
k ∈ ds

)
(52)

=
∫ T0

0

1

dx
P
(
Ẑ

�s+t−T0 ,0
T0−s ∈ dx

)
e′(s + t − T0) ds.

By (45), we have∫ T0

0

1

dx
P
(
Ẑ

�s+t−T0 ,0
T0−s ∈ dx

)
e′(s + t − T0) ds

≤
∫ T0

0

c′
√

T0 − s
exp

(
−[x − ϑ

�s+t−T0 ,0
T0−s ]2

c′(T0 − s)

)
e′(s + t − T0) ds.

Recalling that e�t−T0 (s) = E(Ms+t−T0 − Mt−T0), it is well seen that the mapping
[0, T0] � s �→ e�t−T0 (s) satisfies Lemma 5.1, that is,

sup
0≤s≤T0

e�t−T0 (s) = sup
0≤s≤T0

[
e(s + t − T0) − e(t − T0)

]
= e(t) − e(t − T0) ≤ B(T0, α, b).

Therefore, we can follow the same strategy as in short time; see (48) and (49).
Indeed, for α ≤ α1, by the choice of T0 as before, it holds that

π1 ≤ c′�0B(T0, α, b),

for x ∈ [1 − ε/4,1). Using (51) and the above bound, we deduce that, for t ∈
[T0, T ],

1

dx
P(Xt ∈ dx) ≤ c′[T −1/2

0 + �0B(T0, α, b)
]
. �

PROOF OF PROPOSITION 5.3. Proposition 5.3 follows from the combination
of Lemmas 5.2 and 5.4. Indeed, given T0 and α0 as defined in Proposition 5.3,
then by Lemma 5.4 it follows that P(Xt ∈ A) < (1/α)|A| for any Borel subset
A ⊂ [1− ε/4,1], any α < α0 and any t ∈ [0, T ]. The result follows by Lemma 5.2,
with B being given by B0 exp(2�) with ε in B0 replaced by ε/4. �

5.4. Estimate of the density of the killed process. In light of the previous sub-
section, for a solution (Xt)0≤t≤T to (3) such that the mapping [0, T ] � t �→ e(t) =
E(Mt) is continuously differentiable, we here investigate

1

dx
P(Xt ∈ dx, t < τ1), t ∈ [0, T ], x ≤ 1,
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where τ = inf{t > 0 :Xt− ≥ 1} as usual. This is the density of the killed process
(Xt∧τ1)0≤t≤T , which makes sense because of Lemma 4.2.

Here is the main result of this subsection.

LEMMA 5.5. Let ε ∈ (0,1), T > 0 and B > 0. Moreover, let (χt )0≤t≤T denote
the solution to the SDE

dχt = b(χt ) dt + αe′(t) dt + dWt, t ∈ [0, T ];χ0 = x0,

for some continuously differentiable nondecreasing deterministic mapping [0, T ] �
t �→ e(t) satisfying

e(0) = 0, e(t) − e(s) ≤ B(t − s)1/2, 0 ≤ s ≤ t ≤ T .

Then there exist two positive constants μT and ηT , only depending upon T , B, ε,
K and �, such that, for any initial condition x0 ≤ 1 − ε,

p(t, y) ≤ μT (1 − y)ηT , t ∈ [0, T ], y ∈ [1 − ε/4,1],(53)

where p(t, y) denotes the density of χt killed at 1 as in (4.2).

PROOF. First step. The first step is to provide a probabilistic representation
for p. For a given (T , x) ∈ (0,+∞) × (−∞,1), we consider the solution to the
SDE:

dYt = −[
b(Yt ) + αe′(T − t)

]
dt + dWt, t ∈ [0, T ], Y0 = y,(54)

together with some stopping time ρ ≤ ρ0 ∧ T , where ρ0 = inf{t ∈ [0, T ] :Yt ≥ 1}
(with inf∅ = +∞). Then, by Lemma 4.2 and the Itô–Krylov formula [see Krylov
(1980), Chapter II, Section 10],

d
(
p(T − t, Yt )

