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Wonderful Examples, but Let’s not Close
Our Eyes
David J. Hand

Abstract. The papers in this collection are superb illustrations of the power
of modern Bayesian methods. They give examples of problems which are
well suited to being tackled using such methods, but one must not lose sight
of the merits of having multiple different strategies and tools in one’s infer-
ential armoury.
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Space prohibits me from making specific comments
on each of these informative and thought-provoking
papers—they each merit an extended discussion in
their own right. Instead, I will make some general com-
ments about the collection.

The papers provide marvelous examples of the
power of modern statistics and, in particular, of the
power of modern Bayesian methods. The adjective
“modern” here is intended mainly to indicate that it
is the power of the computer which has made practical
solutions such as those illustrated in these papers. But
I have to ask, is the emphasis on “Bayesian” necessary?
That is, do we need further demonstrations aimed at
promoting the merits of Bayesian methods? Surely the
case is proven: Bayesian methods are very well suited
to tackling many problems, leading to solutions which
would be hard to arrive at by alternative methods.

The examples in this special issue were selected first
by the authors, who decided what to write about, and,
then, second by the editors, in deciding the extent to
which the articles conformed to their desiderata of be-
ing Bayesian success stories: that they “present actual
data processing stories where a non-Bayesian solution
would have failed or produced suboptimal results.” In
a way I think this is unfortunate. I am certainly con-
vinced of the power of Bayesian inference for tack-
ling many problems, but the generality and power of
the method is not really demonstrated by a collection
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specifically selected on the grounds that this approach
works and others fail. To take just one example, choos-
ing problems which would be difficult to attack us-
ing the Neyman–Pearson hypothesis testing strategy
would not be a convincing demonstration of a weak-
ness of that approach if those problems lay outside the
class that approach was designed to attack. One of the
basic premises of science is that you must not select
the data points which support your theory, discarding
those which do not. In fact, on the contrary, one should
test one’s theory by challenging it with tough prob-
lems or new observations. (This contrasts with political
party rallies, where the candidates speak to a cheering
audience of those who already support them.) So the
fact that the articles in this collection provide wonder-
ful stories illustrating the power of modern Bayesian
methods is rather tarnished by the one-sidedness of the
story. If I wasn’t already convinced of the power of the
Bayesian paradigm, I might be tempted to wonder if
there was too much protestation going on.

Or perhaps, if one is going to have a collection of
papers demonstrating the power of one particular in-
ferential school, then, in the journalistic spirit of bal-
anced reporting, we should invite a series of similar
articles which “present actual data processing stories
where a nonfrequentist/nonlikelihood/non-[fill in your
favorite school of inference] solution would have failed
or produced suboptimal results.” Or even examples of
the power of each of the other 46655 different varieties
of Bayesian approach (Good, 1971).

The editors emphasized that they were not looking
for “argumentative rehashes of the Bayesian versus fre-
quentist debate.” I can only commend them on that.
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On the other hand, times move on, ideas develop, and
understanding deepens, so while “argumentative re-
hashes” might not be desirable, reexamination from a
more sophisticated perspective might be. The editors
went on to say “we the editors are convinced of the
generic appeal of ‘doing it Bayes’ way,’ while non-
Bayesians are convinced of the opposite.” I think this
is a slightly unfortunate phrasing. I would (admittedly,
perhaps naively) like to think that any modern statis-
tician would look at each problem on its merits, and
decide what “way” was best suited to tackle that prob-
lem. I am always a little uncomfortable when I hear
about “the one true way” of looking at things.

An interesting question, perhaps in part sociologi-
cal, is why different scientific communities tend to fa-
vor different schools of inference. Astronomers favor
Bayesian methods, particle physicists and psycholo-
gists seem to favor frequentist methods. Is there some-
thing about these different domains which makes them
more amenable to attack by different approaches?

