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Cluster and Feature Modeling from
Combinatorial Stochastic Processes
Tamara Broderick, Michael I. Jordan and Jim Pitman

Abstract. One of the focal points of the modern literature on Bayesian non-
parametrics has been the problem of clustering, or partitioning, where each
data point is modeled as being associated with one and only one of some
collection of groups called clusters or partition blocks. Underlying these
Bayesian nonparametric models are a set of interrelated stochastic processes,
most notably the Dirichlet process and the Chinese restaurant process. In
this paper we provide a formal development of an analogous problem, called
feature modeling, for associating data points with arbitrary nonnegative in-
teger numbers of groups, now called features or topics. We review the exist-
ing combinatorial stochastic process representations for the clustering prob-
lem and develop analogous representations for the feature modeling problem.
These representations include the beta process and the Indian buffet process
as well as new representations that provide insight into the connections be-
tween these processes. We thereby bring the same level of completeness to
the treatment of Bayesian nonparametric feature modeling that has previ-
ously been achieved for Bayesian nonparametric clustering.

Key words and phrases: Cluster, feature, Dirichlet process, beta process,
Chinese restaurant process, Indian buffet process, nonparametric, Bayesian,
combinatorial stochastic process.

1. INTRODUCTION

Bayesian nonparametrics is the area of Bayesian
analysis in which the finite-dimensional prior distribu-
tions of classical Bayesian analysis are replaced with
stochastic processes. While the rationale for allowing
infinite collections of random variables into Bayesian
inference is often taken to be that of diminishing the
role of prior assumptions, it is also possible to view
the move to nonparametrics as supplying the Bayesian
paradigm with a richer collection of distributions with
which to express prior belief, thus in some sense em-
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phasizing the role of the prior. In practice, however, the
field has been dominated by two stochastic processes—
the Gaussian process and the Dirichlet process—and
thus the flexibility promised by the nonparametric ap-
proach has arguably not yet been delivered. In the cur-
rent paper we aim to provide a broader perspective
on the kinds of stochastic processes that can provide
a useful toolbox for Bayesian nonparametric analy-
sis. Specifically, we focus on combinatorial stochastic
processes as embodying mathematical structure that is
useful for both model specification and inference.

The phrase “combinatorial stochastic process”
comes from probability theory (Pitman, 2006), where
it refers to connections between stochastic processes
and the mathematical field of combinatorics. Indeed,
the focus in this area of probability theory is on ran-
dom versions of classical combinatorial objects such as
partitions, trees and graphs—and on the role of com-
binatorial analysis in establishing properties of these
processes. As we wish to argue, this connection is also
fruitful in a statistical setting. Roughly speaking, in
statistics it is often natural to model observed data as
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arising from a combination of underlying factors. In the
Bayesian setting, such models are often embodied as
latent variable models in which the latent variable has
a compositional structure. Making explicit use of ideas
from combinatorics in latent variable modeling cannot
only suggest new modeling ideas but can also provide
essential help with calculations of marginal and condi-
tional probability distributions.

The Dirichlet process already serves as one interest-
ing exhibit of the connections between Bayesian non-
parametrics and combinatorial stochastic processes.
On the one hand, the Dirichlet process is classically
defined in terms of a partition of a probability space
(Ferguson, 1973), and there are many well-known con-
nections between the Dirichlet process and urn mod-
els (Blackwell and MacQueen, 1973; Hoppe, 1984).
In the current paper, we will review and expand upon
some of these connections, beginning our treatment
(nontraditionally) with the notion of an exchangeable
partition probability function (EPPF) and, from there,
discussing related urn models, stick-breaking represen-
tations, subordinators and random measures.

On the other hand, the Dirichlet process is limited
in terms of the statistical notion of a “combination
of underlying factors” that we referred to above. In-
deed, the Dirichlet process is generally used in a sta-
tistical setting to express the idea that each data point
is associated with one and only one underlying fac-
tor. In contrast to such clustering models, we wish to
also consider featural models, where each data point
is associated with a set of underlying features and it
is the interaction among these features that gives rise
to an observed data point. Focusing on the case in
which these features are binary, we develop some of the
combinatorial stochastic process machinery needed to
specify featural priors. Specifically, we develop a coun-
terpart to the EPPF, which we refer to as the exchange-
able feature probability function (EFPF), that charac-
terizes the combinatorial structure of certain featural
models. We again develop connections between this
combinatorial function and suite of related stochastic
processes, including urn models, stick-breaking repre-
sentations, subordinators and random measures. As we
will discuss, a particular underlying random measure
in this case is the beta process, originally studied by
Hjort (1990) as a model of random hazard functions in
survival analysis, but adapted by Thibaux and Jordan
(2007) for applications in featural modeling.

For statistical applications it is not enough to develop
expressive prior specifications, but it is also essential
that inferential computations involving the posterior

distribution are tractable. One of the reasons for the
popularity of the Dirichlet process is that the associated
urn models and stick-breaking representations yield a
variety of useful inference algorithms (Neal, 2000). As
we will see, analogous algorithms are available for fea-
tural models. Thus, as we discuss each of the various
representations associated with both the Dirichlet pro-
cess and the beta process, we will also (briefly) discuss
some of the consequences of each for posterior infer-
ence.

The remainder of the paper is organized as follows.
We start by reviewing partitions and introducing fea-
ture allocations in Section 2 in order to define distri-
butions over these models (Section 3) via the EPPF
in the partition case (Section 3.1) and the EFPF in the
feature allocation case (Section 3.2). Illustrating these
exchangeable probability functions with examples, we
will see that the well-known Chinese restaurant pro-
cess (CRP) (Aldous, 1985) corresponds to a particular
EPPF choice (Example 1) and the Indian buffet process
(IBP) (Griffiths and Ghahramani, 2006) corresponds to
a particular choice of EFPF (Example 5). From here,
we progressively build up richer models by first re-
viewing stick lengths (Section 4), which we will see
represent limiting frequencies of certain clusters or fea-
tures, and then subordinators (Section 5), which further
associate a random label with each cluster or feature.
We illustrate these progressive augmentations for both
the CRP (Examples 1, 6, 10, 18 and 20) and IBP ex-
amples (Examples 5, 7, 11 and 15). We augment the
model once more to obtain a random measure on a gen-
eral space of cluster or feature parameters in Section 6,
and discuss how marginalization of this random mea-
sure yields the CRP in the case of the Dirichlet process
(Example 23) and the IBP in the case of the beta pro-
cess (Example 24). Finally, in Section 7, we mention
some of the other combinatorial stochastic processes,
beyond the Dirichlet process and the beta process, that
have begun to be studied in the Bayesian nonparamet-
rics literature, and we provide suggestions for further
developments.

2. PARTITIONS AND FEATURE ALLOCATIONS

While we have some intuitive ideas about what con-
stitutes a cluster or feature model, we want to for-
malize these ideas before proceeding. We begin with
the underlying combinatorial structure on the data in-
dices. We think of [N ] := {1, . . . ,N} as representing
the indices of the first N data points. There are differ-
ent groupings that we apply in the cluster case (par-
titions) and feature case (feature allocations); we de-
scribe these below.
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First, we wish to describe the space of partitions
over the indices [N ]. In particular, a partition πN

of [N ] is defined to be a collection of mutually ex-
clusive, exhaustive, nonempty subsets of [N ] called
blocks; that is, πN = {A1, . . . ,AK} for some num-
ber of partition blocks K . An example partition of
[6] is π6 = {{1,3,4}, {2}, {5,6}}. Similarly, a partition
of N = {1,2, . . .} is a collection of mutually exclu-
sive, exhaustive, nonempty subsets of N. In this case,
the number of blocks may be infinite, and we have
πN = {A1,A2, . . .}. An example partition of N into two
blocks is {{n :n is even}, {n :n is odd}}.

