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ASYMPTOTIC DOMINO STATISTICS IN THE AZTEC DIAMOND
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and University of Oregon

We study random domino tilings of the Aztec diamond with different
weights for horizontal and vertical dominoes. A domino tiling of an Aztec
diamond can also be described by a particle system which is a determinantal
process. We give a relation between the correlation kernel for this process
and the inverse Kasteleyn matrix of the Aztec diamond. This gives a formula
for the inverse Kasteleyn matrix which generalizes a result of Helfgott. As
an application, we investigate the asymptotics of the process formed by the
southern dominoes close to the frozen boundary. We find that at the northern
boundary, the southern domino process converges to a thinned Airy point pro-
cess. At the southern boundary, the process of holes of the southern domino
process converges to a multiple point process that we call the thickened Airy
point process. We also study the convergence of the domino process in the
unfrozen region to the limiting Gibbs measure.

1. Introduction. The Aztec Diamond of order n is a planar region which can
be completely tiled with dominoes, two-by-one rectangles. Over the past twenty
years, this particular shape has come to occupy a central place in the literature of
domino tilings of plane regions. Tilings of large Aztec diamonds exhibit striking
features—the main one being that these tilings exhibit a limit shape, described by
the so-called Arctic circle theorem [20]. See Figure 1 for pictures of tilings of a
relatively large Aztec diamond.

There are several alternate descriptions of a tiling of an Aztec diamond.
A domino tiling is equivalent to a perfect matching, or dimer cover, on the dual
graph of the region which is tiled. There is an equivalent family of nonintersect-
ing lattice paths, called DR paths [36], and there is a description as a stack of a
certain sort of blocks, called Levitov blocks [34, 35]; see Figure 1. There is also a
well-studied interlacing particle process which is equivalent to the tiling model in
a certain sense, but this equivalence is not bijective: there are 2n(n+1)/2 tilings of
the Aztec diamond, whereas the number of configurations of the particle process
are equinumerous with order-n alternating sign matrices or configurations of the
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FIG. 1. Left: a tiling of an Aztec diamond of order 41 with a = 1
2 , and the corresponding dimer

cover. The green dominoes along each horizontal row give the southern domino process. Right: the
height function associated to this tiling (realized as a pile of Levitov blocks [34, 35]).

six-vertex model. However, the correspondence is weight preserving and locally
defined; it maps certain collection of tilings to a configuration of the free-fermion
six-vertex model [15], preserving the relative weights.

It is this point process whose local asymptotics have been studied most thor-
oughly [22]; in particular, the boundary of the frozen region is more easily de-
scribed using the particles, since it is related to the position of the last particles on
different lines. There is also a relationship between these particles and a certain
sort of zig-zag path in the tiling (distinct from the zig-zag paths studied in [7])
which is helpful. However, the many-to-one nature of the correspondence neces-
sarily loses some of the information about the original tilings. In both the domino
and particle pictures, we get determinantal point processes, although the precise
combinatorial relation between the two processes is not immediate.

We correct this situation in this paper, by giving a formula for the inverse Kaste-
leyn matrix for the Aztec diamond. This generalizes a previous result by Helf-
gott [19] to the case when the horizontal and vertical dominoes have different
weights. Using an observation of Kenyon [29], it is then possible to compute prob-
abilities for various configurations of dominoes and their asymptotic limits as the
size of the Aztec diamond increases. In particular, we find the behavior of the
boundary of the frozen region when we can only see one type of domino.

1.1. The southern domino process: North boundary. There are in fact four
different types of dominoes in a tiling: the dominoes can be placed in two orienta-
tions, each of which comes in two different parities (determined by the bipartition
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of the dual graph on which the dominoes are placed). Due to the Arctic circle the-
orem, with probability one, there are only dominoes of one of these four types
clustered near each of the four corners of the Aztec diamond. For this reason (and
others, see [15]) we call the four types of dominoes north, south, east and west,
which are colored red, green, yellow and blue in Figure 1 in the electronic version
of this article.

For the moment, ignore all but the southern dominoes (the green ones in Fig-
ure 1). Viewing each domino as a point, the set of all southern dominoes form a
determinantal point process. Note that the positions of the southern dominoes do
not specify the tiling uniquely so they only give a partial description of the tiling
(though, together with any of the other types of dominoes, they do). We analyze
the distribution of the southern dominoes along a diagonal line in a large Aztec di-
amond, scaled so as to study the two intersections between this line and the frozen
boundary of the tiling (an “arctic ellipse,” in the weighted case). It would be pos-
sible to extend what we have done to analyze the joint distribution of all southern
dominoes in the Aztec diamond; as is, our analysis extends previous results in [8]
on placement probabilities of single dominoes.

We will show that the appropriate scaling limit of the point process of southern
dominoes along a diagonal line close to the boundary of the northern frozen region
is given by a thinned Airy kernel point process, where the amount of thinning
depends on the relative weight of the horizontal and vertical dominoes. This can
be heuristically understood in the following way. The Airy kernel point process,
as mentioned earlier, is the edge limit of the particle process along a diagonal line,
and these in turn are given by the intersections of the nonintersecting paths and the
diagonal line. Sometimes these intersections occur along a southern domino, and
sometimes not. If we only see the southern dominoes we only see some of these
intersections, and which of them we see is essentially random; so we might expect,
in the limit, a random thinning of the Airy kernel point process. A priori it is not
clear that the thinning becomes independent in the limit, but this turns out to be
the case.

1.2. The southern domino process: Southern boundary. If, instead, we exam-
ine the southern frozen region, we find that almost all of the dominoes are coming
from the southern domino process and thus lie in a frozen, brickwork pattern pre-
dominantly. The southern boundary is a “hole” in this regular pattern. Consider the
holes between the southern dominoes along a diagonal line in a neighborhood of
the southern boundary. These holes also form a determinantal point process, but
in a scaling limit it does not converge to a simple point process, but rather to a
multiple point process with independent geometric probabilities for the multiple
points in an Airy kernel point process. This can be seen in Figure 1: there is a ten-
dency for dominoes of like types to cluster together along the southern boundary.
This tendency continues even in the limit, with a cluster of k dominoes becom-
ing a point of multiplicity k. The multiplicity increases as we go toward the lower
tangency point of the arctic ellipse, a fact which can also be observed in Figure 1.
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1.3. Previous work on domino tilings. Domino tilings on the Aztec diamond
were originally introduced in [15, 16] as a model connected with the alternating
sign matrices. In this section, we give only a partial overview of the literature on
the asymptotics of domino tilings of the Aztec diamond.

The limit shape for random tilings of the Aztec diamond, the so-called Arctic
circle theorem, was first computed for a = 1 in [20], where a is the weight of each
vertical domino. Since then, there have been a variety of different and interesting
approaches to compute the limit shape which hold for general a [8, 22, 32, 40].
The existence of limit shapes is not limited to domino tilings; limit shapes also
exist for random lozenge tilings, for example, the boxed plane partition [10]. These
examples provided a motivation for a theory of the existence of limit shapes for
general tiling models on bipartite graphs [9, 32].

The edge behavior, that is, the behavior between the frozen and unfrozen regions
has, been of particular interest to the random matrix community, as the fluctuations
are of size n1/3. This is the same size as the fluctuations of the largest eigenvalue of
the Gaussian unitary ensemble (GUE). Indeed, [21, 22] showed that the law of the
particles associated to the tiling is given by the Airy process and that the position of
the last particle is given by the Tracy Widom distribution, F2; see, for example, [1].
Furthermore, Johansson and Nordenstam [24] showed that the distribution of these
particles becomes the GUE minor process at the intersection of the liquid region
and the boundary of the Aztec diamond while Fleming and Forrester [17] obtained
similar results for a certain half Aztec diamond.

There are a handful of other explicitly inverted Kasteleyn matrices in the litera-
ture for domino tilings. The inverse of the Kasteleyn matrix of the Aztec diamond
was computed by Helfgott [19] in the case of the uniform measure on domino
tilings; the results in [9, 33] rely on explicit inverses of four Kasteleyn-like ma-
trices that, together, count perfect matchings on a torus-embedded graph. Finally,
Kasteleyn [25] and independently Temperley and Fisher in [42] compute the eigen-
values and eigenvectors of the Kasteleyn matrix of the m×n grid graph explicitly.

A proof of convergence to the Gaussian Free Field, following [3] should be pos-
sible. In fact, an earlier preprint of this paper (dated December 21, 2012 and posted
on the arXiv) stated such a claim as Theorem 2.9 and outlined a proof, skipping
over many details. We would like to retract this theorem and its outlined proof, for
the following reason: the details that we omitted (largely estimates on K−1) were
numerous enough and technical enough that even a rather dedicated reader would
have been hard-pressed to supply them all. Moreover, in revision, we found it im-
possible to include enough details of these estimates while keeping the discussion
brief. The proof, if and when it appears in the literature, will have to be in its own
paper. Instead, we include in Section 6 only a list of the estimates that would be
needed in order to demonstrate convergence. We sincerely thank the anonymous
referee for bringing this error to our attention.
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2. Results. In this section, we give the results of our paper and the necessary
prerequisites to understand these results. There are three types of results:

(1) the inverse of the Kasteleyn matrix (Section 2.1),
(2) results on the southern domino process close to the edges of the unfrozen

region (Section 2.2),
(3) local Gibbs measure (Section 2.3).

2.1. The inverse of the Kasteleyn matrix.

2.1.1. Definitions. In this paper, the Aztec diamond is rotated by π/4 counter
clockwise from the convention set in [15]. Because there are many possibilities for
coordinate systems of Aztec diamonds, we will refer to our coordinate system as
the Kasteleyn coordinates. In the Kasteleyn coordinates, an Aztec diamond of order
n consists of squares with corners (k − 1, l), (k, l − 1), (k + 1, l) and (k, l + 1)

for either k mod 2 = 1 and l mod 2 = 0 with 1 ≤ k ≤ 2n − 1 and 0 ≤ l ≤ 2n, or
k mod 2 = 0 and l mod 2 = 1 with 0 ≤ k ≤ 2n and 1 ≤ l ≤ 2n − 1. A domino
is a union of two adjacent squares which share an edge. A domino tiling of the
Aztec diamond is any arrangement of dominoes such that each square of the Aztec
diamond is covered exactly once by a domino.

The dual graph of the Aztec diamond (without its external face) is a bipartite
graph which has vertices W∪ B where

W= {
(x1, x2) :x1 mod 2 = 1, x2 mod 2 = 0,

(2.1)
1 ≤ x1 ≤ 2n − 1,0 ≤ x2 ≤ 2n

}
and

B= {
(x1, x2) :x1 mod 2 = 0, x2 mod 2 = 1,

(2.2)
0 ≤ x1 ≤ 2n,1 ≤ x2 ≤ 2n − 1

}
,

which correspond to the white and black vertices, respectively, written in terms
of the Kasteleyn coordinates. To distinguish between the primal and dual graphs,
we will refer to the dual graph of the Aztec diamond as the Aztec diamond graph.
We shall also set e1 = (1,1) and e2 = (−1,1). The edge set of the Aztec diamond
graph consists of all the edges (x, y) with y − x ± ei for i ∈ {1,2} for x ∈ W and
y ∈ B.

A domino on the dual graph is an edge which is called a dimer. A domino tiling
on the dual graph is a subset of edges such that each vertex is incident to exactly
one edge. This collection of edges is called a dimer covering. Domino tilings of
the Aztec diamond are equivalent to dimer coverings of the Aztec diamond graph.
See Figure 2 for the Aztec diamond graph with its coordinates and an example of
a dimer covering.

For b ∈ B and w ∈ W, we say that a dimer (b,w) is:
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FIG. 2. The figure on the right shows the coordinates of the Aztec diamond graph with the white
and black vertices drawn in. The figure on the right shows an Aztec diamond of size 3 with a dimer
covering of the dual graph. The domino tiling can be seen by placing dominoes over the dimers.

• a north dimer if w = b + e1,
• an east dimer if w = b + e2,
• a south dimer if w = b − e1,
• a west dimer if w = b − e2.

There is a corresponding notion for dominoes, and this terminology agrees with
that introduced in [20]. We will interchange between dominoes and dimers.

2.1.2. Determinantal point processes. Determinantal point processes are a
key part of the analysis used in this paper. Here, we briefly describe these pro-
cesses but more in-depth treatises of determinantal point processes can be found
in [23] and [41].

