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LARGE DEVIATIONS FOR MARKOVIAN NONLINEAR
HAWKES PROCESSES

BY LINGJIONG ZHU1

New York University

Hawkes process is a class of simple point processes that is self-exciting
and has clustering effect. The intensity of this point process depends on its
entire past history. It has wide applications in finance, neuroscience and many
other fields. In this paper, we study the large deviations for nonlinear Hawkes
processes. The large deviations for linear Hawkes processes has been studied
by Bordenave and Torrisi. In this paper, we prove first a large deviation prin-
ciple for a special class of nonlinear Hawkes processes, that is, a Markovian
Hawkes process with nonlinear rate and exponential exciting function, and
then generalize it to get the result for sum of exponentials exciting functions.
We then provide an alternative proof for the large deviation principle for a
linear Hawkes process. Finally, we use an approximation approach to prove
the large deviation principle for a special class of nonlinear Hawkes processes
with general exciting functions.

1. Introduction. Let N be a simple point process on R, and let Ft :=
σ(N(C),C ∈ B(R),C ⊂ (−∞, t]) be an increasing family of σ -algebras. Any
nonnegative Ft -progressively measurable process λt with

E
[
N(a, b]|Fa

] = E

[∫ b

a
λs ds

∣∣∣Fa

]
(1.1)

a.s. for all intervals (a, b] is called an Ft -intensity of N . We use the notation Nt :=
N(0, t] to denote the number of points in the interval (0, t].

A general Hawkes process is a simple point process N admitting an Ft -intensity

λt := λ

(∫ t

0
h(t − s)N(ds)

)
,(1.2)

where λ(·) :R+ → R
+ is locally integrable and left continuous, h(·) :R+ → R

+,
and we always assume that ‖h‖L1 = ∫ ∞

0 h(t) dt < ∞. The notation
∫ t

0 h(t −
s)N(ds) stands for

∫
(0,t) h(t − s)N(ds). Local integrability assumption of λ(·)

ensures that the process is nonexplosive and left continuity assumption ensures
that λt is Ft -predictable.

In the literature, h(·) and λ(·) are usually referred to as exciting function and
rate function, respectively.
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Let Zt = ∑
0<τj<t h(t − τj ), where τj is the j th arrival time of the process for

j ≥ 1. Thus we can write λt = λ(Zt).
This is known as the nonlinear Hawkes process; see Brémaud and Mas-

soulié [3]. When the exciting function h(·) is exponential or a sum of exponentials,
the process is Markovian, and we name it a Markovian nonlinear Hawkes process.

When λ(·) is linear, this is known as the (linear) Hawkes process, which was
introduced in Hawkes [12]. If λ(·) is linear and h(·) is exponential or a sum of
exponentials, the (linear) Markovian Hawkes process is sometimes referred to as
Markovian self-exciting processes; see, for example, Oakes [20]. You can think of
the arrival times τj as “bad” events, which can be the arrivals of claims in insurance
literature or the time of defaults of big firms in the real world. Hawkes process
captures both the self-exciting property and the clustering effect, which explains
why it has wide applications in cosmology, ecology, epidemiology, seismology,
neuroscience and DNA modeling. For a list of references to these applications, see
Bordenave and Torrisi [2].

Hawkes process has also been applied in finance. Empirical comparisons sug-
gest that Hawkes processes have some of the typical characteristics of a financial
time series. Financial data have been analyzed using Hawkes processes. Self-
exciting processes are used for the calculation of conditional risk measures, such
as the value-at-risk. Another area of finance where Hawkes processes have been
considered is credit default modeling. Hawkes processes have been proposed as
models for the arrival of company defaults in a bond portfolio. For a list of refer-
ences to the applications in finance, see Liniger [18] and Zhu [26].

For a short history of Hawkes process, we refer to Liniger [18]. For a survey on
Hawkes processes and related self-exciting processes, Poisson cluster processes,
marked point processes, etc., we refer to Daley and Vere-Jones [5].

When λ(·) is linear, say λ(z) = ν + z, then one can use immigration-birth repre-
sentation, also known as Galton–Watson theory to study it. Under the immigration-
birth representation, if the immigrants are distributed as Poisson process with
intensity ν and each immigrant generates a cluster whose number of points is de-
noted by S, then Nt is the total number of points generated in the clusters up to
time t . If the process is ergodic, we have

lim
t→∞

Nt

t
= νE[S] a.s.(1.3)

The central limit theorem for linear Hawkes processes was obtained in Bacry
et al. [1], and it was proved for nonlinear Hawkes processes in Zhu [28]. The
moderate deviations for linear Hawkes processes was obtained in Zhu [29].

Bordenave and Torrisi [2] proves that if 0 < μ = ∫ ∞
0 h(t) dt < 1 and∫ ∞

0 th(t) dt < ∞, then (Nt

t
∈ ·) satisfies the large deviation principle (LDP) with

the good rate function I (·), that is, for any closed set C ⊂R,

lim sup
t→∞

1

t
logP(Nt/t ∈ C) ≤ − inf

x∈C
I (x),(1.4)
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and for any open set G ⊂ R,

lim inf
t→∞

1

t
logP(Nt/t ∈ G) ≥ − inf

x∈G
I (x),(1.5)

where

I (x) =
{

xθx + ν − νx

ν + μx
, if x ∈ [0,∞),

+∞, otherwise,
(1.6)

where θ = θx is the unique solution in (−∞,μ − 1 − logμ] of E[eθS] = x
ν+xμ

,
x > 0. It is well known that (e.g., see page 39 of Jagers [14]), for all θ ∈ (−∞,μ−
1 − logμ], E[eθS] satisfies

E
[
eθS] = eθ exp

{
μ

(
E

[
eθS] − 1

)}
.(1.7)

See Dembo and Zeitouni [7] for general background regarding large deviations
and the applications. Also Varadhan [23] has an excellent survey article on this
subject.

In a recent paper, Zhu [24] studied the limit theorems for a Cox–Ingersoll–
Ross process with Hawkes jumps, an extension of the linear Hawkes processes.
Karabash and Zhu [16] obtained to the limit theorems for linear marked Hawkes
processes, another extension of the classical Hawkes processes.

The large deviations result for (Nt/t ∈ ·) is helpful to study the ruin probabilities
of a risk process when the claims arrivals follow a Hawkes process. Stabile and
Torrisi [21] considered risk processes with nonstationary Hawkes claims arrivals
and studied the asymptotic behavior of infinite and finite horizon ruin probabilities
under light-tailed conditions on the claims. The corresponding result for heavy-
tailed claims was obtained by Zhu [27].

In this paper, we are interested in Hawkes processes with general nonlinear
λ(·). If λ(·) is nonlinear, then the usual Galton–Watson theory approach no longer
works. If the exciting function h is exponential or a sum of exponentials, the pro-
cess is Markovian, and there exists a generator of the process. The difficulty arises
when h is not exponential or a sum of exponentials in which case the process is
non-Markovian. Another possible generalization is to consider h to be random.
Then, we will get a marked point process. For a discussion on marked point pro-
cesses, see Cox and Isham [4].

When λ(·) is nonlinear, Brémaud and Massoulié [3] proves that under certain
conditions, there exists a unique stationary version of the nonlinear Hawkes pro-
cess and Brémaud and Massoulié [3] also proves the convergence to equilibrium
of a nonstationary version, both in distribution and in variation.

In this paper, we will prove the large deviation when h is exponential, and λ

is nonlinear first. Then, we will generalize the proof to the case when h is a sum
of exponentials. We will use that to recover the result proved in Bordenave and
Torrisi [2]. Finally, we will prove the result for a special class of nonlinear λ and
general h.
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2. An ergodic lemma. In this section, we prove an ergodic theorem for a class
of Markovian processes with jumps more general than the Markovian nonlinear
Hawkes processes.

Let Zi(t) := ∑
τj<t aie

−bi(t−τj ), 1 ≤ i ≤ d , where bi > 0, ai 	= 0 (might be
negative), and τj ’s are the arrivals of the simple point process with intensity
λ(Z1(t), . . . ,Zd(t)) at time t , where λ :Z → R

+ and Z := R
ε1 × · · · × R

εd is
the domain for (Z1(t), . . . ,Zd(t)), where R

εi := R
+ or R− depending on whether

εi = +1 or −1, where εi = +1 if ai > 0 and εi = −1 otherwise. If we assume the
exciting function to be h(t) = ∑d

i=1 aie
−bi t , then a Markovian nonlinear Hawkes

process is a simple point process with intensity of the form λ(
∑d

i=1 Zi(t)).
The generator A for (Z1(t), . . . ,Zd(t)) is given by

Af = −
d∑

i=1

bizi

∂f

∂zi

(2.1)
+ λ(z1, . . . , zd)

[
f (z1 + a1, . . . , zd + ad) − f (z1, . . . , zd)

]
.

For a reference to generators for Markov processes with jumps, see Davis [6].
We want to prove the existence and uniqueness of the invariant probability mea-

sure for (Z1(t), . . . ,Zd(t)). Here the invariance is in time.

LEMMA 1. Consider h(t) = ∑d
i=1 aie

−bi t > 0. Assume λ(z1, . . . , zn) ≤∑d
i=1 αi |zi | + β , where β > 0 and αi > 0, 1 ≤ i ≤ d , satisfies

∑d
i=1

|ai |
bi

αi < 1.
Then, there exists a unique invariant probability measure for (Z1(t), . . . ,Zd(t)).

PROOF. The lecture notes [11] by Martin Hairer gives the criterion for the
existence of an invariant probability measure for Markov processes. Suppose we
have a jump diffusion process with generator L. If we can find u such that u ≥ 0,
Lu ≤ C1 −C2u for some constants C1,C2 > 0, then there exists an invariant prob-
ability measure.

Try u(z1, . . . , zd) = ∑d
i=1 εicizi ≥ 0, where ci > 0, 1 ≤ i ≤ d . Then

Au = −
d∑

i=1

biεicizi + λ(z1, . . . , zd)

d∑
i=1

aiεici

(2.2)

≤ −
d∑

i=1

bici |zi | +
d∑

i=1

αi |zi |
d∑

i=1

|ai |ci + β

d∑
i=1

|ai |ci .