We introduce a generalization of a partition called
a feature allocation that relaxes both the mutually ex-
clusive and exhaustive restrictions. In particular, a fea-
ture allocation fN of [N ] is defined to be a multiset
of nonempty subsets of [N ], again called blocks, such
that each index n can belong to any finite number of
blocks. Note that the constraint that no index should
belong to infinitely many blocks coincides with our in-
tuition for the meaning of these blocks as groups to
which the index belongs. Consider an example where
the data points are images expressed as pixel arrays,
and the latent features represent animals that may or
may not appear in each picture. It is impossible to dis-
play an infinite number of animals in a picture with
finitely many pixels.

We write fN = {A1, . . . ,AK} for some number of
feature allocation blocks K . An example feature al-
location of [6] is f6 = {{2,3}, {2,4,6}, {3}, {3}, {3}}.
Just as the blocks of a partition are sometimes called
clusters, so are the blocks of a feature allocation some-
times called features. We note that a partition is always
a feature allocation, but the converse statement does
not hold in general; for instance, f6 given above is not
a partition.

In the remainder of this section we continue our de-
velopment in terms of feature allocations since par-
titions are a special case of the former object. We
note that we can extend the idea of random partitions
(Aldous, 1985) to consider random feature allocations.
If FN is the space of all feature allocations of [N ], then
a random feature allocation FN of [N ] is a random el-
ement of this space.

We next introduce a few useful assumptions on our
random feature allocation. Just as exchangeability of
observations is often a central assumption in statisti-
cal modeling, so will we make use of exchangeable
feature allocations. To rigorously define such feature
allocations, we introduce the following notation. Let
σ : N → N be a finite permutation. That is, for some

finite value Nσ , we have σ(n) = n for all n > Nσ . Fur-
ther, for any block A ⊂ N, denote the permutation ap-
plied to the block as follows: σ(A) := {σ(n) :n ∈ A}.
For any feature allocation FN , denote the permutation
applied to the feature allocation as follows: σ(FN) :=
{σ(A) :A ∈ FN }. Finally, let FN be a random feature
allocation of [N ]. Then we say that FN is exchange-

able if FN
d= σ(FN) for every finite permutation σ .

Our second assumption in what follows will be that
we are dealing with a consistent feature allocation. We
often implicitly imagine the indices arriving one at a
time: first 1, then 2, up to N or beyond. We will find
it useful, similarly, in defining random feature alloca-
tions to suppose that the randomness at stage n some-
how agrees with the randomness at stage n + 1. More
formally, we say that a feature allocation fM of [M]
is a restriction of a feature allocation fN of [N ] for
M < N if

fM = {
A ∩ [M] :A ∈ fN

}
.

Let RN(fM) be the set of all feature allocations of [N ]
whose restriction to [M] is fM . Then we say that the
sequence of random feature allocations (Fn) is consis-
tent if for all M and N such that M < N , we have that

FN ∈ RN(FM) a.s.(1)

With this consistency condition in hand, we can de-
fine a random feature allocation F∞ of N. In partic-
ular, such a feature allocation is characterized by the
sequence of consistent finite restrictions FN to [N ]:
FN := {A ∩ [N ] :A ∈ F∞}. Then F∞ is equivalent to
a consistent sequence of finite feature allocations and
may be thought of as a random element of the space
of such sequences: F∞ = (Fn)n. We let F∞ denote the
space of consistent feature allocations, of which each
random feature allocation is a random element, and we
see that the sigma-algebra associated with this space is
generated by the finite-dimensional sigma-algebras of
the restricted random feature allocations Fn.

We say that F∞ is exchangeable if F∞ d= σ(F∞)

for every finite permutation σ . That is, when the per-
mutation σ changes no indices above N , we require

FN
d= σ(FN), where FN is the restriction of F∞ to

[N ]. A characterization of distributions for F∞ is pro-
vided by Broderick, Pitman and Jordan (2013), where
a similar treatment of the introductory ideas of this sec-
tion also appears.

In what follows, we consider particular useful ways
of representing distributions for exchangeable, consis-
tent random feature allocations with emphasis on par-
titions as a special case.
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FIG. 1. The diagram represents a possible CRP seating arrangement after 11 customers have entered a restaurant with parameter θ . Each
large white circle is a table, and the smaller gray circles are customers sitting at those tables. If a 12th customer enters, the expressions in
the middle of each table give the probability of the new customer sitting there. In particular, the probability of the 12th customer sitting at the
first table is 5/(11 + θ), and the probability of the 12th customer forming a new table is θ/(11 + θ).

3. EXCHANGEABLE PROBABILITY FUNCTIONS

Once we know that we can construct (exchangeable
and consistent) random partitions and feature alloca-
tions, it remains to find useful representations of distri-
butions over these objects.

3.1 Exchangeable Partition Probability Function

Consider first an exchangeable, consistent, random
partition (�n). By the exchangeability assumption, the
distribution of the partition should depend only on the
(unordered) sizes of the blocks. Therefore, there ex-
ists a function p that is symmetric in its arguments
such that, for any specific partition assignment πn =
{A1, . . . ,AK}, we have

P(�n = πn) = p
(|A1|, . . . , |AK |).(2)

The function p is called the exchangeable partition
probability function (EPPF) (Pitman, 1995).

EXAMPLE 1 (Chinese restaurant process). The
Chinese restaurant process (CRP) (Blackwell and Mac-
Queen, 1973) is an iterative description of a parti-
tion via the conditional distributions of the partition
blocks to which increasing data indices belong. The
Chinese restaurant metaphor forms an equivalence be-
tween customers entering a Chinese restaurant and data
indices; customers who share a table at the restaurant
represent indices belonging to the same partition block.

To generate the label for the first index, the first cus-
tomer enters the restaurant and sits down at some ta-
ble, necessarily unoccupied since no one else is in the
restaurant. A “dish” is set out at the new table; call the
dish “1” since it is the first dish. The customer is as-
signed the label of the dish at her table: Z1 = 1. Recur-
sively, for a restaurant with concentration parameter θ ,
the nth customer sits at an occupied table with proba-
bility in proportion to the number of people at the table
and at a new table with probability proportional to θ .
In the former case, Zn takes the value of the existing

dish at the table, and, in the latter case, the next avail-
able dish k (equal to the number of existing tables plus
one) appears at the new table, and Zn = k. By summing
over all possibilities when the nth customer arrives,
one obtains the normalizing constant for the distribu-
tion across potential occupied tables: (n − 1 + θ)−1.
An example of the distribution over tables for the nth
customer is shown in Figure 1. To summarize, if we let
Kn := max{Z1, . . . ,Zn}, then the distribution of table
assignments for the nth customer is

P(Zn = k|Z1, . . . ,Zn−1)
(3)

= (n − 1 + θ)−1

⎧⎪⎨
⎪⎩

#{m :m < n,Zm = j},
for j ≤ Kn−1,

θ, for k = Kn−1 + 1.

We note that an equivalent generative description
follows a Pólya urn style in specifying that each in-
coming customer sits next to an existing customer with
probability proportional to 1 and forms a new table
with probability proportional to θ (Hoppe, 1984).

Next, we find the probability of the partition induced
by considering the collection of indices sitting at each
table as a block in the partition. Suppose that Nk in-
dividuals sit at table k so that the set of cardinali-
ties of nonzero table occupancies is {N1, . . . ,NK} with
N := ∑K

k=1 Nk . That is, we are considering the case
when N customers have entered the restaurant and sat
at K different tables in the specified configuration.

We can see from equation (3) that when the nth cus-
tomer enters (n > 1), we obtain a factor of n− 1 + θ in
the denominator. Using the following notation for the
rising and falling factorial

xM↑a :=
M−1∏
m=0

(x + ma), xM↓a :=
M−1∏
m=0

(x − ma),

we find a factor of (θ + 1)N−1↑1 must occur in the de-
nominator of the probability of the partition of [N ].
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Similarly, each time a customer forms a new table ex-
cept for the first table, we obtain a factor of θ in the
numerator. Combining these factors, we find a factor of
θK−1 in the numerator. Finally, each time a customer
sits at an existing table with n occupants, we obtain a
factor of n in the numerator. Thus, for each table k,
we have a factor of (Nk − 1)! once all customers have
entered the restaurant.

