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THE INTERNAL BRANCH LENGTHS OF
THE KINGMAN COALESCENT1

BY IULIA DAHMER2 AND GÖTZ KERSTING

Goethe-Universität Frankfurt

In the Kingman coalescent tree the length of order r is defined as the sum
of the lengths of all branches that support r leaves. For r = 1 these branches
are external, while for r ≥ 2 they are internal and carry a subtree with r leaves.
In this paper we prove that for any s ∈ N the vector of rescaled lengths of
orders 1 ≤ r ≤ s converges to the multivariate standard normal distribution
as the number of leaves of the Kingman coalescent tends to infinity. To this
end we use a coupling argument which shows that for any r ≥ 2 the (internal)
length of order r behaves asymptotically in the same way as the length of
order 1 (i.e., the external length).

1. Introduction and main result. The Kingman coalescent was introduced
in [14] as a model for describing the genealogical relationships between the in-
dividuals for a wide class of population models; see [17] for details. The state
space of the Kingman n-coalescent, n ∈ N, is the set Pn of partitions of the set
{1,2, . . . , n}. The process starts in the partition into singletons πn = {{1}, . . . , {n}}
and has the following dynamics: given that the process is in the state πk , it jumps
after a random time Xk to a state πk−1 which is obtained by merging two randomly
chosen elements from πk . The random inter-coalescence times Xk are indepen-
dent, exponentially distributed random variables with parameters

(k
2

)
. The process

can be viewed graphically as a rooted tree that starts from n leaves labelled from 1
to n and whose any two branches coalesce independently at rate 1. Each branch
of this tree is situated above a subtree. If this subtree has r leaves, we say that the
branch is of order r . The branches of order r ≥ 2 are the internal branches, while
those of order 1 are the external ones (they support subtrees consisting of just one
node).

Let us look at the tree from the leaves towards the root (see Figure 2). Then the
branch of order r supporting the leaves i1, . . . , ir is formed at the level σ(i1, . . . , ir )

and ends at level ρ(i1, . . . , ir ), where

σ(i1, . . . , ir ) = max
{
1 ≤ k ≤ n : {i1, . . . , ir} ∈ πk

}
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and

ρ(i1, . . . , ir ) = max
{
1 ≤ k < σ(i1, . . . , ir ) : {i1, . . . , ir} /∈ πk

}
.

For a subset {i1, . . . , ir} of leaves, which is not supported by some branch (which
means that {i1, . . . , ir} /∈ πk for all k) we set σ(i1, . . . , ir ) = ρ(i1, . . . , ir ) = n.

Let Si1,...,ir denote the length of the branch of order r that supports the leaves
i1, . . . , ir , and write Ln,r for the total length of order r . Then

Si1,...,ir =
σ(i1,...,ir )∑

l=ρ(i1,...,ir )+1

Xl

and

Ln,r = ∑
1≤i1<···<ir≤n

Si1,...,ir .

Observe that Ln,1 is the total length of the external branches.
The length of a randomly chosen external branch in the coalescent tree has been

studied by Freund and Möhle [8] for the Bolthausen–Sznitman coalescent and by
Gnedin et al. [11] for the �-coalescent. Asymptotic results concerning the total
external length of Beta(2 − α,α)-coalescents were given by Möhle [16] for the
case 0 < α < 1, by Kersting et al. [13] for the case α = 1, and by Kersting et al.
[5] for the case 1 < α < 2. For the case 1 < α < 2 a weak law of large numbers
result concerning Ln,r can be easily deduced from Theorem 9 of Berestycki et al.
[2] and also from Dhersin and Yuan [6].

Fu and Li [10] computed the expectation and variance of the total external
branch length of the Kingman n-coalescent and Caliebe et al. [4] derived the
asymptotic distribution of a randomly chosen external branch. In [12] Janson and
Kersting obtained the asymptotic normality of the total external branch length. Our
main result states that the same kind of asymptotics holds for the lengths of order
r ≥ 1. Moreover, these lengths are asymptotically independent.

THEOREM. For any s ∈ N, as n → ∞√
n

4 logn

(
Ln,1 − μ1, . . . ,Ln,s − μs

) d−→ N(0, Is),

where Is denotes the s × s-identity matrix and μr = E(Ln,r ) = 2
r

for every r ≥ 1.

In a forthcoming paper our theorem will be a main building block for proving
a functional limit theorem for the total external length of the evolving Kingman-
coalescent.

The scatterplot for the lengths of orders 1 and 2 in Figure 1 confirms the theo-
rem. The bulk of the points are located around the mean (μ1,μ2) = (2,1). Also,
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FIG. 1. External length versus internal length of order 2. The plot is based on 1000 coalescent
realisations with n = 100.

in this region hardly any correlation between the two lengths is visible. The out-
liers are due to exceptionally long branches whose occurrence has been explained
in detail in [12] for the external case. The simulation shows that this phenomenon
appears similarly in the case of internal lengths, as one would expect.

As to the proof of the theorem, for the case s = 1 a hidden symmetry within the
Kingman coalescent is used in [12]. Here we substantially build on the result for
s = 1; however, the proof for the more general case is rather different. It consists
of a coupling device for Markov chains, which connects the total length of order r

to the total external length: for 1 ≤ k ≤ n let Wk(r) denote the number of order r

at level k, the number of branches of order r among the k branches present in the
coalescent tree after the (n − k)th coalescing event. (Note that here and elsewhere
we are suppressing the n in the notation.) That is,

Wk(r) := ∣∣{{i1, . . . , ir} ⊂ {1, . . . , n} : i1 < · · · < ir,

σ (i1, . . . , ir ) ≥ k > ρ(i1, . . . , ir )
}∣∣.

In particular Wn(r) = 0,Wn−1(r) = 0, . . . ,Wn−r+2(r) = 0 and W1(r) = 0 for
r < n. For an example, see Figure 2.