Taking ci = αi

bi
> 0, we get

Au ≤ −
(

1 −
d∑

i=1

|ai |αi

bi

)
d∑

i=1

αi |zi | + β

d∑
i=1

|ai |αi

bi

(2.3)

≤ − min
1≤i≤d

bi ·
(

1 −
d∑

i=1

|ai |αi

bi

)
u + β

d∑
i=1

|ai |αi

bi

.
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Next, we will prove the uniqueness of the invariant probability measure. It is
sufficient to prove that for any x, y ∈ Zd , there exist times T1, T2 > 0 such that
Px(T1, ·) and Py(T2, ·) are not mutually singular. Here Px(T , ·) := P(Zx

T ∈ ·),
where Zx

T is ZT starting at Z0 = x, that is, Zx
T = xe−bT + ∑

τj<T ae−b(T −τj ). To
see this, let us prove by contradiction. If there were two distinct invariant prob-
ability measures μ1 and μ2, then there exist two disjoints sets E1 and E2 such
that μ1 :E1 → E1 and μ2 :E2 → E2; see, for example, Varadhan [22]. Now, we
can choose x1 ∈ E1 and x2 ∈ E2. So that Px1(T1, ·) and Px2(T2, ·) are supported
on E1 and E2, respectively, for any T1, T2 > 0, which implies that Px1(T1, ·) and
Px2(T2, ·) are mutually singular. This leads to a contradiction.

Consider the simplest case h(t) = ae−bt . Let us assume that x > y > 0. Condi-
tioning on the event that Zx

t and Z
y
t have exactly one jump during the time interval

(0, T ), respectively, the laws of Px(T , ·) and Py(T , ·) have positive densities on
the sets (

(a + x)e−bT , xe−bT + a
)

and
(
(a + y)e−bT , ye−bT + a

)
,(2.4)

respectively. Choosing T > 1
b

log(
x−y+a

a
), we have(

(a + x)e−bT , xe−bT + a
) ∩ (

(a + y)e−bT , ye−bT + a
) 	=∅,(2.5)

which implies that Px(T , ·) and Py(T , ·) are not mutually singular.
Similarly, one can show the uniqueness of the invariant probability measure for

the multidimensional case. Indeed, it is easy to see that for any x, y ∈ Zd , Zx
T1

and
Z

y
T2

hit a common point for some T1 and T2 after possibly different number of
jumps. Here Zx

t := (Z
x1
t , . . . ,Z

xd
t ) ∈ Zd and Z

y
t := (Z

y1
t , . . . ,Z

yd
t ) ∈ Zd , where

Z
xi
t = xie

−bi t + ∑
τj<t aie

−bi(t−τj ), 1 ≤ i ≤ d . Since Px(T1, ·) and Py(T2, ·) have
probability densities, Px(T1, ·) and Py(T2, ·) are not mutually singular for some
T1 and T2. �

3. Large deviations for Markovian nonlinear Hawkes processes with expo-
nential exciting function. We assume first that h(t) = ae−bt , where a, b > 0,
that is, the process Zt jumps upward an amount a at each point and decays expo-
nentially between points with rate b. In this case, Zt is Markovian.

Notice first that Z0 = 0 and

dZt = −bZt dt + a dNt ,(3.1)

which implies that Nt = 1
a
Zt + b

a

∫ t
0 Zs ds.

We prove first the existence of the limit of the logarithmic moment generating
function of Nt .

THEOREM 2. Assume that limz→∞ λ(z)
z

= 0 and that λ(·) is continuous and
bounded below by some positive constant. Then

lim
t→∞

1

t
logE

[
eθNt

] = �(θ),(3.2)
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where

�(θ) = sup
(λ̂,π̂)∈Qe

{∫
θb

a
zπ̂(dz) +

∫
(λ̂ − λ)π̂(dz) −

∫ (
log(λ̂/λ)

)
λ̂π̂ (dz)

}
,(3.3)

where Qe is defined as

Qe = {
(λ̂, π̂) ∈Q : Â has unique invariant probability measure π̂

}
,(3.4)

where

Q =
{
(λ̂, π̂) : π̂ ∈ M

(
R

+)
,

∫
zπ̂(dz) < ∞, λ̂ ∈ L1(π̂), λ̂ > 0

}
,(3.5)

where M(R+) denotes the space of probability measures on R
+ and for any λ̂

such that (λ̂, π̂) ∈ Q, we define the generator Â as

Âf (z) = −bz
∂f

∂z
+ λ̂(z)

[
f (z + a) − f (z)

]
,(3.6)

for any f :R+ →R that is C1, that is, continuously differentiable.

PROOF. By Lemma 3, E[eθNt ] < ∞ for any θ ∈ R, also

E
[
eθNt

] = E
[
e(θ/a)(Zt+b

∫ t
0 Zs ds)].(3.7)

Define the set

Uθ = {
u ∈ C1(

R
+,R+)

:u(z) = ef (z), where f ∈ F
}
,(3.8)

where

F =
{
f :f (z) = Kz + g(z) + L,

(3.9)
K >

θ

a
,K,L ∈ R, g is C1 with compact support

}
.

Now for any u ∈ Uθ , define

M := sup
z≥0

Au(z) + ((θb)/a)zu(z)

u(z)
.(3.10)

By Dynkin’s formula if M < ∞, for V (z) := θb
a

z, we have

E
[
u(Zt)e

∫ t
0 V (Zs) ds]

= u(Z0) +
∫ t

0
E

[(
Au(Zs) + V (Zs)u(Zs)

)
e

∫ s
0 V (Zv)dv]

ds(3.11)

≤ u(Z0) + M

∫ t

0
E

[
u(Zs)e

∫ s
0 V (Zv)dv]

ds,
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which implies by Gronwall’s lemma that

E
[
u(Zt)e

∫ t
0 V (Zs) ds] ≤ u(Z0)e

Mt = u(0)eMt .(3.12)

Observe that by the definition of Uθ , for any u ∈ Uθ , we have u(z) ≥ c1e
(θ/a)z for

some constant c1 > 0 and therefore by (3.7) and (3.12),

E
[
eθNt

] ≤ 1

c1
E

[
u(Zt)e

∫ t
0 ((θb)/a)Zs ds] ≤ 1

c1
u(0)eMt .(3.13)

Hence

lim sup
t→∞

1

t
logE

[
eθNt

] ≤ M = sup
z≥0

Au(z) + ((θb)/a)zu(z)

u(z)
,(3.14)

which is still true even if M = ∞. Since this holds for any u ∈ Uθ ,

lim sup
t→∞

1

t
logE

[
eθNt

] ≤ inf
u∈Uθ

sup
z≥0

Au(z) + ((θb)/a)zu(z)

u(z)
.(3.15)

Define the tilted probability measure P̂ by

dP̂

dP

∣∣∣∣
Ft

= exp
{∫ t

0

(
λ(Zs) − λ̂(Zs)

)
ds +

∫ t

0
log

(
λ̂(Zs)

λ(Zs)

)
dNs

}
.(3.16)

Notice that P̂ defined in (3.16) is indeed a probability measure by Girsanov for-
mula. (For the theory of absolute continuity for point processes and their Girsanov
formulas, we refer to Lipster and Shiryaev [19].)

Now by Jensen’s inequality

lim inf
t→∞

1

t
logE

[
eθNt

]
= lim inf

t→∞
1

t
log Ê

[
exp

{
θNt − log

dP̂

dP

∣∣∣∣
Ft

}]
(3.17)

≥ lim inf
t→∞ Ê

[
1

t
θNt − 1

t
log

dP̂

dP

∣∣∣∣
Ft

]

= lim inf
t→∞ Ê

[
1

t
θNt − 1

t

∫ t

0

(
λ(Zs) − λ̂(Zs)

)
ds −

∫ t

0
log

(
λ̂(Zs)

λ(Zs)

)
dNs

]
.

Since Nt − ∫ t
0 λ̂(Zs) ds is a martingale under P̂, we have

Ê

[∫ t

0
log

(
λ̂(Zs)

λ(Zs)

)(
dNs − λ̂(Zs) ds

)] = 0.(3.18)
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Therefore, by the ergodic theorem, (for a reference, see Chapter 16.4 of Koralov
and Sinai [17]), for any (λ̂, π̂) ∈Qe,

lim inf
t→∞

1

t
logE

[
eθNt

]
≥ lim inf

t→∞ Ê

[
1

t
θNt − 1

t

∫ t

0

(
λ(Zs) − λ̂(Zs)

)
ds

(3.19)

−
∫ t

0
log

(
λ̂(Zs)

λ(Zs)

)
λ̂(Zs) ds

]

=
∫

θb

a
zπ̂(dz) +

∫
(λ̂ − λ)π̂(dz) −

∫ (
log(λ̂) − log(λ)

)
λ̂π̂ (dz).

Hence

lim inf
t→∞

1

t
logE

[
eθNt

]
(3.20)

≥ sup
(λ̂,π̂)∈Qe

{∫
θb

a
zπ̂ +

∫
(λ̂ − λ)π̂ −

∫ (
log(λ̂) − log(λ)

)
λ̂π̂

}
.

Recall that

F =
{
f :f (z) = Kz + g(z) + L,K >

θ

a
,

(3.21)
K,L ∈ R, g is C1 with compact support

}
.