)
= −∂tp(T − t, Yt ) dt − [

b(Yt ) + αe′(T − t)
]
∂yp(T − t, Yt ) dt

+ 1
2∂2

yyp(T − t, Yt ) dt + ∂yp(T − t, Yt ) dWt

= b′(Yt )p(T − t, Yt ) dt + ∂yp(T − t, Yt ) dWt ,

for 0 ≤ t ≤ ρ. Therefore, the Feynman–Kac formula yields

p(T , y) = E

[
p(T − ρ,Yρ)1{Yρ �=1} exp

(
−
∫ ρ

0
b′(Ys) ds

)∣∣∣Y0 = y

]
,(55)

the indicator function following from the Dirichlet boundary condition satisfied
by p(·,1).

Second step. We now specify the choice of ρ. Given some free parameters L ≥ 1
and δ ∈ (0, ε/4) such that Lδ ≤ ε/4, we assume that the initial condition y in (54)
is in (1 − δ,1) and then consider the stopping time

ρ = inf
{
t ∈ [0, T ] :Yt /∈ (1 − Lδ,1)

}∧ δ2.(56)
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Assume that δ2 ≤ T . By (55), we deduce that

p(T , y) ≤ exp
(
Kδ2)(1 − P(Yρ = 1)

)
sup

(t,z)∈Q(δ,L)

p(t, z),(57)

with

Q(δ,L) = {
(t, z) ∈ [

T − δ2, T
]× [1 − Lδ,1]}.

The point is then to give a lower bound for P(Yρ = 1). By assumption, we know
that e is (1/2)-Hölder continuous on [0, T ]. Therefore, since Y0 = y ∈ (1 − δ,1),
we have, for any t ∈ [0, ρ],

Yt ≥ 1 − δ − mδ2 − αBδ + Wt,

with

m = sup
0≤z≤1

∣∣b(z)
∣∣.(58)

Therefore, for mδ ≤ 1,

Yt ≥ 1 − 2δ − αBδ + Wt, t ∈ [0, ρ],
so that

{Yρ = 1} ⊃
{

sup
0≤t≤δ2

Wt > (2 + αB)δ
}

∩
{

inf
0≤t≤δ2

Wt > (2 + αB − L)δ
}
.(59)

Choosing L = 3 + αB and applying a scaling argument, we deduce that

P

({
sup

0≤t≤δ2
Wt > (2 + αB)δ

}
∩
{

inf
0≤t≤δ2

Wt > (2 + αB − L)δ
})

= P

({
sup

0≤t≤1
Wt > (2 + αB)

}
∩
{

inf
0≤t≤1

Wt > −1
})

(60)

=: c′′ ∈ (0,1).

We note that the above quantity c′′ is independent of δ and T . Moreover, we deduce
from (59) that P(Yρ = 1) ≥ c′′ and, therefore, from (57) that

p(T , y) ≤ (
1 − c′′) exp

(
Kδ2) sup

z∈I(Lδ)

sup
t∈[0,T ]

p(t, z),

with I(r) = [1 − r,1], for r > 0. Choosing δ small enough such that (1 −
c′′) exp(Kδ2) ≤ (1 − c′′/2), we obtain

p(T , y) ≤
(

1 − c′′

2

)
sup

z∈I(Lδ)

sup
t∈[0,T ]

p(t, z), y ∈ I(δ).

Modifying c′′ if necessary (c′′ being chosen as small as needed), we can summarize
the above inequality as follows: for δ ≤ c′′,

p(T , y) ≤ (
1 − c′′) sup

z∈I(Lδ)

sup
t∈[0,T ]

p(t, z), y ∈ I(δ).(61)
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We now look at what happens when T ≤ δ2 in (57). In this case, we can replace ρ

in the previous argument by ρ ∧T . Observing that p(T −ρ ∧T ,Yρ∧T ) = 0 on the
event {ρ ≥ T }∪ {Yρ∧T = 1} (since p(0, ·) = 0 on [1 − ε/4,1]) and following (57),
we obtain, for y ∈ I(δ),