It is important to notice that for any s ∈ N, the random vectors (Wk(1),Wk(2),

. . . ,Wk(s)) form a Markov chain if k runs from n to 1 (a property which facili-
tated our simulations). The transition probabilities of the Markov chain are given
explicitly in Section 3. For a similar approach using a Markov chain embedded in
the Bolthausen–Sznitman coalescent, see [1]. The idea of our proof is to couple
(Wk(r))n≥k≥1 for 1 ≤ r ≤ s jointly with s independent copies of the Markov chain
of external numbers (Wk(1))n≥k≥1. Since in addition the length of order r is es-
sentially specified by the chain (Wk(r))n≥k≥1, it consequently gets the asymptotic
behaviour of the external length.
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FIG. 2. The dashed (red) branch is an internal branch of order 4; it supports the leaves 1, 2,
3, and 4. It is formed at level σ(1, . . . ,4) = 5 and ends at level ρ(1, . . . ,4) = 3. Its length is
S1,2,3,4 = X4 + X5. The dotted (green) branches are the branches of order three. The numbers
of branches of orders 1 to 10 at level 5 are W5(1) = 3, W5(2) = 0,W5(3) = 1,W5(4) = 1, and
W5(i) = 0 for i ≥ 5.

The simulations in Figure 3 give an impression of the behaviour of the lengths of
different orders. In the range between the levels n and n1−ε for small ε > 0 (closer
to the leaves) they differ substantially, as seen in Figure 3(a). This deviation is only
due to expectations and does not appear at the level of fluctuations. Indeed, it is
known from [12] that for the external length the fluctuations are induced just by
the Wk(1) with n1−ε ≥ k ≥ √

n. As suggested by Figure 3(b) in this region the

FIG. 3. (a) Simulations of the external numbers Wk(1) (in orange) and internal numbers Wk(2)

of order 2 (in blue) for a coalescent with n = 100 for 1 ≤ k ≤ n. The black dashed curves represent
the expectations as given in Lemma 1. (b) Gives the representations in double logarithmic scale for
a coalescent with n = 104.
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evolution of the chains is similar for orders r ≥ 2. The difference in expectation is
negligible in our construction, as we couple the jumps of the chains and afterwards
consider the lengths of different orders centred at expectation.

The interest in the quantities Ln,r arose from models where the population is
subject to mutation, the mutations being modelled as points of a Poisson process
with constant rate θ

2 on the branches of the coalescent tree. In the infinitely many
sites mutation model, in which every new mutation occurs at a new locus on the
DNA, mutations that are located on the external branches of the coalescent tree
affect only single individuals, whereas mutations located on an internal branch of
order r ≥ 2 affect all r individuals sitting at the leaves supported by that partic-
ular branch. In a population of size n, let Mr(n) denote the number of mutations
carried by exactly r individuals. The vector (M1(n), . . . ,Mn−1(n)), called the site
frequency spectrum, and the total number Sn := ∑n−1

r=1 Mr(n) of mutations that
affect the population, called the number of segregating sites, are quantities of sta-
tistical importance. Berestycki et al. [2] obtained a weak law of large numbers for
Mr(n), r ≥ 1, in the case of Beta-coalescents with 1 < α < 2.

For the Kingman coalescent it is known that the number of segregating sites Sn,
when rescaled by logn, converges almost surely as n → ∞ to θ ; see, for example,
[3], Theorem 2.11. The expectation of Mr(n) (which is equal to θ

r
), as well as the

variances and the covariances of the numbers of mutations Mr(n), were computed
by Fu [9] and Durrett [7]. We obtain the following result as a direct consequence
of our theorem.

COROLLARY. For any s ∈ N, as n → ∞(
M1(n), . . . ,Ms(n)

) d−→ (M1, . . . ,Ms),

where M1, . . . ,Ms are independent Poisson-distributed random variables with pa-
rameters θμ1, . . . , θμs .

For the proof of the corollary, note from the Poissonian structure of the mutation
process that the characteristic function of (M1(n), . . . ,Ms(n)) is

ϕ(M1(n),...,Ms(n))(λ1, . . . , λs) = E
[
E

[
ei(λ1M1(n)+···+λsMs(n))|T ]]

= E
[
eθLn,1(eiλ1−1) · · · eθLn,s (eiλs −1)],

where T denotes the σ -algebra containing the whole information about the coales-

cent tree. From our theorem it follows that Ln,r P−→ μr as n → ∞ and therefore

ϕ(M1(n),...,Ms(n))(λ1, . . . , λs) −→ eθμ1(e
iλ1−1) · · · eθμs(e

iλs −1),

as n → ∞.
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REMARK. We note that the convergence Ln,r P−→ μr can also be deduced
from the results of Fu [9]: we have that

V
(
Mr(n)

) =V
(
E

[
Mr(n)|T ]) +E

(
V

[
Mr(n)|T ]) = V

(
θ

2
Ln,r

)
+E

(
θ

2
Ln,r

)
.

Comparing this with Fu’s formulas (1)–(3), we obtain for r < n
2 that

V
(
Ln,r) = 2n

(n − r)(n − r − 1)

n∑
i=r+1

1

i
− 2

n − r − 1
.

In particular V(Ln,r ) → 0 and Ln,r P−→ E(Ln,r ) = μr as n → ∞.

NOTATION. We use the notation Xn = OP (f (n)) for f (n) > 0 if

lim
a→∞ lim sup

n→∞
P

(
Xn > a · f (n)

) = 0,

that is, Xn

f (n)
is stochastically bounded.

Throughout c denotes a finite constant whose value is not important and may
change from line to line.

2. Moment computations.

LEMMA 1. For the expectation and variance of Wk(r) the following is true.
For n > r ,

E
(
Wk(r)

) = (n − k) · · · (n − k − r + 2)

(n − 1) · · · (n − r)
· k(k − 1) and V

(
Wk(r)

) ≤ c
k2

n
,

where c < ∞ is a constant depending on r . In particular

E
(
Wk(r)

) =
(

n − k

n

)r−1

· k2

n
+ O

(
k

n

)
= k2

n
+ O

(
k3

n2 + k

n

)
= O

(
k2

n

)
uniformly in k ≤ n. Also, for any integer α ≥ 2,

E
(
Wα

k (r)
) =

((
n − k

n

)r−1

· k2

n

)α

+ O

((
k2

n

)α−1

+ k2

n

)
= O

(
k2α

nα
+ k2

n

)
.