Having collected all terms in the process, we see that
the probability of the resulting configuration is

P(�N = πN) = θK−1 ∏K
k=1(Nk − 1)!

(θ + 1)N−1↑1
.(4)

We first note that equation (4) depends only on the
block sizes and not on the order of arrival of the cus-
tomers or dishes at the tables. We conclude that the
partition generated according to the CRP scheme is ex-
changeable. Moreover, as the partition �M is the re-
striction of �N to [M] for any N > M by construction,
we have that equation (4) satisfies the consistency con-
dition. It follows that equation (4) is, in fact, an EPPF.

3.2 Exchangeable Feature Probability Function

Just as we considered an exchangeable, consis-
tent, random partition above, so we now turn to an
exchangeable, consistent, random feature allocation
(Fn). Let fN = {A1, . . . ,AK} be any particular fea-
ture allocation. In calculating P(FN = fN), we start by
demonstrating in the next example that this probability
in some sense undercounts features when they contain
exactly the same indices: for example, Aj = Ak for
some j 
= k. For instance, consider the following ex-
ample.

EXAMPLE 2 (A two-block, Bernoulli feature allo-
cation). Let qA, qB ∈ (0,1) represent the frequencies

of features A and B . Draw ZA,n
i.i.d.∼ Bern(qA) and

ZB,n
i.i.d.∼ Bern(qB), independently. Construct the ran-

dom feature allocation by collecting those indices with
successful draws:

FN := {{n :n ≤ N,ZA,n = 1}, {n :n ≤ N,ZB,n = 1}}.
Then the probability of the feature allocation F5 =
f5 := {{2,3}, {2,3}} is

q2
A(1 − qA)3q2

B(1 − qB)3,

but the probability of the feature allocation F5 = f ′
5 :=

{{2,3}, {2,5}} is

2q2
A(1 − qA)3q2

B(1 − qB)3.

The difference is that in the latter case the features can
be distinguished, and so we must account for the two
possible pairings of features to frequencies {qA, qB}.

Now, instead, let F̃N be FN with a uniform random
ordering on the features. There is just a single possi-
ble ordering of f5, so the probability of F̃5 = f̃5 :=
({2,3}, {2,3}) is again

q2
A(1 − qA)3q2

B(1 − qB)3.

However, there are two orderings of f ′
5, so the proba-

bility of F̃5 = f̃ ′
5 := ({2,5}, {2,3}) is

q2
A(1 − qA)3q2

B(1 − qB)3,

and the same holds for the other ordering.

For reasons suggested by the previous example, we
will find it useful to work with the random feature al-
location after uniform random ordering, F̃N . One way
to achieve such an ordering and maintain consistency
across different N is to associate some independent,
continuous random variable with each feature; for ex-
ample, assign a uniform random variable on [0,1] to
each feature and order the features according to the or-
der of the assigned random variables. When we view
feature allocations constructed as marginals of a subor-
dinator in Section 5, we will see that this construction
is natural.

In general, given a probability of a random feature
allocation, P(FN = fN), we can find the probability of
a random ordered feature allocation, P(F̃N = f̃N ) as
follows. Let H be the number of unique elements of
FN , and let (K̃1, . . . , K̃H ) be the multiplicities of these
unique elements in decreasing size. Then

P(F̃N = f̃N ) =
(

K

K̃1, . . . , K̃H

)−1
P(FN = fN),(5)

where (
K

K̃1, . . . , K̃H

)
:= K!

K̃1! · · · K̃H ! .
We will see in Section 5 that augmentation of an

exchangeable partition with a random ordering is also
natural. However, the probability of an ordered random
partition is not substantively different from the prob-
ability of an unordered version since the factor con-
tributed by ordering a partition is always 1/K!, where
K here is the number of partition blocks.

With this framework in place, we can see that some
ordered feature allocations have a probability function
p nearly as in equation (2), that is, moreover, symmet-
ric in its block-size arguments. Consider again the pre-
vious example.
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EXAMPLE 3 (A two-block, Bernoulli feature alloca-
tion (continued)). Consider any FN with block sizes
N1 and N2 constructed as in Example 2. Then

P(F̃N = f̃N )

= 1
2q

N1
A (1 − qA)N−N1q

N2
B (1 − qB)N−N2

+ 1
2q

N2
A (1 − qA)N−N2q

N1
B (1 − qB)N−N1

= p(N,N1,N2),(6)

where p is some function of the number of indices N

and the block sizes (N1,N2) that we note is symmetric
in all arguments after the first. In particular, we see that
the order of N1 and N2 was immaterial.

We note that in the partition case,
∑K

k=1 |Ak| = N , so
N is implicitly an argument to the EPPF. In the feature
case, this summation condition no longer holds, so we
make the argument N explicit in equation (6).

However, it is not necessarily the case that such a
function, much less a symmetric one, exists for ex-
changeable feature models—in contrast to the case of
exchangeable partitions and the EPPF.

EXAMPLE 4 (A general two-block feature alloca-
tion). We here describe an exchangeable, consistent
random feature allocation whose (ordered) distribution
does not depend only on the number of indices N and
the sizes of the blocks of the feature allocation.

Let p1,p2,p3,p4 be fixed frequencies that sum to
one. Let Yn represent the collection of features to
which index n belongs. For n ∈ {1,2}, choose Yn in-
dependently and identically according to

Yn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{A}, with probability p1,

{B}, with probability p2,

{A,B}, with probability p3,

∅, with probability p4.

We form a feature allocation from these labels as fol-
lows. For each label (A or B), collect those indices n

with the given label appearing in Yn to form a feature.
Now consider two possible outcome feature alloca-

tions: f2 = {{2}, {2}} and f ′
2 = {{1}, {2}}. The likeli-

hood of any random ordering f̃2 of f2 under this model
is

P(F̃2 = f̃2) = p0
1p

0
2p

1
3p

1
4.

The likelihood of any ordering f̃ ′
2 of f ′

2 is

P
(
F̃2 = f̃ ′

2
) = p1

1p
1
2p

0
3p

0
4.

It follows from these two likelihoods that we can
choose values of p1,p2,p3,p4 such that P(F̃2 = f̃2) 
=
P(F̃2 = f̃ ′

2). But f̃2 and f̃ ′
2 have the same block counts

and N value (N = 2). So there can be no such symmet-
ric function p, as in equation (6), for this model.

When a function p exists in the form

P(F̃N = f̃N ) = p
(
N, |A1|, . . . , |AK |)(7)

for some random ordered feature allocation f̃N =
(A1, . . . ,AK) such that p is symmetric in all argu-
ments after the first, we call it the exchangeable fea-
ture probability function (EFPF). Note that the EPPF is
not a special case of the EFPF. The EPPF assigns zero
probability to any multiset in which an index occurs in
more than one element of the multiset; only the sizes
of the multiset blocks are relevant in the EFPF case.

We next consider a more complex example of an
EFPF.

EXAMPLE 5 (Indian buffet process). The Indian
buffet process (IBP) (Griffiths and Ghahramani, 2006)
is a generative model for a random feature allocation
that is specified recursively like the Chinese restau-
rant process. Also like the CRP, this culinary metaphor
forms an equivalence between customers and the in-
dices n that will be partitioned: n ∈ N. Here, “dishes”
again correspond to feature labels just as they corre-
sponded to partition labels for the CRP. But in the IBP
case, a customer can sample multiple dishes.