Let � be a Polish space, and take M(�) to denote the space of counting mea-
sures ξ on � with ξ(B) < ∞ for every bounded B ⊂ �. A point process on � is
a probability measure P on M(�). Let Mn denote the factorial moment measure,
that is, for disjoint Borel sets A1, . . . ,Am in � and for all (n1, . . . , nm) ∈N

m

Mn

(
A

n1
1 × · · · × Anm

m

) = E

[
m∏

i=1

ξ(Ai)!
(ξ(Ai) − ni)!

]
.(2.3)

Suppose that λ is a reference measure on �. For example, if � = R, we can
choose λ to be the Lebesgue measure. If

Mn(A1, . . . ,An) =
∫
A1×···×An

ρn(x1, . . . , xn) dλ(x1) · · ·dλ(xn)(2.4)

for all Borel sets Ai in �, we call ρn to be the nth correlation function. For dis-
crete processes, ρn(x1, . . . , xn) is equal to the probability of n-tuples of particles at
x1, . . . , xn, whereas for continuous processes, ρn is the density of seeing particles.
For example, if ρn(x1, . . . , xn) = ρ(x1) · · ·ρ(xn) where ρ ∈ L1 with � = R and λ

is the Lebesgue measure, then the point process is the Poisson point process on R.
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A point process is called determinantal if there exists a function K :�×� →C

called the correlation kernel, with

ρn(x1, . . . , xn) = det
(
K(xi, xj )

)n
i,j=1.(2.5)

This leads to the following characterization of a determinantal point process. Let
C+

c (�) be the set of all nonnegative continuous functions on � with compact
support. Take ψ ∈ C+

c (�), let A denote the support of ψ and set φ = 1 − e−ψ . Let
IA denote the indicator function for the set A. Then, provided φKIA is trace class,
and the Fredholm determinant is given by its Fredholm expansion,

E
[
e−∑

j ψ(xj )] = det(I − φKIA)L2(�,λ),(2.6)

where xj are the points in the process.

2.1.3. Particles. Another way of viewing domino tilings of an Aztec diamond
is a particle system formed from the zig-zag particles used in [22]. These particles
can be described as follows: for w ∈ W, we have a blue particle at w if and only if
a dimer covers the edge (w + e1,w) or the edge (w − e2,w). For b ∈ B, we have
a red particle at b if and only if a dimer covers the edge (b, b − e1) or the edge
(b, b− e2). By this setup, particles are present on south and west dimers, with blue
particles sitting on white vertices and red particles sitting on black vertices.

The particle system considered in [22] came with its own coordinate system;
see Figure 4 in Section 2 of that paper. The transformation between that system of
coordinates and the Kasteleyn coordinates is⎧⎨⎩

u1 = x2,

u2 = x2 − x1 + 1

2
,

(2.7)

where (u1, u2) are the particle coordinates and (x1, x2) are the Kasteleyn coordi-
nates. Figure 3 shows the red–blue particles along with the corresponding tiling.

FIG. 3. The figure on the left shows the red–blue particles with the Kasteleyn orientation for an
Aztec diamond of size 3 (with additional vertices). The figure on the right shows the same configura-
tion of red–blue particles with the domino tiling. This includes the three additional south dominoes.
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It is shown in [22] that the particles form a determinantal point process with
correlation kernel given by

Kn(u1, u2;v1, v2) = K̃n(u1, u2;v1, v2) − φu1,v1(u2, v2),(2.8)

where

K̃n(2r − ε1, u2;2s − ε2, v2)
(2.9)

= 1

(2πi)2

∫
γr1

dw

w

∫
γr2

dz

z

zv2

wu2

(1 − az)n−s+ε2(1 + a/z)s

(1 − aw)n−r+ε1(1 + a/w)r

w

w − z
,

φ2r−ε1,2s−ε2(u2, v2)
(2.10)

= I(2r − ε1 < 2s − ε2)

2πi

∫
γ1

zv2−u2
(1 − az)r−s+ε2−ε1

(1 + a/z)r−s

dz

z

and ε1, ε2 ∈ {0,1}, a < r1 < 1/a, 0 < r2 < r1 and γt denotes a circle around 0
with radius t . Before setting a = 1, one has to make an appropriate deformation of
contours.

2.1.4. The Kasteleyn matrix and Kenyon’s formula. The Kasteleyn matrix, in-
troduced in [25, 26], can be used to count the number of weighted dimer coverings
of a graph, and the inverse of the Kasteleyn matrix can be used to compute local
statistics [27].

For a finite bipartite graph G, a Kasteleyn matrix is a signed weighted adjacency
matrix of the graph with rows indexed by black vertices and columns indexed by
white vertices; see [31] for details. The sign is chosen according to a Kasteleyn
orientation of the graph. This means assigning a sign (possibly complex valued)
to each edge weight so that the product of the edge weights around each face is
negative.

For the Aztec diamond graph, we denote K to be the matrix with K :B×W→C

where K(b,w) = Kb,w for b = (x1, x2) ∈ B and w ∈ W with

K(b,w) =
⎧⎪⎨⎪⎩

(−1)l+(x1+x2−1)/2, if w = b + (−1)le1 ∈ W,

(−1)l+(x1+x2−1)/2ai, if w = b − (−1)le2 ∈ W,

0, otherwise.

(2.11)

This matrix is a Kasteleyn matrix for the Aztec diamond graph. This matrix is
a Kasteleyn matrix for the Aztec diamond graph; see Figure 4.

THEOREM 2.1 ([25]). The number of weighted dimer coverings of the Aztec
diamond graph is equal to |detK|.

In [27], Kenyon found that the dimers form a determinantal point process with
the correlation kernel written in terms of the inverse of the Kasteleyn matrix (re-
ferred to as the inverse Kasteleyn matrix). Here, we state that result for the Kaste-
leyn matrix given in (2.11). Suppose that E = {ei}ni=1 are a collection of distinct
edges with ei = (bi,wi), where bi and wi denote black and white vertices.
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FIG. 4. The complex weights associated to the Kasteleyn matrix given in (2.11). We have that the
vertex bi = (x1, x2) has (x1 + x2 − 1)/2 mod 2 = i for i ∈ {0,1}.

THEOREM 2.2. [27]. The dimers form a determinantal point process on the
edges of the Aztec diamond graph with correlation kernel given by

L(ei, ej ) = K(bi,wi)K
−1(wj , bi),(2.12)

where K(b,w) = Kbw and K−1(w,b) = (K−1)wb.

The above formula is sometimes referred to as Kenyon’s formula.

PROOF OF THEOREM 2.2. By [27], we have that the probability of finding
dimers at the edges e1, . . . , en is

P(e1, . . . , en) =
n∏

i=1

K(bi,wi)det
(
K−1(wj , bi)

)n
i,j=1

= det
(
K(bi,wi)K

−1(wj , bi)
)n
i,j=1(2.13)

= det
(
L(ei, ej )

)n
i,j=1. �

2.1.5. The inverse Kasteleyn matrix. The inverse Kasteleyn matrix for domino
tilings of the Aztec diamond was originally computed in [19] for the case when
a = 1. In that paper, Helfgott explicitly enumerated K−1(w,b)2n(n+1)/2 which is
the number of signed dimer coverings of an Aztec diamond graph with the vertices
w ∈ W and b ∈ B removed. We generalize this formula so that we can consider
different weights for vertical and horizontal tiles:

THEOREM 2.3. For x = (x1, x2) ∈ W and y = (y1, y2) ∈ B, we have

K−1(x, y) =
{

f1(x, y), for x1 < y1 + 1,

f1(x, y) − f2(x, y), for x1 ≥ y1 + 1,
(2.14)
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where

f1(x, y) = (−1)(y1+y2+x1+x2)/4

(2πi)2

×
∫
E2

∫
E1

wy1/2

z(x1+1)/2(w − z)
(2.15)

× (a + z)x2/2(az − 1)(2n−x2)/2

(aw − 1)(2n+1−y2)/2(a + w)(y2+1)/2 dzdw

and

f2(x, y) = (−1)(x1+x2+y1+y2)/4

2πi
a(y2−x2−1)/2

(2.16)

×
∫
E1

z(y2−x2−1)/2(1/a + z)(y1−x1−1)/2

(1/a + a + z)(y2−x2+1)/2 dz,

where E1 is the positively oriented contour |z| = ε, E2 is the positively oriented
contour |w − 1/a| = ε and the contours do not intersect.

For domino tilings, the inverse Kasteleyn matrix cannot be obtained directly
from the correlation kernel of the red–blue particles introduced in Section 2.1.3.
However, the correlation kernel of the red–blue particles can be directly obtained
from the inverse Kasteleyn matrix. This is different to lozenge tilings, where one
can obtain the inverse Kasteleyn matrix from the interlaced particle system [4, 38].

We initially obtained the above expression for K−1 using a guess based on
Helfgott’s formula in [19] for K−1 when a = 1, Theorem 2.2 and the correlation
kernel for the particle system given in (2.8). In Section 3, we prove Theorem 2.3
by verifying the equation K ·K−1 = I for our conjectured formula for K−1. In the
proof, we expand K · K−1 entrywise, which gives a five-term relation involving
entries of K−1 due to the sparseness of the matrix K . A similar set of relations
(without a boundary condition) was used in [5].

We can write the particle correlation kernel given in (2.8) in terms of the inverse
Kasteleyn matrix. The relation is similar to that found in lozenge tiling; see [38]
and [4]. Note that for lozenge tilings, the particle correlation kernel and the kernel
from the inverse Kasteleyn matrix are in bijection. We find the following proposi-
tion.

PROPOSTION 2.4.

K−1(
(x1, x2), (y1, y2)

)
(2.17)

= −(−1)(x1−x2+y1−y2)/4Kn

(
y2,

y2 − y1 + 1

2
;x2,

x2 − x1 + 1

2

)
.

We prove this proposition in Section 3.



1242 S. CHHITA, K. JOHANSSON AND B. YOUNG

2.2. Edge fluctuations of southern dominoes.

2.2.1. Southern domino process. From our expression for the inverse Kaste-
leyn matrix in Theorem 2.3 and using Theorem 2.2, it is now possible to compute
any joint probability of dominoes. We choose to compute the probability distri-
bution of southern dominoes (or equivalently dimers) in various locations of the
Aztec diamond.

The southern domino process is defined as follows: fix r , 1 ≤ r ≤ n. With a
southern domino on the line y = r , we mean a dimer with a white vertex w =
(2s −1,2r) and a black vertex b = (2s,2r +1) for some s ∈ {1, . . . , n}, and we say
that the southern domino is located at s on the line y = r . The southern dominoes
form a determinantal process by Theorem 2.2, and in particular so do the southern
dominoes on the line y = r with the kernel given by the following lemma.

LEMMA 2.5. A kernel of the determinantal process given by the positions of
the southbound dominoes on a fixed line y = r in a random tiling of an Aztec
diamond is

L(x1, x2)
(2.18)

:= − 1

(2πi)2

∫
E1

dz

∫
E2

dw
wx2

zx1

(a + z)r(az − 1)n−r

(aw − 1)n−r (a + w)r+1(w − z)
.

PROOF. From Theorem 2.2, the kernel of the southern dominoes along a fixed
line y = r is given by (up to conjugation)

K(b, w̃)K−1(w,b),(2.19)

where we set w = (2x1 − 1,2r), w̃ = (2x2 − 1,2r) and b = (2x2,2r + 1). From
Theorem 2.3, we have a formula for each entry of K−1 and in the case x1 < x2,
we have that

f2(w,b) = (−1)((x1+x2)/2)+r

2πi

∫
|z|=ε

(1/a + z)x2−x1−1

1/a + a + z
dz = 0(2.20)

because the integrand is analytic at z = 0. From the above equation, we have

K(b, w̃)K−1(w,b)

= (−1)(2x2+2r)/2 (−1)((x1+x2)/2)+r

(2πi)2(2.21)

×
∫
E1

∫
E2

wx2

zx1

(a + z)r(az − 1)n−r

(aw − 1)n−r (a + w)r+1(w − z)
dw dz.

In the above equation, the sign is equal to (−1)(x1+3x2)/2 = −(−1)(x2−x1)/2. We
can remove a factor of (−1)(x2−x1)/2 from the above equation by a conjugation
which gives (2.18). �
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2.2.2. Thickening and thinning determinantal point processes. Consider a de-
terminantal point process ν on a space � with correlation kernel K. Let 0 ≤ α ≤ 1
and consider the point process obtained by removing each point in the process in-
dependently with probability 1−α. We will call this new point process the thinned
determinantal point process with correlation kernel K and parameter α. A way of
modifying the original point process to obtain a point process with multiple points
is by taking each point in the process ν independently with multiplicity m, where
m is a geometric random variable with parameter β , P[m = k] = (1 − β)βk−1,
k ≥ 1. We will call this (multiple) point process a thickened determinantal point
process with correlation kernel K and parameter β .