PROOF. In order to compute the moments of Wk(r), let us again label the
leaves of the coalescent tree from 1 to n and note that Wk(r) can be written as

Wk(r) = ∑
1≤i1<···<ir≤n

1{{i1,...,ir }∈πk},

where πk is the state of the coalescent process at time k. Then for n > r , using the
fact that the event {{1, . . . , r} ∈ πk} is the disjoint union (over n > l1 > l2 > · · · >
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lr−1 ≥ k) of the events {the branch supporting leaves 1, . . . , r is formed by r − 1
coalescing events happening at levels l1, l2, . . . , lr−1}, we have from exchange-
ability that

E
(
Wk(r)

) = E

( ∑
1≤i1<···<ir≤n

1{{i1,...,ir }∈πk}
)

=
(

n

r

)
P

({1, . . . , r} ∈ πk

)

=
(

n

r

) ∑
n>l1>l2>···>lr−1≥k

(n−r
2

)(n
2

) ·
(n−1−r

2

)(n−1
2

) · · ·

×
(l1+2−r

2

)(l1+2
2

) ·
(r
2

)(l1+1
2

) ·
(l1−(r−1)

2

)(l1
2

) · · ·(1)

×
(lj+2−(r−j+1)

2

)
(lj+2

2

) ·
(r−j+1

2

)(lj+1
2

) ·
(lj−(r−j)

2

)
(lj

2

) · · ·

×
(lr−1

2

)(lr−1+2
2

) ·
(2
2

)(lr−1+1
2

) ·
(lr−1−1

2

)(lr−1
2

) · · ·
(k
2

)(k+1
2

) .
Most binomials in the nominator and the denominator cancel. The summands turn
out to be equal such that

E
(
Wk(r)

) =
(

n

r

) ∑
n>l1>l2>···>lr−1≥k

(r
2

) · · · (2
2

)(n
2

) · · · (n−r+1
2

) ·
(

k

2

)

=
(

n

r

)(
n − k

r − 1

) (r
2

) · · · (2
2

)(n
2

) · · · (n−r+1
2

) ·
(

k

2

)

= (n − k) · · · (n − k − r + 2)

(n − 1) · · · (n − r)
· k(k − 1).

This is the first claim, which directly implies the first asymptotic formula for
E(Wk(r)). Now the second follows by means of the Bernoulli inequality:

1 −
(

n − k

n

)r−1

= 1 −
(

1 − k

n

)r−1

≤ (r − 1)
k

n
.

The computation of the second moment of Wk(r) follows in a similar way.
Note that the event {{i1, . . . , ir}, {j1, . . . , jr} ∈ πk} is nonempty only if the sets
{i1, . . . , ir} and {j1, . . . , jr} are identical or disjoint. Thus, for n > 2r

E
(
W 2

k (r)
) =

(
n

r

)
E

(
12{{1,...,r}∈πk}

)
+

(
n

r, r, n − 2r

)
E(1{{1,...,r}∈πk} · 1{{r+1,...,2r}∈πk})



1332 I. DAHMER AND G. KERSTING

=
(

n

r

)
P

({1, . . . , r} ∈ πk

)
+

(
n

r, r, n − 2r

)
P

({1, . . . , r}, {r + 1, . . . ,2r} ∈ πk

)
= E

(
Wk(r)

)
+

(
n

r, r, n − 2r

)∑ (n−2r
2

)(n
2

) · · ·
(l′′1 +2−2r

2

)
(l′′1 +2

2

) ·
(r
2

)
(l′′1 +1

2

) ·
(l′′1 −(2r−1)

2

)
(l′′1

2

) · · ·

×
(l′′2r−2−1

2

)
(l′′2r−2+2

2

) · 1(l′′2r−2+1
2

) ·
(l′′2r−2−2

2

)
(l′′2r−2

2

) · · ·
(k−1

2

)(k+1
2

) ,
where the sum is taken over all n > l1 > l2 > · · · > lr−1 ≥ k and all n > l′1 >

l′2 > · · · > l′r−1 ≥ k such that {l1, . . . , lr−1} ∩ {l′1, . . . , l′r−1} = ∅. The sequences
(lj )1≤j≤r−1 and (l′j )1≤j≤r−1 denote the coalescence times of the branches sup-
porting leaves from the sets {1, . . . , r} and {r + 1, . . . ,2r}, respectively. The se-
quence (l′′j )1≤j≤2r−2 is the reordering of l1, . . . , lr−1, l

′
1, . . . , l

′
r−1 in decreasing

order. Thus

E
(
W 2

k (r)
) = E

(
Wk(r)

)
+

(
n

r, r, n − 2r

)(
n − k

r − 1, r − 1, n − k − 2r + 2

)
(
(r
2

) · · · (2
2

)
)2(n

2

) · · · (n−2r+1
2

)
×

(
k

2

)(
k − 1

2

)
= E

(
Wk(r)

)
+ (n − k) · · · (n − k − 2r + 3)

(n − 1) · · · (n − 2r)
k(k − 1)2(k − 2).

The variance of Wk is then for k ≤ n − 1

V
(
Wk(r)

) = E
(
Wk(r)

)(
1 + (n − k − r + 1) · · · (n − k − 2r + 3)

(n − r − 1) · · · (n − 2r)
(k − 1)(k − 2)

− (n − k) · · · (n − k − r + 2)

(n − 1) · · · (n − r)
· k(k − 1)

)

≤ E
(
Wk(r)

)(
1 + k(k − 1)(n − k) · · · (n − k − r + 2)

×
(

1

(n − r − 1) · · · (n − 2r)
− 1

(n − 1) · · · (n − r)

))

≤ E
(
Wk(r)

)(
1 + k2nr−1

(
1

(n − 2r)r
− 1

nr

))
.
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Using the mean value theorem we obtain that

V
(
Wk(r)

) ≤ E
(
Wk(r)

)(
1 + k2nr−1 2r2

(n − 2r)r+1

)
≤ c

k2

n
,

for c < ∞ depending on r .
For the other claims we use the same type of argument as above. We have that(

n

r, . . . , r, n − αr

)
P

({1, . . . , r}, . . . , {
(α − 1)r + 1, . . . , αr

} ∈ πk

)
=

(
n

r, . . . , r, n − αr

)(
n − k

r − 1, . . . , r − 1, n − k − α(r − 1)

)

× (
(r
2

) · · · (2
2

)
)α(n

2

) · · · (n−αr+1
2

) ·
(

k

2

)
· · ·

(
k − α + 1

2

)

= (n − k) · · · (n − k − α(r − 1) + 1)

(n − 1) · · · (n − αr)
(2)

× k(k − 1)2 · · · (k − α + 1)2(k − α)

= (n − k)α(r−1)

nαr
· k2α + O

(
(n − k)α(r−1)

nαr
· k2α−1

)

+ O

(
(n − k)α(r−1)−1

nαr
· k2α

)
+ O

(
(n − k)α(r−1)

nαr+1 · k2α

)

= (n − k)α(r−1)

nαr
· k2α + O

(
k2α−1

nα

)
.