In particular, we start with a single customer, who
enters the buffet and chooses K+

1 ∼ Pois(γ ) dishes.
Here, γ > 0 is called the mass parameter, and we
will also see the concentration parameter θ > 0 be-
low. None of the dishes have been sampled by any
other customers since no other customers have yet en-
tered the restaurant. We label the dishes 1, . . . ,K+

1 if
K+

1 > 0. Recursively, the nth customer chooses which
dishes to sample in two parts. First, for each dish k

that has previously been sampled by any customer in
1, . . . , n− 1, customer n samples dish k with probabil-
ity Nn−1,k/(θ + n − 1) for Nn,k equal to the number
of customers indexed 1, . . . , n who have tried dish k.
As each dish represents a feature, and sampling a dish
represents that the customer index n belongs to that
feature, Nn,k is the size of the block of the feature la-
beled k in the feature allocation of [n]. Next, customer
n chooses K+

n ∼ Pois(θγ /(θ + n − 1)) new dishes to
try. If K+

n > 0, then the dishes receive unique labels
Kn−1 + 1, . . . ,Kn. Here, Kn represents the number of
sampled dishes after n customers: Kn = Kn−1 + K+

n .
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FIG. 2. Illustration of an Indian buffet process. The buffet (top)
consists of a vector of dishes, corresponding to features. Each cus-
tomer—corresponding to a data point—who enters first decides
whether or not to eat dishes that the other customers have already
sampled and then tries a random number of new dishes, not pre-
viously sampled by any customer. A gray box in position (n, k) in-
dicates customer n has sampled dish k, and a white box indicates
the customer has not sampled the dish. In the example, the second
customer has sampled exactly those dishes indexed by 2, 4 and 5:
Y2 = {2,4,5}.

An example of the first few steps in the Indian buffet
process is shown in Figure 2.

With this generative model in hand, we can find the
probability of a particular feature allocation. We dis-
cover its form by enumeration as for the CRP EPPF in
Example 1. At each round n, we have a Poisson number
of new features, K+

n , represented. The probability fac-
tor associated with these choices is a product of Pois-
son densities:

N∏
n=1

1

K+
n !

(
θγ

θ + n − 1

)K+
n

exp
(
− θγ

θ + n − 1

)
.

Let Mk be the round on which the kth dish, in order of
appearance, is first chosen. Then the denominators for
future dish choice probabilities are the factors in the
product (θ + Mk) · (θ + Mk + 1) · · · (θ + N − 1). The
numerators for the times when the dish is chosen are
the factors in the product 1 · 2 · · · (NN,k − 1). The nu-
merators for the times when the dish is not chosen yield
(θ + Mk − 1) · · · (θ + N − 1 − NN,k). Let An,k repre-
sent the collection of indices in the feature with label
k after n customers have entered the restaurant. Then
Nn,k = |An,k|. Finally, let K̃1, . . . , K̃H be the multi-
plicities of unique feature blocks formed by this model.
We note that there are[

N∏
n=1

K+
n !

]/[
H∏

h=1

K̃h!
]

rearrangements of the features generated by this pro-
cess that all yield the same feature allocation. Since
they all have the same generating probability, we sim-
ply multiply by this factor to find the feature allocation
probability. Multiplying all factors together and taking
fn = {AN,1, . . . ,AN,KN

} yields

P(FN = fN)

=
∏N

n=1 K+
n !∏H

h=1 K̃h!

·
[

N∏
n=1

1

K+
n !

(
θγ

θ + n − 1

)K+
n

exp
(
− θγ

θ + n − 1

)]

·
[

KN∏
k=1

�(θ + Mk)

�(θ + N)
�(NN,k)

�(θ + N − NN,k)

�(θ + Mk − 1)

]

=
(

H∏
h=1

K̃h!
)−1[ N∏

n=1

(θγ )K
+
n exp

(
− θγ

θ + n − 1

)]

·
[ ∏KN

k=1(θ + Mk − 1)∏N
n=1(θ + n − 1)K

+
n

]

·
[

KN∏
k=1

�(NN,k)�(θ + N − NN,k)

�(θ + N)

]

=
(

H∏
h=1

K̃h!
)−1

(θγ )KN

· exp

(
−θγ

N∑
n=1

(θ + n − 1)−1

)

·
KN∏
k=1

�(NN,k)�(N − NN,k + θ)

�(N + θ)
.

It follows from equation (5) that the probability of a
uniform random ordering of the feature allocation is

P(F̃N = f̃N )

= 1

KN !(θγ )KN exp

(
−θγ

N∑
n=1

(θ + n − 1)−1

)
(8)

·
KN∏
k=1

�(NN,k)�(N − NN,k + θ)

�(N + θ)
.

The distribution of F̃N has no dependence on the or-
dering of the indices in [N ]. Hence, the distribution of
FN depends only on the same quantities—the number
of indices and the feature block sizes—and the fea-
ture multiplicities. So we see that the IBP construc-
tion yields an exchangeable random feature allocation.
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Consistency follows from the recursive construction
and exchangeability. Therefore, equation (8) is seen to
be in EFPF form [cf. equation (7)].

Above, we have seen two examples of how specify-
ing a conditional distribution for the block membership
of index n given the block membership of indices in
[n−1] yields an exchangeable probability function, for
example, the EPPF in the CRP case (Example 1) and
the EFPF in the IBP case (Example 5). This conditional
distribution is often called a prediction rule, and study
of the prediction rule in the clustering case may be re-
ferred to as species sampling (Pitman, 1996; Hansen
and Pitman, 1998; Lee et al., 2008). We will see next
that the prediction rule can conversely be recovered
from the exchangeable probability function specifica-
tion and, therefore, the two are equivalent.

3.3 Induced Allocations and Block Labeling

In Examples 1 and 5 above, we formed partitions and
feature allocations in the following way. For partitions,
we assigned labels Zn to each index n. Then we gener-
ated a partition of [N ] from the sequence (Zn)

N
n=1 by

saying that indices m and n are in the same partition
block (m ∼ n) if and only if Zn = Zm. The resulting
partition is called the induced partition given the la-
bels (Zn)

N
n=1. Similarly, given labels (Zn)

∞
n=1, we can

form an induced partition of N. It is easy to check that,
given a sequence (Zn)

∞
n=1, the induced partitions of the

subsequences (Zn)
N
n=1 will be consistent.

In the feature case, we first assigned label collections
Yn to each index n. Yn is interpreted as a set containing
the labels of the features to which n belongs. It must
have finite cardinality by our definition of a feature
allocation. In this case, we generate a feature alloca-
tion on [N ] from the sequence (Yn)

N
n=1 by first letting

{φk}Kk=1 be the set of unique values in
⋃N

n=1 Yn. Then
the features are the collections of indices with shared
labels: fN = {{n :φk ∈ Yn} :k = 1, . . . ,K}. The result-
ing feature allocation fN is called the induced feature
allocation given the labels (Yn)

N
n=1. Similarly, given la-

bel collections (Yn)
∞
n=1, where each Yn has finite car-

dinality, we can form an induced feature allocation of
N. As in the partition case, given a sequence (Yn)

∞
n=1,

we can see that the induced feature allocations of the
subsequences (Yn)

N
n=1 will be consistent.

In reducing to a partition or feature allocation from
a set of labels, we shed the information concerning the
labels for each partition block or feature. Conversely,
we introduce order-of-appearance labeling schemes to
give partition blocks or features labels when we have,
respectively, a partition or feature allocation.

In the partition case, the order-of-appearance label-
ing scheme assigns the label 1 to the partition block
containing index 1. Recursively, suppose we have seen
n indices in k different blocks with labels {1, . . . , k}.
And suppose the n + 1st index does not belong to an
existing block. Then we assign its block the label k+1.

In the feature allocation case, we note that index 1
belongs to K+

1 features. If K+
1 = 0, there are no fea-

tures to label yet. If K+
1 > 0, we assign these K+

1 fea-
tures labels in {1, . . . ,K+

1 }. Unless otherwise speci-
fied, we suppose that the labels are chosen uniformly
at random. Let K1 = K+

1 . Recursively, suppose we
have seen n indices and Kn different features with la-
bels {1, . . . ,Kn}. Suppose the n + 1st index belongs
to K+

n+1 features that have not yet been labeled. Let
Kn+1 = Kn +K+

n+1. If K+
n+1 = 0, there are no new fea-

tures to label. If K+
n+1 > 0, assign these K+

n+1 features
labels in {Kn + 1, . . . ,Kn+1}, for example, uniformly
at random.

