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A Parametric Framework for the
Comparison of Methods of Very Robust
Regression
Marco Riani, Anthony C. Atkinson and Domenico Perrotta

Abstract. There are several methods for obtaining very robust estimates of
regression parameters that asymptotically resist 50% of outliers in the data.
Differences in the behaviour of these algorithms depend on the distance be-
tween the regression data and the outliers. We introduce a parameter λ that
defines a parametric path in the space of models and enables us to study, in a
systematic way, the properties of estimators as the groups of data move from
being far apart to close together. We examine, as a function of λ, the variance
and squared bias of five estimators and we also consider their power when
used in the detection of outliers. This systematic approach provides tools for
gaining knowledge and better understanding of the properties of robust esti-
mators.

Key words and phrases: Distance of outliers, forward search, least trimmed
squares, MM estimate, multiple outliers, overlap index, point contamination,
regression diagnostics.

1. INTRODUCTION

Multiple regression is one of the main tools of ap-
plied statistics. It has, however, long been appreciated
that ordinary least squares as a method of fitting regres-
sion models is exceptionally susceptible to the pres-
ence of outliers. Instead, very robust methods, that
asymptotically resist 50% of outliers, are to be pre-
ferred. Our paper presents a systematic, parameterised
framework for the nonasymptotic comparison of these
methods.

Very robust regression was introduced by Rousseeuw
(1984) who developed suggestions of Hampel (1975)
that led to the Least Median of Squares (LMS) and
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Least Trimmed Squares (LTS) algorithms. For some
history of more recent developments see Rousseeuw
and Van Driessen (2006). More general discussions
of robust methods are in Maronna, Martin and Yohai
(2006) and Morgenthaler (2007). We illustrate our
methods for the comparison of high-breakdown regres-
sion procedures with comparisons of the performance
of LTS and other well-established methods, including
S and MM estimators, with that of a publicly avail-
able algorithm for very robust regression that uses the
Forward Search (FS). See Atkinson, Riani and Cerioli
(2010) for a recent discussion of the FS.

Very robust regression estimators share the property
that, asymptotically, they have a breakdown point of
50% (see Section 3.2) as the main data and outliers
become infinitely far apart. In order to distinguish be-
tween the estimators we study, in a systematic way,
their properties as the distance between the two groups
of observations decreases. In Section 4 we introduce a
parameterised framework, with parameter λ, for mov-
ing the outliers along a trajectory which is initially re-
mote from the main data, but which then passes close to
it before again becoming far away. We control whether,
at their closest, the two populations share the same cen-
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tre. We design measures of overlap to calibrate the tra-
jectories.

Numerical results are in Sections 5 and 6. In Sec-
tion 5 we take the outliers from the regression model
to have a multivariate normal distribution. This pro-
vides a very general scenario for outliers that can range
from a seemingly random scatter around the regression
plane to points virtually on a line. The special case of
point contamination is explored in Section 6. Boxplots
of the estimates from the five methods as λ varies in-
deed show that, for wide separations, the methods have
similar properties. However, they differ markedly as
the two populations converge. In order to summarise
this information, we look at cumulative plots, over the
range of λ, of the variance and squared bias of the es-
timators. Another method of comparing robust estima-
tors is by their properties for outlier detection (Cook
and Hawkins, 1990). In Section 5 we calculate power
curves as a function of λ for the number of outliers
detected. Since the curves indicate that the estimators
provide tests of varying sizes, we find the size of the
outlier tests in Section 7.

There are two main conclusions. The first is that the
parameterised family of departures provides a cogent
framework for investigating the behaviour of very ro-
bust estimators. The second is that we can clearly es-
tablish the properties of the various methods of very
robust regression in terms of the bias and variance of
estimators and the size and power of outlier tests.

The approach is motivated in the next section by an
example in which there is a mixture of two regression
lines. Such data arise in the analysis of trade where dif-
ferent countries or suppliers may report different rela-
tionships between value and quantity. Although, in our
example, there are only two countries, which makes
the data appropriate for a robust analysis assuming one
model describes at least half the data, there is no reason
why there should not be several suppliers. The compar-
ative robust analysis of the data is in Section 8.

2. AN EXAMPLE: TRADE DATA

Our interest in the behaviour of robust regression
procedures when the main data and outliers are close
together was stimulated by a seemingly simple exam-
ple with a single explanatory variable. The data, shown
in Figure 1, are of a kind discussed by Perrotta, Riani
and Torti (2009) in the detection of fraud in interna-
tional trade, where false declarations of price are used
in tax evasion and money laundering. The result is data
which are a mixture of regression lines.

FIG. 1. Trade data: A mixture of two regression lines.

There are 180 observations in Figure 1 that come
from two firms. The structure is of two lines that over-
lap for lower values; any kind of separation is likely to
be impossible. However, the two lines are clearly sep-
arate for the higher values of y and x and a robust pro-
cedure should respond to this pattern, by downweight-
ing some of the observations in estimation and flag-
ging them as outliers. If the outlier pattern suggests that
there is a mixture of regression models, the analysis
can move to clusters of regression lines, as in García-
Escudero et al. (2010). But the first stage is the iden-
tification of outliers, for which a robust fit is required.
Interest in the analysis is not in individual outliers but
whether the two lines differ. Accordingly, in Section 4
we introduce a Bonferroni adjustment to provide, at
least theoretically, the desired samplewise size of the
outlier test. We return to the analysis of these data in
Section 8.