In particular this gives the asymptotic expansion of E(Wk(r)). Also(
n

r, . . . , r, n − αr

)
P

({1, . . . , r}, . . . , {
(α − 1)r + 1, . . . , αr

} ∈ πk

)
(3)

= O

(
k2α

nα

)
.

Moreover, by expanding (
∑

1≤i1<···<ir≤n 1{{i1,...,ir }∈πk})α

E
(
Wα

k (r)
) =

(
n

r, . . . , r, n − αr

)
P

({1, . . . , r}, . . . , {
(α − 1)r + 1, . . . , αr

} ∈ πk

)
+ O

(
α−1∑
β=1

(
n

r, . . . , r, n − βr

)
(4)

× P
({1, . . . , r}, . . . , {

(β − 1)r + 1, . . . , βr
} ∈ πk

))
.
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The last claim now follows from (2), (3), (4), and the fact that
∑α−1

β=1(
k2

n
)β =

O((k2

n
)α−1 + k2

n
). �

REMARK. It can be read off from the computation in (1) that in the case r = 2,
given the event {ρ(1,2) < k} = {{1,2} ∈ πk}, the random variable σ(1,2) is uni-
formly distributed on the set of levels {k, . . . , n − 1}. Indeed for k ≤ l < n it holds

P
(
σ(1,2) = l, ρ(1,2) < k

)
=

(n−2
2

)(n
2

) ·
(n−3

2

)(n−1
2

) · · ·
(l+1

2

)(l+3
2

) ·
( l
2

)(l+2
2

) · 1(l+1
2

) ·
(l−1

2

)( l
2

) ·
(l−2

2

)(l−1
2

) · · ·
(k
2

)(k+1
2

)
= 1(n

2

) · 1(n−1
2

) ·
(

k

2

)
,

which does not depend on l. A similar observation can be made for the case r > 2.

Using the numbers Wk(r) we have the following simplified expression for the
length of order r :

Ln,r = ∑
2≤k≤n

Wk(r) · Xk.(5)

We note from this representation that there are two sources of randomness in the
length of order r , one coming from the numbers Wk(r) and one coming from the
exponential inter-coalescence times. It is easy to see that taking out the randomness
introduced by the exponential times (i.e., replacing them by their expectations)
leads to an error that is asymptotically OP (n−1/2) and therefore converges to 0
after the rescaling by

√
n

logn
. Indeed, by using the independence between the Xk’s

and the Wk(r)’s and Lemma 1, we have that for a constant c < ∞
V

( ∑
2≤k≤n

Wk(r) · (
Xk −E(Xk)

))

= ∑
2≤k≤n

V
(
Wk(r) · (

Xk −E(Xk)
))

= ∑
2≤k≤n

E
(
W 2

k (r)
) ·E((

Xk −E(Xk)
)2)

≤ c
∑

2≤k≤n

(
k4

n2 + k2

n

)
· 1( k

22

) ≤ c
1

n

and therefore

Ln,r = Ln,r + OP

(
n−1/2)

,
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where

Ln,r := ∑
2≤k≤n

Wk(r) ·E(Xk) = ∑
2≤k≤n

Wk(r) · 2

k(k − 1)
.(6)

As a consequence, in the proof of our theorem we need only focus on the length
Ln,r which we will, for convenience, still call the length of order r .

3. The coupling. Our proof follows a coupling argument which substantially
relies on the observation that for every s ∈ N the vector Vk := (Wk(1),Wk(2), . . . ,

Wk(s)) follows for n ≥ k ≥ 1 the dynamics of an inhomogenous Markov chain
with state space Xn,s := {0,1, . . . , n}s . We let time run in coalescent direction
(from the leaves to the root of the tree), and for convenience we consider the evo-
lution of the chain (Vk)n≥k≥1, running in the same direction, namely from level n

to level 1.
For every 1 ≤ r ≤ s we denote by �Wn−1(r), . . . ,�W1(r) the sizes of the

jumps of the chain (Wk(r))n≥k≥1,

�Wk(r) := Wk(r) − Wk+1(r), n − 1 ≥ k ≥ 1

and observe that �Wk(r) ∈ {−2,−1,0,1} for all k. The jumps of size 1 correspond
to the levels at which a new branch of order r is formed (by the coalescence of two
other branches), whereas the jumps of sizes −1 and −2 happen at the levels at
which one (or, resp., two) branches of order r end (by coalescence of one of them
with some other branch or by mutual coalescence).

For 1 ≤ k ≤ n and v, v′ ∈ Xn,s let

P k
v

(
v′) := P

(
Vk−1 = v′|Vk = v

)
denote the transition probabilities of (Vk)n≥k≥1. They are given for v = (w1, . . . ,

ws), w1 + · · · + ws ≤ k by

P k
v

(
v′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k−w1−···−ws

2

)(k
2

) ,

if v = v′,
wi(k − ∑s

i=1 wi)(k
2

) ,

if v = v′ − ei for some i,(wi

2

)(k
2

) , if v = v′ − 2ei + e2i for some i,

wiwj(k
2

) , if v = v′ − ei − ej + ei+j for some i �= j ,

0, else,

(7)
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where ei = (δi,l)1≤l≤s [note that ei = (0, . . . ,0) for i > s]. For all other v ∈ Xn,s

we set for definiteness P k
v (v′) = δv,v′ in order to obtain a proper transition matrix.

In particular for s = 2 the transition probabilities in (7) are given for w1 +w2 ≤
k by

P k
(w1,w2)

(w1,w2) =
(k−w1−w2

2

)(k
2

) ,

P k
(w1,w2)

(w1 − 1,w2 − 1) = w1w2(k
2

) ,

P k
(w1,w2)

(w1 − 1,w2) = w1(k − w1 − w2)(k
2

) ,

P k
(w1,w2)

(w1 − 2,w2 + 1) =
(w1

2

)(k
2

) ,

P k
(w1,w2)

(w1,w2 − 1) = w2(k − w1 − w2)(k
2

) ,

P k
(w1,w2)

(w1,w2 − 2) =
(w2

2

)(k
2

)
and for s = 1 for w ≤ k by

P k
w(w) =

(k−w
2

)(k
2

) , P k
w(w − 1) = w(k − w)(k

2

) ,

(8)

P k
w(w − 2) =

(w
2

)(k
2

) .