We can use these labeling schemes to find the pre-
diction rule, which makes use of partition block and
feature labels, from the EPPF or EFPF as appropri-
ate. First, consider a partition with EPPF p. Then,
given labels (Zn)

N
n=1 with KN = max{Z1, . . . ,ZN },

we wish to find the distribution of the label ZN+1.
Using an order-of-appearance labeling, we know that
either ZN+1 ∈ {Z1, . . . ,ZN } or ZN+1 = KN + 1. Let
πN = {AN,1, . . . ,AN,KN

} be the partition induced by
(Zn)

N
n=1. Let NN,k = |AN,k|. Let 1(A) be the indi-

cator of event A; that is, 1(A) equals 1 if A holds
and 0 otherwise. Let NN+1,k = Nk + 1{ZN+1 = k} for
k = 1, . . . ,KN+1, and set NN,KN+1 = 0 for complete-
ness. KN+1 = KN + 1{ZN+1 > KN } is the number of
partition blocks in the partition of [N + 1]. Then the
conditional distribution satisfies

P(ZN+1 = z|Z1, . . . ,ZN)

= P(Z1, . . . ,ZN,ZN+1 = z)

P(Z1, . . . ,ZN)
.

But the probability of a certain labeling is just the prob-
ability of the underlying partition in this construction,
so

P(ZN+1 = z|Z1, . . . ,ZN)

= p(NN+1,1, . . . ,NN+1,KN+1)

p(NN,1, . . . ,NN,KN
)

.

EXAMPLE 6 (Chinese restaurant process). We
continue our Chinese restaurant process example by
deriving the Chinese restaurant table assignment
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scheme from the EPPF in equation (4). Substituting
in the EPPF for the CRP, we find

P(ZN+1 = z|Z1, . . . ,ZN)

= p(NN,1, . . . ,NN+1,KN+1)

p(NN,1, . . . ,NN,KN
)

=
(
θKN+1−1

KN+1∏
k=1

(NN+1,k − 1)!
)

· ((θ + 1)(N+1)−1↑1
)−1

/((
θKN−1

KN∏
k=1

(NN,k − 1)!
)

· ((θ + 1)N−1↑1
)−1

)

= (N + θ)−1
{

NN,k, for z = k ≤ KN ,
θ, for z = KN + 1,

(9)

just as in equation (3).

To find the feature allocation prediction rule, we
now imagine a feature allocation with EFPF p. Here
we must be slightly more careful about counting due
to feature multiplicities. Suppose that after N indices
have been seen, we have label collections (Yn)

N
n=1,

containing a total of KN features, labeled {1, . . . ,KN }.
We wish to find the distribution of YN+1. Suppose
N + 1 belongs to K+

N+1 features that do not contain
any index in [N ]. Using an order-of-appearance la-
beling, we know that, if K+

N+1 > 0, the K+
N+1 new

features have labels KN + 1, . . . ,KN + K+
N+1. Let

fN = {A1, . . . ,AKN
} be the feature allocation induced

by (Yn)
N
n=1. Let NN,k = |AN,k| be the size of the kth

feature. So NN+1,k = NN,k + 1{k ∈ YN+1}, where we
let NKN+j = 0 for all of the features that are first ex-
hibited by index N +1: j ∈ {1, . . . ,K+

N+1}. Further, let
the number of features, including new ones, be written
KN+1 = KN + K+

N+1. Then the conditional distribu-
tion satisfies

P(Yn+1 = y|Y1, . . . , YN) = P(Y1, . . . , YN,YN+1 = y)

P(Y1, . . . , YN)
.

As we assume that the labels Y are consistent across N ,
the probability of a certain labeling is just the prob-
ability of the underlying ordered feature allocation
times a combinatorial term. The combinatorial term ac-
counts first for the uniform ordering of the new fea-
tures among themselves for labeling and then for the
uniform ordering of the new features among the old

features in the overall uniform random ordering:

P(YN+1 = y|Y1, . . . , YN)

= 1

K+
N+1!

· [(KN + 1) · (KN + 2) · · ·KN+1
]

· p(N,NN+1,1, . . . ,NN+1,KN+1)

p(N,NN,1, . . . ,NN,KN
)

= 1

K+
N+1!

· KN+1!
KN !

· p(N,NN+1,1, . . . ,NN+1,KN+1)

p(N,NN,1, . . . ,NN,KN
)

.(10)

EXAMPLE 7 (Indian buffet process). Just as we
derived the Chinese restaurant process prediction rule
[equation (9)] from its EPPF [equation (4)] in Exam-
ple 6, so can we derive the Indian buffet process predic-
tion rule from its EFPF [equation (8)] by using equa-
tion (10). Substituting the IBP EFPF into equation (10),
we find

P(Yn+1 = y|Y1, . . . , YN)

= 1

K+
N+1!

· KN+1!
KN !

(
1

KN+1!
)
(θγ )KN+1

· exp

(
−θγ

N+1∑
n=1

(θ + n − 1)−1

)

·
[KN+1∏

k=1

�(NN+1,k)�
(
(N + 1) − NN+1,k + θ

)

/
(
�
(
(N + 1) + θ

))]

/{(
1

KN !
)
(θγ )KN

· exp

(
−θγ

N∑
n=1

(θ + n − 1)−1

)

·
[

KN∏
k=1

�(NN,k)�(N − NN,k + θ)

/
(
�(N + θ)

)]}

=
[

1

K+
N+1!

exp
(
− θγ

θ + (N + 1) − 1

)

·
(

θγ

θ + (N + 1) − 1

)K+
N+1

]
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· (θ + (N + 1) − 1
)K+

N+1

·
[ KN+1∏

k=KN+1

(
θ + (N + 1) − 1

)−1
]

·
KN∏
k=1

N
1{k∈z}
k (N − NN,k + θ)1{k /∈z}

N + θ

= Pois
(
K+

N+1

∣∣∣ θγ

θ + (N + 1) − 1

)

·
KN∏
k=1

Bern
(
1{k ∈ z}

∣∣∣ NN,k

N + θ

)
.

The final line is exactly the Poisson distribution for the
number of new features times the Bernoulli distribu-
tions for the draws of existing features, as described in
Example 5.

3.4 Inference

The prediction rule formulation of the EPPF or EFPF
is particularly useful in providing a means of infer-
ring partitions and feature allocations from a data set.
In particular, we assume that we have data points
X1, . . . ,XN generated in the following manner. In the
partition case, we generate an exchangeable, consis-
tent, random partition �N according to the distribu-
tion specified by some EPPF p. Next, we assign each
partition block a random parameter that characterizes
that block. To be precise, for the kth partition block
to appear according to an order-of-appearance labeling
scheme, give this block a new random label φk ∼ H ,
for some continuous distribution H . For each n, let
Zn = φk where k is the order-of-appearance label of
index n. Finally, let

Xn
indep∼ L(Zn)(11)

for some distribution L with parameter Zn. The choices
of both H and L are specific to the problem domain.

Without attempting to survey the vast literature on
clustering, we describe a stylized example to provide
intuition for the preceding generative model. In this
example, let n index an animal observed in the wild;
Zn = Zm indicates that animals n and m belong to the
same (latent, unobserved) species; Zn = Zm = φk is a
vector describing the (latent, unobserved) height and
weight for that species; and Xn is the observed height
and weight of the nth animal.

Xn need not even be directly observed, but equa-
tion (11) together with an EPPF might be part of
a larger generative model. In a generalization of the

previous stylized example, Zn indicates the dominant
species in the nth geographical region; Zn = φk indi-
cates some overall species height and weight parame-
ters (for the kth species); Xn indicates the height and
weight parameters for species k in the nth region. That
is, the height and weight for the species may vary by
region. We measure and observe the height and weight
(En,j )

J
j=1 of some J animals in the nth region, be-

lieved to be i.i.d. draws from a distribution depending
on Xn.