3. MODELS, DATA, ROBUSTNESS AND METHODS

3.1 Outliers and Regression

We consider the usual regression model with random
carriers [Huber and Ronchetti (2009), page 197]. The
observations are i.i.d. random vectors (y, xT ) ∈ �p+1,
where y ∈ � and x ∈ �p satisfy

y = xT β + u.(1)

The random errors u are distributed independently of
the covariates x and β is the p × 1 vector parameter of
interest.

In the absence of outliers the least squares estimate
β̂ is the best linear unbiased estimator of β . However,
even a single outlier can cause β̂ to be severely biased.



130 M. RIANI, A. C. ATKINSON AND D. PERROTTA

Figure 2 of Rousseeuw (1984) is a paradigmatic exam-
ple in which a cluster of 20 outliers at a remote point
in X-space cause the least squares fitted line to pass
close to the cluster. The robust line, in that case LMS,
completely downweights the outliers and is close to the
least squares line for the 30 remaining data points when
the outliers have been deleted.

Of course, the outliers are not usually known and the
problems of robust estimation and outlier detection are
closely related. In robust estimation a fit is found which
is close to that without the outliers. The robust fit then
allows identification of all important outliers. However,
the outliers may be difficult to identify from a non-
robust fit since their inclusion can seriously bias the
parameter estimates and make the outliers seem less
remote. “Backward” methods of outlier detection that
start from a fit to all data and then proceed by eliminat-
ing observations that appear to be outlying can there-
fore fail.

One example for regression is a synthetic data set
due to Hawkins, Bradu and Kass (1984) with n = 75
and three explanatory variables. The figures on page 95
of Rousseeuw and Leroy (1987) show that the least
squares residuals, unlike those from LMS, are not suf-
ficiently large to call attention to the ten outlying obser-
vations. Numerous other examples for regression are in
Chapters 3 and 4 of Atkinson and Riani (2000); further
plots for the Hawkins, Bradu and Kass (1984) data are
on pages 72 and 73.

3.2 Maxbias and Breakdown Point

Robustness is concerned with fitting a single model
to data which are generated by two, or maybe more,
models. We suppose that the larger part of the data,
1 − ε, where 0 < ε < 0.5, is generated by the model
M1(θ1) and the remaining part ε of the data is gen-
erated by the model M2(θ2). In the absence of out-
liers, that is, when ε = 0, an ideal robust estimator
would have a variance that achieved the Cramer–Rao
lower bound. If the data were contaminated, the esti-
mate would be unbiased. Such estimators do not exist.
Maronna, Martin and Yohai [(2006), Section 3.4] de-
scribe some compromises between the two properties.

Robust methods study the properties of methods that
fit M1(θ1) in ignorance of knowledge of the form of the
outlier generating model M2(θ2), which can be quite
general. When M1(·) is a regression model, M2(·) is
often taken, for example, to distribute observations ran-
domly over a large space, concentrate them in a cluster
or to be a second regression model. There is no diffi-
culty in having M1(θ) = M2(θ), but then we must have
θ1 �= θ2.

With M1(θ1) the usual regression model (1), let
Eu2 = σ 2 < ∞ and I (x) = ExxT . The bias of an esti-
mator β̂ of β is

b(β̂) = {
(β̂ − β)T I (x)(β̂ − β)

}0.5
.(2)

The bias depends on the estimator, the distribution of y

and x, the amount of contamination ε and on M2(θ2).
In the robustness literature dependence on M2(θ2) is
removed by considering estimators that minimise the
maximum (asymptotic) bias within a particular class
of estimators. The maxbias curve shows how the max-
imum bias varies with ε. The breakdown point of an
estimator is the minimum value of ε for which b(β̂)

in (2) equals ∞. The estimators we consider all have
an asymptotic breakdown point of 50%. An introduc-
tion to these ideas for regression is given by Maronna,
Martin and Yohai [(2006), Section 5.9]. Although 50%
is customarily considered to be the maximum possible
breakdown value, higher values may occur in cluster-
ing.

Unfortunately maxbias curves are only calculable
for some estimators and distributions of x. The lat-
ter are often assumed to be elliptically symmetrical.
A summary of the literature is given by Berrendero and
Zamar (2001) who extend results on maxbias curves
to regression models with intercepts and to regres-
sors that have Student’s t and Cauchy distributions,
although without intercepts. Berrendero, Mendes and
Tyler (2007) find maxbias curves for MM estimators,
again without intercepts. We describe MM estimators
in Section 3.3.