In general, when building statistical models, we must
not forget that the aim is to understand something about
the real world. Or predict, choose an action, make
a decision, summarize evidence, and so on, but al-
ways about the real world, not an abstract mathemat-
ical world: our models are not the reality—a point well
made by George Box in his oft-cited remark that “all
models are wrong, but some are useful” (Box, 1979).
So, likewise, if different models suit different purposes,
why should we expect one approach to inference to be
universally applicable? The internal mathematical co-
herence of Bayesian methods is very attractive, but it
must not be allowed to take priority over the ultimate
aim, which is to say something about the reality we are
studying. As Albert Einstein put it: “as far as the propo-
sitions of mathematics refer to reality, they are not cer-
tain; and as far as they are certain, they do not refer to
reality.” (Einstein, 1921). As an aside, there is also the
question of what exactly is meant by “Bayesian.” Cox
and Donnelly [(2011), page 144] remark that “the word
Bayesian, however, became ever more widely used,
sometimes representing a regression to the older us-
age of ‘flat’ prior distributions supposedly representing
initial ignorance, sometimes meaning models in which
the parameters of interest are regarded as random vari-
ables and occasionally meaning little more than that the
laws of probability are somewhere invoked.”

Turning to the papers themselves, the Bayesian ap-
proach to statistics, with its interpretation of param-
eters as random variables, has the merit of formulat-
ing everything in a consistent manner. Instead of trying

to fit together objects of various different kinds, one
merely has a single common type of brick to use, which
certainly makes life easier. In particular, this means
that very elaborate models can be handled with relative
ease. As is elegantly demonstrated in the papers, al-
though the model formulation requires deep and care-
ful thought, at some level the Bayesian procedure is
attractively straightforward.

On the basis of these papers, one can certainly see
the sorts of problems which lend themselves to attack
by Bayesian methods and which are difficult to ap-
proach in other ways. Common characteristics seem
to be complex models, fragmentary and indirect evi-
dence, the task being evidence synthesis or explicitly
to develop a probability distribution, and so on. Each of
these are tough problems to cope with, and one should
be reassured that statisticians now have the tools to
tackle them.

But reassurance should not drift into complacency.
When presented with fragmentary evidence, for exam-
ple, one should proceed with caution. In such circum-
stances, the opportunity for undetected selection bias
is considerable. Assumptions about the missing data
mechanism may be untestable, perhaps even unnoticed.
Data can be missing only in the context of a larger
model, and one might not have any idea about what
model might be suitable. Having an inferential strategy
which can cope with such problems should not tempt
one to ignore the fact that they are there, along with
the consequent qualifications and reservations about
the conclusions drawn.

Likewise, the power of Bayesian methods to han-
dle complex models is very exciting. Many problems
statisticians are asked to tackle are complex, and a
complex model is necessary. So the fact that we statis-
ticians now have a paradigm which will allow us to
tackle increasingly complex models is certainly to be
applauded. But I do have this nagging feeling that
sometimes a more approximate solution might be more
suitable. On the one hand, very elaborate models have
many ways to be misspecified, and, on the other, statis-
ticians rarely work on practical problems in isolation,
but typically in conjunction with domain experts in the
area being explored. The statistician brings statistical
expertise, but at the end of it all the answer must be
comprehensible to the other scientists: one aspect of
a model being “useful,” to use Box’s word, is that it
should be comprehensible. And there are other related
aspects. Timeliness, a corollary of simplicity, is one.
I am reminded of a comment made by David Lawrence
of Citicorp: “In one business, we waited more than
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20 months for a professor of statistics to come up
with the ‘Cadillac’ of scoring systems, while all the
business needed was a ‘Chevrolet’ that would work.”
(Lawrence, 1984, page 55).

You will see that I am trying to argue the case of
balance. Despite that, and however you look at it, the
editors are to be congratulated on collating a superb
collection of papers illustrating the power of mod-
ern statistics to handle complex problems. Moreover,
within the remit of what they set out to do—to demon-
strate the power of modern Bayesian methods—they
certainly succeeded. I shall definitely draw the atten-
tion of my students to this excellent collection of arti-
cles.
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