PROPOSTION 2.6. The thinned determinantal point process {xj } with cor-
relation kernel K and parameter α is again a determinantal point process with
correlation kernel αK, that is,

E
[
e−∑

j ψ(xj )] = det(I − φαKIA),(2.22)

for every ψ ∈ C+
c (�), φ = 1 − e−ψ and A = suppψ = suppφ. With the same

notation the thickened determinantal point process with kernel K and parameter
β is characterized by

E
[
e−∑

j ψ(xj )] = det
(
I − φ

1 − β + βφ
KIA

)
,(2.23)

where {xj } is now the multi-set of points of the process.

We will prove the proposition in Section 4. Note that the thickened process is
no longer a determinantal point process since determinantal point processes are
always simple point processes.

2.2.3. Asymptotic coordinates. Here, we introduce the asymptotic coordinates
of the unfrozen region. As n → ∞, for the (rescaled) Aztec diamond with corners
(0,0), (1,0), (0,1) and (1,1), the boundary between the frozen and unfrozen re-
gions is an ellipse [8] whose equation is given by

(v − u)2

1 − p
+ (u + v − 1)2

p
= 1,(2.24)

where u ∈ [0,1] is the horizontal coordinate, v ∈ [0,1] is the vertical coordinate
and p = 1/(1 + a2). We let D ⊂ R

2 be the area bounded by the ellipse given
in (2.24).

For our results on the edge, we are interested in the boundary of the ellipse. This
is given by

v = 1 − u ± 2
√

(1 − p)p(1 − u)u + p(2u − 1).(2.25)
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FIG. 5. This figure shows the intersection of the limiting ellipse with the red dotted line given by
v = 1 − k2u. The southern dominoes on the blue dashed line represent the southern domino process.
The northern boundary lies between A and B and the southern boundary between C and D.

The arctic ellipse can be parametrized by (u(k), v(k)), where v(k) = 1 − k2u(k)

and

u(k) = 1

(1 + a2)(1 + k2) + 2a
√

1 + a2k
.(2.26)

We will be interested in two parts of the boundary. The part where k > 0 will be
called the northern boundary, and the part where k ∈ (−a−1(1 + a2)1/2,−a(1 +
a2)−1/2) = (−1/

√
1 − p,−√

1 − p) the southern boundary. See Figure 5 for an
example of the northern and southern boundaries and an explanation of the geo-
metric meaning of k.

2.2.4. Results on the southern domino process. Here, we consider the behav-
ior of the southern domino process along the northern and southern boundaries.
Along the southern boundary the southern domino process is almost dense, and
we have to consider the dual process, the process of holes, instead. If we think of
the locations in 1, . . . , n of the southern dominoes on the line y = r as positions of
particles, then the empty spaces, the holes, also form a determinantal point process
with a kernel I − L, where L is the kernel for the particles.

In our scaling limits we will obtain the Airy kernel point process which is a
determinantal point process with kernel

KAi(x, y) =
∫ ∞

0
Ai(x + t)Ai(y + t) dt.(2.27)

Set

β = −a
(
a + k

√
1 + a2

)
,(2.28)

α = 1

1 − β
= 1

1 + a2 + ak
√

1 + a2
,(2.29)
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and let λ > 0 be given by

λ3 = ± a(a + k
√

1 + a2)2

(1 + a2)(ak2 + k
√

1 + a2)((1 + a2)(1 + k2) + 2ak
√

1 + a2)
(2.30)

with the plus sign for k > 0 and the minus sign for k < 0.

THEOREM 2.7. Let a > 0 be fixed, and let λ be given by (2.30), α by (2.29)
and β by (2.28). Furthermore, let {xj } be the positions of the southern dominoes
on the line y = [(1 − k2u(k)n], where u(k) is given by (2.26). Consider a fixed
k > 0. Then the rescaled southern domino process at the northern boundary,

ξj = u(k)n − xj

λn1/3 ,

converges weakly to the thinned Airy kernel point process with parameter α.
Next, consider a fixed k ∈ (−a−1(1 + a2)1/2,−a(1 + a2)−1/2). Let {yj } be the

positions of the holes in the south domino process, that is, the dual south domino
process, at the southern boundary. The rescaled point process

ξj = yj − u(k)n

λn1/3

converges weakly to the thickened Airy kernel point process with parameter β .

Successive independent thinning and rescaling of a point process typically has
a Poisson point process as its limit. If a tends to infinity, we see that the thinning
parameter of the thinned Airy kernel α tends to zero. Hence we can expect that if
we let a tend to infinity with n (but not too fast), the southern domino point process
close to the northern boundary should converge to a Poisson process. This leads to
the next theorem.

THEOREM 2.8. Fix k > 0, and let a = a(n), where a(n) → ∞ but a(n)/

n1/10 → 0 as n → ∞. Set c(a) = π2/3(1 + 1/k)1/3a2/3, and let {xj } be the po-
sitions of the south dominoes on the line y = [n(1 − k2u(k))]. Then the rescaled
point process

ξj = u(k)n + c(a)n1/3 − xj

c(a)n1/3(2.31)

converges weakly to a Poisson process with density ρ(ξ) = √
(1 − ξ)+.

The condition on the allowed growth of a(n) is certainly not optimal but is
an outcome of the proof. A similar result holds for the thinned Airy kernel point
process on R: if the thinning parameter is sent to zero, the Airy kernel can be
rescaled to a Poisson point process on R which has a square root drop off. This
result actually follows from the proof of Theorem 2.8. Thus we can think of the
thinned Airy kernel point process as being an intermediate kernel between the Airy
kernel and the Poisson point processes with density

√
(1 − ξ)+.
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REMARK 1. We could also consider the behavior of the leftmost southern
domino along the northern boundary. For a fixed a we should get convergence
to the last particle distribution for the thinned Airy kernel point process, det(I −
αKAi)L2(ξ,∞). When a goes to infinity with n, but not too quickly, we expect
instead get one of the classical extreme value distributions in the limit, namely the
last particle distribution in a Poisson process with density

√
(1 − ξ)+. We will not

give the technical details that are required to prove these natural conjectures, but it
should be possible by developing the proof of Theorem 2.8 further.

2.3. Bulk fluctuations. An account of local Gibbs measures for tiling models
can be found in [33] and [31].

For all doubly periodic bipartite weighted dimer models embedded in the plane,
in [33] the authors found that the dimer model is a Gibbs measure, gave an ex-
plicit method to compute the entries of the inverse Kasteleyn matrix embedded
in the plane and the complete phase portrait. The results from [33] rely on using
the smallest nonrepeating unit of the graph called the fundamental domain. For
the graph considered in this paper, the fundamental domain has one black vertex
and one white vertex. In order to describe the Gibbs measure, the authors of [33]
introduced magnetic coordinates (Bx,By), where one increases the energy by eBx

or eBy if one passes to the neighboring fundamental domain to the left or above.
Conversely, if one passes to the fundamental domain to the right or below, one
decreases the energy by eBx or eBy . These magnetic coordinates are related to the
average slope; that is, one can compute the Gibbs measures for different slopes;
see [33].

We choose the fundamental domain of the graph embedded in the plane to be
given by a white vertex, an edge in the direction +e2 and its incident black vertex
and the remaining edges incident to these vertices. To make the following com-
putations and formulas simpler and since the dimer model is independent of the
chosen Kasteleyn orientation, we choose the Kasteleyn orientation which multi-
plies the Kasteleyn orientation given in Section 2.1.4 by (−1) at the black vertices
(b1, b2) where b1 + b2 mod 4 = 3. Figure 6 shows our choice of fundamental do-
main.

We denote the Gibbs measure of the model on this graph by μa(Bx,By) where
(Bx,By) is described above. Suppose that (2α1 + 1,2α2) is a white vertex, and
(2β1,2β2 + 1) is a black vertex for α1, α2, β1, β2 ∈ Z. Using techniques from [33]
one can find the entries of the inverse of the (infinite) Kasteleyn matrix, denoted
by K−1

μ , and they are given by

K−1
μ

(
(2α1 + 1,2α2), (2β1,2β2 + 1)

)
(2.32)

= 1

(2πi)2

∫
|z|=1

∫
|w|=1

zα1−β1wβ2−α2

P(zeBx ,weBy )

dw

w

dz

z
,
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FIG. 6. The fundamental domain.

where P(z,w) is the so-called characteristic polynomial. For the above graph em-
bedded in the torus with the above edge weights and Kasteleyn orientation, the
characteristic polynomial is given by

P(z,w) = ai − z−1 + w−1 − aiw−1z−1.(2.33)

THEOREM 2.9. Choose the rescaling so that the white vertices are given by

(x1, x2) = ([2ξ1n] + 2α1 + 1, [2ξ2n] + 2α2
)

and the black vertices are given by

(y1, y2) = ([2ξ1n] + 2β1, [2ξ2n] + 2β2 + 1
)

for ξ1, ξ2 ∈ Dc ⊂ D compact and for α1, α2, β1, β2 ∈ Z where D is the area
bounded by the ellipse in (2.24). Then the measure on domino tilings converges
weakly to μa(log r1, log r2) where μa is defined above and

ri =
√

ξi/(1 − ξi) for i ∈ {1,2}.(2.34)

Similar results for certain classes of lozenge tilings have been obtained in [4]
and [38].

2.4. Overview of the paper. The rest of the paper is organized as follows.
In Section 3, we prove Theorem 2.3 and Proposition 2.4. In Section 4, we give
the proofs of Theorems 2.7 and 2.8. The proof of Theorem 2.9 is given in Sec-
tion 5. We conclude with a brief discussion of the height function fluctuation in
Section 6.
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3. Discrete setting.

3.1. Proof of Theorem 2.3. Before giving the proof of Theorem 2.3, we intro-
duce some notation: for x = (x1, x2) ∈ W and y = (y1, y2) ∈ B, let

c1(w, z, x, y) = (−1)(y1+y2+x1+x2)/4

(3.1)

× wy1/2(a + z)x2/2(az − 1)(2n−x2)/2

z(x1+1)/2(w − z)(aw − 1)(2n+1−y2)/2(a + w)(y2+1)/2 ,

c2(z, x, y) = (−1)(y1+y2+x1+x2)/4a(y2−x2−1)/2

(3.2)

× z(y2−x2−1)/2(1/a + z)(y1−x1−1)/2

(1/a + a + z)(y2−x2+1)/2

and

c̃2(w,x, y) = (−1)(y1+y2+x1+x2)/4w(y1−x1−1)/2

(3.3)
× (aw − 1)(y2−x2−1)/2(a + w)(x2−y2−1)/2.

We have chosen the three functions above so that
1

(2πi)2

∫
E2

∫
E1

c1(w, z, x, y) dz dw = f1(x, y)(3.4)

and
1

2πi

∫
E1

c2(z, x, y) dz = 1

2πi

∫
E2

c̃2(w,x, y) dw = f2(x, y),(3.5)

where the contours E1 and E2 are given in the statement of Theorem 2.3, and the
functions f1(x, y) and f2(x, y) are given in equations (2.15) and (2.16), respec-
tively. Note that c2 is obtained from c̃2 by the change of variables z 
→ w − 1/a

and

lim
z→w

(w − z)c1(w, z, x, y) = c̃2(w,x, y).(3.6)

PROOF OF THEOREM 2.3. For the proof, we set x = (x1, x2) and y = (y1, y2)

with x, y ∈ B. We keep the same notation throughout the proof. The matrix K−1

is uniquely determined by the specific choice of the Kasteleyn matrix, K , which
means we need to verify the equation K · K−1 = I. We can expand out K · K−1

entry-wise. For x, y ∈ B, we obtain

K · K−1(x, y) = ∑
w∈W

K(x,w)K−1(w,y) = ∑
w∼x,w∈W

K(x,w)K−1(w,y),(3.7)

where w ∼ x,w ∈ W means that w ∈ W and w is a nearest neighbored vertex to x.
Using the entries of the Kasteleyn matrix given in (2.11), we can rewrite (3.7)
and compare with the identity matrix which gives an entry-wise expansion of the



ASYMPTOTICS IN THE AZTEC DIAMOND 1249

equation K · K−1 = I. This is the equation we must verify to prove Theorem 2.3.
That is, we must verify

(−1)(x1+x2−1)/2(
K−1(x + e1, y)Ix1<2n − K−1(x − e1, y)Ix1>0

− aiK−1(x + e2, y)Ix1>0 + aiK−1(x − e2, y)Ix1<2n

)
(3.8)

= Ix=y,

where x = (x1, x2), y ∈ B and

Ix1>0 =
{

1, if x1 > 0,

0, otherwise.
(3.9)

Note that the indicator functions in (3.8) account for x on the boundary of the Aztec
diamond. In order to verify (3.8), there are three cases to consider for x = (x1, x2):
0 < x1 < 2n, x1 = 0 and x1 = 2n.