Note that the sequence (Zn)
N
n=1 is sufficient to de-

scribe the partition �N since �N is the collection of
blocks of [N ] with the same label values Zn. The conti-
nuity of H is necessary to guarantee the a.s. uniqueness
of the block values. So, if we can describe the posterior
distribution of (Zn)

N
n=1, we can in principle describe

the posterior distribution of �N .
The posterior distribution of (Zn)

N
n=1 conditional on

(Xn)
N
n=1 cannot typically be solved for in closed form,

so we turn to a method that approximates this posterior.
We will see that prediction rules facilitate the design
of a Markov Chain Monte Carlo (MCMC) sampler, in
which we approximate the desired posterior distribu-
tion by a Markov chain of random samples proven to
have the true posterior as its equilibrium distribution.

In the Gibbs sampler formulation of MCMC (Geman
and Geman, 1984), we sample each parameter in turn
and conditional on all other parameters in the model.
In our case, we will sequentially sample each ele-
ment of (Zn)

N
n=1. The key observation here is that

(Zn)
N
n=1 is an exchangeable sequence. This observa-

tion follows by noting that the partition is exchangeable
by assumption, and the sequence (φk) is exchange-
able since it is i.i.d.; (Zn) is an exchangeable sequence
since it is a function of (�n) and (φk). Therefore,
the distribution of Zn, given the remaining elements
Z−n := (Z1, . . . ,Zn−1,Zn+1, . . . ,ZN), is the same as
if we thought of Zn as the final, N th element in a se-
quence with N − 1 preceding values given by Z−n.
And the distribution of ZN given Z−N is provided by
the prediction rule. The full details of the Gibbs sam-
pler for the CRP in Examples 1 and 6 were introduced
by Escobar (1994), MacEachern (1994), Escobar and
West (1995) and are covered in fuller generality by
Neal (2000).

It is worth noting that the sequence of order-of-
appearance labels is not exchangeable; for instance,
the first label is always 1. However, the prediction
rule for ZN given (Z1, . . . ,ZN−1) breaks into two
parts: (1) the probability of ZN taking either a value
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in {Z1, . . . ,ZN−1} or a new value and (2) the distri-
bution of ZN when it takes a new value. When pro-
gramming such a sampler, it is often useful to simply
encode the sets of unique values, which may be done
by retaining any set of labels that induce the correct
partition (e.g., integer labels) and separately retaining
the set of unique parameter values. Indeed, updating
the parameter values and partition block assignments
separately can lead to improved mixing of the sampler
(MacEachern, 1994).

Similarly, in the feature case, we imagine the fol-
lowing generative model for our data. First, let FN

be a random feature allocation generated according to
the EFPF p. For the kth feature block in an order-
of-appearance labeling scheme, assign a random label
φk ∼ H to this block for some continuous distribu-
tion H . For each n, let Yn = {φk :k ∈ Jn}, where Jn

is here the set of order-of-appearance labels of the fea-
tures to which n belongs. Finally, as above,

Xn
indep∼ L(Yn),

where the likelihood L and parameter distribution H

are again application-specific and where now L de-
pends on the variable-size collection of parameters
in Yn.

Griffiths and Ghahramani (2011) provide a review of
likelihoods used in practice for feature models. To mo-
tivate some of these modeling choices, let us consider
some stylized examples that provide helpful intuition.
For example, let n index customers at a book-selling
website; φk describes a book topic such as economics,
modern art or science fiction. If φk describes science
fiction books, φk ∈ Yn indicates that the nth customer
likes to buy science fiction books. But Yn might have
cardinality greater than one (the customer is interested
in multiple book topics) or cardinality zero (the cus-
tomer never buys books). Finally, Xn is a set of book
sales for customer n on the book-selling site.

As a second example, let n index pictures in a
database; φk describes a pictorial element such as a
train or grass or a cow; φk ∈ Yn indicates that picture
n contains, for example, a train; finally, the observed
array of pixels Xn that form the picture is generated to
contain the pictorial elements in Yn. As in the cluster-
ing case, Xn might not even be directly observed but
might serve as a random effect in a deeper hierarchical
model.

We observe that although the order-of-appearance la-
bel sets are not exchangeable, the sequence (Yn) is.
This fact allows the formulation of a Gibbs sampler via

the observation that the distribution of Yn, given the
remaining elements Y−n := (Y1, . . . , Yn−1, Yn+1, . . . ,

YN), is the same as if we thought of Yn as the final,
N th element in a sequence with N − 1 preceding val-
ues given by Y−n. The full details of such a sampler
for the case of the IBP (Examples 5 and 7) are given by
Griffiths and Ghahramani (2006).

As in the partition case, in practice, when program-
ming the sampler, it is useful to separate the feature
allocation encoding from the feature parameter values.
Griffiths and Ghahramani (2006) describe how left or-
der form matrices give a convenient representation of
the feature allocation in this context.

4. STICK LENGTHS

Not every symmetric function defined for an arbi-
trary number of arguments with values in the unit in-
terval is an EPPF (Pitman, 1995), and not every sym-
metric function with an additional positive integer ar-
gument is an EFPF. For instance, the consistency prop-
erty in equation (1) implies certain additivity require-
ments for the function p.

EXAMPLE 8 (Not an EPPF). Consider the func-
tion p defined with

p(1) = 1, p(1,1) = 0.1, p(2) = 0.8, . . .(12)

From the information in equation (12), p may be fur-
ther defined so as to be symmetric in its arguments for
any number of arguments, but since it does not satisfy
p(1) = p(1,1) + p(2), it cannot be an EPPF.

EXAMPLE 9 (Not an EFPF). Consider the function
p defined with

p(N = 1) = 0.9, p(N = 1,1) = 0.9,
(13)

p(N = 1,1,1) = 0.9, . . .

From the information in equation (13), p may be fur-
ther defined so as to be symmetric in its arguments for
any number of arguments after the initial N argument,
but since p(N = 1) + p(N = 1,1) + p(N = 1,1,1) >

1, it cannot be an EFPF.

It therefore requires some care to define a suitable
distribution over consistent, exchangeable random fea-
ture allocations or partitions using the exchangeable
probability function framework.

Since we are working with exchangeable sequences
of random variables, it is natural to turn to de Finetti’s
theorem (De Finetti, 1931; Hewitt and Savage, 1955)
for clues as to how to proceed. De Finetti’s theorem
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tells us that any exchangeable sequence of random
variables can be expressed as an independent and iden-
tically distributed sequence when conditioned on an
underlying random mixing measure. While this theo-
rem may seem difficult to apply directly to, for exam-
ple, exchangeable partitions, it may be applied more
naturally to an exchangeable sequence of numbers de-
rived from a sequence of partitions. The argument be-
low is due to Aldous (1985).

Suppose that (�n) is an exchangeable, consistent se-
quence of random partitions. Consider the kth partition
block to appear according to an order-of-appearance
labeling scheme, and give this block a new random la-
bel, φk ∼ Unif([0,1]), such that each random label is
drawn independently from the rest. This construction
is the same as the one used for parameter generation
in Section 3.4, and (�n) is exchangeable by the same
arguments used there. Let Zn equal φk exactly when n

belongs to the partition with this label.
If we apply de Finetti’s theorem to the sequence (Zn)

and note that (Zn) has at most countably many differ-
ent values, we see that there exists some random se-
quence (ρk) such that ρk ∈ (0,1] for all k and, con-
ditioned on the frequencies (ρk), (Zn) has the same
distribution as i.i.d. draws from (ρk). In this descrip-
tion, we have brushed over technicalities associated
with partition blocks that contain only one index even
as N → ∞ (which may imply

∑
k ρk < 1).