Let us now describe the coupling in detail. Let 1 < an ≤ n and s ∈ N be fixed.
Starting at an we couple the Markov chain (Vk)an≥k≥1, Vk = (Wk(1), . . . ,Wk(s)),
with another chain (Ṽk)an≥k≥1, Ṽk = (W̃k(1), . . . , W̃k(s)), defined on the same
probability space as (Vk)an≥k≥1 and having the same state space Xn,s . The compo-
nents of (Ṽk)an≥k≥1 evolve as independent copies of (Wk(1))an≥k≥1, the Markov
chain of external numbers. Therefore its transition probabilities P̃ k

v (·) for v ∈Xn,s

and 1 < k ≤ an are given by the product of the transition probabilities of its s com-
ponents, given in (8). The process ((Vk, Ṽk))an≥k≥1 is constructed as a Markov
chain, where the jumps are coupled in a way that we will describe in detail shortly.

Thus let Qk
v and Q̃k

ṽ denote the conditional distributions of the jumps �Vk and
�Ṽk of the two Markov chains, given the current states v and ṽ, respectively. (The
notation �Vk and �Ṽk refer to component-wise differences.) For the sequel it is
important that the leading terms of Qk

v and Q̃k
ṽ agree. More precisely, from (7)
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and (8), under the constrain that w1 + · · · + ws ≤ k

Qk
v(z), Q̃

k
v(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
s∑

j=1

2wj

k
+ O

(
s∑

j=1

w2
j

k2

)
, if z = (0, . . . ,0),

2wi

k
+ O

(
s∑

j=1

w2
j

k2

)
, if z = −ei for some i,

O

(
s∑

j=1

w2
j

k2

)
, else,

(9)

where z ∈ {−2,−1,0,1}s and ei = (δi,l)1≤l≤s . Here we use that wiwj ≤ w2
i + w2

j

and wi ≤ k.
As it is well known (see, e.g., [15]), an optimal coupling of the two distributions

is specified as follows. Let ‖ · ‖TV denote the total variation distance between two
distributions, and define

p = pv,ṽ := 1 − ∥∥Qk
v − Q̃k

ṽ

∥∥
TV.

Then, with probability p choose �Vk = �Ṽk = Z, where the random variable
Z has distribution γI , given by its weights

γI (z) = Qk
v(z) ∧ Q̃k

ṽ(z)

p
,

z ∈ {−2,−1,0,1}s , and with probability 1 −p choose �Vk according to the prob-
ability distribution weights

γII(z) = (Qk
v(z) − Q̃ṽ(z))

+

1 − p
,

and independently choose �Ṽk according to the probability distribution weights

γIII(z) = (Q̃ṽ(z) − Qk
v(z))

+

1 − p
,

z ∈ {−2,−1,0,1}s .
This coupling is optimal in the sense that the probability P(�Vk �= �Ṽk|Vk =

v, Ṽk = ṽ) is minimal among the corresponding probabilities for couplings of the
two distributions Qk

v and Q̃k
ṽ , and therefore it is equal to ‖Qk

v − Q̃k
ṽ‖TV. As start-

ing distribution of the coupled chain (Vk, Ṽk)an≥k≥1 we allow any distribution of
(Van, Ṽan) such that the marginals are the distributions of Van and Ṽan , respec-
tively. We point out that the distributions of Van and Ṽan are given by the Kingman
coalescent at level an. Up to this constraint the common distribution is arbitrary.

The next two lemmas give essential properties of the coupling.
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LEMMA 2. There is a c < ∞ such that the above defined coupling satisfies
for r ≤ s

P
(
�Wk(r) �= �W̃k(r)

) ≤ c

(
k

an

√
n

+ ank

n2 + 1

k

)
and

E
(∣∣Wk(r) − W̃k(r)

∣∣) ≤ c

(
k2

an

√
n

+ ank
2

n2 + 1
)

for all 1 ≤ k < an.

PROOF. In the proof we write as an abbreviation Wk instead of Wk(r) and
similarly W̃k , �Wk and �W̃k instead of W̃k(r), �Wk(r) and �W̃k(r), respectively.

From (9) it follows that for both the chains (Vk)an≥k≥1 and (Ṽk)an≥k≥1 jumps
of sizes (0, . . . ,0) and −ei with 1 ≤ i ≤ r occur with probabilities of larger order
than jumps of other sizes. It follows from the coupling that

{�Wk �= �W̃k} ⊂ {�Wk = −1,�Vk �= �Ṽk}
∪ {�W̃k = −1,�Vk �= �Ṽk}
∪ {

�Wk ∈ {1,−2}} ∪ {�W̃k = −2}.
Note that since W̃k has the distribution of the external number at level k, the jumps
size �W̃k cannot take the value 1.

Thus, writing as an abbreviation P
k
v,ṽ(·) for the conditional probability given the

event {Vk = v, Ṽk = ṽ}, we obtain

P
k+1
v,ṽ (�Wk �= �W̃k) ≤ (1 − p)γII(�Wk = −1) + (1 − p)γIII(�W̃k = −1)

+ P
k+1
v,ṽ

(
�Wk ∈ {1,−2}) + P

k+1
v,ṽ (�W̃k = −2)

≤ (1 − p)γII(�Vk = −er) + (1 − p)γIII(�Ṽk = −er)

+ c ·
s∑

i=1

w2
i + w̃2

i

k2

+ P
k+1
v,ṽ

(
�Wk ∈ {1,−2}) + P

k+1
v,ṽ (�W̃k = −2)

≤ (1 − p)γII(�Vk = −er) + (1 − p)γIII(�Ṽk = −er)

+ c ·
s∑

i=1

w2
i + w̃2

i

k2 .

Using now the definitions of γII and γIII we get that

P
k+1
v,ṽ (�Wk �= �W̃k) ≤ ∣∣Qk+1

v (−er) − Q̃k+1
ṽ (−er)

∣∣ + c ·
s∑

i=1

w2
i + w̃2

i

k2 .(10)



INTERNAL LENGTHS 1339

Let us introduce the filtration F = (Fk)1≤k≤an with Fan ⊂ Fan−1 ⊂ · · · ⊂ F1 de-
fined by

Fk = σ
(
(Vj )k≤j≤an, (Ṽj )k≤j≤an

)
.