The theoretical results that are available are asymp-
totic and do not cover all estimators or models of in-
terest to us. A few numerical results are available for
finite samples. Figure 5.14 of Maronna, Martin and
Yohai (2006) plots biases of several estimators as a
function of a single parameter, the slope of the regres-
sion line for the contaminating observations. Figure 3
of García-Escudero et al. (2010) is more in the spirit
of our numerical approach. It shows the simulated bias
as a point cluster of outliers moves around a regres-
sion line. When the outliers are very close to the line,
the bias is negligible, as it is when the outliers are far
away and are easily downweighted by, in this case,
LTS. Only for intermediate outliers is the bias appre-
ciable.

In our numerical comparisons we study the variance
as well as the bias of the estimators. In addition, fol-
lowing the comments in Section 3.1 about the relation-
ship between robustness and outlier detection, we asses
the power of outlier tests using residuals from robustly
fitted models.
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3.3 Five Methods for Very Robust Regression

We compare and contrast the properties of what are
currently considered the five best methods for very ro-
bust regression. The algorithms that we use are all pub-
licly available from the Forward Search Data Analysis
(FSDA) Matlab toolbox. See Riani, Perrotta and Torti
(2012). In this section we outline the methods that we
compare. Full implementation details of the algorithms
are in the documentation of the FSDA library. Numer-
ically, all algorithms involve selecting many subsets
from the data. An important factor in our ability to con-
duct as many simulations as were necessary is the ef-
ficient sampling of subsets provided in FSDA as de-
scribed by Torti et al. (2012).

Traditional robust estimators attempt to limit the in-
fluence of outliers by replacing the squares of the resid-
uals in least squares estimation of β by a function
ρ of the residuals which is bounded. Of the numer-
ous forms that have been suggested for ρ(·) (Andrews
et al., 1972; Hampel et al., 1986; Huber and Ronchetti,
2009), we use the most popular choice, Tukey’s Bi-
weight, in which extreme residuals are replaced by the
value c2/6. See, for example, Rousseeuw and Leroy
(1987), (4.31). The M-estimator of scale σ̃M is the so-
lution to a second equation, for example, Rousseeuw
and Leroy (1987), (4.30), depending on a second ρ

function and a constant Kc. Although the two ρ func-
tions may be different, we again use the biweight. The
minimum value of σ̃M which satisfies this second equa-
tion provides the S-estimate of scale (σ̃S) with associ-
ated estimate of the vector of regression coefficients
(β̃S). Kc and c are related constants which are linked
to the breakdown point of the estimator of β . Fixing the
breakdown point at 50% gives a value for 1.547 for c

and an efficiency for estimation of 28.7% [Rousseeuw
and Leroy (1987), pages 135–143].

The MM-regression estimator is intended to improve
the S estimator. The S estimate of scale σ̃S is used and
kept fixed to estimate β , but with a value of Kc giving a
higher efficiency. Because of the relationship between
Kc and c, the hope expressed by Rousseeuw and Leroy
[(1987), page 143] is that the MM estimator maintains
its high breakdown point for finite samples. Follow-
ing the recommendation of Maronna, Martin and Yohai
[(2006), page 126], we take Kc such that the (asymp-
totic) nominal efficiency is 85%, which gave a high-
breakdown estimator in our examples, which included
up to 23% of outliers. Small numerical experiments in-
dicate that even slight increases, for example, to a nom-
inal efficiency of 87%, result in very low breakdown
and estimates similar to those from least squares.

The remaining three estimators of β result from
more direct approaches. The forward search (FS) uses
least squares to fit subsets of observations of increas-
ing size m to the data, with p ≤ m ≤ n. The for-
ward search for regression was introduced by Atkinson
and Riani (2000). A recent general review of forward
search methods is Atkinson, Riani and Cerioli (2010).
For efficient parameter estimation m should increase
until all n − m observations not in the subset used for
fitting are outliers. The outliers are found by testing at
each step of the search. The effect of simultaneous test-
ing can be severe (Atkinson and Riani, 2006); the FS
algorithm is designed to have size α of declaring an
outlier free sample to contain at least one outlier. We
perform the outlier test for individual observations at
a Bonferronised size α∗ = α/n, so taking the 1 − α∗
cutoff value of the reference distribution. In our calcu-
lations α = 0.01. The automatic algorithm is based on
that of Riani, Atkinson and Cerioli (2009) who used
scaled Mahalanobis distances to detect outliers in mul-
tivariate normal data. For regression we replace these
distances by deletion residuals.

In Least Trimmed Squares (LTS) [Rousseeuw (1984),
page 876] the search is over subsets of size h for which
the residual sum of squares from least squares esti-
mates of β is minimised. LTS has an asymptotic break-
down point of 50% when h = [n/2] + [(p + 1)/2].

To increase efficiency, reweighted versions of LTS
estimators can be computed. These reweighted estima-
tors, denoted LTSr, are computed by giving weight 0
to outlying observations. We then obtain a sample of
reduced size n− k, possibly outlier free, to which OLS
is applied. For comparison of results from LTSr with
those from the FS, we perform the outlier test at the
Bonferronised size α∗.