But if we assume that every partition block even-
tually contains at least two indices, we can achieve
an exchangeable partition of [N ] as follows. Let (ρk)

represent a sequence of values in (0,1] such that∑∞
k=1 ρk

a.s.= 1. Draw Zn
i.i.d.∼ Discrete((ρk)k). Let �N

be the induced partition given (Zn)
N
n=1. Exchangeabil-

ity follows from the i.i.d. draws, and consistency fol-
lows from the induced partition construction.

When the frequencies (ρk) are thought of as subin-
tervals of the unit interval, that is, a partition of the unit
interval, they are collectively called Kingman’s paint-
box (Kingman, 1978). As another naming convention,
we may think of the unit interval as a stick (Ishwaran
and James, 2001). We partition the unit interval by
breaking it into various stick lengths, which represent
the frequencies of each partition block.

A similar construction can be seen to yield ex-
changeable, consistent random feature allocations. In
this case, let (ξk) represent a sequence of values in

(0,1] such that
∑∞

k=1 ξk
a.s.
< ∞. We generate feature

collections independently for each index as follows.
Start with Yn = ∅. For each feature k, add k to the set
Yn, independently from all other features, with prob-
ability ξk . Let FN be the induced feature allocation
given (Yn)

N
n=1. Exchangeability of FN follows from the

i.i.d. draws of Yn, and consistency follows from the in-
duced feature allocation construction. The finite sum
constraint ensures each index belongs to a finite num-
ber of features a.s.

It remains to specify a distribution on the partition
or feature frequencies. The frequencies cannot be i.i.d.
due to the finite summation constraint in both cases.
In the partition case, any infinite set of frequencies
cannot even be independent since the summation is
fixed to one. One scheme to ensure summation to unity
is called stick-breaking (McCloskey, 1965; Patil and
Taillie, 1977; Sethuraman, 1994; Ishwaran and James,
2001). In stick-breaking, the stick lengths are obtained
by recursively breaking off parts of the unit interval to
return as the atoms ρ1, ρ2, . . . (cf. Figure 3). In particu-
lar, we generate stick-breaking proportions V1,V2, . . .

as [0,1]-valued random variables. Then ρ1 is the first
proportion V1 times the initial stick length 1; hence,
ρ1 = V1. Recursively, after k breaks, the remaining

FIG. 3. An illustration of how stick-breaking divides the unit interval into a sequence of probabilities Broderick, Jordan and Pitman (2012).
The stick proportions (V1,V2, . . .) determine what fraction of the remaining stick is appended to the probability sequence at each round.
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FIG. 4. An illustration of the proof based on the Pólya urn that Dirichlet process stick-breaking gives the underlying partition block
frequencies for a Chinese restaurant process model. The kth column in the central matrix corresponds to a tallying of when the kth table is
chosen (gray), when a table of index larger than k is chosen (white), and when an index smaller than k is chosen (×). If we ignore the ×
tallies, the gray and white tallies in each column (after the first) can be modeled as balls drawn from a Pólya urn. The limiting frequency of
gray balls in each column is shown below the matrix.

length of the initial unit interval is
∏k

j=1(1 − Vj ). And
ρk+1 is the proportion Vk+1 of the remaining stick;
hence, ρk+1 = Vk+1

∏k
j=1(1 − Vj ).

The stick-breaking construction yields ρ1, ρ2, . . .

such that ρk ∈ [0,1] for each k and
∑∞

k=1 ρk ≤ 1.
If the Vk do not decay too rapidly, we will have∑∞

k=1 ρk
a.s.= 1. In particular, the partition block pro-

portions ρk sum to unity a.s. iff there is no remaining
stick mass:

∏∞
k=1(1 − Vk)

a.s.= 0.
We often make the additional, convenient assump-

tion that the Vk are independent. In this case, a nec-
essary and sufficient condition for

∑∞
k=1 ρk

a.s.= 1 is∑∞
k=1 E[log(1 − Vk)] = −∞ (Ishwaran and James,

2001). When the Vk are independent and of a canon-
ical distribution, they are easily simulated. Moreover,
if we assume that the Vk are such that the ρk decay
sufficiently rapidly in k, one strategy for simulating a
stick-breaking model is to ignore all k > K for some
fixed, finite K . This approximation is known as trunca-
tion (Ishwaran and James, 2001). It is fortuitously the
case that in some models of particular interest, such
useful assumptions fall out naturally from the model
construction (e.g., Examples 10 and 11).

EXAMPLE 10 (Chinese restaurant process). In
the original exchangeability result due to de Finetti
(De Finetti, 1931), the exchangeable random variables
were zero/one-valued, and the mixing measure was a
distribution on a single frequency so that the outcomes
were conditionally Bernoulli. We will find a similar
result in obtaining the stick-breaking proportions asso-
ciated with the Chinese restaurant process.

We can construct a sequence of binary-valued ran-
dom variables by dividing the customers in the CRP
who are sitting at the first table from the rest; color

the former collection of customers gray and the latter
collection of customers white. Then, we see that the
first customer must be colored gray. And thus we begin
with a single gray customer and no white customers.
This binary valuation for the first table in the CRP is
illustrated by the first column in the matrix in Figure 4.

At this point, it is useful to recall the Pólya urn con-
struction (Pólya, 1930; Freedman, 1965), whereby an
urn starts with G0 gray balls and W0 white balls. At
each round N , we draw a ball from the urn, replace
it, and add κ of the same color of ball to the urn. At
the end of the round, we have GN gray balls and WN

white balls. Despite the urn metaphor, the number of
balls need not be an integer at any time. By checking
equation (3), which defines the CRP, we can see that
the coloring of the gray/white customer matrix assign-
ments starting with the second customer has the same
distributions as a sequence of balls from a Pólya urn as
a Pólya urn with G1,0 = 1 initial gray balls, W1,0 = θ

initial white balls and κ1 = 1 replacement balls. Let
G1,N and W1,N represent the numbers of gray and
white balls, respectively, in the urn after N rounds. The
important fact about the Pólya urn we use here is that
there exists some V ∼ Beta(G0/κ,W0/κ) such that

κ−1(GN+1 − GN)
i.i.d.∼ Bern(V ) for all N . In this par-

ticular case of the CRP, then, G1,N+1 − G1,N is one if
a customer sits at the first table (or zero otherwise), and

G1,N+1 − G1,N
i.i.d.∼ Bern(V1) with V1 ∼ Beta(1, θ).

We now look at the sequence of customers who sit
at the second and subsequent tables. That is, we con-
dition on customers not sitting at the first table or
equivalently on the sequence with G1,N+1 −G1,N = 0.
Again, we have that the first customer sits at the sec-
ond table, by the CRP construction. Now let customers
at the second table be colored gray and customers at



302 T. BRODERICK, M. I. JORDAN AND J. PITMAN

the third and later tables be colored white. This valu-
ation is illustrated in the second column in Figure 4;
each × in the figure denotes a data point where the
first partition block is chosen and, therefore, the cur-
rent Pólya urn is not in play. As before, we begin with
one gray customer and no white customers. We can
check equation (3) to see that customer coloring once
more proceeds according to a Pólya urn scheme with
G2,0 = 1 initial gray balls, W2,0 = θ initial white balls
and κ2 = 1 replacement balls. Thus, contingent on a
customer not sitting at the first table, the N th customer
sits at the second table with i.i.d. distribution Bern(V2)

with V2 ∼ Beta(1, θ). Since the sequence of individu-
als sitting at the second table has no other dependence
on the sequence of individuals sitting at the first table,
we have that V2 is independent of V1.

The argument just outlined proceeds recursively to
show us that the N th customer, conditional on not
sitting at the first K − 1 tables for K ≥ 1, sits at
the K th table with i.i.d. distribution Bern(VK) and
VK ∼ Beta(1, θ) with VK independent of the previous
(V1, . . . , VK−1).