We claim that

inf
f ∈F

{∫
Âf (z)π̂(dz)

}
=

{
0, if (λ̂, π̂) ∈ Qe,

−∞, if (λ̂, π̂) ∈Q \Qe.
(3.22)

It is easy to see that for (λ̂, π̂) ∈ Qe, and g being C1 with compact support,∫
Agπ̂ = 0. Next, we can find a sequence fn(z) → z pointwise under the bound

|fn(z)| ≤ αz + β , for some α,β > 0, where fn(z) is C1 with compact support.
But by our definition of Q,

∫
zπ̂ < ∞. So by the dominated convergence theorem,∫

Âzπ̂ = 0. The nontrivial part is to prove that if for any g ∈ G = {g(z) + L,g

is C1 with compact support} such that
∫
Âgπ̂ = 0, then (λ̂, π̂) ∈ Qe. We can

easily check the conditions in Echevrría [8]. (E.g., G is dense in C(R+), the
set of continuous and bounded functions on R

+ with limit that exists at infin-
ity and Â satisfies the minimum principle, that is, Âf (z0) ≥ 0 for any f (z0) =
infz∈R+ f (z). This is because at minimum, the first derivative of f vanishes and
λ̂(z0)(f (z0 + a) − f (z0)) ≥ 0. The other conditions in Echeverría [8] can also
be easily verified.) Thus, Echevrría [8] implies that π̂ is an invariant measure.
Now, our proof in Lemma 1 shows that π̂ has to be unique as well. Therefore,
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(λ̂, π̂) ∈ Qe. This implies that if (λ̂, π̂) ∈ Q \ Qe, there exists some g ∈ G, such
that

∫
Âgπ̂ 	= 0. Now any constant multiplier of g still belongs to G and thus

infg∈G
∫
Âgπ̂ = −∞ and hence inff ∈F

∫
Âf π̂ = −∞ if (λ̂, π̂) ∈ Q \Qe.

Therefore,

lim inf
t→∞

1

t
logE

[
eθNt

] ≥ sup
(λ̂,π̂)∈Q

inf
f ∈F

{∫
θb

a
zπ̂ − Ĥ (λ̂, π̂) +

∫
Âf π̂

}
(3.23)

≥ sup
(λ̂π̂ ,π̂)∈R

inf
f ∈F

{∫
θb

a
zπ̂ − Ĥ (λ̂, π̂) +

∫
Âf π̂

}
,(3.24)

where R = {(λ̂π̂ , π̂) : (λ̂, π̂) ∈Q} and

Ĥ (λ̂, π̂) =
∫ [

(λ − λ̂) + log(λ̂/λ)λ̂
]
π̂ .(3.25)

Define

F(λ̂π̂, π̂ , f ) =
∫

θb

a
zπ̂ − Ĥ (λ̂, π̂) +

∫
Âf π̂

=
∫

θb

a
zπ̂ − Ĥ (λ̂, π̂) −

∫
bz

∂f

∂z
π̂(3.26)

+
∫ (

f (z + a) − f (z)
)
λ̂π̂ .

Notice that F is linear in f and hence convex in f and also

Ĥ (λ̂, π̂) = sup
f ∈Cb(R

+)

{∫ [
λ̂f + λ

(
1 − ef )]

π̂

}
,(3.27)

where Cb(R
+) denotes the set of bounded functions on R

+. Inside the bracket
above, it is linear in both π̂ and λ̂π̂ . Hence Ĥ is weakly lower semicontinuous
and convex in (λ̂π̂ , π̂). Therefore, F is concave in (λ̂π̂ , π̂). Furthermore, for any
f = Kz + g + L ∈ F ,

F(λ̂π̂, π̂ , f ) =
∫ (

θ

a
− K

)
bzπ̂ − Ĥ (λ̂, π̂) −

∫
bz

∂g

∂z
π̂

(3.28)
+

∫ (
g(z + a) − g(z)

)
λ̂π̂ + Ka

∫
λ̂π̂ .

If λnπn → γ∞ and πn → π∞ weakly, then, since g is C1 with compact support,
we have

−
∫

bz
∂g

∂z
πn +

∫ (
g(z + a) − g(z)

)
λnπn + Ka

∫
λnπn

(3.29)

→ −
∫

bz
∂g

∂z
π∞ +

∫ (
g(z + a) − g(z)

)
γ∞ + Ka

∫
γ∞,



LDP FOR MARKOVIAN NONLINEAR HAWKES PROCESSES 557

as n → ∞. Moreover, in general, if Pn → P weakly, then, for any f which is upper
semicontinuous and bounded from above, we have lim supn

∫
f dPn ≤ ∫

f dP .
Since ( θ

a
− K)bz is continuous and nonpositive on R

+, we have

lim sup
n→∞

∫ (
θ

a
− K

)
bzπn ≤

∫ (
θ

a
− K

)
bzπ∞.(3.30)

Hence, we conclude that F is upper semicontinuous in the weak topology.
In order to switch the supremum and infimum in (3.24), since we have already

proved that F is concave, upper semicontinuous in (λ̂π̂ , π̂) and convex in f , it
is sufficient to prove the compactness of R to apply Ky Fan’s minmax theorem;
see Fan [9]. Indeed, Joó developed some level set method and proved that it is
sufficient to show the compactness of the level set; see Joó [15] and Frenk and
Kassay [10]. In other words, it suffices to prove that, for any C ∈R and f ∈ F , the
level set {

(λ̂π̂ , π̂) ∈ R : Ĥ +
∫

bz
∂f

∂z
π̂ − θb

a
zπ̂ − λ̂

[
f (z + a) − f (z)

]
π̂ ≤ C

}
(3.31)

is compact.
Fix any f = Kz + g + L ∈ F , where K > θ

a
and g is C1 with compact support

and L is some constant, uniformly for any pair (λ̂π̂ , π̂) that is in the level set
of (3.31), there exists some C1,C2 > 0 such that

C1 ≥ Ĥ +
(
K − θ

a

)
b

∫
zπ̂ − C2

∫
λ̂π̂

≥
∫
λ̂≥cz+�

[
λ − λ̂ + λ̂ log(λ̂/λ)

]
π̂ +

(
K − θ

a

)
b

∫
zπ̂

− C2

∫
λ̂≥cz+�

λ̂π̂ − C2

∫
λ̂<cz+�

λ̂π̂(3.32)

≥
[
min
z≥0

log
cz + �

λ(z)
− 1 − C2

]∫
λ̂≥cz+�

λ̂π̂

+
[
−c · C2 +

(
K − θ

a

)
b

]∫
zπ̂ − �C2.

We choose 0 < c < (K − θ
a
) b
C2

and � large enough so that minz≥0 log cz+�
λ(z)

− 1 −
C2 > 0, where we used the fact that limz→∞ λ(z)

z
= 0 and minz λ(z) > 0. Hence,∫

zπ̂ ≤ C3,

∫
λ̂≥cz+�

λ̂π̂ ≤ C4,(3.33)

where

C3 = C1 + �C2

−c · C2 + (K − (θ/a))b
,

(3.34)

C4 = C1 + �C2

minz≥0 log((cz + �)/λ(z)) − 1 − C2
.
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Therefore, we have∫
λ̂π̂ =

∫
λ̂≥cz+�

λ̂π̂ +
∫
λ̂<cz+�

λ̂π̂ ≤ C4 + c · C3 + �,(3.35)

and hence

Ĥ (λ̂, π̂) ≤ C1 + C2[C4 + c · C3 + �] < ∞.(3.36)

Therefore, for any (λnπn,πn) ∈ R, we get

lim
�→∞ sup

n

∫
z≥�

πn ≤ lim
�→∞ sup

n

1

�

∫
zπn ≤ lim

�→∞
C3

�
= 0,(3.37)

which implies the tightness of πn. By Prokhorov’s theorem, there exists a subse-
quence of πn which converges weakly to π∞. We also want to show that there
exists some γ∞ such that λnπn → γ∞ weakly (passing to a subsequence if neces-
sary). It is enough to show that:

(i) supn

∫
λnπn < ∞.

(ii) lim�→∞ supn

∫
z≥� λnπn = 0.

(i) and (ii) will give us tightness of λnπn and hence implies the weak conver-
gence for a subsequence.

Now, let us prove statements (i) and (ii).
To prove (i), notice that

sup
n

∫
λnπn = sup

n

∫
b

a
zπn ≤ b

a
[C4 + c · C3 + �] < ∞.(3.38)

To prove (ii), notice that (λ − λn) + λn log(λn/λ) ≥ 0. That is because x − 1 −
logx ≥ 0 for any x > 0 and hence

λ − λ̂ + λ̂ log(λ̂/λ) = λ̂
[
(λ/λ̂) − 1 − log(λ/λ̂)

] ≥ 0.(3.39)

Notice that

lim
�→∞ sup

n

∫
z≥�

λnπn

(3.40)
≤ lim

�→∞ sup
n

∫
λn<

√
λz,z≥�

λnπn + lim
�→∞ sup

n

∫
λn≥√

λz,z≥�
λnπn.

For the first term, since supn

∫
zπn < ∞ and limz→∞ λ(z)

z
= 0,

lim
�→∞ sup

n

∫
λn<

√
λz,z≥�

λnπn ≤ lim
�→∞ sup

n

∫
z≥�

√
λzπn = 0.(3.41)

For the second term, since lim supz→∞ λ(z)
z

= 0,

lim
�→∞ sup

n

∫
λn≥√

λz,z≥�
λnπn

(3.42)

≤ lim
�→∞ sup

n
Ĥ (λn,πn) sup

λn≥√
λz,z≥�

λn

λ − λn + λn log(λn/λ)
= 0.
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Therefore, passing to some subsequence if necessary, we have λnπn → γ∞ and
πn → π∞ weakly. Since we proved that F is upper semicontinuous in the weak
topology, the level set is compact in the weak topology. Therefore, we can switch
the supremum and infimum in (3.24) and get

lim inf
t→∞

1

t
logE

[
eθNt

]
(3.43)

≥ inf
f ∈F sup

π̂ :
∫

zπ̂<∞
sup

λ̂∈L1(π̂)

{∫
θb

a
zπ̂ + (λ̂ − λ)π̂

(3.44)

− log(λ̂/λ)λ̂π̂ + Âf π̂

}
= inf

f ∈F sup
π̂ :

∫
zπ̂<∞

∫ [
θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z

]
π̂(dz)(3.45)

= inf
f ∈F sup

z≥0

[
θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z

]
(3.46)

= inf
f ∈F sup

z≥0

[
θbzef (z)

aef (z)
+ λ(z)

ef (z)

(
ef (z+a) − ef (z)) − bz

ef (z)

∂ef (z)

∂z

]
(3.47)

≥ inf
u∈Uθ

sup
z≥0

{Au

u
+ θb

a
z

}
.(3.48)

We need some justifications. Define G(λ̂) = λ̂ − log(λ̂/λ)λ̂ + Âf . The supremum
of G(λ̂) is achieved when ∂G

∂λ̂
= 0 which implies λ̂ = λef (z+a)−f (z). Notice that

for f ∈ F , the optimal λ̂ = λef (z+a)−f (z) satisfies
∫

λ̂π̂ < ∞ since
∫

λπ̂ < ∞ and∫
zπ̂ < ∞. This gives us (3.45). Next, let us explain (3.46). For any probability

measure π̂ , ∫ [
θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z

]
π̂(dz)

(3.49)

≤ sup
z≥0

[
θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z

]
,

which implies the right-hand side of (3.45) is less or equal to the right-hand side
of (3.46). To prove the other direction. For any f = Kz + g + L ∈ F , we have

θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z
(3.50)

=
(

θb

a
− Kb

)
z + λ(z)

(
eKa+g(z+a)−g(z) − 1

) − bz
∂g

∂z
,

which is continuous in z and also bounded on z ∈ [0,∞) since g is C1 with com-
pact support and K > θ

a
and limz→∞ λ(z)

z
= 0. Hence there exists some z∗ ≥ 0
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such that

θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z
(3.51)

= θbz∗

a
+ λ

(
z∗)(

ef (z∗+a)−f (z∗) − 1
) − bz∗ ∂f

∂z

∣∣∣∣
z=z∗

.