In FS, LTS and its reweighted version LTSr, σ 2 is
estimated from subsets formed by hard (0,1) trim-
ming. Consistency factors for the estimators are given
by Croux and Rousseeuw (1992), equation (6.5) and
follow from the results of Tallis (1963) on ellipti-
cally trimmed multivariate normal distributions. For
LTS we also use the small sample correction of Pison,
Van Aelst and Willems (2002).

4. A PARAMETERISED FAMILY OF DEPARTURES

As yM2 ∼ M2(θ2) → ∞ the observations yM1 and
yM2 from the two models become increasingly well
separated. Under these conditions the five estimators
in our study have similar properties. We are also in-
terested in those data configurations when the obser-
vations are not so well separated, so that both yM1
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and yM2 may be used in estimating θ because of over-
lap between the two samples. Such configurations are
highly informative about the differences in properties
of robust estimators. We define a finite-sample measure
of the overlap of yM1 and yM2 that is designed to be in-
formative for regression models. In general, the proper-
ties of robust estimators depend on the “distance” be-
tween the two models. Table 3.1 of Maronna, Martin
and Yohai (2006) is a typical example showing the be-
haviour of robust estimators as one observation → ∞.
Our proposed distance measure likewise provides a
framework for comparisons in the more complicated
world of regression procedures.

There is a sample S1 of n1 observations from M1(θ1)

with distribution F1(yi;xi, θ1) conditional on the value
of xi . These values of xi belong to a design region X .
The sample S2 of n2 observations from M2(θ2) has
conditional expectation E(y;xi, θ2). Some values of xi

from S2 may belong to X . We define the indicator

Ii,γ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

= 1, if F−1
1 (γ /2;xi, θ1)

< E(y;xi, θ2)

< F−1
1 (1 − γ /2;xi, θ1),

i ∈ S2, xi ∈ X ,
= 0, otherwise.

(3)

The index is a function of both θ1 and θ2 and we ex-
amine it over a set of parameter values 
1 and 
2. For
a particular set of parameter values θ1,k and θ2,k the
overlapping index is defined as

Oγ,k = ∑
i

Ii,γ,k, i ∈ S2.(4)

With M1(θ1) normal theory regression, we are there-
fore counting the total number of observations in S2
for which xi ∈ X , the conditional medians of which lie
in a strip around the expectation of M1(·). As γ de-
creases, the strip becomes broader in y. If also for all
i ∈ S2, xi ∈ X , then Oγ,k → n2, the number of obser-
vations in S2.

It is informative to keep θ1 fixed and to vary θ2 in a
smooth way with a parameter λ ∈ R. Then we look at
a set of indexes

Oγ (λ) = {Oγ,k}, θ1 ∈ 
1 and θ2,k ∈ 
2(λ).(5)

In particular, we vary θ2 linearly using the combination

θ2,k = λkθ
0
2 + (1 − λk)θ

1
2

(6)
(−∞ < λk ∈ � < ∞).

The set � of values considered is problem dependent.
With θ0

2 = θ1 the centre of M2 passes through that of

M1. Other choices of θ0
2 can produce a trajectory in

which the observations y2 are always outlying. Our ex-
amples show how the variance and bias of the param-
eter estimates change in a smooth way with λ, but in
different and informative ways for different estimators.

In Section 5 the contamination M2 in our examples
comes from a multivariate normal distribution. In the
Appendix we show how to calculate the probability of
intersection between this distribution and a strip around
the regression plane. We call this the theoretical over-
lapping index. Although it ignores X , it does signal
cases where y2 lies close to the regression line, even
if remote from X . These observations would then be
“good” leverage points, in the sense that they improve
the estimates of the regression parameters. For count-
ing vertical outliers we need observations that lie in X .
These are signalled by the index defined in (4), which
has to be calculated by simulation. We therefore call
this the empirical index.

5. THE NUMERICAL EFFECT OF OVERLAP:
NORMAL CONTAMINATION

Because of the flexibility of our systematic approach,
we can potentially cover a wide range of possibilities.
Here we look at three numerical examples with nor-
mal contamination. In the next section we consider
point contamination. We look at boxplots of the esti-
mates over a suitable � and relate these plots to the
overlapping indices. We separate out the variance and
bias components of the estimates and compare these
through cumulative plots over �. Finally, we compare
the estimators for their power of detecting outlying ob-
servations, that is, those that come from model 2. The
detection of outliers is particularly important if we re-
quire an indication that other methods of data analysis
are appropriate.

In our one-variable regression examples M1 is the
regression model yi = α + βxi + εi , with the indepen-
dent xi ∼ U(a, b), these values generated once for all
observations and values of λ. The standard deviation of
Y is σε and overlapping indices were calculated for a
strip of width ±2σε around E(Y ).

The expectation of x is μx = (a + b)/2. The bivari-
ate normal distribution for M2 has mean μ and vari-
ance � given by

μ =
(

α + β(μx + d)

μx + d

)
λ +

(
μ2

μ2

)
(1 − λ) and

(7)

� =
(

σ 2
1 σ12

σ12 σ 2
2

)
,



A PARAMETRIC FRAMEWORK FOR THE COMPARISON OF METHODS OF VERY ROBUST REGRESSION 133

FIG. 2. Example 1. Typical simulated data sets with n1 = 100 and n2 = 30 for nine values of λ. As λ increases, observations from M2
become close to those from M1 and then become remote again. The parallelogram defines the region for the empirical overlapping index.

where the first component corresponds to the response.
When λ = 1 the centres of the two populations are
identical when the displacement d = 0.