p(T , y) ≤ exp
(
Kδ2)[1 − P

({Yρ∧T = 1} ∪ {ρ ≥ T })] sup
(t,z)∈Q′(δ,L)

p(t, z),(62)

with Q′(δ,L) = {(t, z) ∈ [0, T ] × [1 − Lδ,1]}. Now, the right-hand side of (59)
is included in the event {Yρ∧T = 1} ∪ {ρ ≥ T } so that (60) yields a lower bound
for P({Yρ∧T = 1} ∪ {ρ ≥ T }). Therefore, we can repeat the previous arguments in
order to prove that (61) also holds when T ≤ δ2, which means that (61) holds true
in both cases.

Therefore, by replacing T by t in the left-hand side in (61) and by letting t vary
within [0, T ], we have in any case,

sup
y∈I(δ)

sup
t∈[0,T ]

p(t, y) ≤ (
1 − c′′) sup

z∈I(Lδ)

sup
t∈[0,T ]

p(t, z).

By induction, for any integer n ≥ 1 such that Lnδ ≤ r0, with r0 = c′′ ∧ (ε/4),

sup
y∈I(δ)

sup
t∈[0,T ]

p(t, y) ≤ (
1 − c′′)n sup

z∈I(Lnδ)

sup
t∈[0,T ]

p(t, z).

Given δ ∈ (0, r0/L), the maximal value for n is n = �ln[r0/δ]/ lnL�. We deduce
that, for any δ ∈ (0, r0/L),

sup
y∈I(δ)

sup
t∈[0,T ]

p(t, y) ≤ (
1 − c′′)(ln[r0/δ]/ lnL)−1 sup

z∈I(ε/4)

sup
t∈[0,T ]

p(t, z).(63)

Following (43), we know that

sup
z∈I(ε/4)

sup
t∈[0,T ]

p(t, z) ≤ sup
z∈I(ε/4)

sup
t∈[0,T ]

[
cT√

t
exp

(
−[z − ϑ

x0
t ]2

cT t

)]
,(64)

for some constant cT only depending upon T and K and where (ϑ
x0
t )0≤t≤T stands

for the solution of the ODE

dϑ

dt
= b(ϑt ) + αe′(t), t ∈ [0, T ];ϑ0 = x0.

Pay attention that we here use the same notation as in (44) for the solution of the
above ODE but here e(t) is not given as some E(Mt). Actually, we feel that there
is no possible confusion here. Notice also that e is fixed and does not depend upon
the initial condition x0.

By the comparison principle for ODEs and then by Gronwall’s lemma, we de-
duce from the fact that e is (1/2)-Hölder continuous that

ϑ
x0
t ≤ ϑ1−ε

t ≤ [
1 − ε + �t +Bt1/2] exp(�t), t ∈ [0, T ].
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Using the above inequality, we can bound the right-hand side in (64). Precisely,
the above inequality says that the exponential term in the supremum decays expo-
nentially fast as t tends to 0 so that the term inside the supremum can be bounded
when t is small; when t is bounded away from 0, the term inside the supremum is
bounded by cT /

√
t . It is plain to deduce that

sup
z∈I(ε/4)

sup
t∈[0,T ]

p(t, z) ≤ cT ,(65)

for a new value of cT , possibly depending on ε as well. Therefore, for δ ∈
(0, r0/L), (63) yields

sup
y∈I(δ)

sup
t∈[0,T ]

p(t, y) ≤ cT

(1 − c′′)

(
δ

r0

)η

,

with η = − ln(1 − c′′)/ lnL. This proves (53) for y ∈ (1 − r0/L,1). Note that η is
here independent of T , contrary to what is indicated in the statement of Lemma 5.5.
However, we feel it is simpler to indicate T in ηT as the constant B in the sequel
will be chosen in terms of T thus making η depend on T . Using (65), we can easily
extend the bound to any y ∈ (1 − ε/4,1) by modifying if necessary the parameters
μT and ηT therein. This completes the proof. �

5.5. Bound for the gradient. Here is the final step to complete the proof of
Theorem 2.3.

PROPOSITION 5.6. Let ε ∈ (0,1), T > 0 and B > 0. Moreover, let (χt )0≤t≤T

denote the solution to the SDE

dχt = b(χt ) dt + αe′(t) dt + dWt, t ∈ [0, T ], χ0 = x0,

for some continuously differentiable nondecreasing deterministic mapping [0, T ] �
t �→ e(t) satisfying

e(0) = 0; e(t) − e(s) ≤ B(t − s)1/2, 0 ≤ s ≤ t ≤ T .

Then there exists a constant MT > 0, only depending upon T , B, ε, K and �, such
that, for any initial condition x0 ≤ 1 − ε and any integer n such that n ≥ �4/ε�,

∣∣∂yp(t,1)
∣∣≤ MT n−ηT

1 − exp[−M−1
T (1 + αCT )n−1](1 + αCT ), t ∈ [0, T ],

where p(t, y) is the density of χt killed at 1 as in (4.2), ηT is as in Lemma 5.5, and

CT = sup
0≤t≤T

e′(t).
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PROOF. We consider the barrier function

q(t, y) = � exp(Kt)
[
1 − exp

(
γ (y − 1)

)]
, t ≥ 0, y ∈ R,(66)

where γ and � are free nonnegative parameters. Then, for t > 0 and y < 1,

∂tq(t, y) + (
b(y) + αe′(t)

)
∂yq(t, y) − 1

2∂2
yyq(t, y)

= � exp(Kt) exp
(
γ (y − 1)

)(−(
b(y) + αe′(t)

)
γ + 1

2γ 2)+ Kq(t, y).

Keeping in mind that sup0≤t≤T e′(t) = CT and choosing

γ = 2
(
max(m,1) + αCT

)
,(67)

where m = sup0≤z≤1 |b(z)| as before, we obtain, for t ∈ [0, T ] and y ∈ (0,1),

−(
b(y)+αe′(t)

)
γ + 1

2γ 2 ≥ −2
(
max(m,1)+αCT

)2 +2
(
max(m,1)+αCT

)2 = 0.

Thus, for t ∈ [0, T ] and y ∈ (0,1),

∂tq(t, y) + (
b(y) + αe′(t)

)
∂yq(t, y) − 1

2∂2
yyq(t, y) ≥ Kq(t, y) ≥ −b′(y)q(t, y),

which reads

∂tq(t, y) + ∂y

[(
b(y) + αe′(t)

)
q(t, y)

]− 1
2∂2

yyq(t, y) ≥ 0.(68)

For a given integer n ≥ �4/ε�, we choose � as the solution of

�

[
1 − exp

(
−2(max(m,1) + αCT )

n

)]
= μT n−ηT ,(69)

with μT and ηT as in the statement of Lemma 5.5. Pay attention that the factor
in the left-hand side cannot be 0 as max(m,1) > 0. Notice also q thus depends
upon n. By Lemma 5.5, we deduce that

q

(
t,1 − 1

n

)
≥ p

(
t,1 − 1

n

)
, 0 ≤ t ≤ T .

Now, we can apply the comparison principle for PDEs [see Lieberman (1996),
Chapter IX, Theorem 9.7]. Indeed, we also observe that q(0, y) ≥ p(0, y) = 0 for
y ∈ [1 − 1/n,1] and q(t,1) = p(t,1) = 0 for t ∈ [0, T ]. Therefore, by (68), we
have

p(t, y) ≤ q(t, y), t ∈ [0, T ], y ∈
[
1 − 1

n
,1
]
.(70)

Since p(t,1) = 0 = q(t,1), we deduce∣∣∂yp(t,1)
∣∣ ≤ ∣∣∂yq(t,1)

∣∣
(71)