For 0 < x1 < 2n, the left-hand side of (3.8) is equal to

(−1)(x1+x2−1)/2(
K−1(x + e1, y) − K−1(x − e1, y)

(3.10)
− aiK−1(x + e2, y) + aiK−1(x − e2, y)

)
.

We first substitute f1 into the above expression. For this expression, we will ma-
nipulate the integrand of f1 which is given by c1 by (3.4). We find after some
simplification,

(−1)(x1+x2−1)/2(
c1(w, z, x + e1, y) − c1(w, z, x − e1, y)

− aic1(w, z, x + e2, y) + aic1(w, z, x − e2, y)
)

= (−1)(x1+x2−1)/2

× (
c1

(
w,z, (x1 + 1, x2 + 1), y

) − c1
(
w,z, (x1 − 1, x2 − 1), y

)
(3.11)

− aic1
(
w,z, (x1 − 1, x2 + 1), y

) + aic1
(
w,z, (x1 + 1, x2 − 1), y

))
= (−1)(x1+x2−1)/2

× c1(w, z, x + e1, y)

(
1 − az + a(−1 + az)

a + z
+ z(−1 + az)

a + z

)
= 0.

Note that this relation holds for 0 ≤ x1 ≤ 2n. Integrating both sides of the above
equation with respect to z and w over the contours E1 and E2, respectively, and
using (3.4), we find that

(−1)(x1+x2−1)/2(
f1(x + e1, y) − f1(x − e1, y)

(3.12)
− aif1(x + e2, y) + aif1(x − e2, y)

) = 0.

To substitute f2 into the expression given in (3.10), we have to consider x1 = y1
and x1 ≥ y1 + 2 separately due to the split expression of K−1. For x2 ≥ y1 + 2, all
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four terms of f2 are present in (3.10) and so using (3.6), (3.11) and (3.5) we find

−(−1)(x1+x2−1)/2(
f2(x + e1, y) − f2(x − e1, y)

(3.13)
− aif2(x + e2, y) + aif2(x − e2, y)

) = 0.

We now substitute f2 into (3.10) for the case x1 = y1. We obtain

−(−1)(x1+x2−1)/2(
f2

(
(x1 + 1, x2 + 1), (x1, y2)

)
(3.14)

+ aif2
(
(x1 + 1, x2 − 1), (x1, y2)

))
.

We first manipulate the integrand of the above equation using (3.5) which gives

−(−1)(x1+x2−1)/2(
c2

(
z, (x1 + 1, x2 + 1), (x1, y2)

)
+ aic2

(
z, (x1 + 1, x2 − 1), (x1, y2)

))
= −(−1)(x1+x2−1)/2c2

(
z, (x1 + 1, x2 + 1), (x1, y2)

)(
1 + a3z

1 + a2 + az

)
(3.15)

= −(−1)(x1+x2−1)/2c2
(
z, (x1 + 1, x2 + 1), (x1, y2)

)((1 + a2)(1 + az)

1 + a2 + az

)
= −(−1)(3x1+3x2+y1+y2)/4a(y2−x2−2)/2

× (
1 + a2)

z(y2−x2−2)/2
(

1

a
+ a + z

)(x2−y2−2)/2

.

We now integrate with respect to z over the contour E1, and we obtain

−(−1)(x1+x2−1)/2(
f2

(
(x1 + 1, x2 + 1), (x1, y2)

)
+ aif2

(
(x1 + 1, x2 − 1), (x1, y2)

))
= −(−1)(3x1+3x2+y1+y2)/4

2πi
(3.16)

×
∫
E1

a(y2−x2−2)/2(
1 + a2)

z(y2−x2−2)/2
(

1

a
+ a + z

)(x2−y2−2)/2

dz

=
{

−(−1)(x1+x2), x2 = y2,

0, otherwise

by Lemma 3.1 below. Because x1 + x2 is always odd, we conclude

−(−1)(x1+x2−1)/2(
f2

(
(x1 + 1, x2 + 1), (x1, y2)

)
(3.17)

+ aif2
(
(x1 + 1, x2 − 1), (x1, y2)

)) = Ix2=y2 .

Note that by our method of computation, the above relation is valid for 0 ≤ x1 ≤
2n. This means we have computed (3.10) for 0 < x1 < 2n and so from (3.12),
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(3.13) and (3.17), we have obtained for 0 < x1 < 2n,

(−1)(x1+x2−1)/2(
K−1(x + e1, y) − K−1(x − e1, y)

(3.18)
− aiK−1(x + e2, y) + aiK−1(x − e2, y)

) = Ix=y.

For x = (0, x2), we have that the left-hand side of (3.8) is equal to

(−1)(x2−1)/2(
K−1(x + e1, y) + aiK−1(x − e2, y)

)
.(3.19)

Before we substitute f1 into (3.19), notice that

f1
(
(−1,w2), (y1, y2)

) = 0(3.20)

for w2 mod 2 = 0 because there is no residue at z = 0 in (2.15) in this case.
Since (3.11) holds for x (including those outside of the Aztec diamond) which
means that the relation in (3.12) holds for any values of x, we can write out (3.11)
with x1 = 0, integrate over z and w over the contours E1 and E2, respectively,
noting (3.20), and use (3.4) to obtain

(−1)(x2−1)/2(
f1

(
(1, x2 + 1), y

) − f1
(
(−1, x2 − 1), y

)
− aif1

(
(−1, x2 + 1), y

) + aif1
(
(1, x2 − 1), y

))
(3.21)

= (−1)(x2−1)/2(
f1(x + e1, y) + aif1(x − e2, y)

) = 0

for x = (0, x2). When we substitute f2 into (3.19), we only need to consider the
case y1 = 0 because of the split definition of K−1, and so using (3.17) (because
the equation is valid for 0 ≤ x1 ≤ 2n), we obtain

−(−1)(x2−1)/2(
f2

(
(1, x2 + 1), (0, y2)

)
(3.22)

+ aif2
(
(1, x2 − 1), (0, y2)

)) = Ix2=y2 .

Adding (3.21) and (3.22), we find

(−1)(x2−1)/2(
K−1(x + e1, y) + aiK−1(x − e2, y)

) = Ix=y(3.23)

for x = (0, x2).
For x = (2n,x2), we have that the left-hand side of (3.8) is equal to

(−1)(2n+x2−1)/2(−K−1(x − e1, y) − aiK−1(x + e2, y)
)
.(3.24)

For x = (2n,x2), we perform the following computation:

(−1)(2n+x2−1)/2(−f1
(
(2n − 1, x2 − 1), y

) − aif1
(
(2n − 1, x2 + 1), y

))
= −(−1)(2n+x2−1)/2

(2πi)2

∫
E2

∫
E1

c1
(
w,z, (2n − 1, x2 − 1), y

)
+ aic1

(
w,z, (2n − 1, x2 + 1), y

)
dzdw(3.25)
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= −(−1)(2n+x2−1)/2

(2πi)2

×
∫
E2

∫
E1

c1
(
w,z, (2n − 1, x2 − 1), y

)(
1 − a(a + z)

az − 1

)
dzdw

= −(−1)(2n+x2−1)/2

(2πi)2

×
∫
E2

∫
E1

c1
(
w,z, (2n − 1, x2 − 1), y

)(1 + a2

az − 1

)
dzdw

= −(−1)(2n+x2−1)/2

(2πi)2

∫
E2

c̃2
(
w, (2n − 1, x2 − 1), y

) 1 + a2

1 − aw
dw

= −(−1)(2n+x2−1)/2(
f2

(
(2n − 1, x2 − 1), y

) + aif2
(
(2n − 1, x2 + 1), y

))
,

where the fourth line to the fifth line follows from the fact that the integrand in the
fourth line is a polynomial of degree n − 1 in the numerator and a polynomial of
degree n + 1 in the denominator with respect to z, and so we can push the contour
through infinity which picks up a residue at z = w. The sixth line follows from the
fifth line because

c̃2
(
w, (2n − 1, x2 − 1), y

) + aic̃2
(
w, (2n − 1, x2 + 1), y

)
= c̃2

(
w, (2n − 1, x2 − 1), y

)(
1 − a(a + w)

−1 + aw

)
(3.26)

= c̃2
(
w, (2n − 1, x2 − 1), y

) 1 + a2

1 − aw

and integrating over E2 using (3.5). For x1 = 2n and y1 < 2n, we have that (3.24)
is equal to

−(−1)(2n+x2−1)/2(
f1(x − e1, y) − f2(x − e1, y)

(3.27)
+ ai

(
f1(x + e2, y) − f2(x + e2, y)

)) = 0

by (3.25). For x = (2n,x2) and y1 = 2n, using (3.25), (3.24) is equal to

−(−1)(2n+x2−1)/2(
f1(x − e1, y) + aif1(x + e2, y)

)
= −(−1)(2n+x2−1)/2(

f2(x − e1, y) + aif2(x + e2, y)
)

(3.28)
= (−1)(2n+x2−1)/2(

f2(x + e1, y) + aif2(x − e2, y)
)

= Ix=y

for y = (2n,y2) by using (3.13) and (3.17). From (3.27) and (3.28), we have eval-
uated (3.24) and have found

(−1)(2n+x2−1)/2(−K−1(x − e1, y) − aiK−1(x + e2, y)
) = Ix=y(3.29)
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for x = (2n,x2) and y = (y1, y2). Equations (3.18), (3.23) and (3.29) means that
we have verified (3.8). �

LEMMA 3.1. For k ∈ Z,

1

2πi

∫
|z|=1

zk−1
(

1

a
+ a + z

)−1−k

dz =
⎧⎨⎩

a

1 + a2 , k = 0,

0, otherwise.
(3.30)

PROOF. For k = 0, the left-hand side of (3.30) is equal to

1

2πi

∫
|z|=1

1

z((1/a) + a + z)
dz = a

1 + a2 .(3.31)

When k > 0, the integrand in (3.30) is analytic at z = 0 and so the left-hand side
of (3.30) is zero. When k < 0, we can move the contour to a small circle around
−(a + 1/a) and use the fact that the integrand is analytic inside. �

3.2. Guessing K−1. As mentioned above in [22], the author used a particle
system formed from the zig-zag particles and obtained a formula for the correlation
kernel. From this correlation kernel, we could guess an expression for the inverse
Kasteleyn matrix which is verified to be correct in the previous section. Here, we
describe the steps we used to obtain the guess.

Let w ∈ W and b ∈ B. Recall that there is a blue particle at w if and only if a
dimer covers (w + e1,w) or (w + e2,w) and that there is a red particle at b if
and only if a dimer covers (b, b − e1) or (b, b − e2). From (2.11) we see that if
w = (x1, x2), then

K(w + e1,w) = (−1)(x1+x2−1)/2,
(3.32)

K(w + e2,w) = (−1)(x1+x2−1)/2ai

and if b = (y1, y2), then

K(b, b − e1) = (−1)(y1+y2+1)/2,
(3.33)

K(b, b − e2) = −(−1)(y1+y2+1)/2ai.

It follows from Theorem 2.2 that

P[There are particles at w and b]

=
2∑

r1,r2=1

K(w + er1,w)K(b, b − er2)

×
∣∣∣∣ K−1(w,w + er1) K−1(w,b)

K−1(b − er2,w + er1) K−1(b − er2, b)

∣∣∣∣(3.34)
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=

∣∣∣∣∣∣∣∣∣∣∣

2∑
r=1

K−1(w,w + er)K(w + er ,w)

2∑
r1,r2=1

K−1(b − er2,w + er1)K(w + er1,w)K(b, b − er2)

K−1(w,b)

2∑
r=1

K−1(b − er , b)K(b, b − er)

∣∣∣∣∣∣∣ .
In (3.34), we have w = (x1, x2), b = (y1, y2) and if (v1, v2), the particle coordi-
nates, are related to (x1, x2) by (2.7) and (v1, v2) in the same way to (y1, y2), then
we get, using the particle kernel (2.8) and the result in [22] that

P[There are particles at w and b]
(3.35) =

∣∣∣∣∣Kn(u1, u2;u1, u2) Kn(u1, u2;v1, v2)

Kn(v1, v2lu1, u2) Kn(v1, v2lv1, v2)

∣∣∣∣∣ .
Comparing (3.34) and (3.35), we see that it is reasonable to expect that

K−1(
(x1, x2), (y1, y2)

)
(3.36)

= c(x1, x2;y1, y2)Kn(u1, u2;v1, v2)

or

K−1(
(x1, x2), (y1, y2)

)
(3.37)

= c(x1, x2;y1, y2)Kn(v1, v2;u1, u2)

with some appropriate, hopefully simple function c which could perhaps be just
a sign factor. Here, one has to make some guesses and it turns out, a posteriori,
that (3.37) is the right choice and that

c(x1, x2;y1, y2) = −(−1)(x1−x2+y1−y2+2)/4(3.38)

for our choice of Kasteleyn orientation. Thus we write

K−1(
(x1, x2), (y1, y2)

)
(3.39)

= −(−1)(x1−x2+y1−y2+2)/4Kn

(
y2,

y2 − y1 + 1

2
;x2,

x2 − x1 + 1

2

)
.