EXAMPLE 1. We took n1 = 100 with α = 10, β =
3, σε = 10, a = 0 and b = 10. For the second popu-
lation, n2 = 30, σ 2

1 = σ 2
2 = 20, σ12 = 2 and μ2 = 10.

Also, d = 0 so the centres coincide at λ = 1. There
were 100 simulations for each value of λ.

Figure 2 shows nine typical simulated data sets. As
λ increases from −3 to 4, the centre of M2 passes
through that of M1, at which point there is almost com-
plete overlapping of the observations from the two pop-
ulations. That the overlap is not complete is shown by
the plots of the indices in the upper panel of Figure 3,
the maxima of which are less than one. The theoreti-
cal index is slightly higher than the empirical index, as
there is some probability of observations falling within
the band of y values that are not in X . On the other
hand, the plot of the squared Mahalanobis distance
from the mean of M2 to that of M1 has a minimum
of zero, showing identity of the two centres.

We now consider the effect of these data configura-
tions on the estimation of β . The left-hand panels of
Figure 4 show boxplots, from 100 simulations, of the

values of the five estimators for a series of values of
λ, together with a typical data configuration for each.
For λ = −3, observations from M2 lie below and to the
right of those from M1. If these outliers are not iden-
tified, the slope of the line is decreased. The boxplots
all show some simulations where such estimates occur.
LTS has the highest variance amongst the estimators in
the main part of the boxplot, that is, for the estimates
when all outlying observations are rejected, with S the
second most variable. For λ = −1, LTSr and MM are
most affected by the outliers. The value λ = 1 corre-
sponds to virtually complete overlap of the two groups.
All methods, on average, give estimates that are biased
downwards. However, those for LTS and S are both
more variable and more biased. In the last panel, for
λ = 3, the outliers are not as well separated as they are
in panel 1. LTSr now has appreciable negative bias, due
to the inclusion of outliers in the reweighting stage.

Figure 5 provides a powerful summary of the results
on the variance and bias of the estimates of α and β

as λ varies. The left-hand panels show the partial sums
of the squared bias over � and the right-hand panels
show the partial sums of the variances. The values for
α are in the top row and those for β in the bottom row.

The plots illustrate the trade-off between bias and
variance for some of the estimators. For values of λ
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FIG. 3. Example 1. Upper panel: theoretical and empirical overlapping indices for the data in Figure 2, showing maxima at λ = 1. Lower
panel: squared Mahalanobis distance of M1 from M2 (right) and corresponding p-values (left).

FIG. 4. Example 1. Four simulated data sets for λ = −3,−1,1 and 3. Left-hand panels: boxplots, from 100 simulations, of estimates of β

(dotted and dashed line: β1 = 3) for FS, LTS, LTSr S and MM estimators. Right-hand panels: typical simulations for these four values of λ.
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FIG. 5. Example 1. Partial sums over � of simulated squared bias and variance of the five estimators. Left-hand panels squared bias,
right-hand panels variance. Top line α̂, bottom line β̂ .

up to three or so, LTS and S have the highest variances
and the lowest biases and have very similar properties.
Over the same range LTSr and MM have high biases
and low variances. The effect of the modification of
LTS to LTSr and S to MM has, in general, been to re-
duce variance at the cost of an increase in bias. The bias
values for FS are in between those of these two groups,
but closer to the lower pair of values, especially for
estimation of β . The variance of FS is close, and ulti-
mately less than, the low values for LTSr and MM.

The bottom right panel of Figure 4 shows that for
λ = 3, the outliers are becoming distinct from y1. As λ

increases further, the two groups become increasingly
distinct, an effect that is evident in Figure 5. For the ex-
treme values of λ, the horizontal value of the summed
squared bias for all estimators shows that the bias is
zero. The two populations are sufficiently far apart that
the asymptotics defining high breakdown apply. This
is achieved for slightly less separation by MM than
LTSr. The plots of partial sums of variances, on the
other hand, increase steadily, since the estimators are
always subject to the effect of the random variability in
the observations. The sums of variances for S and, par-
ticularly, LTS are, however, increasing more rapidly at
the ends of the region than those for the other three
methods, a result in line with the rows of boxplots for
λ = ±3 in Figure 4.

These plots illustrate the differing performance of
the five estimators. Since this is a paper about robust

statistics, we also looked at plots in which the variance
of the estimators was replaced by the average median
absolute deviation from the median. These plots were
close to those of the variances shown here.