= 2μT (max(m,1) + αCT )n−ηT

1 − exp[−2(max(m,1) + αCT )/n] exp(Kt). �
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We now complete the proof of Theorem 2.3. We make use of Proposition 4.5.
Recall (21)

e′(t) = −
∫ t

0

1

2
∂yp

(0,s)(t − s,1)e′(s) ds − 1

2
∂yp(t,1), t ∈ [0, T ],

where p represents the density of the process X killed at 1 and p(0,s) represents
the density of the process X�s driven by e�s = e(· + s) − e(s) [see (40)] killed at 1
with X

�s

0 = 0 as initial condition.
By Proposition 5.3 and Lemma 5.1, we know that, for a given s ∈ [0, T ) and

for the prescribed values of α, the mapping [0, T − s] � r �→ e�s (r) is 1/2-Hölder
continuous, the Hölder constant only depending upon T , α, ε, K and � (Proposi-
tion 5.3 permits to bound the increments of e�s on small intervals and Lemma 5.1
gives a trivial bound for the increments of e�s on large intervals). Therefore, by
Proposition 5.6, we know that

∣∣∂yp
(0,s)(t − s,1)

∣∣≤ MT n−ηT

1 − exp[−M−1
T (1 + αCT )n−1](1 + αCT ),

(72)
t ∈ [s, T ],

for n ≥ �4/ε� and for some constant MT only depending upon T , α, ε, K and �.
The same bound also holds true for ∂yp(t,1).

We deduce that, for any t ∈ [0, T ] and any n such that n ≥ �4/ε�,

e′(t) ≤ MT n−ηT

1 − exp[−M−1
T (1 + αCT )n−1](1 + αCT )

e(T ) + 1

2
.

By Lemma 5.1, we have a bound for e(T ) = E(MT ), which means that we can
bound (e(T ) + 1)/2 in the right-hand side above by modifying the constant MT .
Recalling

CT = sup
0≤t≤T

e′(t),

we deduce that

CT

(
1 − exp

[−M−1
T (1 + αCT )n−1]) ≤ MT (1 + αCT )n−ηT .(73)

Choosing n large enough such that the right-hand side is less than (1 + αCT )/2
(so that n depends on T ) and multiplying by α, we get [since α ∈ (0,1)]

αCT

2
≤ 1

2
+ αCT exp

[−M−1
T (1 + αCT )n−1].

This shows that αCT must be bounded in terms of MT and n. Precisely, we have

αCT ≤ 1 + 2 sup
r≥0

[
r exp

[−M−1
T (1 + r)n−1]] := R < +∞.



2130 DELARUE, INGLIS, RUBENTHALER AND TANRÉ

By (73), we deduce that

CT ≤ sup
0≤r≤R

[ MT (1 + r)n−ηT

1 − exp[−M−1
T (1 + r)n−1]

]
,

which is independent of α (for α ∈ (0, α0]), as required. �

6. Proof of Theorem 2.4. In this section, we put everything together to arrive
at our goal, which is the proof of Theorem 2.4. We first need the following lemma,
which is a corollary of Theorem 2.3. The point is that the result will allow us to
reapply the fixed-point result on successive time intervals, since it guarantees that
the conditions of the fixed-point result are satisfied at the final point of any interval
on which we know there is a solution.

LEMMA 6.1. For any T > 0, initial condition X0 = x0 < 1, and α < α0,
where α0 = α0(x0) is as in Theorem 2.3, there exists a constant Cden(T ) depending
only on T , x0, K and � such that any solution to (3) on [0, T ] satisfies

1

dy
P(Xt ∈ dy) ≤ Cden(T )(1 − y),

for all y ∈ (1 − ε/8,1) and t ∈ [0, T ], with ε = min(1,1 − x0).

PROOF. We assume that (Xt)0≤t≤T is a solution to (3) with X0 = x0 up until
time T , and set e(t) = E(Mt). Following the notation of Section 4 (see also the
last part of the proof of Theorem 2.3), for y ≤ 1 and t ≤ T , let

p(t, y) := 1

dy
P(Xt ∈ dy, t < τ1),

p(0,s)(t, y) := 1

dy
P
(
X

�s
t ∈ dy, t < τ

�s

1 |X�s

0 = 0
)
.