3.3. Proof of Proposition 2.4. We will show that the right-hand side of (2.17)
gives the corresponding entry of the inverse Kasteleyn matrix.
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Write y2 = 2r − 1 and x2 = 2s. From (2.9), we see that

K̃n

(
y2,

y2 − y1 + 1

2
;x2,

x2 − x1 + 1

2

)
= 1

(2πi)2

×
∫
γr1

dw

w

∫
γr2

dz

z

z(x2−x1+1)/2(1 − az)n−(x2/2)(1 + a/z)(x2)/2

w(y2−y1+1)/2(1 − aw)n−((y2+1)/2)+1(1 + a/w)(y2+1)/2

× w

w − z

= (−1)(y2−x2−1)/2

(2πi)2
(3.40)

×
∫
γr1

dw

w

∫
γr2

dz

z

w(y1)/2(az − 1)(2n−x2)/2(z + a)(x2)/2

z(x1+1)/2(aw − 1)((2n−y2+1)/2)+1(w + a)(y2+1)/2

× 1

w − z

= (−1)(y2−x2−1)/2

(2πi)2

×
∫
E2

dw

w

∫
E1

dz

z

w(y1)/2(az − 1)(2n−x2)/2(z + a)(x2)/2

z(x1+1)/2(aw − 1)((2n−y2+1)/2)+1(w + a)(y2+1)/2

× 1

w − z
,

where the last equality follows by deforming γr2 to E2 through infinity. Hence, we
obtain

−(−1)(x1−x2+y1−y2+2)/4K̃n

(
y2,

y2 − y1 + 1

2
;x2,

x2 − x1 + 1

2

)
(3.41)

= f1(x, y).

Also, by (2.10) we have

φy2,x2

(
y2 − y1 + 1

2
,
x2 − x1 + 1

2

)

= Iy2<x2

2πi

∫
γr1

z((x2−x1)/2)−((y2−y1)/2) (1 − az)((y2+1−x2)/2)−1

(1 + a/z)(y2+1−x2)/2

dz

z

= (−1)(y2−x2−1)/2 Iy2<x2

2πi

∫
γr1

z(y1−x1−1)/2 (az − 1)(y2−x2−1)/2

(z + a)(y2−x2+1)/2 dz(3.42)
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= (−1)(y2−x2−1)/2 Iy2<x2Iy1<x1

2πi

×
∫
γr1

z(y1−x1−1)/2 (az − 1)(y2−x2−1)/2

(z + a)(y2−x2+1)/2 dz

= (−1)(y2−x2−1)/2 Iy2<x2Iy1<x1

2πi

×
∫
E2

z(y1−x1−1)/2 (az − 1)(y2−x2−1)/2

(z + a)(y2−x2+1)/2 dz

= (−1)(y2−x2−1)/2 Iy1<x1

2πi
a(y2−x2−1)/2

×
∫
E1

z(y2−x2−1)/2 (1/a + z)(y1−x1−1)/2

(z + a + 1/a)(y2−x2+1)/2 dz.

In the third equality, we use the fact that the integrand has no singularity inside γ1
if y1 > x1 (and y1 = x1 is not possible). The fourth equality follows by deform-
ing γ1 to E2 through infinity. The last equality follows since the integrand has no
singularity inside E2 if y2 > x2 and by making the shift z 
→ z + 1/a. We see that

−(−1)(x1−x2+y1−y2+2)/4φy2,x2

(
y2 − y1 + 1

2
,
x2 − x1 + 1

2

)
(3.43)

= Ix1>y1f2(x, y).

4. Asymptotics of dimers. In this section, we will give the proofs of the re-
sults on the local asymptotics of the Aztec diamond. We start by proving Proposi-
tion 2.6 about thinned and thickened determinantal point processes.

PROOF OF PROPOSITION 2.6. Let {yj } be the points of the determinantal
point process with kernel K , and let {nj } be independent Bernoulli random vari-
ables, P[nj = 1] = α. Let EK denote the expectation for the determinantal point
process and En the expectation with respect to the Bernoulli random variables.
Consider the thinned process. Then, by Fubini’s theorem,

E
[
e−∑

j ψ(xj )] = EnEK

[
e−∑

j njψ(yj )]
= EKEn

[∏
j

(
1 − (

1 − e−njψ(yj )))]

= EK

[∏
j

(
1 −En

[
1 − e−njψ(yj )])] = EK

[∏
j

(
1 − αφ(yj )

)]
(4.1)

= det(I − φαKIA),(4.2)
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which proves (2.22). Next, let {mj } be independent geometric random variables,
P[mj = k] = (1 − β)βk−1, k ≥ 1, and let Em denote the expectation with respect
to these random variables. Then

E
[
e−∑

j ψ(xj )] = EmEK

[
e−∑

j mjψ(yj )]
= EKEm

[∏
j

(
1 − (

1 − e−mjψ(yj )))]
(4.3)

= EK

[∏
j

(
1 − φ(yj )

1 − β + βφ(yj )

)]

= det
(
I − φ

1 − β + βφ
KIA

)
,

since

Em

[
1 − e−mjψ(yj )] = 1 − (1 − β)

∞∑
k=1

βk−1e−kψ(yj )

= 1 − e−ψ(yj )

1 − βe−ψ(yj )
(4.4)

= φ(yj )

1 − β + βφ(yj )
.

This proves (2.23). �

PROOF OF THEOREM 2.7. By Lemma 2.5 the south domino process on the
line y = r is a determinantal point process with kernel L given by (2.18). Let
us first consider this process in a neighbourhood of the northern boundary, when
r = [(1 − k2u(k))n], k > 0. (Below we will often neglect the integer part in this
and in other expressions. It is not difficult to see that this is unimportant.) The
kernel can be written

L(x1, x2)
(4.5)

= − 1

(2πi)2

∫
�1

dz

∫
�2

dw
wx2−u(k)n

zx1−u(k)n

1

(a + w)(w − z)
eng(z)−ng(w),

where

g(z) = (
1 − k2u(k)

)
log(a + z) + k2u(k) log(az − 1) − u(k) log z.(4.6)

We have deformed the contours E1 and E2 to new contours �1 and �2, described
below, which are good contours for the asymptotic analysis. The argument in
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the logarithms is chosen in the interval (0,2π). We see that when u(k) is given
by (2.26), g(z) has a double zero at

zc = 1

a + k
√

1 + a2
.(4.7)

We can now use a saddle-point argument to analyze the relevant asymptotics
of (4.5), and since this is a fairly standard Airy kernel asymptotics saddle point
analysis, we will not go into all the details. For the integration contours in (4.5) we
have chosen the steepest descent contours given by the level lines of the imaginary
part of g(z) starting at zc. It can be seen that we will have two ascending contours
for the real part of g(z) which will leave in the directions e±πi/3 and go to infinity.
We can deform the contour E2 to a contour �2 consisting of these two pieces. We
will have two descending contours going from zc to −a leaving in the directions
e±2πi/3, and these can be combined into a contour �1; see Figure 7. If we have the
scalings

x1 = [
u(k)n − λn1/3ξ

]
, x2 = [

u(k)n − λn1/3η
]
,(4.8)

then

lim
n→∞−λn1/3zx1−x2

c L(x1, x2)

(4.9)

= α
1

(2πi)2

∫
�

dz

∫
�

dw
1

i(z + w)
eiz3/3+iξz+iw3/3+iηw

= αKAi(ξ, η)(4.10)

uniformly for ξ, η in a compact subset of R, where α = zc/(zc + a). Here � is
given by z(t) = −te(π−θ)i , t < 0 and z(t) = teiθ , t ≥ 0, with a fixed 0 < θ < π/3.

FIG. 7. A schematic diagram of the contours of steepest ascent and descent for g(z) for
zc ∈ (0,1/a).
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Furthermore, λ is given by

λ = zc

(−g(3)(zc)/2
)1/3

.(4.11)

A computation gives (2.30). To prove the result in Theorem 2.7 we observe that,
with φ = 1 − e−ψ and [n] = {1, . . . , n},

E
[
e−∑

j ψ(ξj )]
(4.12)

= E

[∏
j

(
1 − φ

(
nu(k) − xj

λn1/3

))]

=
n∑

m=0

(−1)m

m!
∑

x1,...,xm∈[n]

m∏
j=1

φ

(
nu(k) − xj

λn1/3

)
det

(
L(xi, xj )

)
m×m.(4.13)

Using the uniform convergence in (4.9) and Hadamard’s inequality, we see that
(4.12) converges to

n∑
m=0

(−1)m

m!
∫
Rm

m∏
j=1

φ(ξj )det
(
αKAi(ξi, ξj )

)
m×mdmξ

(4.14)
= det(I − φαKAiIA),

for every ψ ∈ C+
c (R), where A = suppφ = suppψ ; see, for example, [22]. This

proves the weak convergence claimed in the theorem; see, for example, [11],
page 138.

We turn now to the south domino process close to the southern boundary. Take
r as before but with k ∈ (−a−1(1 + a2)1/2,−a(1 + a2)−1/2). By Lemma 2.5

L(x1, x2) = − 1

(2πi)2

∫
E1

dz

∫
E2

dw
wx2

zx1

(a + z)r(az − 1)n−r

(a + w)r+1(aw − 1)n−r

1

w − z
.(4.15)

Deform E2 through infinity to a contour γ2 containing E1 and −a in its interior, but
1/a outside, to obtain

L(x1, x2) = 1

(2πi)2

∫
E1

dz

∫
γ2

dw
wx2

zx1

(a + z)r(az − 1)n−r

(a + w)r+1(aw − 1)n−r

1

w − z
.(4.16)

Then move E1 to a contour γ1 which surrounds γ2; see Figure 8. This picks up a
contribution from the pole at z = w. Write

L̃(x1, x2) = z
x1−x2
c

(2πi)2

∫
γ1

dz

∫
γ2

dw
wx2

zx1

(a + z)r(az − 1)n−r

(a + w)r+1(aw − 1)n−r

1

w − z
.(4.17)

Here zc is again given by (4.7). Note that now we have zc ∈ (−∞,−a). Thus we
find

zx1−x2
c L(x1, x2) = z

x1−x2
c

2πi

∫
γ1

zx2−x1

z + a
dz + L̃(x1, x2).(4.18)
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FIG. 8. The figure on the left represents deforming the contour E2 to γ2. The figure on the right
represents deforming the contour E1 through γ2 to γ1. Note that this picks up a single integral term.

The parameter β of the thickened process is given by β = −a/zc, and we see that
0 < β < 1. Set

M(x1, x2) = −βx2−x1Ix1<x2 .(4.19)

Then (4.18) gives

zx1−x2
c L(x1, x2) = δx1,x2 − M(x1, x2) + L̃(x1, x2).(4.20)

A correlation kernel L∗ for the dual point process is given by [2], Proposition 4,

L∗(x1, x2) = δx1,x2 − zx1−x2
c L(x1, x2) = M(x1, x2) − L̃(x1, x2).(4.21)

If x1, x2, . . . are the points in the dual point process, we want to look at

E

[∏
j

exp
(
−∑

j

ψ

(
xj − nu(k)

λn1/3

))]
= det

(
I − f L∗g

)
,(4.22)

where the Fredholm determinant is on �2({1, . . . , n}) and so is actually a determi-
nant of a finite matrix. Here we have introduced f (x) = φ((λn1/3)−1(x − u(k)n))

and g(x) = IA((λn1/3)−1(x − u(k)n)), where A is the support of φ. Now,
by (4.21), we have

det
(
I − f L∗g

) = det(I − f Mg + f L̃g)(4.23)

= det(I − f Mg)det
(
I + (I − f Mg)−1f L̃

)
(4.24)

= det

(
I +

n∑
j=0

(f Mg)jf L̃g

)

= det

(
I + f

n∑
j=0

(Mf )j L̃g

)
.(4.25)
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Here we have used that gf = f and f Mg is nilpotent, (f Mg)n+1 = 0. Hence, we
also have det(I − f Mg) = 1. Set

R =
n∑

j=1

(Mf )j L̃.(4.26)

Then, by (4.23), we have

det
(
I − f L∗g

) = det
(
I + f (R + L̃)g

)
.(4.27)

In order to prove the result in Theorem 2.7 it suffices to show that, with the scaling

x1 = [
u(k)n + λn1/3ξ

]
, x2 = [

u(k)n + λn1/3η
]

(4.28)

we have that

λn1/3(R + L̃)(x1, x2) → − 1

1 − β + βφ(ξ)
KAi(ξ, η)(4.29)

uniformly for ξ, η in a compact subset of R as n → ∞. We will prove this under
the assumption that ψ is also continuously differentiable, which suffices to show
the weak convergence of the point process. This can be seen by an approximation
argument.