In addition to good parameter estimates, we would
also like our estimate to signal the presence of out-
liers if the model fitted to the data is incorrect. Ac-
cordingly, we calculated the average power, that is, the
average number of observations correctly detected as
being contaminated, which is the average number of
detected observations from M2. In testing for the pres-
ence of outliers, we used a test of Bonferronised size
α∗. The results are in Figure 6. Outliers are not de-
tected for central values of λ, as the parameter esti-
mates are sufficiently corrupted by observations from
M2 that no observations appear outlying. As the means
of the two populations move apart, the number of out-
liers detected increases. Over most of the range FS has
the highest power and LTSr the lowest. The other three
estimates lie between these extremes, with MM hav-
ing lower power for values of λ near zero. As with any
power curves calculated for tests whose exact sizes are
not known, we need to calibrate these findings against
the size of the tests (see Section 7).

EXAMPLE 2. In the interests of space we present
only a part of our results, leaving the remainder for the
online supplement.



136 M. RIANI, A. C. ATKINSON AND D. PERROTTA

FIG. 6. Example 1. Simulated average power of the five procedures over �.

We stay with a single explanatory variable but now
choose a trajectory for λ such that θ0

2 �= θ1, so that most
of the observations y2 are outlying. The parameter val-
ues for population 1 were a = 0, b = 2, α = 10, β = 1
and σε = 10. For population 2, � = diag(4,0.1),μ2 =
3.4 and d = 2, so that the centres no longer coincided.
Also, n2 = 20. Figure 7 shows scatterplots of typical
samples for four values of λ. In the first, for λ = 1.5,
there is a set of horizontal outliers, which can be ex-
pected not appreciably to affect the estimate of slope.
As λ increases, the observations from M2 rise above
those from M1, generating increasingly remote verti-
cal outliers.

The behaviour of the five estimators for this new sit-
uation is summarised in the partial sum plots of Fig-
ure 8. The plots of variances are simply interpreted: S
and LTS have high variance for both α and β over the
whole range of λ, with MM and LTSr having low val-
ues which are slightly less than that of FS.

The comparison of biases is less straightforward.
The scatterplots of Figure 7 suggest that the two pop-
ulations should be adequately separated by the time
λ = 4. For lower values of λ, S and LTS have simi-
lar higher biases for β . The biases for α do not show
much difference for lower values of λ. In the right-hand
halves of the plots in Figure 8, with λ > 4, the two
populations are more separated. The plots of bias show
that S and LTS provide unbiased estimates (horizontal
plots) for smaller values of λ than does MM. The LTSr
estimates are not unbiased, even for the largest values
of λ. The FS has excellent properties; it has the lowest
bias for both parameters and a variance which is close
to those from MM and LTSr.

The plot of average power for this example in Fig-
ure 19 of Riani, Atkinson and Perrotta (2014) leads
to similar conclusions to those for Example 1 in Fig-
ure 6. FS has the highest power and LTSr the lowest,
but now the difference between FS and the other rules

FIG. 7. Example 2. Simulated data sets with n1 = 100 and n2 = 20 for four values of λ. As λ increases, observations from M2 become
close to those from M1 and then become remote again. The parallelogram defines the region for the empirical overlapping index.
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FIG. 8. Example 2. Partial sums over � of simulated squared bias and variance of the five estimators. Left-hand panels squared bias,
right-hand panels variance. Top line α̂, bottom line β̂ .

is much greater. S and MM have indistinguishable per-
formances, with LTS closer to that of LTSr.

EXAMPLE 3. The third example had five explana-
tory variables (p = 6), independently uniformly dis-
tributed on (0,2

√
10) with regression parameters β =

5 for all variables, σε = 10 and n1 = 200. For popula-
tion 2, � = diag(100, I5),μ2 = 3, d = 2 and n2 = 60.

This is a larger example, with n1 = 200 and n2 =
60. As λ increases from −1 to 2.6, the outliers “rise
through” the central observations. Since d �= 0, the cen-
tres of the two distributions are never identical. Unlike
our other two examples, this one does not include out-
liers at leverage points, so that the differences in be-
haviour of the methods are, to some extent, reduced.

With five explanatory variables the major contribu-
tion to the mean squared error of the parameter esti-
mates comes from β , so we only consider these val-
ues, which are plotted in Figure 21 of Riani, Atkin-
son and Perrotta (2014). With independent xj , the bias
and variance are the sums of those for the individual
components. LTS behaves surprisingly poorly, with the
uniformly highest bias and variance. LTSr and S have
medium behaviour for both properties, with the order
reversed for bias and variance, while MM and FS have
the same, lowest values for bias and similar values for
variance until λ = 1 when that for FS increases, al-
though staying below that for S. Unlike the other two
examples, the relative behaviour of the estimators is lit-
tle affected by the value of λ, a reflection of the stability

of the outlier pattern over �. Of course, the magnitude
of the outliers is largest for extreme values, but lever-
age points are not introduced or removed.

The plot of average power is in Figure 9. As in the
other plots of average power, FS has the highest power
and LTSr the least. The other three estimators have very
similar properties to each other. However, in assess-
ing power we need to be sure that we are comparing
tests with similar sizes. The zoom in the centre of the
plot for values of λ close to one shows that we are not,
with FS and LTSr, having the smallest values. For accu-
rate comparisons we need to scale the other three tests
downwards, which will reduce the curves below the
plotted values. However, even when λ = 1, outliers are
still present and, since d �= 0, we are not looking at the
null distribution of the test statistics. We consider null
distributions and the resulting size of tests in Section 7.