Take a sequence of probability measures π̂n such that it has probability den-
sity function n if z ∈ [z∗ − 1

2n
, z∗ + 1

2n
] and 0 otherwise. Then, for every n,∫

zπ̂n(dz) < ∞. Therefore, we have

lim
n→∞

∫ [
θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z

]
π̂n(dz)

= lim
n→∞n

∫ z∗+(1/(2n))

z∗−(1/(2n))

[
θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z

]
dz

(3.52)

= θbz∗

a
+ λ

(
z∗)(

ef (z∗+a)−f (z∗) − 1
) − bz∗ ∂f

∂z

∣∣∣∣
z=z∗

= sup
z≥0

[
θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z

]
.

We conclude that the right-hand side of (3.45) is greater or equal to the right-hand
side of (3.46).

Notice that for any f = Kz + g + L ∈F ,

θbz

a
+ λ(z)

(
ef (z+a)−f (z) − 1

) − bz
∂f

∂z
(3.53)

= b(θ − Ka)

a
z + λ(z)

(
eKa+g(z+a)−g(z) − 1

) − bz
∂g

∂z
,

whose supremum is achieved at some finite z∗ > 0 since limz→∞ λ(z)
z

= 0, K > θ
a

and g ∈ C1 with compact support. Hence
∫

zπ̂ < ∞ is satisified for the optimal π̂ .
This gives us (3.46). Finally, for any f ∈ F , u = ef ∈ Uθ , which implies (3.48).

�

LEMMA 3. Assume limz→∞ λ(z)
z

= 0, and we have E[eθNt ] < ∞ for any
θ ∈ R.

PROOF. Observe that for any γ ∈ R,

exp
{
γNt −

∫ t

0

(
eγ − 1

)
λ(Zs) ds

}
(3.54)
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is a martinagle. Since limz→∞ λ(z)
z

= 0, for any ε > 0, there exists a constant
Cε > 0 such that λ(z) ≤ Cε + εz for any z ≥ 0. Also,∫ t

0
Zs ds =

∫ t

0

∫ s

0
h(s − u)N(du)ds =

∫ t

0

[∫ t

u
h(s − u)ds

]
N(du)

(3.55)

≤
∫ t

0

[∫ ∞
u

h(s − u)ds

]
N(du) = ‖h‖L1Nt .

Therefore, for any γ > 0,

1 = E
[
eγNt−∫ t

0 (eγ −1)λ(Zs) ds]
≥ E

[
eγNt−(eγ −1)

∫ t
0 (Cε+εZs) ds](3.56)

≥ E
[
eγNt−(eγ −1)Cεt−(eγ −1)ε‖h‖

L1Nt
]
.

For any θ > 0, choose γ > θ and ε small enough so that γ − (eγ − 1)ε‖h‖L1 ≥ θ .
Then

E
[
eθNt

] ≤ e(eγ −1)Cεt < ∞.(3.57) �

Now we are ready to prove the large deviations result.

THEOREM 4. Assume limz→∞ λ(z)
z

= 0 and that λ(·) is continuous and

bounded below by some positive constant. Then (Nt

t
∈ ·) satisfies the large de-

viation principle with the rate function I (·) as the Fenchel–Legendre transform
of �(·),

I (x) = sup
θ∈R

{
θx − �(θ)

}
.(3.58)

PROOF. If lim supz→∞ λ(z)
z

= 0, then the forthcoming Lemma 6 implies that
�(θ) < ∞ for any θ . Thus, by the Gärtner–Ellis theorem, we have the upper bound.
For the Gärtner–Ellis theorem and a general theory of large deviations, see, for
example, [7]. To prove the lower bound, it suffices to show that for any x > 0,
ε > 0, we have

lim inf
t→∞

1

t
logP

(
Nt

t
∈ Bε(x)

)
≥ − sup

θ

{
θx − �(θ)

}
,(3.59)

where Bε(x) denotes the open ball centered at x with radius ε. Let P̂ denote the
tilted probability measure with rate λ̂ defined in Theorem 2. By Jensen’s inequality,

1

t
logP

(
Nt

t
∈ Bε(x)

)
= 1

t
log

∫
(Nt /t)∈Bε(x)

dP

dP̂
dP̂(3.60)
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= 1

t
log P̂

(
Nt

t
∈ Bε(x)

)
+ 1

t
log

[
1

P̂((Nt/t) ∈ Bε(x))

∫
(Nt /t)∈Bε(x)

dP

dP̂
dP̂

]

≥ 1

t
log P̂

(
Nt

t
∈ Bε(x)

)

− 1

P̂((Nt/t) ∈ Bε(x))
· 1

t
Ê

[
1(Nt /t)∈Bε(x) log

dP̂

dP

]
.

By the ergodic theorem,

lim inf
t→∞

1

t
logP

(
Nt

t
∈ Bε(x)

)
≥ −�(x),(3.61)

where

�(x) = inf
(λ̂,π̂)∈Qx

e

{∫
(λ − λ̂)π̂ +

∫
log(λ̂/λ)λ̂π̂

}
(3.62)

and

Qx
e =

{
(λ̂, π̂) ∈Qe :

∫
λ̂(z)π̂(dz) = x

}
.(3.63)

Notice that

�(θ) = sup
(λ̂,π̂)∈Qe

{∫
θλ̂π̂ +

∫
(λ̂ − λ)π̂ −

∫
log(λ̂/λ)λ̂π̂

}

= sup
x

sup
(λ̂,π̂)∈Qx

e

{∫
θλ̂π̂ +

∫
(λ̂ − λ)π̂ −

∫
log(λ̂/λ)λ̂π̂

}
(3.64)

= sup
x

sup
(λ̂,π̂)∈Qx

e

{∫
θb

a
zπ̂(dz) +

∫
(λ̂ − λ)π̂ −

∫
log(λ̂/λ)λ̂π̂

}
= sup

x

{
θx − �(x)

}
.

We prove in Lemma 5 that �(x) is convex in x, identify it as the convex conjugate
of �(θ) and thus complete the proof. �

LEMMA 5. �(x) in (3.62) is convex in x.

PROOF. Define

Ĥ (λ̂, π̂) =
∫

(λ − λ̂)π̂ +
∫

log(λ̂/λ)λ̂π̂ .(3.65)
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Then

�(x) = inf
(λ̂,π̂)∈Qx

e

Ĥ (λ̂, π̂).(3.66)

We want to prove that �(αx1 + βx2) ≤ α�(x1) + β�(x2) for any α,β ≥ 0 with
α + β = 1. For any ε > 0, we can choose (λ̂k, π̂k) ∈ Qxk

e such that Ĥ (λ̂k, π̂k) ≤
�(xk) + ε/2, for k = 1,2. Set

π̂3 = απ̂1 + βπ̂2, λ̂3 = d(απ̂1)

d(απ̂1 + βπ̂2)
λ̂1 + d(βπ̂2)

d(απ̂1 + βπ̂2)
λ̂2.(3.67)

Then for any test function f ,∫
Â3f π̂3 = α

∫
Â1f π̂1 + β

∫
Â2f π̂2 = 0,(3.68)

which implies (λ̂3, π̂3) ∈ Qe. Furthermore,∫
λ̂3π̂3 = α

∫
λ̂1π̂1 + β

∫
λ̂2π̂2 = αx1 + βx2.(3.69)

Therefore, (λ̂3, π̂3) ∈ Qαx1+βx2
e . Finally, since x logx is a convex function and if

we apply Jensen’s inequality, we get

Ĥ (λ̂3, π̂3) =
∫ [

(λ − λ̂3 − λ̂3 logλ) + λ̂3 log λ̂3
]
π̂3

≤
∫ [

(λ − λ̂3 − λ̂3 logλ) + α
dπ̂1

dπ̂3
λ̂1 log λ̂1 + β

dπ̂2

dπ̂3
λ̂2 log λ̂2

]
π̂3(3.70)

= αĤ (λ̂1, π̂1) + βĤ (λ̂2, π̂2).

Therefore,

�(αx1 + βx2) ≤ Ĥ (λ̂3, π̂3)

≤ αĤ (λ̂1, π̂1) + βĤ (λ̂2, π̂2)(3.71)

≤ α�(x1) + β�(x2) + ε. �

LEMMA 6. If lim supz→∞ λ(z)
bz

< 1
a

, then for any

θ < log
(

b

a lim supz→∞(λ(z)/z)

)
− 1 + a

b
· lim sup

z→∞
λ(z)

z
,(3.72)

we have �(θ) < ∞. If lim supz→∞ λ(z)
z

= 0, then �(θ) < ∞ for any θ ∈ R.