By Theorem 2.3, we know that e is MT -Lipschitz continuous, so that by (70),

p(t, y) ≤ q(t, y), t ∈ [0, T ], y ∈
[
1 − 1

n
,1
]
,

where n stands for �4/ε� and q is given by (66), with γ and � being fixed by (67)
and (69), with CT = MT . By the specific form of q , this says that there exists a
constant C′

T , depending only on T , x0, K and �, such that

p(t, y) ≤ C′
T (1 − y), t ∈ [0, T ], y ∈

[
1 − ε

8
,1
]
,

using the elementary inequality 1 − exp(−x) ≤ x for x ∈ R. Clearly, the same
argument applies to p(0,s)(t − s, y), that is,

p(0,s)(t − s, y) ≤ C′
T (1 − y), 0 ≤ s < t ≤ T ,y ∈

[
1 − ε

8
,1
]
.
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Now, following the proof of (39), we get for t ∈ [0, T ] and y ∈ [1 − ε/8,1],
1

dy
P(Xt ∈ dy) = p(t, y) +

∫ t

0
p(0,s)(t − s, y)e′(s) ds

(74)
≤ C′

T

(
1 + e(T )

)
(1 − y),

where we use Lemma 4.2 for justifying the passage to the density in (39). By
Lemma 5.1, this completes the proof. �

Finally, we can then prove the main result of the present paper:

PROOF OF THEOREM 2.4. We would like a solution up until fixed time T > 0.
The idea is to iterate the fixed-point result (Theorem 4.1), which is possible thanks
to Lemma 6.1. Indeed, by Theorem 4.1, we have that there exists a solution to (3)
with X0 = x0 up until some small time T1 > 0. By Lemma 6.1, we thus have that

1

dy
P(XT1 ∈ dy) ≤ Cden(T1)(1 − y), y ∈

[
1 − ε

8
,1
]
,(75)

where ε = min(1−x0,1). If T1 ≥ T we are done. If not, we have the above density
bound for (1/dy)P(XT1 ∈ dy). We also know from (74) and Lemma 4.2 that the
density of XT1 is differentiable at y = 1. Therefore, we can apply Theorem 4.1
again to see that there exists a solution to (3) on some interval [T1, T1 + T2] start-
ing from XT1 . As T2 only depends upon XT1 through ε (this is the statement of
Theorem 4.1) and Cden(T1) and as these quantities can be bounded in terms of T ,
ε, K , � only, we then see that

T2 ≥ φ(T )

for some constant φ(T ) that refers to T , α, ε, K , � only. Now we know that there
exists a solution to (3) with X0 = x0 on [0, T1 + T2]. If T1 + T2 > T we are done.
If not, by Lemma 6.1 once again,

1

dy
P(XT1+T2 ∈ dy) ≤ Cden(T1 + T2)(1 − y), y ∈

[
1 − ε

8
,1
]
,

and we can then repeat the argument n times to get a solution up until time T1 +
· · · + Tn, where all Tk ≥ φ(T ) for k ≥ 2, that is, each time step is of size at least
φ(T ). It is then clear that there exists n ≥ 1 such that T1 + · · · + Tn ≥ T , and so
we are done for the existence of a solution.

Uniqueness of the solution proceeds in the same way. Given another solution
(X′

t ,M
′
t )0≤t≤T on the interval [0, T ] in the sense of Definition 2.2, it must satisfy

the a priori estimates in the statements of Theorem 2.3 and Lemmas 5.1 and 6.1. In
particular, dividing the interval [0, T ] into subintervals of length φ(T ) [except for
the last interval the length of which might be less than φ(T )], with the same φ(T )

as above, we can apply the contraction property in Theorem 4.1 on each subinter-
val iteratively. Precisely, choosing A1 accordingly in Theorem 4.1, we prove by
induction that the two solutions coincide on [0, φ(T )], [0,2φ(T )], and so on. �
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