Then (10) in view of (9) may be written as

P(�Wk �= �W̃k|Fk+1)
(11)

≤ 2

k
|Wk+1 − W̃k+1| + c

s∑
i=1

W 2
k+1(i) + W̃ 2

k+1(i)

k2

for a constant c < ∞. Taking expectation in the inequality above, we obtain using
Lemma 1

P(�Wk �= �W̃k) ≤ 2

k
·E(|Wk+1 − W̃k+1|) + c

(
k2

n2 + 1

n

)
.(12)

We now proceed to finding a bound for E(|Wk − W̃k|) for 2 ≤ k ≤ an. From the
transition probabilities (7) we get that

E[�Wk|Fk+1] = (−1) · Wk+1(r)(k + 1 − Wk+1(1) − · · · − Wk+1(r))(k+1
2

)
+ (−1) · Wk+1(r)Wk+1(1) + · · · + Wk+1(r)Wk+1(r − 1)(k+1

2

)
+ (−2) ·

(Wk+1(r)
2

)(k+1
2

) + 1 · Zk+1(k+1
2

)
= − 2

k + 1
Wk+1 + Zk+1(k+1

2

) ,
where, letting dr = 1 if r is even and 0 otherwise,

Zk = Zk(r) := ∑
1≤i≤r−1

i �=r−i

Wk(i)Wk(r − i) + dr ·
(

Wk(r/2)

2

)
.(13)

Therefore

E[�Wk|Fk+1] = − 2

k + 1
Wk+1 + Zk+1(k+1

2

)(14)

and also with a similar but even simpler calculation using (8),

E[�W̃k|Fk+1] = − 2

k + 1
W̃k+1.(15)
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Now note that the absolute value of the difference between the jumps of Wk+1 and
W̃k+1 is at most 3. Thus

E
[|Wk − W̃k||Fk+1

]
= E

[|Wk+1 − W̃k+1 + �Wk − �W̃k||Fk+1
]

≤ E[Wk+1 − W̃k+1 + �Wk − �W̃k|Fk+1] · 1{Wk+1−W̃k+1≥3}
+E[W̃k+1 − Wk+1 + �W̃k − �Wk|Fk+1] · 1{Wk+1−W̃k+1≤−3}
+ (|Wk+1 − W̃k+1| +E

[|�Wk − �W̃k||Fk+1
]) · 1{|Wk+1−W̃k+1|≤2}.

Using (14) and (15) we obtain

E
[|Wk − W̃k||Fk+1

]
≤

(
Wk+1 − W̃k+1 − 2

k + 1
(Wk+1 − W̃k+1) + Zk+1(k+1

2

))
· 1{Wk+1−W̃k+1≥3}

+
(
W̃k+1 − Wk+1 − 2

k + 1
(W̃k+1 − Wk+1) − Zk+1(k+1

2

))
· 1{Wk+1−W̃k+1≤−3}

+ (|Wk+1 − W̃k+1| + 3 · P(�Wk �= �W̃k|Fk+1)
) · 1{|Wk+1−W̃k+1|≤2}.

By (11) we have that

E
[|Wk − W̃k||Fk+1

]
≤

(
|Wk+1 − W̃k+1| − 2

k + 1
|Wk+1 − W̃k+1| + Zk+1(k+1

2

))
· 1{|Wk+1−W̃k+1|≥3}

+
(
|Wk+1 − W̃k+1| + 6

k
|Wk+1 − W̃k+1|

+ c

s∑
i=1

W 2
k+1(i) + W̃ 2

k+1(i)

k2

)
· 1{|Wk+1−W̃k+1|≤2}

≤ |Wk+1 − W̃k+1|
(

1 − 2

k + 1

)
+ 16

k

+ c

s∑
i=1

W 2
k+1(i) + W̃ 2

k+1(i)

k2 + Zk+1(k+1
2

) .
Taking expectation and using Lemma 1 and the fact that k ≤ n, we obtain that

E
(|Wk − W̃k|) ≤

(
1 − 2

k + 1

)
E

[|Wk+1 − W̃k+1|] + c

(
k2

n2 + 1

k

)
.
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Dividing the previous inequality by k(k − 1) we obtain a recurrence formula
that we iterate from k up to an − 1,

1

k(k − 1)
E

(|Wk − W̃k|)
≤ 1

k(k + 1)

(
E

(|Wk+1 − W̃k+1|) + c

(
k2

n2 + 1

k

))

≤ 1

an(an − 1)
E

(|Wan − W̃an |
) + c

an−1∑
j=k

(
1

n2 + 1

j3

)

≤ 1

an(an − 1)

(
E

(∣∣Wan −E(Wan)
∣∣) + ∣∣E(Wan) −E(W̃an)

∣∣
+E

(∣∣W̃an −E(W̃an)
∣∣)) + c

(
an

n2 + 1

k2

)
.

Finally by Lemma 1,

1

k(k − 1)
E

(|Wk − W̃k|) ≤ c

(
1

an(an − 1)

(
an√
n

+ a3
n

n2 + an

n

)
+ an

n2 + 1

k2

)

≤ c

(
1

an

√
n

+ an

n2 + 1

k2

)
.

This gives the second claim of the lemma. Using this claim and the fact that 1 ≤
k ≤ an ≤ n in (12) yields the first claim. �

LEMMA 3. There is a constant c < ∞ such that for r ≤ s it holds that

V
(
Wk(r) − W̃k(r)

) ≤ c ·
(

k2

an

√
n

+ ank
2

n2 + k3

ann
+ 1

)
for all 1 ≤ k < an.

PROOF. We again write here as an abbreviation Wk , W̃k , �Wk , and �W̃k in-
stead of Wk(r), W̃k(r), �Wk(r), and �W̃k(r), respectively.

Using (14) and (15) together with the fact that |�Wk−1 − �W̃k−1| ≤ 3, we
obtain

V(Wk−1 − W̃k−1)

=V(Wk − W̃k + �Wk−1 − �W̃k−1)

≤V(Wk − W̃k)

+ 2E
(
E

[(
Wk − W̃k −E(Wk − W̃k)

)
× (

�Wk−1 − �W̃k−1 −E(�Wk−1 − �W̃k−1)
)|Fk

])
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+E(�Wk−1 − �W̃k−1)
2

=
(

1 − 4

k

)
V(Wk − W̃k)

+ 2E
((

Wk − W̃k −E(Wk − W̃k)
) · Zk −E(Zk)(k

2

) )
+ 9P(Wk−1 �= �W̃k−1).