PROOF. For K ≥ θ
a

, we have eKz ∈ Uθ and

�(θ) ≤ inf
g∈Uθ

sup
z≥0

Ag(z) + ((θb)/a)zg(z)

g(z)
≤ sup

z≥0

{AeKz

eKz
+ θb

a
z

}
(3.73)

= sup
z≥0

{
−

(
bK − θb

a

)
z + λ(z)

(
eKa − 1

)}
.
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Define the function

F(K) = −K + lim sup
z→∞

λ(z)

bz
· (

eKa − 1
)
.(3.74)

Then F(0) = 0, F is convex and F(K) → ∞ as K → ∞ and its minimum is
attained at

K∗ = 1

a
log

(
b

a lim supz→∞(λ(z)/z)

)
> 0,(3.75)

and F(K∗) < 0. Therefore, �(θ) < ∞ for any

θ < −a min
K>0

{
−K + lim sup

z→∞
λ(z)

bz
· (

eKa − 1
)}

(3.76)

= log
(

b

a lim supz→∞(λ(z)/z)

)
− 1 + a

b
· lim sup

z→∞
λ(z)

z
< K∗a.

If lim supz→∞ λ(z)
z

= 0, trying eKz ∈ Uθ for any K > θ
a

, we have �(θ) < ∞ for
any θ . �

4. Large deviations for Markovian nonlinear Hawkes processes with sum
of exponentials exciting function. In this section, we consider the Markovian
nonlinear Hawkes processes with sum of exponentials exciting functions, that is,
h(t) = ∑d

i=1 aie
−bi t . Let

Zi(t) = ∑
τj<t

aie
−bi(t−τj ), 1 ≤ i ≤ d(4.1)

and Zt = ∑d
i=1 Zi(t) = ∑

τj<t h(t − τj ), where τj ’s are the arrivals of the Hawkes
process with intensity λ(Zt) = λ(Z1(t) + · · · + Zd(t)) at time t . Observe that this
is a special case of the Markovian processes with jumps studied in Section 2 with
λ(Z1(t),Z2(t), . . . ,Zd(t)) taking the form λ(

∑d
i=1 Zi(t)). It is easy to see that

(Z1, . . . ,Zd) is Markovian with generator

Af = −
d∑

i=1

bizi

∂f

∂zi

(4.2)

+ λ

(
d∑

i=1

zi

)
· [

f (z1 + a1, . . . , zd + ad) − f (z1, . . . , zd)
]
.

Here bi > 0 for any 1 ≤ i ≤ d and ai can be negative. But we restrict ourselves to
the set of bi ’s and ai ’s so that h(t) = ∑d

i=1 aie
−bi t > 0 for any t ≥ 0 for the rest

of this paper. In particular, h(0) = ∑d
i=1 ai > 0. If ai > 0, then Zi(t) ≥ 0 almost

surely; if ai < 0, then Zi(t) ≤ 0 almost surely.
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THEOREM 7. Assume limz→∞ λ(z)
z

= 0, λ(·) is continuous and bounded be-
low by a positive constant. Then

lim
t→∞

1

t
logE

[
eθNt

] = inf
u∈Uθ

sup
(z1,...,zd )∈Z

{
Au

u
+ θ∑d

i=1 ai

d∑
i=1

bizi

}
,(4.3)

where Z = {(z1, . . . , zd) :aizi ≥ 0,1 ≤ i ≤ d} and

Uθ = {
u ∈ C1

(
R

d,R+)
, u = ef , f ∈ F

}
,(4.4)

where

F =
{
f = g + θ

∑d
i=1 zi∑d

i=1 ai

+ L,L ∈ R, g ∈ G
}
,(4.5)

where

G =
{

d∑
i=1

Kεizi + g,K > 0, g is C1 with compact support

}
.(4.6)

PROOF. Notice that

dZi(t) = −biZi(t) dt + ai dNt , 1 ≤ i ≤ d.(4.7)

Hence aiNt = Zi(t) − Zi(0) + ∫ t
0 biZi(s) ds and

E
[
eθNt

] = E

[
exp

{
θ

∑d
i=1 Zi(t) − Zi(0)∑d

i=1 ai

+ θ∑d
i=1 ai

∫ t

0

d∑
i=1

biZi(s) ds

}]
.(4.8)

Following the same arguments in the proof of Theorem 2, we obtain the upper
bound

lim sup
t→∞

1

t
logE

[
eθNt

] ≤ inf
u∈Uθ

sup
(z1,...,zd )∈Z

{
Au

u
+ θ∑d

i=1 ai

d∑
i=1

bizi

}
.(4.9)

As before, we can obtain the lower bound

lim inf
t→∞

1

t
logE

[
eθNt

]
≥ sup

(λ̂,π̂)∈Qe

∫ [
θλ̂ − λ + λ̂ − λ̂ log(λ̂/λ)

]
π̂(dz1, . . . , dzd)

(4.10)
≥ sup

(λ̂,π̂)∈Q
inf
g∈G

∫ [
θλ̂ − λ + λ̂ − λ̂ log(λ̂/λ) + Âg

]
π̂

= sup
(λ̂,π̂)∈Q

inf
f ∈F

∫ [
θ

∑d
i=1 bizi∑d
i=1 ai

− λ + λ̂ − λ̂ log(λ̂/λ) + Âf

]
π̂ .
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The equality in the last line above holds by taking f = g + L + θ
∑d

i=1 zi∑d
i=1 ai

∈ F for

g ∈ G, where

G =
{

d∑
i=1

Kεizi + g,K > 0, g is C1 with compact support

}
.(4.11)

Here, εi = ai/|ai |, 1 ≤ i ≤ d . Define

F(λ̂π̂, π̂ , f ) =
∫ [

θ
∑d

i=1 bizi∑d
i=1 ai

+ Âf

]
π̂ − Ĥ (λ̂, π̂).(4.12)

F is linear in f and hence convex in f . Also Ĥ is weakly lower semicontinuous
and convex in (λ̂π̂ , π̂). Therefore, F is concave in (λ̂π̂ , π̂). Furthermore, for any

f = θ
∑d

i=1 zi∑d
i=1 ai

+ ∑d
i=1 Kεizi + g + L ∈ F ,

F(λ̂π̂, π̂ , f ) =
∫ [

θ +
d∑

i=1

Kεiai

]
λ̂π̂

(4.13)

−
∫ d∑

i=1

Kεibizi π̂ − Ĥ (λ̂, π̂) +
∫

Âgπ̂.

If λnπn → γ∞ and πn → π∞ weakly, then, since g is C1 with compact support,
we have ∫ [

θ +
d∑

i=1

Kεiai

]
λnπn +

∫
Âgπn

(4.14)

→
∫ [

θ +
d∑

i=1

Kεiai

]
γ∞ +

∫
Âgπ∞.

Since −∑d
i=1 Kεibizi is continuous and nonpositive on Z , we have

lim sup
n→∞

∫ [
−

d∑
i=1

Kεibizi

]
πn ≤

∫ [
−

d∑
i=1

Kεibizi

]
π∞.(4.15)

Hence, we conclude that F is upper semicontinuous in the weak topology.
In order to apply the minmax theorem, we want to prove the compactness in the

weak topology of the level set{
(λ̂π̂ , π̂) :

∫ [
−θ

∑d
i=1 bizi∑d
i=1 ai

− Âf

]
π̂ + Ĥ (λ̂, π̂) ≤ C

}
.(4.16)



LDP FOR MARKOVIAN NONLINEAR HAWKES PROCESSES 567

For any f = θ
∑d

i=1 zi∑d
i=1 ai

+ ∑d
i=1 Kεizi + g + L ∈ F , where g is C1 with compact

support, etc., there exist some C1,C2 > 0 such that

C1 ≥ Ĥ +
d∑

i=1

Kbiεi

∫
ziπ̂ − C2

∫
λ̂π̂

≥
∫
λ̂≥∑d

i=1 cizi+�

[
λ − λ̂ + λ̂ log(λ̂/λ)

]
π̂

+
d∑

i=1

Kbiεi

∫
ziπ̂

(4.17)
− C2

∫
λ̂≥∑d

i=1 cizi+�
λ̂π̂ − C2

∫
λ̂<

∑d
i=1 cizi+�

λ̂π̂

≥
[

min
(z1,...,zd )∈Z log

c1z1 + · · · + cdzd + �

λ(z1 + · · · + zd)
− 1 − C2

]∫
λ̂≥∑d

i=1 cizi+�
λ̂π̂

+
d∑

i=1

[−ci · C2 + Kbiεi]
∫

ziπ̂ − �C2.

If ai > 0, then εi > 0, pick up ci > 0 such that −ci ·C2 +Kbiεi > 0. If ai < 0, then
εi < 0, pick up ci such that −ci · C2 + Kbiεi < 0. Finally, choose � big enough
such that the big bracket above is positive. Then∫

|zi |π̂ ≤ C3,

∫
λ̂≥∑d

i=1 cizi+�
λ̂π̂ ≤ C4.(4.18)

Hence,
∫

λ̂π̂ ≤ C5 and Ĥ ≤ C6. We can use a method similar to the proof of
Theorem 2 to show that

lim
�→∞ sup

n

∫
|zi |>�

λnπn = 0, 1 ≤ i ≤ d.(4.19)

For any (λnπn,πn) ∈ R, we can find a subsequence that converges in the weak
topology by Prokhorov’s theorem. Therefore,

lim inf
t→∞

1

t
logE

[
eθNt

]
≥ sup

(λ̂,π̂)∈Q
inf

f ∈F

∫ [
θ

∑d
i=1 bizi∑d
i=1 ai

− λ + λ̂ − λ̂ log(λ̂/λ) + Âf

]
π̂

= inf
f ∈F sup

π̂

sup
λ̂

∫ [
θ

∑d
i=1 bizi∑d
i=1 ai

− λ + λ̂ − λ̂ log(λ̂/λ) + Âf

]
π̂

= inf
f ∈F sup

(z1,...,zd )∈Z
θ

∑d
i=1 bizi∑d
i=1 ai

+ λ
(
ef (z1+a1,...,zd+ad)−f (z1,...,zd ) − 1

)
(4.20)
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−
d∑

i=1

bizi

∂f

∂zi

≥ inf
u∈Uθ

sup
(z1,...,zd )∈Z

{
Au

u
+ θ∑d

i=1 ai

d∑
i=1

bizi

}
.