We will make use of the following fact given below in (4.30), which again
is proved by a saddle point argument very similar to the one discussed above.
The only difference is in the choice of contours. As integration contours we will
again choose level lines of the imaginary part of g(z) starting at zc. Recall that
zc ∈ (−∞,−a). It can be seen that we will have two ascending contours for the
real part of g(z) which will leave in the directions e±πi/3 and go to 0. We com-
bine these contours to a contour γ ′

2 and use it for our w-integration. We will have
two descending contours going from zc to 1/a leaving in the directions e±2πi/3.
Combine them into a contour γ ′

1, and use it for the z-integration.
Let x1, x2 be as in (4.28), r = [(1 − k2u(k))n] and k ∈ (−a(1 + a2)−1/2,

−a−1(1 + a2)1/2). Then, we have

λn1/3z
x1−x2
c

(2πi)2

∫
γ ′

1

dz

∫
γ ′

2

dw F(z)
wx2

zx1

(a + z)r(az − 1)n−r

(a + w)r+1(aw − 1)n−r

1

w − z
(4.30)

→ − D

1 − β
KAi(ξ, η)

uniformly for ξ, η in compacts as n → ∞, for F(z) = 1 or F(z) = βzcf (x1)/(z −
β(1 − f (x1))zc), where D = F(zc). Note that with the scaling (4.28) we have
f (x1) = φ(ξ) (ignoring integer parts).
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By expanding M and rearranging the sum, we have

R(x1, x2)

=
n∑

j=1

(Mf )j L̃(x1, x2)

=
n∑

j=1

(−1)j
∑

y1,...,yj∈[n]
βyj−x1I(x1<y1) · · · I(yj−1<yj )f (y1) · · ·f (yj )L̃(yj , x2)

=
n∑

j=1

(−1)j
n−x1∑
t=j

βtf (x1 + t)L̃(x1 + t, x2)

× ∑
x1<y1<···<yj−1,x1+t

f (y1) · · ·f (yj−1).

Let ej (x1, . . . , xt−1) be the j th elementary symmetric polynomial in t − 1 vari-
ables, and write f = (f (x1 + 1), . . . , f (x1 + t − 1)). By interchanging the sums,
we obtain

R(x1, x2) = −
n−x1∑
t=1

βtf (x1 + t)L̃(x1 + t, x2)

t−1∑
j=0

(−1)j−1ej−1(f )

(4.31)

= −
n−x1∑
t=1

βtf (x1 + t)L̃(x1 + t, x2)

t−1∏
j=1

(
1 − f (x1 + j)

)
.

Set

T (x1, x2) = −
n−x1∑
t=1

βtf (x1)
(
1 − f (x1)

)t−1
L̃(x1 + t, x2).(4.32)

We then have the following:

CLAIM 1. For all ξ, η in a compact subset of R there is a constant C such
that if we have the scaling (4.28), then∣∣λn1/3(R − T )(x1, x2)

∣∣ ≤ C

n1/3 .(4.33)

We proceed with the proof of the theorem and return to the proof of the claim
below. Using (4.17) we see that

T (x1, x2) = −
n−x1∑
t=1

βtf (x1)
(
1 − f (x1)

)t−1 z
x1−x2
c

(2πi)2

×
∫
γ1

dz

∫
γ2

dw

(
zc

z

)t wx2

zx1

(a + z)r(az − 1)n−r

(a + w)r+1(aw − 1)n−r

1

w − z
(4.34)
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= − f (x1)

1 − f (x1)

z
x1−x2
c

(2πi)2

×
∫
γ1

dz

∫
γ2

dw
β(1 − f (x1))zc/z − (β(1 − f (x1))zc/z)

n−x1+1

1 − β(1 − f (x1))zc/z

× wx2

zx1

(a + z)r(az − 1)n−r

(a + w)r+1(aw − 1)n−r

1

w − z

= −f (x1)
z
x1−x2
c

(2πi)2

∫
γ1

dz

∫
γ2

dw
βzc

z − β(1 − f (x1))zc

wx2

zx1

× (a + z)r(az − 1)n−r

(a + w)r+1(aw − 1)n−r

1

w − z
.

The term involving (β(1 − f (x1))zc/z)
n−x1+1 does not contribute since the

z-integral integrates to 0 by Cauchy’s theorem because the integrand is analytic
outside γ1 including at ∞.

It now follows from (4.30) that

λn1/3T (x1, x2) → βφ(ξ)

1 − β(1 − φ(ξ))

1

1 − β
KAi(ξ, η)(4.35)

uniformly as n → ∞. If we combine this with (4.33) and the fact, again by (4.30)
with F(z) = 1, that

λn1/3L̃(x1, x2) → − 1

1 − β
KAi(ξ, η)(4.36)

we obtain (4.29), which is what we wanted to prove.
It remains to prove the claim. We will use the following two facts. If ξ, η be-

longs to a compact subset, there is a constant B > 0 and a constant C such that
if we have the scaling (4.8), then: (i) f (x1 + t) = 0 if t /∈ [−Bn1/3,Bn1/3] and
(ii) |λn1/3L̃(x1 + t, x2)| ≤ C for all t ∈ [−Bn1/3,Bn1/3]. That (i) holds follows
immediately from the fact that φ has compact support, and (ii) follows from (4.30)
in the case F(z) = 1 since we have uniform convergence. We will also use the
inequality ∣∣∣∣∣

n∏
j=1

aj −
n∏

j=1

bj

∣∣∣∣∣ ≤
n∑

j=1

|aj − bj |,

provided |aj |, |bj | ≤ 1 for all j . This is easy to prove by induction.
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Now, since φ is continuously differentiable and has compact support,∣∣∣∣∣f (x1 + t)

t−1∏
j=1

(
1 − f (x1 + j)

) − f (x1)

t−1∏
j=1

(
1 − f (x1)

)∣∣∣∣∣
≤

t∑
j=1

∣∣f (x1 + j) − f (x1)
∣∣

=
t∑

j=1

∣∣∣∣φ( [u(k)n + λn1/3ξ ] + j − u(k)n

λn1/3

)
(4.37)

− φ

( [u(k)n + λn1/3ξ ] − u(k)n

λn1/3

)∣∣∣∣
≤

t∑
j=1

Cj

n1/3 ≤ Ct2

n1/3 ,

for some constant C. Thus∣∣λn1/3(R − T )(x1, x2)
∣∣

≤
n−x1∑
t=1

βt
∣∣f (x1 + t)

∣∣∣∣λn1/3L̃(x1 + t, x2)
∣∣

(4.38)

×
∣∣∣∣∣f (x1 + t)

t−1∏
j=1

(
1 − f (x1 + t)

) − f (x1)

t−1∏
j=1

(
1 − f (x1)

)∣∣∣∣∣
≤ C

n1/3

n−x1∑
t=1

βt t2 ≤ C

n1/3 ,

since 0 < β < 1. In the next to last inequality we used (i) and (ii) above. The
estimate (ii) works since we can use (i) to restrict the range of t-values. �

Above we have been concerned with the behavior of the south dominoes at the
boundary of the frozen region. We can also consider the behavior of the south
dominoes as we enter the bulk but still stay close to the boundary at a macroscopic
scale. We then get as a scaling limit the thinned sine kernel point process with the
same parameter α. We will not go into the details.

Next we will give the proof of Theorem 2.8 which is concerned with the case
when a grows with n but not too fast. In the case when a instead goes to zero with
n but not to fast we should have convergence to the Airy kernel point process at the
northern boundary for the south domino process. Note that the thinning parameter
α → 1 as a → 0. If a = γ /n for some fixed γ > 0, then we expect instead the
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discrete Bessel kernel in the limit as n → ∞. We will not go into the details on
how to prove these assertions.

PROOF OF THEOREM 2.8. Set

L(x1, x2) = zx1−x2
c L(x1, x2),(4.39)

with L as in (4.5) and zc given by (4.7). Take φ ∈ Cc(R), 0 ≤ φ ≤ 1, and let

f (j) = φ

(
nu(k) + c(a)n1/3 − j

c(a)n1/3

)
(4.40)

for j ∈ Z. Furthermore, define

Mn(ξ, η) = −c(a)n1/3L
([

u(k)n − c(a)n1/3(ξ − 1)
]
,

(4.41) [
u(k)n − c(a)n1/3(η − 1)

])
.

Set

Ij =
(

u(k)n + c(a)n1/3 − (j + 1)

c(a)n1/3 ,
u(k)n + c(a)n1/3 − j

c(a)n1/3

]
,(4.42)

for j ∈ Z, and for ξ ∈ Ij , define φ̃n(ξ) = f (j).
Let A be a compact subset of the real line such that supp φ̃n ⊆ A for all n. Then

E

[∏
j

(
1 − φ(ξj )

)]
(4.43)

=
n∑

m=0

(−1)m

m!
∑

x1,...,xm∈[n]

m∏
j=1

f (xj )det
(
L(xi, xj )

)
m×m

=
n∑

m=0

(−1)m

m!
∫
Rm

m∏
j=1

φ̃n(ξj )det
(
Mn(ξi, ξj )

)
m×mdmξ(4.44)

= det(I − φ̃nMnIA)L2(R),(4.45)

where [n] = {1, . . . , n}. The second equality follows from (4.39) to (4.42) and the
fact that the integrand is constant on the intervals Ij in each variable. Assume that
we can show that

‖φ̃nMnIA‖2 → 0(4.46)

as n → ∞, where ‖ · ‖2 is the Hilbert–Schmidt norm, and

Mn(ξ, ξ) →
√

(1 − ξ)+(4.47)
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uniformly for ξ ∈ A as n → ∞. The result then follows from (4.43) in the fol-
lowing way. If the operators Bn on L2(R) are trace class then the determinant
det2(I + Bn) and the Fredholm determinant det(I + Bn) are related by

det(I + Bn) = etrBndet2(I + Bn).(4.48)

Also, if we have ‖Bn‖2 → 0 as n → ∞, then we have det2(I + Bn) → 1 as
n → ∞; see [18]. Hence

det(I − φ̃nMnIA) = etr φ̃nMnIAdet2(I − φ̃nMnIA).(4.49)

It follows from (4.46) that det2(I − φ̃nMn1A) → 0 as n → ∞, and from (4.47)
that

tr φ̃nMn1A =
∫
R

φ̃n(ξ)Mn(ξ, ξ) dξ →
∫
R

φ(ξ)
√

(1 − ξ)+ dξ,(4.50)

as n → ∞. Thus, by (4.43) and (4.49),

lim
n→∞E

[∏
j

(
1 − φ(ξj )

)] = e− ∫
R

φ(ξ)
√

(1−ξ)+ dξ ,(4.51)

which is what we wanted to prove.
We turn now to the asymptotic analysis of Mn and the proof of (4.46) and (4.47).