Applying now the Cauchy–Schwarz inequality for the second term and Lemma 2
for the third term on the left-hand side of the inequality above, we obtain that for
a constant c < ∞

V(Wk−1 − W̃k−1)

≤
(

1 − 4

k

)
V(Wk − W̃k) + 4

k(k − 1)

(
V(Wk − W̃k)

)1/2 · (
V(Zk)

)1/2(16)

+ c

(
k

an

√
n

+ ank

n2 + 1

k

)
.

Let us now look closer at the variance of Zk . In order to bound it from above,
it is sufficient to bound the terms of the form V(Wk(i)Wk(j)), 1 ≤ i, j ≤ r ; see
the definition of Zk in (13). Writing as an abbreviation W ′

k and W ′′
k for Wk(i) and

Wk(j), respectively, we have that

V
(
Wk(i)Wk(j)

) ≤ E
(
W ′

kW
′′
k −E

(
W ′

k

)
E

(
W ′′

k

))2

= E
((

W ′
k −E

(
W ′

k

))
W ′′

k +E
(
W ′

k

)(
W ′′

k −E
(
W ′′

k

)))2

≤ 2E
((

W ′
k −E

(
W ′

k

))2(
W ′′

k

)2 + (
E

(
W ′

k

))2(
W ′′

k −E
(
W ′′

k

))2)
.

Using the fact that W ′′
k ≤ k and then Lemma 1, we obtain

V
(
Wk(i)Wk(j)

)
≤ 2E

((
W ′

k −E
(
W ′

k

))2(
W ′′

k −E
(
W ′′

k

))
W ′′

k

)
+ 2E

((
W ′

k −E
(
W ′

k

))2
E

(
W ′′

k

)
W ′′

k

) + 2
(
E

(
W ′

k

))2
V

(
W ′′

k

)
≤ 2E

((
W ′

k −E
(
W ′

k

))2(
W ′′

k −E
(
W ′′

k

))2)
+ 2E

((
W ′

k −E
(
W ′

k

))2(
W ′′

k −E
(
W ′′

k

))
E

(
W ′′

k

))
(17)

+ 2k ·E((
W ′

k −E
(
W ′

k

))2
E

(
W ′′

k

)) + 2
(
E

(
W ′

k

))2
V

(
W ′′

k

)
≤ 2E

((
W ′

k −E
(
W ′

k

))2(
W ′′

k −E
(
W ′′

k

))2)
+ 4k ·E((

W ′
k −E

(
W ′

k

))2
E

(
W ′′

k

)) + 2
(
E

(
W ′

k

))2
V

(
W ′′

k

)
≤ 2E

((
W ′

k −E
(
W ′

k

))2(
W ′′

k −E
(
W ′′

k

))2) + c
k5

n2
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for a constant c < ∞. Moreover, using the formulas from Lemma 1,

E
((

W ′
k −E

(
W ′

k

))4)
= E

((
W ′

k

)4) − 4E
((

W ′
k

)3)
E

(
W ′

k

) + 6E
((

W ′
k

)2)(
E

(
W ′

k

))2

− 4E
(
W ′

k

)(
E

(
W ′

k

))3 + (
E

(
W ′

k

))4

= (1 − 4 + 6 − 4 + 1)

(
n − k

n

)i−1

· k2

n
+ O

((
k2

n

)3

+
(

k2

n

)2

+ k2

n

)
.

The leading terms cancel, and since (k2

n
)2 is dominated by either (k2

n
)3 or k2

n
de-

pending on k ≥ √
n or k <

√
n, we obtain that

E
((

W ′
k −E

(
W ′

k

))4) = O

(
k6

n3 + k2

n

)
(18)

and similarly for W ′′
k

E
((

W ′′
k −E

(
W ′′

k

))4) = O

(
k6

n3 + k2

n

)
.(19)

Using the Cauchy–Schwarz inequality and (18) and (19) in (17), we get that

V
(
Wk(i)Wk(j)

) ≤ c

(
k6

n3 + k5

n2 + k2

n

)
and therefore

V(Zk) ≤ c

(
k5

n2 + k2

n

)
for some constant c < ∞. Plugging this into (16) we obtain that

V(Wk−1 − W̃k−1) ≤
(

1 − 4

k

)
V(Wk − W̃k)

+ c
(
V(Wk − W̃k)

)1/2 ·
(√

k

n
+ 1

k
√

n

)
(20)

+ c

(
k

an

√
n

+ ank

n2 + 1

k

)
.

Observe that

c
(
V(Wk − W̃k)

)1/2 ·
(√

k

n
+ 1

k
√

n

)

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V(Wk − W̃k)

k
, if

(
V(Wk − W̃k)

)1/2 ≥ c

(
k3/2

n
+ 1√

n

)
,

2c2
(

k2

n2 + 1

kn

)
, else
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and therefore since k ≤ an, (20) becomes

V(Wk−1 − W̃k−1) ≤
(

1 − 3

k

)
V(Wk − W̃k) + c

(
k

an

√
n

+ ank

n2 + 1

k

)
.

We now divide both sides by
(k−1

3

)
and iterate up to an. Since V(Wan −W̃an) ≤ c

a2
n

n
,

we obtain by Lemma 1

1(k−1
3

)V(Wk−1 − W̃k−1) ≤ c ·
an∑

j=k

1(j
3

)(
j

an

√
n

+ anj

n2 + 1

j

)

+ c · 1(an

3

) · a2
n

n

and therefore

V(Wk−1 − W̃k−1) ≤ c · k3
(

1

kan

√
n

+ an

kn2 + 1

k3 + 1

ann

)

≤ c ·
(

k2

an

√
n

+ ank
2

n2 + k3

ann
+ 1

)
.

This is the claim. �

4. Proof of the theorem. The proof that μr , the expected length of order r , is
equal to 2

r
for every r ≥ 1 can be found in [3], Theorem 2.11 or in [7], Theorem 2.1.

Another quick way to see this is by using Lemma 1,

E
(
Ln,r) = E

(
n∑

k=2

Wk(r)Xk

)

=
n∑

k=2

E
(
Wk(r)

)
E(Xk)

=
n∑

k=2

(n − k) · · · (n − k − r + 2)

(n − 1) · · · (n − r)
· k(k − 1) · 1(k

2

)
= 2

(n − 1) · · · (n − r)
·
n−r∑
j=1

j (j + 1) · · · (j + r − 2).