That is because optimizing over λ̂, we get λ̂ = λef (z1+a1,...,zd+ad)−f (z1,...,zd ) and
finally for each f ∈ F , u = ef ∈ Uθ . �

THEOREM 8. Assume limz→∞ λ(z)
z

= 0, λ(·) is positive and bounded below by

some positive constant. Then, (Nt

t
∈ ·) satisfies the large deviation principle with

the rate function I (·) as the Fenchel–Legendre transform of �(·),
I (x) = sup

θ∈R
{
θx − �(θ)

}
,(4.21)

where

�(θ) = sup
(λ̂,π̂)∈Qe

∫ [
θλ̂ − λ + λ̂ − λ̂ log(λ̂/λ)

]
π̂ .(4.22)

PROOF. The proof is the same as in the case of exponential h(·). �

5. Large deviations for linear Hawkes processes: An alternative proof. In
this section, we use our method to recover the result proved in Bordenave and
Torrisi [2]. We prove the existence of the limit of logarithmic moment generating
function first. The strategy is to use the tilting method to prove the lower bound.
This requires an ergodic lemma, which we state as Lemma 9. For the upper bound,
we can opitimize over a special class of testing functions for the linear rate with
the sum of exponential exciting function hn. Any continuous and integrable h can
be approximated by a sequence hn. By a coupling argument, we can use that to ap-
proximate the upper bound for the logarithmic moment generating function when
the exciting function is h. Finally, by a tilting argument for the lower bound and
the Gärtner–Ellis theorem for the upper bound, we can prove the large deviations
for the linear Hawkes processes.

LEMMA 9. Assume λ(z) = α + βz and μ = ∫ ∞
0 h(t) dt < ∞. If βμ < 1, then

there exists a stationary and ergodic probability measure π for Zt and
∫

zπ =
αμ

1−βμ
.

PROOF. The ergodicity is a well-known result for linear Hawkes process; see
Hawkes and Oakes [13]. Let π be the invariant probability measure for Zt , then

lim
t→∞

Nt

t
=

∫
λ(z)π(dz) = α + β

∫
zπ(dz).(5.1)
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If Zt is invariant in t , taking expectations to Zt = ∫ t
−∞ h(t − s) dNs ,

E[Zt ] =
∫

zπ(dz) =
∫

λ(z)π(dz)

∫ t

−∞
h(t − s) ds

(5.2)
= μ

∫
λ(z)π(dz),

which implies that
∫

zπ = αμ
1−βμ

. �

REMARK 10. In Lemma 9, we assumed that λ(z) = α + βz and β‖h‖L1 < 1.
However, when do the LDP for linear Hawkes process and when we prove The-
orem 12, we assume that λ(z) = ν + z since λ(z) = ν + βz is equivalent to the
case λ(z) = ν + z if we change h(·) to βh(·). The reason we used λ(z) = α + βz

in Lemma 9 is because we need to use it when we tilt λ(z) = ν + z to Kλ(z) =
Kν + Kz in the proof of lower bound in Theorem 12.

LEMMA 11. If h(t) > 0,
∫ ∞

0 h(t) dt < ∞, limt→∞ h(t) = 0, and h is contin-
uous, then h can be approximated by a sum of exponentials both in L1 and L∞
norms.

PROOF. The Stone–Weierstrass theorem says that if X is a compact Hausdorff
space and suppose A is a subspace of C(X) with the following properties: (i) If
f,g ∈ A, then f × g ∈ A. (ii) 1 ∈ A. (iii) If x, y ∈ X, then we can find an f ∈ A

such that f (x) 	= f (y), then A is dense in C(X) in L∞ norm. Consider X = R≥0 ∪
{∞} = [0,∞] that is compactified and C[0,∞] consists of continuous functions
vanishing at ∞ and the constant function 1.

By the Stone–Weierstrass theorem, the linear combination of 1, e−t , e−2t , etc.,
is dense in C[0,∞]. In other words, for any continuous function h on C[0,∞],
we have

sup
t≥0

∣∣∣∣∣h(t) −
n∑

j=0

aj e
−j t

∣∣∣∣∣ ≤ ε.(5.3)

In fact, since h(∞) = 0, we get |a0| ≤ ε. Thus

sup
t≥0

∣∣∣∣∣h(t) −
n∑

j=1

aj e
−j t

∣∣∣∣∣ ≤ 2ε.(5.4)

However,
∑n

j=1 aj e
−j t may not be positive. We can approximate

√
h(t) first by

a sum of exponentials and then approximate h(t) by the square of that sum of
exponentials, which is again a sum of exponentials but positive this time.

Indeed, we can approximate h(t) by the sum of exponentials in L1 norm as well.
Suppose ‖h−hn‖L∞ → 0, where hn is a sum of exponentials. Then, by dominated
convergence theorem, for any δ > 0,

∫ |h − hn|e−δt dt → 0 as n → ∞. Thus, we
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can find a sequence δn > 0 such that δn → 0 as n → ∞ and
∫ |h−hn|e−δnt dt → 0.

By dominated convergence theorem again,
∫

h(1 − e−δnt ) dt → 0. Hence, we have∫ |h − hne
−δnt |dt → 0 as n → ∞, where hne

−δnt is a sum of exponentials.
We will show that hne

−δnt converges to h in L∞ as well.∥∥h − hne
−δnt

∥∥
L∞ ≤ ‖h − hn‖L∞ + ∥∥hn − hne

−δnt
∥∥
L∞ .(5.5)

Notice that (1 − e−δnt )hn ≤ (1 − e−δnt )(h(t) + ε). Since h(∞) = 0, there exists
some M > 0, such that for t > M , h(t) ≤ ε so that (1 − e−δnt )hn ≤ 2ε for t > M .
For t ≤ M , (1 − e−δnt )hn ≤ (1 − e−δnM)(‖h‖L∞ + ε) which is small if δn is small.

�

THEOREM 12. Assume λ(z) = ν + z, ν > 0. h(·) satisfies the assumptions in
Lemma 11 and

∫ ∞
0 h(t) dt < 1. We have

lim
t→∞

1

t
logE

[
eθNt

] = ν(x − 1),(5.6)

where x is the minimal solution to x = eθ+μ(x−1), where μ = ∫ ∞
0 h(t) dt .

PROOF. By Lemma 9, we have

lim inf
t→∞

1

t
logE

[
eθNt

]
≥ sup

(λ̂,π̂)∈Qe

∫ [
θλ̂ + λ̂ − λ − λ̂ log(λ̂/λ)

]
π̂

≥ sup
(Kλ,π̂)∈Qe,K∈R+

∫ [
θλ̂ + λ̂ − λ − λ̂ log(λ̂/λ)

]
π̂

(5.7)

≥ sup
0<K<1/μ,(Kλ,π̂)∈Qe

∫ [
θ + 1 − 1

K
− logK

]
λ̂π̂

≥ sup
0<K<1/μ

[
θ + 1 − 1

K
− logK

]
· Kν

1 − Kμ

=
{

ν(x − 1), if θ ∈ (−∞,μ − 1 − logμ],
+∞, otherwise,

where x is the minimal solution to x = eθ+μ(x−1).
By Lemma 11, we can find a sequence of hn, where hn(t) = ∑n

i=1 aie
−bi t such

that hn → h as n → ∞ in both L1 and L∞ norms. Let hε(t) = |h(t) − hn(t)|.
Then 0 ≤ hn − hε ≤ h ≤ hn + hε .

Let D1 be the set of points generated by the Hawkes process with inten-
sity λ(

∑
τ∈D1,τ<t hn(t − τ)) and then conditional on D1, let D2 be the set of

points generated by the point process with intensity λ(
∑

τ∈D1,τ<t (hn + hε)(t −
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τ)) − λ(
∑

τ∈D1,τ<t hn(t − τ)) and then iteratively, conditional on D1, . . . ,Dj−1,
let Dj be the set of points generated by the point process with intensity
λ(

∑
τ∈⋃j−1

i=1 Di,τ<t
(hn + hε)(t − τ)) − λ(

∑
τ∈⋃j−2

i=1 Di,τ<t
(hn + hε)(t − τ)), for any

j ≥ 3. Let Dj(t) correspond to the number of points in Dj by time t . Therefore,∑∞
j=1 Dj(t) equals the number of points generated by Hawkes process with inten-

sity λ(
∑

τ<t (hn + hε)(t − τ)). Our coupling argument is essentially the same as
the one used in Brémaud and Massoulié [3]. For a more formal treatment, one can
use Poisson canonical space and Poisson embeddings; we refer to Brémaud and
Massoulié [3] for the details.