We will denote by C a generic constant that can depend on k and d in Claim 2 but
not on n or a. Let λ be given by (2.30) and define

M(1)
n (ξ, η) = −λn1/3L

([
nu(k) − λn1/3ξ

]
,
[
nu(k) − λn1/3η

])
.(4.52)

CLAIM 2. Let α be given by (2.29) and fix d > 0. Then∣∣M(1)
n (ξ, η) − αKAi(ξ, η)

∣∣ ≤ C

a2(4.53)

for all ξ, η ∈ [−da4/3, da4/3].
Before proving the claim we finish the proof of the theorem. Set c̃(a) = c(a)/λ,

and note that c̃(a) ∼ π2/3a4/3(1 + k)2/3 as a → ∞. Then we find that

Mn(ξ + 1, η + 1) = c̃(a)M(1)
n

(
c̃(a)ξ, c̃(a)η

)
.(4.54)

Thus, with an appropriate fixed d1 > 0, we have

‖φ̃nMnIA‖2 =
∫
R2

φ̃n(x)2Mn(x, y)2
IA(y) dx dy

≤
∫
[−d1,d1]2

Mn(ξ + 1, η + 1)2 dξ dη

(4.55)
= c̃(a)2

∫
[−d1,d1]2

M(1)
n

(
c̃(a)ξ, c̃(a)η

)2
dξ dη

=
∫
[−da4/3,da4/3]2

M(1)
n (ξ, η)2 dξ dη,
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where d = d1π
2/3(1 + k)2/3. Using (4.53) we see that

‖φ̃nMnIA‖2 ≤ 2α2
∫
[−da4/3,da4/3]2

KAi(ξ, η)2 dξ dη + Cd2(
a4/3a−2)2

.(4.56)

Now a−4/3 → 0, since a = a(n) → ∞ as n → ∞, and we see that in order to
prove (4.46) it remains to control the integral in (4.56). If we use the identities∫ ∞

−∞
KAi(x, y)2 dy = KAi(x, x),(4.57)

and

KAi(x, x) = Ai′(x)2 − x Ai(x)2(4.58)

we see that

2α2
∫
[−da4/3,da4/3]2

KAi(ξ, η)2 dξ dη

≤ 2α2
∫ ∞
−da4/3

(∫ ∞
−∞

KAi(ξ, η)2 dη

)
dξ

= 2α2
∫ ∞
−da4/3

KAi(ξ, ξ) dξ = 2α2
∫ ∞
−da4/3

Ai′(ξ)2 − ξ Ai(ξ)2 dξ(4.59)

= 2α2

3

[
2
(
da4/3)2 Ai2

(−da4/3)
+ 2da4/3 Ai′

(−da4/3)2 − Ai
(−da4/3)

Ai′
(−da4/3)]

.

Now, as r → ∞ we have

Ai(−r) = 1√
π

r−1/4 sin
(

2

3
r3/2 + π

4

)
+ · · · ,

(4.60)

Ai′(−r) = 1√
π

r1/4 cos
(

2

3
r3/2 + π

4

)
+ · · ·

and hence, since α ∼ (1 + k)−1a−2 for large a, we obtain the bound

2α2
∫
[−da4/3,da4/3]2

KAi(ξ, η)2 dξ dη ≤ Ca−4(
da4/3)3/2 ≤ Ca−2,(4.61)

and since a = a(n) → ∞ we have proved (4.46).
We now turn to the proof of (4.47). It follows from (4.53) and (4.54) that∣∣Mn(ξ, ξ) − αc̃(a)KAi

(
c̃(a)(ξ − 1), c̃(a)(ξ − 1)

)∣∣ ≤ Ca4/3a−2

(4.62)
= Ca−2/3

for all ξ in a compact interval, and since a → ∞ as n → ∞, (4.47) follows by
using (4.58) and standard asymptotic formulas for the Airy function and its deriva-
tive.
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It remains to prove Claim 2. Let γ > 0 be given by γ 3g(3)(zc) = −2.
From (4.11) we see that that λ = zc/γ . Let g(z) be defined by (4.6) and write

fξ (ζ ) = λn1/3ξ log
(

1 + γ ζ

zcn1/3

)
(4.63)

and

Fξ (ζ ) = fξ (ζ ) + n
(
g
(
zc + γ ζn−1/3) − g(zc)

)
.(4.64)

If we use (4.5) and make the change of variables z = zc + γ ζn−1/3, w = zc +
γωn−1/3 we obtain

M(1)
n (ξ, η) = α

(2πi)2

∫
C
dζ

∫
D

dω
a + zc

(a + zc + γωn−1/3)(ω − ζ )
(4.65)

× eFξ (ζ )−Fη(ω),

where C and D are the images of the steepest descent contours in Theorem 2.7. If
|ω| ≥ a2n1/3 we have the estimate

∣∣e−Fη(ω)
∣∣ ≤ Cna2n

∣∣∣∣ n1/3

a2/3ω

∣∣∣∣n/2

(4.66)

for all sufficiently large n. C will lie inside |ζ | ≤ a2n1/3, and using (4.66) and the
estimates we describe below for the ζ -integration, we see that we can replace D
by the part of D that lies inside |ω| ≤ a2n1/3. We denote this part by D also for
simplicity.

Let C∗
1 be the part of C in the disk |ζ | ≤ n1/15, C∗

2 the part in the annulus n1/15 ≤
|ζ | ≤ n7/45 and C∗

3 the part in |ζ | ≥ n7/45. Let Ci and �Ci be the parts of C∗
i that lie

in the upper and lower half plane, respectively. We make the analogous definitions
for D. We will consider estimates of Fξ (ζ ) on Ci , i = 1,2,3. The estimates on �Ci

are the same by symmetry, and the estimates on D are analogous. The estimates
that we need are

Ren
(
g
(
zc + γ ζn−1/3) − g(zc)

) ≤ −1
6 |ζ |3(4.67)

for all ζ ∈ C1 + C2 and

Ren
(
g
(
zc + γ ζn−1/3) − g(zc)

) ≤ −1
6n7/15(4.68)

for all ζ ∈ C3 and n sufficiently large. To see this note that we can write

n
(
g
(
zc + γ ζn−1/3) − g(zc)

) = −1
3ζ 3 + h1(ζ ),(4.69)

where

h1(ζ ) = γ 4

6n1/3

∫ ζ

0
g(4)

(
zc + γ s

n1/3

)
(ζ − s)3 ds.(4.70)
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Now, if we have |ζ | ≤ n7/45, then∣∣h1(ζ )
∣∣ ≤ Ca2/3n−1/3|ζ |4.(4.71)

The estimate (4.71) follows from the fact that∣∣∣∣g(4)

(
zc + γ s

n1/3

)∣∣∣∣ ≤ Ca2(4.72)

for |s| ≤ n7/45 since γ ≤ Ca−1/3. If we have ζ ∈ C1 + C2, then 0 = −1
3 Im ζ 3 +

Imh1(ζ ), and if we write ζ = reiθ , this gives r3 sin 3θ = 3 Imh1(re
iθ ) and hence,

by (4.71),

| sin 3θ | ≤ Ca2/3n−1/3r ≤ Cn−1/9.(4.73)

Since C1 leaves zc in the direction e2πi/3, we must have cos 3θ ≥ 2/3 for all large n.
Thus

Ren
(
g
(
zc + γ ζn−1/3) − g(zc)

)
(4.74)

= −1
3 |ζ |3 cos 3θ + Reh1(ζ )

≤ −2
9 |ζ |3(

1 − Ca2/3n−1/3|ζ |) ≤ −1
6 |ζ |3(4.75)

if ζ ∈ C1 + C2 and n is large. This proves (4.67). Since Ren(g(zc + γ ζn−1/3) −
g(zc)) is decreasing as we move along C in the upper half plane starting at zc, we
see that the value on C3 must be ≤ −n7/15/6 by using the estimate (4.67) at the
point where C meets |ζ | = n7/15 (the endpoint of C2). This proves (4.68).

We can write

fξ (ζ ) = ξζ + ξh2(ζ ),(4.76)

where

h2(ζ ) = − 1

λn1/3

∫ ζ

0

ζ − s

(1 + s/λn1/3)2 ds,(4.77)

and we see that if |ζ | ≤ n7/45, then∣∣h2(ζ )
∣∣ ≤ Ca2/3n−1/3|ζ |2.(4.78)

We start by estimating Fξ (ζ ) on C3. If ζ ∈ C3, then |ζ | ≤ a2n1/3 and hence

Refξ (ζ ) = λξn1/3 log
∣∣∣∣1 + ζ

λn1/3

∣∣∣∣ ≤ Cn6/15 logn,(4.79)

and combining this with (4.68), we see that ReFξ (ζ ) ≤ − 1
12n7/15 for large n, and

hence the contribution from C3 is negligible.
Since |ξ | ≤ Ca4/3 and a ≤ Cn1/10 we see that if ζ ∈ C2, then Refξ (ζ ) ≤

Cn1/10|ζ |. Combining this with (4.67) we see that ReFξ (ζ ) ≤ −|ζ |3/12 for n

large, and hence the contribution from C2 is negligible.
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Thus, with an error that is much smaller than Ca−2, we can replace M
(1)
n (ξ, η)

by

M̃(1)
n (ξ, η) = α

(2πi)2

∫
C1+�C1

dζ

∫
D1+�D1

dω
a + zc

(a + zc + γωn−1/3)(ω − ζ )
(4.80)

× eFξ (ζ )−Fη(ω).

Set δn = a(n)/n1/10. By assumption δn → 0 as n → ∞. If |ζ | ≤ n1/15, it follows
from (4.71) and (4.78) that Fξ (ζ ) = −ζ 3/3 + ξζ + rn(ζ ), where |rn(ζ )| ≤ Cδ

2/3
n .

Also

α

∣∣∣∣ a + zc

(a + zc + γωn−1/3)
− 1

∣∣∣∣ ≤ C/a2,(4.81)

if ω ∈ D1 + �D1, and thus we can approximate M̃
(1)
n (ξ, η) with

α

(2πi)2

∫
C1+�C1

dζ

∫
D1+�D1

dω e−ζ 3/3+ξζ+ω/3−ηω 1

ω − ζ
.(4.82)

Note that, if |ζ | ≥ n1/15, then ξ |/|ζ |2 ≤ Ca4/3/n2/15 ≤ Cδ
4/3
n and thus, with a

negligible error, we can replace the expression in (4.82) by αKAi(ξ, η). This com-
pletes the proof of the claim and the theorem. �

5. Gibbs measure. In this section, we continue our study of the asymptotics
of domino tilings with the study of the local Gibbs measure. We denote the asymp-
totic coordinates by ξ = (ξ1, ξ2). That is, for a vertex inside the Aztec diamond
denoted by x = (x1, x2), we have x/(2n) → ξ . For the remaining calculations of
this paper, we use the same saddle point function. This saddle point function is
an extension of (4.6) because we now keep track of the asymptotic coordinates.
Define

g(z; ξ) := g(z; ξ1, ξ2) := ξ2 log(a + z) + (1 − ξ2) log(az − 1) − ξ1 log z.(5.1)

Recall that D denotes the unfrozen region and is given by the area bounded by the
ellipse

(v − u)2

1 − p
+ (u + v − 1)2

p
= 1,(5.2)

where p = 1/(1 + a2).

LEMMA 5.1. The equation g′(z; ξ1, ξ2) = 0 has a unique solution z = zξ in
H if and only if ξ ∈ D.

PROOF. We expand out the equation g′(z; ξ1, ξ2) = 0. We find that this is equal
to

−ξ1

z
+ a(1 − ξ2)

az − 1
+ ξ2

a + z
= 0.(5.3)
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We solve the above equation with respect to z and the solutions are given by(
a2ξ1 − ξ1 + ξ2 + a2ξ2 − a2

(5.4)
±

√
−4a2(1 − ξ1)ξ1 + (

ξ2 − ξ1 + a2(ξ2 + ξ1 − 1)
)2)

/
(
2a(1 − ξ1)

)
.

The expression under the square root term in the above equation is given by

−4a2(1 − ξ1)ξ1 + (
ξ2 − ξ1 + a2(ξ2 + ξ1 − 1)

)2

(5.5)

=
(

(ξ1 − ξ2)
2

a2 + (ξ2 + ξ1 − 1)2
)
a2(

1 + a2) − a2,

which is less than zero if and only if ξ1, ξ2 ∈ D. Therefore, we set

zξ = (
a2ξ1 − ξ1 + ξ2 + a2ξ2 − a2

+ i

√
4a2(1 − ξ1)ξ1 − (

ξ2 − ξ1 + a2(ξ2 + ξ1 − 1)
)2)

(5.6)

/
(
2a(1 − ξ1)

)
. �

We now describe the contours of steepest ascent and descent of g. In Lemma 5.1,
we analyzed the saddle points of g. The two nonreal saddle points of g are simple
(and are conjugate pairs) and as g is analytic in the upper half plane, the paths of
steepest ascent and descent are the level lines of Img. These paths can cross the
real line at −a,0,1/a. We now describe these paths.

The paths of steepest descent and ascent of the saddle point function are deter-
mined in the upper half plane since the lower half plane is a reflection. From the
saddle point, there are two paths of steepest ascent, one which goes to ∞ while
the other ends at 0. From the saddle point, there are two paths of steepest descent,
one which ends at 1/a and another ending at −a. See Figure 9 for an example of
the contours of steepest descent and ascent.

We now prove Theorem 2.9.