The claim follows now from the fact that
∑n

j=1 j (j + 1) · · · (j + i) = 1
i+2n(n +

1) · · · (n + i + 1). The asymptotic normality of the total external branch length
of the Kingman coalescent (case s = 1) was proved in [12]. We will prove the
theorem for s ≥ 2.
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For 1 ≤ r ≤ s we divide Ln,r and the corresponding coupled quantity into parts.
For 1 ≤ bn < an ≤ n, let

L
n,r
an,bn

:= ∑
bn<k≤an

2

k(k − 1)
· Wk and L̃

n,r
an,bn

:= ∑
bn<k≤an

2

k(k − 1)
· W̃k(21)

be the length of order r collected between the levels bn and an in the coalescent tree
and the corresponding quantity obtained from the coupling. Note that L

n,r
n,1 = Ln,r

with Ln,r defined in (6), and let similarly

L̃n,r := L̃
n,r
n,1.(22)

Using the coupling we will show that for ε > 0

P

(√
n

logn
· ∥∥(

Ln,1 −E
(
Ln,1)

, . . . ,Ln,s −E
(
Ln,s))

− (
L̃n,1 −E

(
L̃n,1)

, . . . , L̃n,s −E
(
L̃n,s))∥∥ ≥ ε

)
→ 0(23)

as n → ∞.

Once (23) has been proved, the claim of the theorem follows since the components
of the second vector above are by construction independent and identically dis-
tributed and they converge weakly to the standard normal distribution as n → ∞,
as follows from the case s = 1 proved in [12].

The convergence in (23) is a direct consequence of the following result.

PROPOSITION 1. For Ln,r and L̃n,r defined in (6) and (22), respectively, one
has for all 1 ≤ r ≤ s and ε > 0,

P

(∣∣∣∣
√

n

logn
· (

Ln,r −E
(
Ln,r)) − (

L̃n,r −E
(
L̃n,r))∣∣∣∣ ≥ ε

)
→ 0, as n → ∞.

PROOF. We have by the Cauchy–Schwarz inequality that

V

( ∑
bn<k≤an

2

k(k − 1)
· (

Wk − W̃k − (
E(Wk) −E(W̃k)

)))

= ∑
bn<k≤an

∑
bn<l≤an

2

k(k − 1)

2

l(l − 1)
·COV(Wk − W̃k,Wl − W̃l)

≤ ∑
bn<k≤an

∑
bn<l≤an

2

k(k − 1)

2

l(l − 1)
·V(Wk − W̃k)

1/2
V(Wl − W̃l)

1/2

=
( ∑

bn<k≤an

2

k(k − 1)
·V(Wk − W̃k)

1/2
)2

.
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Using Lemma 3 we obtain

V

( ∑
bn<k≤an

2

k(k − 1)
· (

Wk − W̃k − (
E(Wk) −E(W̃k)

)))

≤ c

( ∑
bn<k≤an

1

k2 ·
(

k√
ann1/4 +

√
ank

n
+ k3/2

√
ann

+ 1
))2

(24)

≤ c

(
1√

ann1/4 log
an

bn

+
√

an

n
log

an

bn

+ 1√
n

+ 1

bn

)2

≤ c

((
1

an

√
n

+ an

n2

)
log2 an

bn

+ 1

n
+ 1

b2
n

)
.

In order to show that the claim holds, we consider three regions in the coalescent
tree, namely between level n and level n

(logn)2 , between level n
(logn)2 and level n1/2,

and finally between level n1/2 and level 1, and write the lengths L
n,r
n,1 and L̃

n,r
n,1 as

sums of the lengths gathered in these three regions.
For the first region, let

an = n and bn = n

(logn)2 .

We obtain from (24) and Chebyshev’s inequality that

L
n,r
an,bn

−E
(
L

n,r
an,bn

) = L̃
n,r
an,bn

−E
(
L̃

n,r
an,bn

) + OP

(
log logn√

n

)
and therefore√

n

logn

((
L

n,r
an,bn

−E
(
L

n,r
an,bn

)) − (
L̃

n,r
an,bn

−E
(
L̃

n,r
an,bn

))) → 0(25)

in probability as n → ∞.
The second region we consider is the one between the levels an and bn with

an = n

(logn)2 and bn = n1/2.

We put together the coupling for the two regions by taking the starting distribution
for the second region to be the distribution of the chain at the end of the first region.
Again from (24) we get that

L
n,r
an,bn

−E
(
L

n,r
an,bn

) = L̃
n,r
an,bn

−E
(
L̃

n,r
an,bn

) + OP

(
1√
n

)
and therefore as n → ∞ in probability√

n

logn

((
L

n,r
an,bn

−E
(
L

n,r
an,bn

)) − (
L̃

n,r
an,bn

−E
(
L̃

n,r
an,bn

))) → 0.(26)
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For the region in the coalescent between the levels n1/2 and 1, we claim that

E

(√
n

logn
· Ln,r

n1/2,1

)
→ 0(27)

and

E

(√
n

logn
· L̃n,r

n1/2,1

)
→ 0(28)

as n → ∞. The second claim follows directly from Proposition 3 in [12], whereas
for (27) we get similarly using Lemma 1 that

E
(
L

n,r
an,bn

) = E

( ∑
bn<k≤an

Wk · 2

k(k − 1)

)
(29)

≤ c
∑

bn<k≤an

k2

n
· 1

k(k − 1)
≤ c · an

n
,(30)

for some constant c < ∞. Therefore, setting an = n1/2 and bn = 1 in (29), we
obtain our claim (27). Since both

√
n

logn
· L

n,r

n1/2,1 and
√

n
logn

· L̃
n,r

n1/2,1 are positive

random variables, it follows from (27) and (28), respectively, that√
n

logn
· Ln,r

n1/2,1 → 0 and

√
n

logn
· L̃n,r

n1/2,1 → 0(31)

in probability as n → ∞.
Writing

Ln,r = L
n,r
n,1 = L

n,r

n,(n/(logn)2)
+ L

n,r

n/(logn)2,n1/2 + L
n,r

n1/2,1

and

L̃n,r = L̃
n,r
n,1 = L̃

n,r

n,(n/(logn)2)
+ L̃

n,r

n/(logn)2,n1/2 + L̃
n,r

n1/2,1

and using (25)–(28) and (31), we get the claim of the proposition, and therefore
our theorem is proved. �
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