Assume that θ > 0, and we therefore have

E
[
eθNt

] ≤ E
[
e
θ

∑∞
j=1 Dj (t)]

.(5.8)

Now, for any N ∈ N,

E

[
exp

{
θ

N∑
j=1

Dj(t)

}]

= E

[
exp

{
θ

N−1∑
j=1

Dj(t)

}

× exp

{(
eθ − 1

) ∫ t

0
λ

( ∑
τ∈⋃N−1

i=1 Di,τ<s

(hn + hε)(s − τ)

)

− λ

( ∑
τ∈⋃N−2

i=1 Di,τ<s

(hn + hε)(s − τ)

)
ds

}]
(5.9)

≤ E

[
exp

{
θ

N−2∑
j=1

Dj(t)

}
exp

{((
eθ − 1

)‖hn + hε‖L1 + θ
)
DN−1(t)

}]
≤ · · ·
≤ E

[
exp

{
θD1(t) + fN−1(θ)D2(t)

}]
≤ E

[
exp

{
θD1(t) + (

exp
{
fN−1(θ)

} − 1
)‖hε‖L1D1(t)

}]
,

where fj (θ) = (efj−1(θ) − 1)‖hn + hε‖L1 + θ , for j ≥ 2 and f1(θ) = θ . Thus, for
any θ ≤ ‖hn +hε‖L1 −1− log(‖hn +hε‖L1), efN−1(θ) converges to yn as N → ∞,
where yn is the minimal solution to yn = eθ+‖hn+hε‖L1 (yn−1). Since D1(t) is the
Hawkes process with exciting function hn,

lim sup
t→∞

1

t
logE

[
eθNt

] ≤ �n(pnθ),(5.10)
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where pn = 1 + yn‖h − hn‖L1 . For �n(pnθ), we have

�n(pnθ) = inf
u∈Upnθ

sup
(z1,...,zn)∈Z

{
Au

u
+ pnθ∑n

i=1 ai

n∑
i=1

bizi

}

≤ inf
u=e

∑n
i=1 ci zi ∈Upnθ

sup
(z1,...,zn)∈Z

{
Au

u
+ pnθ∑n

i=1 ai

n∑
i=1

bizi

}

= inf
c1,...,cn

sup
(z1,...,zn)∈Z

{
−

n∑
i=1

bicizi + (ν + z1 + · · · + zn)
(
e

∑n
i=1 ciai − 1

)

+ pnθ∑n
i=1 ai

n∑
i=1

bizi

}

= ν
(
e

∑n
i=1 c∗

i ai − 1
) = ν(xn − 1),

where c∗
i satisfies −bic

∗
i + e

∑n
i=1 c∗

i ai − 1 + pnθ∑n
i=1 ai

bi = 0, for each 1 ≤ i ≤ n. By

some computation, it is not hard to see that xn = e
∑n

i=1 c∗
i ai satisfies

xn = exp

{
pnθ +

n∑
i=1

ai

bi

(xn − 1)

}
(5.11)

= exp
{(

1 + yn‖h − hn‖L1
)
θ + (xn − 1)

∫ ∞
0

hn(t) dt

}
.

Since hn → h in L1 norm, it is not hard to see that xn converges to the minimal
solution of x = eθ+‖h‖

L1 (x−1) as n → ∞. If θ < 0, consider h ≥ hn − hε ≥ 0 and
the argument is similar. �

THEOREM 13. Assume λ(z) = ν + z, h : [0,∞) → R
+, μ := ∫ ∞

0 h(t) dt < 1
and h is continuous. Then (Nt/t ∈ ·) satisfies a large deviation principle with the
rate function I (x) given by

I (x) =
⎧⎪⎨⎪⎩x log

(
x

ν + xμ

)
− x + μx + ν, if x ∈ [0,∞),

+∞, otherwise.

(5.12)

PROOF. For the upper bound, apply the Gärtner–Ellis theorem. For the lower
bound, use the tilting method and identify I (x) as the Fenchel–Legendre transform
of �(θ). �

REMARK 14. In Bordenave and Torrisi [2], their I (x) has the form

I (x) =
⎧⎨⎩xθx + ν − νx

ν + μx
, if x ∈ [0,∞),

+∞, otherwise,
(5.13)
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where θ = θx is the unique solution in (−∞,μ − 1 − logμ] of E[eθS] = x
ν+xμ

,

x > 0. Here, E[eθS] satisfies the equation

E
[
eθS] = eθ exp

{
μ

(
E

[
eθS] − 1

)}
,(5.14)

which implies that θx = log( x
ν+xμ

) − μ( x
ν+xμ

− 1). Substituting into the formula,
their rate function is the same as what we got.

REMARK 15. In Bordenave and Torrisi [2], the assumption in proving the
large deviations for linear Hawkes processes is slightly different from ours.
They did not require h(·) to be continuous, but they further assumed that∫ ∞

0 th(t) dt < ∞.

6. Large deviations for a special class of nonlinear Hawkes processes: An
approximation approach. In this section, we prove the large deviation results
for (Nt/t ∈ ·) for a very special class of nonlinear λ(·) and h(·) that satisfies the
assumptions in Lemma 11.

Let Pn denote the probability measure under which Nt follows the Hawkes
process with exciting function hn = ∑n

i=1 aie
−bi t such that hn → h as n → ∞ in

both L1 and L∞ norms. Let us define

�n(θ) = lim
t→∞

1

t
logEPn

[
eθNt

]
.(6.1)

We have the following results.

LEMMA 16. For any K > 0 and θ1, θ2 ∈ [−K,K], there exists some constant
C(K) such that for any n,∣∣�n(θ1) − �n(θ2)

∣∣ ≤ C(K)|θ1 − θ2|.(6.2)

PROOF. Without loss of generality, take θ2 > θ1. Then

�n(θ1) ≤ �n(θ2)

= sup
(λ̂,π̂)∈Q∗

e

∫
(θ2 − θ1)λ̂π̂ + θ1λ̂π̂ − Ĥ (λ̂, π̂)(6.3)

≤ sup
(λ̂,π̂)∈Q∗

e

∫
(θ2 − θ1)λ̂π̂ + �n(θ1),

where

Q∗
e =

{
(λ̂, π̂) ∈Qe :

∫
θ1λ̂π̂ − Ĥ (λ̂, π̂) ≥ �n(θ1) − 1

}
.(6.4)
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The key is to prove that sup
(λ̂,π̂)∈Q∗

e

∫
λ̂π̂ ≤ C(K) for some constant C(K) > 0

depending only on K . Define u = u(z1, . . . , zn) = e
∑n

i=1 cizi where

ci = 3K∑n
i=1(ai/bi)

· 1

bi

, 1 ≤ i ≤ n.(6.5)

Define V = −Au
u

such that

V (z1, . . . , zn) = 3K∑n
i=1(ai/bi)

n∑
i=1

zi − λ(z1 + · · · + zn)
(
e3K − 1

)
.(6.6)

Notice that
∫
Âf π̂ = 0 for any test function f with certain regularities. If we try

f = zi

bi
, 1 ≤ i ≤ n, we get

−
∫

ziπ̂ + ai

bi

∫
λ̂π̂ = 0, 1 ≤ i ≤ n.(6.7)

Summing over 1 ≤ i ≤ n, we get∫
λ̂π̂ = 1∑n

i=1(ai/bi)

∫ n∑
i=1

ziπ̂ .(6.8)

Notice that
∑n

i=1
ai

bi
= ‖hn‖L1 which is approximately ‖h‖L1 when n is large.

Since lim supz→∞ λ(z)
z

= 0 and
∑n

i=1 zi ≥ 0, we have

θ1

∫
λ̂π̂ ≤ K

∫
λ̂π̂

= K∑n
i=1(ai/bi)

∫ n∑
i=1

ziπ̂(6.9)

≤ 1

2

∫
V π̂ + C1/2(K),

where C1/2(K) is some positive constant depending only on K .
We claim that

∫
V (z)π̂ ≤ Ĥ (π̂) for any π̂ ∈ Q∗

e . Let us prove it. By the ergodic
theorem and Jensen’s inequality,∫

V (z)π̂ = lim
t→∞E

π̂

[
1

t

∫ t

0
V (Zs) ds

]
(6.10)

≤ lim sup
t→∞

1

t
logEπ [

e
∫ t

0 V (Zs) ds] + Ĥ (π̂).

Next, we will show that u ≥ 1. That is equivalent to proving
∑n

i=1
zi

bi
≥ 0. Consider

the process

Yt =
n∑

i=1

Zi(t)

bi

= ∑
τj<t

n∑
i=1

ai

bi

e−bi(t−τj ) = ∑
τj<t

g(t − τj ),(6.11)
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where g(t) = ∑n
i=1

ai

bi
e−bi t . Notice that g(t) = ∫ ∞

t h(s) ds > 0. Therefore, Yt ≥ 0

almost surely and
∑n

i=1
Zi(t)
bi

≥ 0. Since Au
u

+ V = 0 and u ≥ 1, by the Feynman–
Kac formula and Dynkin’s formula,

E
π [

e
∫ t

0 V (Zs) ds] ≤ E
π [

u(Zt)e
∫ t

0 V (Zs) ds]
= u(Z0) +

∫ t

0
E

π [(
Au(Zs) + V (Zs)u(Zs)

)
e

∫ s
0 V (Zu)du]

ds(6.12)

= u(Z0),

and therefore
∫

V (z)π̂ ≤ Ĥ (π̂) for any π̂ ∈ Q∗
e . Hence

θ1

∫
λ̂π̂ ≤ 1

2

∫
V (z) + C1/2(K) ≤ 1

2
Ĥ + C1/2(K).(6.13)

Notice that

−∞ < �n(θ1) − 1 ≤ θ1

∫
λ̂π̂ − Ĥ ≤ �n(θ1) < ∞.(6.14)

Hence

�n(θ1) − 1 + 1

2
Ĥ ≤ θ1

∫
λ̂π̂ − 1

2
Ĥ ≤ C1/2(K),(6.15)

which implies Ĥ ≤ 2(C1/2(K) − �n(θ1) + 1) and so also,∫
λ̂π̂ ≤ 1

2K

∫
V π̂ + 1

K
C1/2(K)

(6.16)

≤ 1

K

(
C1/2(K) − �n(θ1) + 1

) + 1

K
C1/2(K).

Finally, notice that since hn → h in both L1 and L∞ norms, we can find a function
g such that supn hn ≤ g and ‖g‖L1 < ∞ and thus

�n(θ1) ≥ �n(−K) ≥ �g(−K),(6.17)

where �g denotes the case when the rate function is still λ(·) but the exciting
function is g(·) instead of hn(·). Notice that here ‖g‖L1 < ∞ but may not be less
than 1. It is still well defined because of the assumption limz→∞ λ(z)

z
= 0. Indeed,

we can find λ(z) = νε + εz that dominates the original λ(·) for νε > 0 big enough
and ε > 0 small enough so that ε‖g‖L1 < 1. Now, we have �g(−K) ≥ �

νε
εg(−K)

which is finite (see Theorem 12), where �
νε
εg(−K) corresponds to the case when

λ(z) = νε + εz. Hence

sup
(λ̂,π̂)∈Q∗

e

∫
λ̂π̂ ≤ C(K),(6.18)

for some C(K) > 0 depending only on K . �
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LEMMA 17. Assume that λ(·) ≥ c for some c > 0, limz→∞ λ(z)
z

= 0 and λ(·)α
is Lipschitz with constant Lα for any α ≥ 1. Then for any K > 0, �n(θ) is Cauchy
with θ uniformly in [−K,K].