PROOF OF THEOREM 2.9. Below, we will neglect the integer part in the ex-
pressions since they are unimportant. We will only consider the case x1 < y1 + 1
which means that K−1(x, y) = f1(x, y) for x ∈ W and b ∈ B. This is due to the
following: for x1 ≥ y1 + 1,

K−1(x, y)

= f1(x, y) − f2(x, y)
(5.7)

= (−1)(x1+x2+y1+y2)/4

(2πi)2

×
∫
γ1

∫
γ2

dw dz
(a + z)x2/2(az − 1)(2n−x2)/2w(y1)/2

z(x1+1)/2(w − z)(a + w)(y2+1)/2(aw − 1)(2n+1−y2)/2 ,
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FIG. 9. A relief plot of log | Im(g(z; ξ) − g(zξ ; ξ))| with a = 1, zξ = eiπ/4 and ξ = (1/2,
1
4 (2 + √

2)). The relief plot captures where Img(z; ξ) is constant and the logarithm is for visual
purposes—it sharpens the relief plot. The contour of steepest descent starts at the origin and ends
at infinity (goes to the right). The steepest ascent contour starts at a−1 and ends at −a. The plot is
symmetric in the lower half-plane.

where γ2 is a positively oriented closed contour containing −a and 0 but not 1/a,
and γ1 is a positively oriented closed contour containing γ2 but not 1/a. The above
formula is found by first moving the contour E2 in the definition of f1(x, y) to the
contour γ2, followed by moving the E1 through γ2 to the contour γ1; see Fig-
ure 8. This picks up a single integral contribution from z = w (which is negative)
with contour of integration around γ1. This single integral contribution is equal
to f2(x, y), which is seen by deforming the contour through infinity, which can-
cels with the term −f2(x, y) obtained from the split definition of K−1(x, y) for
x1 ≥ y1 + 1. Since the double contour integral formula in equation (5.7) is similar
to the double contour integral formula in f1(x, y), the computation of K−1(x, y)

for x1 > y1 + 1 is similar to the computation of K−1(x, y) for x1 < y1 + 1.
We have (x1, x2) = ([2ξ1n] + 2α1 + 1, [2ξ2n] + 2α2) and (y1, y2) = ([2ξ1n] +

2β1, [2ξ2n] + 2β2 + 1) so that (x1/(2n), x2/(2n)) → (ξ1, ξ2) ∈ [0,1]2 as n tends
to infinity. We also have

(−1)(x1+x2+y1+y2)/4 = (−1)(x1+x2−y1−y2+2)/4 = i(−1)(x1+x2−y1−y2)/4(5.8)

which follows from the fact that if y1 +y2 mod 4 = 2ε+1, then 2−y1 +y2 mod 4 =
2ε + 1 for ε ∈ {0,1}. Since

(−1)(x1+x2+y1+y2)/4 = i(−1)(α1+α2−β1−β2)/2,(5.9)

we find that

f1
(
(x1, x2), (y1, y2)

)
= i(−1)(α1+α2−β1−β2)/2

(2πi)2(5.10)

×
∫
E2

∫
E1

dzdw
en(g(z;ξ)−g(w;ξ))

w − z

wβ1(a + z)α2(az − 1)−α2

zα1+1(a + w)β2+1(aw − 1)−β2
,
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where g is given in (5.1).
By a computation, we have that |zξ | = r1 and∣∣∣∣ a + zξ

azξ − 1

∣∣∣∣ = r2,(5.11)

where r1 and r2 are defined in (2.34).
From Lemma 5.1, we have that for (ξ1, ξ2) ∈ Dc, then zξ ∈ H. By knowing the

contours of steepest ascent and descent for g which are given above, we deform the
contours E1 and E2 accordingly which is the same contour deformation as given
in Section 4 of [22]. Explicitly, we move the contour E2 to go through z̄ξ and zξ

passing through the origin and going to infinity. We move E1 to pass through zξ

and z̄ξ which passes either side of the origin of the x axis at −a and 1/a. Since
the contours must cross under this deformation, we pick up an additional single
integral from the contribution at z = w along the line zξ to z̄ξ . The double contour
integral, whose contours of integration are as given above, is O(n−1/2); see [37],
for example. Note that due to our formulas and orientations of the contours, the
additional single integral term comes with a minus sign (due to our formulas). We
find that f1(x, y) is given by

− i(−1)(α1+α2−β1−β2)/2

2πi

∫ zξ

z̄ξ

zβ1−α1−1 1

a + z

(
a + z

az − 1

)α2−β2

dz

(5.12)
+ O

(
n−1/2)

.

We make the change of variables w = t (z) = (a + z)/(az − 1). With this change
of variables t (w) = z and dz = −(1 + a2)/(aw − 1)2 dw. We obtain

f1(x, y) = − i(−1)(α1+α2−β1−β2)/2

2πi

×
∫ t (zξ )

t (z̄ξ )
t (w)β1−α1−1 wα2−β2

a + ((a + w)/(aw − 1))

(−(1 + a2))

(aw − 1)2 dw

+ O
(
n−1/2)

(5.13)

= i(−1)(α1+α2−β1−β2)/2

2πi

∫ t (zξ )

t (z̄ξ )
t (w)β1−α1−1 wα2−β2−1

aw − 1
dw

+ O
(
n−1/2)

.

We have that |a + w|2 ≤ r2
1 |aw − 1|2 for w = r2e

iθ if and only if

a2 + r2
2 cos2 θ + 2ar2 cos θ + r2

2 sin2 θ
(5.14)

≤ r2
1
(
a2r2

2 cos2 θ − 2ar2 cos θ + 1 + a2r2
2 sin2 θ

)
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which means that

cos θ ≤ a2(r2
1 r2

2 − 1) + r2
1 − r2

2

2r2a(1 + r2
1 )

= ξ2 − ξ1 + a2(ξ1 + ξ2 − 1)

2a
√

ξ1(1 − ξ1)
.(5.15)

The above equation holds with equality if θ = θξ where θξ = arg zξ since

Re(zξ ) = ξ2 − ξ1 + a2(ξ1 + ξ2 − 1)

2a(1 − ξ1)
(5.16)

and |zξ | = √
ξ1/(1 − ξ1).

Using the residue formula, we write

lim
n→∞f1(x, y) = i(−1)(α1+α2−β1−β2)/2

(2πi)2

×
∫
|w|=r2

∫
|z|=r1

zβ1−α1−1wα2−β2−1

(z − ((a + w)/(aw − 1)))(aw − 1)
dz dw

(5.17)

= i(−1)(α1+α2−β1−β2)/2

(2πi)2

×
∫
|w|=r2

∫
|z|=r1

zβ1−α1−1wα2−β2−1

azw − z − a − w
dzdw.

Take the change of variables z 
→ i/z and w 
→ −i/w which gives

lim
n→∞f1(x, y)

(5.18)

= i

(2πi)2

∫
|w|=1/r2

∫
|z|=1/r1

zα1−β1−1wβ2−α2−1

a/(zw) − i/z − a + i/w
dzdw.

The above formula, under the change of variables z 
→ zr1 and w 
→ wr2, is equal
to

r
−α1+β1
1 r

−β2+α2
2

(2πi)2

∫
|w|=1

∫
|z|=1

zα1−β1−1wβ2−α2−1

P(zr1,wr2)
dz dw,(5.19)

which is equal to

r
α1+β1
1 r

−β2+α2
2 K−1

μ

(
(2α1 + 1,2α2), (2β1,2β2 + 1)

)
.(5.20)

Computing the probability of any cylinder event using the above formula in (2.13)
is equivalent to the probability of any cylinder event using (2.32) in (2.13) which
means we have verified Theorem 2.9 for x1 < y1 + 1. As mentioned above, a
similar argument holds for x1 ≥ y1 + 1, but uses (5.7) instead. �



ASYMPTOTICS IN THE AZTEC DIAMOND 1275

6. Discussion on height fluctuations. In this article, we have focused on
studying domino tilings of the Aztec diamond using the information obtained from
the inverse Kasteleyn matrix. Here, we briefly discuss the height function associ-
ated to domino tilings of the Aztec diamond and its fluctuations in the scaling limit.

The height function, introduced in [43], is defined on the faces of the Aztec
diamond graph as follows: the height change between two adjacent faces is ±3 if
there is a dimer covering the shared edge between the two faces and ∓1 otherwise.
As we traverse between two adjacent faces, we choose the sign convention to be
+3 (or, resp., −3) if the left vertex is black (or, resp., white). The definition is
consistent around each vertex, that is, the total height change around each vertex
is zero. Each dimer covering is in bijection (up to a chosen height level) with the
height function; see Figure 1 for an example domino tiling and height function.

Denote hn(f) to be the height function at a face f in the Aztec diamond graph.
Using either the inverse Kasteleyn matrix or the correlation kernel for the red–blue
particles, we can compute the moments of height function at faces f1, . . . ,fm (i.e.,
E[∏m

i=1 hn(fi)]).
The Gaussian free field F on H, the upper half plane, is a probability measure

on the set of generalized functions on H such that for any compactly supported test
functions φ1, φ2, 〈F,φ1〉 := ∫

H
F(z)φ1(z)|dz|2 is a real Gaussian random variable

with mean zero and covariance

E
[〈F,φ1〉〈F,φ2〉] =

∫
H2

φ1(z1)φ2(z2)G(z1, z2)|dz1|2|dz2|2,(6.1)

where

G(z1, z2) = − 1

2π
log

∣∣∣∣z1 − z2

z1 − z̄2

∣∣∣∣.(6.2)

Let H̃n(f/(2n)) = hn(f) − ha
n(f) where ha

n(f) is the average height function at
the face f= (f1,f2) with f/(2n) = (f1/(2n),f2/(2n)). For ξ = (ξ1, ξ2) ∈D, we
define the map � :D →H by

�(ξ) = (
a2ξ1 − ξ1 + ξ2 + a2ξ2 − a2

(6.3)
+ i

√
4a2(1 − ξ1)ξ1 − (

ξ2 − ξ1 + a2(ξ2 + ξ1 − 1)
)2)

/
(
2a(1 − ξ1)

)
,

which is obtained in the proof of Lemma 5.1.
We expect that for fixed 0 < a < ∞ and for f ∈ 2nD,

√
πH̃n(f/(2n)) con-

verges weakly to the �-pullback of the Gaussian free field F on H in the sense√
π

n2

∑
f∈2nD

faces

φ
(
f/(2n)

)
H̃n(f)

weakly−→
∫
H

φ
(
�−1(z)

)
J (z)F (z)|dz|2,(6.4)

where J (z) is the Jacobian under the change of variables from z = �(ξ) to ξ , and
the sum is over faces f in 2nD.

We will not prove this but will mention the possible steps that one would need
to formulate a proof which is based on [3] where the authors give a complete proof
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for the height fluctuations of a certain lozenge tiling model under the pullback of
a certain map. First, one would require the following technical estimates based
on [3], Section 6:

(1) Compute K−1(x, y) both when x and y are in the bulk and are asymptoti-
cally distant where x is in the bulk if infξ∈∂D |x − 2nξ |1 > n2/3, and x and y are
asymptotically distant if |x − y|1 > n1/2+δ for all δ > 0.

(2) Bound K−1(x, y) both when x and y are asymptotically close, where x and
y are asymptotically close if |x − y|1 ≤ n1/2+δ .

(3) Bound K−1(x, y) when either x or y, or both, are close to the edge, where
x is close to the edge if n1/3 < infξ∈∂D |x − 2nξ |1 ≤ n2/3, and x is either in the
unfrozen or frozen regions.

(4) Bound K−1(x, y) when either x or y, or both, are at the edge, where x is at
the edge if infξ∈∂D |x − 2nξ |1 ≤ n1/3, and x is either in the unfrozen or unfrozen
regions.

(5) Bound K−1(x, y) when either x or y, or both, are in the frozen regions.

After these estimates are found, one could then use the fact that moments of the
height function can be expressed in terms of the inverse Kasteleyn matrix [6, 12,
28–30]. With the above bounds, one could hopefully show that the moment for-
mula for the height function tends to the moments of a Gaussian random variable
with variance given by (6.2) for asymptotically distant points in the bulk. After
this, one would need an analogous result to [3], Theorem 1.2, which shows that
the variance of the height function in the unfrozen region is order logn. Using a
result of this form combined with the convergence of moments, one could then
conclude the proof as in [3], Section 5.5. See also [39].

Other approaches for proving fluctuations of the height function arising from
tiling models have been considered in [14], where the author uses a linear statistic
to bypass the rather technical estimates arising from the frozen–unfrozen bound-
aries and [13], where the author considers the characteristic function of the height
function using the Cauchy–Riemann operators. The proofs of the results of [28, 29]
do not apply to domino tilings on the Aztec diamond due to the domino tilings
studied there had the so-called Temperley boundary conditions.
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