6. THE NUMERICAL EFFECT OF OVERLAP: POINT
CONTAMINATION

Point contamination plays an important role in the
theory of robust estimation, for example, in finding
conditions of maximum bias in regression (Martin,
Yohai and Zamar, 1989; Berrendero and Zamar, 2001).
Accordingly, we extend our simulations to such con-
tamination. Although it is a special case of (7) as
� → 0, there are new features.

The first feature is the response of the FS algorithm
to several identical observations. As the search pro-
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FIG. 9. Example 3. Simulated average power of the five procedures over � with an inset zoom of the central part of the figure.

gresses, observations are not only added to the subset
used in estimation, but remote observations are deleted.
If several of the identical observations are included,
those outside the point contamination will seem remote
and the search will collapse, since the fitted model will
be singular. If such singularity occurs, we identify all
identical observations and force them to enter at the
end of the search. As the figures show, in some cases
this has a powerful beneficial effect on the estimates.
The second feature is that the overlapping index now
has the value of either zero or one.

We took 100 x values between 0 and 1, with the nor-
mally distributed values of y such that approximately
95% lay between −0.5 and 0.5. We add 30 identi-
cal contaminating observations at (x0, y0) where both
the vertical and horizontal directions of contamination
range from −3 to 3.

Figure 10 shows plots of the partial sums of the mean
squared error of the estimates of the intercept and slope
for four values of y0 over a fine grid of values of x0

from −3 to 3. The most notable features are the poor
performance of LTS and the good performance of FS.

FIG. 10. Point contamination at (x0, y0). Partial sums of mean squared errors of estimates of α and β for five values of y0 as x0 varies
from −3 to 3.
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FIG. 11. Point contamination at (x0, y0). Partial sums of mean squared errors of estimates of α and β for five values of x0 as y0 varies
from −3 to 3.

This is particularly striking in the more extreme verti-
cal contaminations, y0 = ±1, where the FS estimates
are virtually unaffected by the thirty outliers.

In Figure 11 we look at the same quantities, as y0

varies for four fixed values of x0: −1, −0.5, 0.5 and 1.
Recall that the values of x range from 0 to 1, so these
plots are not symmetrical around x0 = 0. The most
striking feature is the excellent performance of the FS,
which is by far the best except when the contamination
passes through the centre of X ; even then it is slightly
better than MM and S. LTS behaves particularly poorly
when x0 ∈ X , but is uniformly poorest. S and MM are
similar, and slightly better than LTSr.

The use of point contamination allows sharp com-
parison of the algorithms for very robust regression.
In the more diffuse situations of Section 5 the plots of
the power curves, such as those of Figure 9, help to
strengthen the comparisons.

With this two-dimensional model for contamination
it is possible to explore the properties of the estima-
tors over a grid of values for (x0, y0). With higher di-
mensional problems, such as Example 3, we will again
need to construct a trajectory � along which the point
contamination moves.

7. SIZE COMPARISONS

In order to establish the size of the outlier tests, we
ran simulations for sample sizes n from 100 to 1000
for several different dimensions of problems. The re-
sults for p = 6 and 11 are in Figure 12. In the simu-
lations the samples were allowed to grow with n, so
that samples for larger values of n contained those for
smaller, leading to smoother curves. Both the response
and the explanatory variables were simulated from in-
dependent standard normal distributions, with all re-
gression coefficients set to one. Since all methods are
affine equivariant, these arbitrary choices do not affect
the results. For each value of n we present the average
of 10,000 simulations, in which we counted the number
of samples declared as containing at least one outlier,
with the tests conducted at the 1% Bonferronised level.

The figure shows that, for three out of the five rules,
the sizes are very far from the nominal value of 1%.
For n = 100 the sizes for MM, LTS and S when p = 6
range between 0.13 and 0.25. For p = 11 the range for
these rules is 0.36 to 0.81. The sizes decrease with n,
but are even so still around 2% for these rules when
n = 1000. The size for LTSr is closer to nominal, being
around 3% and 6% for n = 100 and decreasing rapidly
with n. Only FS has a size around 1% for both values
of p and all n.
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FIG. 12. Size of nominally 1% Bonferronised outlier tests for, left-hand panel, p = 6 and for p = 11. Note the different vertical scales in
the two panels.

These calculations of size show that FS is correctly
ordered as having highest power. The curves, such as
those in Figure 9, for LTSr do not need appreciable ad-
justment for size. However, size adjustment for MM,
LTS and S may well lead to procedures with less power
than LTSr.

A simple method of adjusting power for size is a nor-
mal, or logistic, plot of the power curves, as in Fig-
ure 8.12 of Atkinson (1985), when the slope of the
curve indicates power and the intercept size. Although
such a comparison would be possible here, our pur-
pose is not to establish the exact properties of outlier
tests. Rather we are concerned with introducing a gen-
eral framework for the comparison of methods for very
robust regression.