PROOF. Let us write Hn(t) = ∑
τj<t hn(t − τj ). Observe first, that for any q ,

exp
{
q

∫ t

0
log

(
λ(Hm(s))

λ(Hn(s))

)
dNs −

∫ t

0

(
λ(Hm(s))q

λ(Hn(s))q−1 − λ
(
Hn(s)

))
ds

}
(6.19)

is a martingale under Pn. By Hölder’s inequality, for any p,q > 1 with 1
p

+ 1
q

= 1,

E
Pm

[
eθNt

] = E
Pn

[
eθNt

dPm

dPn

]
= E

Pn
[
eθNt−∫ t

0 (λ(Hm(s))−λ(Hn(s))) ds−∫ t
0 log(λ(Hn(s))/λ(Hm(s))) dNs

]
(6.20)

≤ E
Pn

[
epθNt−p

∫ t
0 (λ(Hm(s))−λ(Hn(s))) ds]1/p

×E
Pn

[
eq

∫ t
0 log(λ(Hm(s))/λ(Hn(s))) dNs

]1/q
.

By the Cauchy–Schwarz inequality,

E
Pn

[
eq

∫ t
0 log(λ(Hm(s))/λ(Hn(s))) dNs

]1/q

≤ E
Pn

[
e

∫ t
0 (λ(Hm(s))2q/λ(Hn(s))2q−1−λ(Hn(s))) ds]1/(2q)

(6.21)
≤ E

Pn
[
e(1/c2q−1)L2q

∫ t
0

∑
τ<s |hm(s−τ)−hn(s−τ)|ds]1/(2q)

≤ E
Pn

[
e(1/c2q−1)L2q‖hm−hn‖

L1Nt
]1/(2q)

.

We also have

E
Pn

[
epθNt−p

∫ t
0 (λ(Hm(s))−λ(Hn(s))) ds]1/p

(6.22)
≤ E

Pn
[
epθNt+pL1‖hm−hn‖

L1Nt
]1/p

.

Therefore, by Lemma 16 and the fact �n(0) = 0 for any n, we have

�m(θ) − �n(θ)

≤ 1

p
�n(pθ + pL1εm,n) + 1

2q
�n

(
L2qεm,n

c2q−1

)
− �n(θ)

≤ C(K)L1εm,n + C(K)

2q
· L2qεm,n

c2q−1
(6.23)

+ 1

p
�n(pθ) − 1

p
�n(θ) +

(
1 − 1

p

)∣∣�n(θ)
∣∣,

≤ C(K)L1εm,n + C(K)

2q
· L2qεm,n

c2q−1

+ C(K)(p − 1)K

p
+

(
1 − 1

p

)
C(K)K,
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where εm,n = ‖hm − hn‖L1 . Hence,

lim sup
m,n→∞

{
�m(θ) − �n(θ)

} ≤ 2
(

1 − 1

p

)
C(K)K,(6.24)

which is true for any p > 1. Letting p ↓ 1, we get the desired result. �

REMARK 18. If λ(·) ≥ c > 0 and limz→∞ λ(z)
zα = 0 for any α > 0, then, λ(·)σ

is Lipschitz for any σ ≥ 1. For instance, λ(z) = [log(z + c)]β satisfies the condi-
tions if β > 0 and c > 1.

THEOREM 19. Assume that λ(·) ≥ c for some c > 0, limz→∞ λ(z)
z

= 0 and
λ(·)α is Lipschitz with constant Lα for any α ≥ 1. Then, for any θ ∈ R,

lim
t→∞

1

t
logE

[
eθNt

] = �(θ) = lim
n→∞�n(θ).(6.25)

PROOF. By Lemma 17, �n(θ) tends to �(θ) uniformly on any compact set
[−K,K]. Since �n(θ) is Lipschitz by Lemma 16, it is continuous and the limit �

is also continuous. Let εn = ‖hn −h‖L1 ≤ ε. As in the proof of Lemma 17, for any
θ ∈ [−K,K], p,q > 1, 1

p
+ 1

q
= 1, we get

lim sup
t→∞

1

t
logE

[
eθNt

]
(6.26)

≤ �n(θ) + C(K)L1εn + C(K)

2q
· L2qεn

c2q−1 + 2
(

1 − 1

p

)
C(K)K.

Letting n → ∞ first and then p ↓ 1, we get lim supt→∞ 1
t

logE[eθNt ] ≤ �(θ).
Similarly, for any p′, q ′ > 1 with 1

p′ + 1
q ′ = 1,

�n(θ) ≤ lim inf
t→∞

1

pt
logE

[
e(pθ+pL1εn)Nt

]
+ lim inf

t→∞
1

2qt
logE

[
e((L2qεn)/c2q−1)Nt

]
(6.27)

≤ lim inf
t→∞

1

pp′t
logE

[
epp′θNt

] + lim inf
t→∞

1

pq ′t
logE

[
eq ′pL1εnNt

]
+ lim inf

t→∞
1

2qt
logE

[
e((L2qεn)/c2q−1)Nt

]
.

Since we can dominate λ(·) by the linear function λ(z) = ν + z in which case the
limit of logarithmic moment generating function �ν(θ) is continuous in θ , we may
let n → ∞ to obtain

�(θ) ≤ lim inf
t→∞

1

pp′t
logE

[
epp′θNt

]
.(6.28)
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This holds for any θ and thus

lim inf
t→∞

1

t
logE

[
eθNt

] ≥ pp′�
(

θ

pp′
)
.(6.29)

Letting p,p′ ↓ 1 and using the continuity of �(·), we get the desired result. �

THEOREM 20. Assume that λ(·) ≥ c for some c > 0, limz→∞ λ(z)
z

= 0 and
λ(·)α is Lipschitz with constant Lα for any α ≥ 1. We have that (Nt/t ∈ ·) satisfies
the large deviation principle with the rate function

I (x) = sup
θ∈R

{
θx − �(θ)

}
.(6.30)

PROOF. For the upper bound, apply the Gärtner–Ellis theorem. Let us prove
the lower bound. Let Bε(x) denote the open ball centered at x with radius ε > 0.
By Hölder’s inequality, for any p,q > 1 with 1

p
+ 1

q
= 1,

Pn

(
Nt

t
∈ Bε(x)

)
≤

∥∥∥∥dPn

dP

∥∥∥∥
Lp(P)

P

(
Nt

t
∈ Bε(x)

)1/q

.(6.31)

Therefore, letting t → ∞, we have

sup
θ∈R

{
θx − �n(θ)

} = lim
t→∞

1

t
logPn

(
Nt

t
∈ Bε(x)

)

≤ 1

pp′ �
(
pp′L1εn

) + 1

2pq ′ �
(

L2pq ′εn

c2pq ′−1

)
(6.32)

+ 1

q
lim inf
t→∞

1

t
logP

(
Nt

t
∈ Bε(x)

)
,

where εn = ‖hn − h‖L1 . Hence, letting n → ∞, see that

1

q
lim inf
t→∞

1

t
logP

(
Nt

t
∈ Bε(x)

)
≥ lim sup

n→∞
sup
θ∈R

{
θx − �n(θ)

}
.(6.33)

Since �n(θ) → �(θ) uniformly on any compact set K ,

sup
θ∈K

{
θx − �n(θ)

} → sup
θ∈K

{
θx − �(θ)

}
,(6.34)

as n → ∞ for any such set K . Notice that λ(·) ≥ c > 0 and recall that the limit
for the logarithmic moment generating function with parameter θ for a Poisson
process with constant rate c is (eθ − 1)c. Hence

lim inf
θ→+∞

�n(θ)

θ
≥ lim inf

θ→+∞
(eθ − 1)c

θ
= +∞,(6.35)
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which implies that supθ∈R{θx − �n(θ)} → supθ∈R{θx − �(θ)}. Therefore,

1

q
lim inf
t→∞

1

t
logP

(
Nt

t
∈ Bε(x)

)
≥ sup

θ∈R
{
θx − �(θ)

}
.(6.36)

Letting q ↓ 1, we get the desired result. �

REMARK 21. The class of nonlinear Hawkes processes with general excit-
ing function h for which we proved the large deviation principle here is unfortu-
nately a bit too special. It works for the rate function like λ(z) = [log(c + z)]β ,
for example, but does not work for λ(·) that has sublinear power law growth. In
fact, by the coupling argument we used in the proof of the case of linear λ(·) in
Theorem 12, we can prove that in the case when limz→∞ λ(z)

z
= 0 and λ(·) is α-

Lipshcitz and λ(·) ≥ c > 0, �(θ) = limn→∞ �n(θ) for θ ≤ μ − 1 − logμ, where
μ = ∫ ∞

0 h(t) dt and � and �n are the limit of logarithmic moment generating func-
tions when the exciting functions are h and hn, respectively, and hn → h in L1.
For the linear case, since �(θ) = ∞ for θ > μ − 1 − logμ, the coupling argu-
ment is good enough. However, for the sublinear λ(·), �(θ) < ∞ for any θ and
the coupling argument is not enough. In fact, it will appear in Zhu [25] that un-
der the condition that limz→∞ λ(z)

z
= 0, λ(·) is positive, increasing, α-Lipshcitz

and λ(·) ≥ c > 0 and h(·) is positive, decreasing and
∫ ∞

0 h(t) dt < ∞, there is a
level-3 large deviation principle from which we can use the contraction principle
to get the level-1 large deviation principle for (Nt/t ∈ ·). Therefore, we conjecture
that in the sublinear case, �(θ) = limn→∞ �n(θ) for any θ and (Nt/t ∈ ·) satisfies
the large deviation principle with rate function I (x) = supθ∈R{θx − �(θ)}. The
advantage of approximating the general case by the case when h is a sum of expo-
nentials is that �n(θ) can be evaluated by an optimization problem, which should
be computable by some numerical scheme.
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