8. TRADE DATA AGAIN

We began our discussion of very robust regression in
Section 2 with the trade data plotted in Figure 1. We
now conclude with a plot of the fitted lines and of the
outliers identified by the five methods we have been
comparing. The results are in Figure 13 where the top
left-hand panel repeats the plot of the data. The other
panels show that FS, LTS and S all provide fits to the
lower of the two lines evident for the higher values of
value and quantity. The other two methods, reweighted
LTS and MM, provide fitted lines which lie more be-
tween the groups. Only FS indicates that there are a
large number of outliers which might perhaps be mod-
elled separately. These results are in line with the con-
clusions to be expected from the simulation results of
earlier sections, particularly the low power of the out-
lier tests for all except FS. However, the power compar-
isons combined with the size calculations of Section 7

show that we cannot change the level of the tests with-
out damaging the size of the test when there no outliers
and so identifying far too may outliers in the null case.

9. DISCUSSION

The largest contrast between estimators is shown in
the figures for point contamination of Section 6. The
relatively poor behaviour of LTS recalls the impres-
sion of Cook and Hawkins [(1990), Section 6], that
the related MVD method for multivariate data finds
“Outliers Everywhere.” The superior performance of
FS comes from the data-dependent flexibility of the
number of observations included in the final fit.

Several authors, for example, Cook, Hawkins and
Weisberg (1993) and Hawkins and Olive (2002), have
commented on the persistence of the effects of the
initial estimator, even asymptotically. The FS escapes
such persistence because, although the subset used in
fitting grows in size, observations can be deleted as
well as added. This provides the algorithmic flexibil-
ity that leads to such good performance in Section 6.
In addition, the flexibility of the FS combined with the
plotting of diagnostic measures makes possible the de-
tection of subpopulations in the data, not just the point
contamination of Section 6. An example of cluster de-
tection is shown in Figure 10 of Atkinson and Riani
(2007).

There is also some theoretical explanation for the
relative behaviour of the other estimators. In particu-
lar, the MM estimator is intended to improve the ef-
ficiency of the S estimator and, indeed, this estimator
has a lower variance in Examples 1 and 2. But this is
achieved at the cost of having higher bias than the S
estimator. The same is true for the comparison of LTSr
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FIG. 13. Trade data: results of five very robust analyses. Reading across: ◦ simulated regression data and outliers +; fitted FS line and
outliers +; LTS, reweighted LTS, S and MM estimators.

and LTS. For those values of (x0, y0) in Section 6 for
which x0 ∈ X , so that there are no leverage points to in-
troduce serious biases, LTSr and MM are, respectively,
an improvement on LTS and S.

We have illustrated the use of our framework for
comparing FS with methods designed to have a break-
down of 50%. Of course, the framework can be used
for comparisons with breakdown levels more likely to
be used in practice, such as 20% or 30%. The prop-
erties of FS, since they do not depend on a specified
breakdown level, will not be changed.

APPENDIX: THE THEORETICAL OVERLAPPING
INDEX

The response and the explanatory variables lie in a
space of dimension p + 1. Let these variables be w.
Then the regression plane can be written as bT w − c =
0. The equation of the normal to the plane through a
point w0 on the plane is

z1 = w0 + bd,(A.1)

where the scalar d is the distance from the plane. The
outlying observations, including the response, have a
multivariate normal distribution. Let these be W ∼

N (μ,�). We require the probability that W lies on
one side of the plane. To obtain this, rotate W to a set
of variables Z with z1 (A.1) the normal to the plane.
Integrating out the other p variables shows that the re-
quired probability comes from the marginal distribu-
tion of Z1 ∼ N (bT μ,bT �b). Let the distance in the
z1 direction from μ to the plane be d(c). Then, from
(A.1), at the plane bT w = c = bT μ + bT bd(c), so that

d(c) = (
c − bT μ

)
/bT b.(A.2)

Since the distance d(c) in the z1 direction has been
rescaled by the factor 1/bT b, the required probability
is

Pr
(
bT W > c

)
= Pr

(
Z1 > c − bT μ

)
(A.3)

= 

{
d(c)bT b/

(
bT �b

)0.5} = �(c) say,

where 
 is the c.d.f. of the (univariate) standard normal
distribution. We require this probability in terms of the
regression model, which we now write as y = α+βT x.
Then

bT = (
1 − βT )

, wT = (
yxT )

and c = α.
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Finally, we require the probability that W lies between
two planes. For any x the required strip around this
model is y ± 2σε . The two planes then are defined by
constants c+ = α + 2σε and c− = α − 2σε . From (A.3)
the required probability is �(c+) − �(c−).
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Supplement to “A Parametric Framework for the
Comparison of Methods of Very Robust Regres-
sion” (DOI: 10.1214/13-STS437SUPP; .pdf). Riani,
Atkinson and Perrotta (2014) includes further analy-
ses of data. The first is a second motivating example;
the other two are expanded versions of our analyses of
Examples 2 and 3 in the paper. This material is also
available at http://www.riani.it/pub/RAP13supp.html,
together with further, dynamic graphics and links to the
programs used to generate the results in our paper.
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