Combining these results, we see that we have the
following construction for the customer seating pat-
terns. The Vk are distributed independently and iden-
tically according to Beta(1, θ). The probability ρK of
sitting at the K th table is the probability of not sitting
at the first K − 1 tables, conditional on not sitting at
the previous table, times the conditional probability of
sitting at the K th table: ρK = [∏K−1

k=1 (1 − Vk)] · VK .
Finally, with the vector of table frequencies (ρk), each
customer sits independently and identically at the cor-
responding vector of tables according to these frequen-
cies. This process is summarized here:

Vk
i.i.d.∼ Beta(1, θ),

ρK := VK

K∏
k=1

(1 − Vk),(14)

Zn
i.i.d.∼ Discrete

(
(ρk)k

)
.

To see that this process is well-defined, first note that
E[log(1−Vk)] exists, is negative and is the same for all
k values. It follows that

∑∞
k=1 E[log(1 − Vk)] = −∞,

so by the discussion before this example, we must have∑K
k=1 ρk

a.s.= 1.

The feature case is easier. Since it does not require
the frequencies to sum to one, the random frequencies
can be independent so long as they have an a.s. finite
sum.

EXAMPLE 11 (Indian buffet process). As in the
case of the CRP, we can recover the stick lengths for
the Indian buffet process using an argument based on
an urn model.

Recall that on the first round of the Indian buffet pro-
cess, K+

1 ∼ Pois(γ ) features are chosen to contain in-
dex 1. Consider one of the features, labeled k. By con-
struction, each future data point N belongs to this fea-
ture with probability NN−1,k/(θ + N − 1). Thus, we
can model the sequence after the first data point as a
Pólya urn of the sort encountered in Example 10 with
initially Gk,0 = 1 gray balls, Wk,0 = θ white balls and
κk = 1 replacement balls. As we have seen, there exists
a random variable Vk ∼ Beta(1, θ) such that represen-
tation of this feature by data point N is chosen, i.i.d.
across all N , as Bern(Vk). Since the Bernoulli draws
conditional on previous draws are independent across
all k, the Vk are likewise independent of each other;
this fact is also true for k in future rounds. Draws ac-
cording to such an urn are illustrated in each of the first
four columns of the matrix in Figure 5.

Now consider any round n. According to the IBP
construction, K+

n ∼ Pois(γ θ/(θ + n − 1)) new fea-
tures are chosen to include index n. Each future data
point N (with N > n) represents feature k among
these features with probability NN−1,k/(θ + N − 1).
In this case, we can model the sequence after the nth
data point as a Pólya urn with Gk,0 = 1 initial gray
balls, Wk,0 = θ + n − 1 initial white balls and κk = 1
replacement balls. So there exists a random variable
Vk ∼ Beta(1, θ +n−1) such that representation of fea-
ture k by data point N is chosen, i.i.d. across all N , as
Bern(Vk).

Finally, then, we have the following generative
model for the feature allocation by iterating across
n = 1, . . . ,N (Thibaux and Jordan, 2007):

K+
n

indep∼ Pois
(

γ θ

θ + n − 1

)
,(15)

Kn = Kn−1 + K+
n ,

Vk
indep∼ Beta(1, θ + n − 1),

(16)
k = Kn−1 + 1, . . . ,Kn,

In,k
indep∼ Bern(Vk), k = 1, . . . ,Kn.

In,k is an indicator random variable for whether feature
k contains index n. The collection of features to which
index n belongs, Yn, is the collection of features k with
In,k = 1.
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FIG. 5. Illustration of the proof that the frequencies of features in the Indian buffet process are given by beta random variables. For each
feature, we can construct a sequence of zero/one variables by tallying whether (gray, one) or not (white, zero) that feature is represented by
the given data point. Before the first time a feature is chosen, we mark it with an ×. Each column sequence of gray and white tallies, where
we ignore the × marks, forms a Pólya urn with limiting frequencies shown below the matrix.

4.1 Inference

As we have seen above, the exchangeable probabil-
ity functions of Section 3 are the marginal distributions
of the partitions or feature allocations generated ac-
cording to stick-length models with the stick lengths
integrated out. It has been proposed that including the
stick lengths in MCMC samplers of these models will
improve mixing (Ishwaran and Zarepour, 2000). While
it is impossible to sample the countably infinite set of
partition block or feature frequencies in these models
(cf. Examples 10 and 11), a number of ways of getting
around this difficulty have been investigated. Ishwaran
and Zarepour (2000) examine two separate finite ap-
proximations to the full CRP stick-length model: one
uses a parametric approximation to the full infinite
model, and the other creates a truncation by setting the
stick break at some fixed size K to be 1: VK = 1. There
also exist techniques that avoid any approximations
and deal instead directly with the full model, in par-
ticular, retrospective sampling (Papaspiliopoulos and
Roberts, 2008) and slice sampling (Walker, 2007).

While our discussion thus far has focused on MCMC
sampling as a means of approximating the posterior
distribution of either the block assignments or both
the block assignments and stick lengths, including the
stick lengths in a posterior analysis facilitates a differ-
ent posterior approximation; in particular, variational
methods can also be used to approximate the posterior.
These methods minimize some notion of distance to
the posterior over a family of potential approximating
distributions (Jordan et al., 1999). The practicality and,
indeed, speed of these methods in the case of stick-
breaking for the CRP (Example 10) have been demon-
strated by Blei and Jordan (2006).

A number of different models for the stick lengths
corresponding to the features of an IBP (Example 11)
have been discovered. The distributions described in
Example 11 are covered by Thibaux and Jordan (2007),
who build on work from Hjort (1990), Kim (1999).
A special case of the IBP is examined by Teh, Görür
and Ghahramani (2007), who detail a slice sampling
algorithm for sampling from the posterior of the stick
lengths and feature assignments. Yet another stick-
length model for the IBP is explored by Paisley et al.
(2010), who show how to apply variational methods to
approximate the posterior of their model.

Stick-length modeling has the further advantage of
allowing inference in cases where it is not straightfor-
ward to integrate out the underlying stick lengths to
obtain a tractable exchangeable probability function.

5. SUBORDINATORS

An important point to reiterate about the labels Zn

and label collections Yn is that when we use the order-
of-appearance labeling scheme for partition or feature
blocks described above, the random sequences (Zn)

and (Yn) are not exchangeable. Often, however, we
would like to make use of special properties of ex-
changeability when dealing with these sequences. For
instance, if we use Markov Chain Monte Carlo to sam-
ple from the posterior distribution of a partition (cf.
Section 3.4), we might want to Gibbs sample the clus-
ter assignment of data point n given the assignments of
the remaining data points: Zn given {Zm}Nm=1 \ {Zn}.
This sampling is particularly easy in some cases (Neal,
2000) if we can treat Zn as the last random variable in
the sequence, but this treatment requires exchangeabil-
ity.
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A way to get around this dilemma was suggested
by Aldous (1985) and appeared above in our moti-
vation for using stick lengths. Namely, we assign to
the kth partition block a uniform random label φk ∼
Unif([0,1]); analogously, we assign to the kth feature
a uniform random label φk ∼ Unif([0,1]). We can see
that in both cases, all of the labels are a.s. distinct. Now,
in the partition case, let Zn be the uniform random la-
bel of the partition block to which n belongs. And in
the feature case, let Yn be the (finite) set of uniform
random feature labels for the features to which n be-
longs. We can recover the partition or feature alloca-
tion as the induced partition or feature allocation by
grouping indices assigned to the same label. Moreover,
as discussed above, we now have that each of (Zn) and
(Yn) is an exchangeable sequence.

If we form partitions or features according to the
stick-length constructions detailed in Section 4, we
know that each unique partition or feature label φk is
associated with a frequency ξk . We can use this associ-
ation to form a random measure:

μ =
∞∑

k=1

ξkδφk
,(17)

where δφk
is a unit point mass located at φk . In the par-

tition case,
∑

k ξk = 1, so the random measure is a ran-

dom probability measure, and we may draw Zn
i.i.d.∼ μ.

In the feature case, the weights have a finite sum but do
not necessarily sum to one. In the feature case, we draw
Yn by including each φk for which Bern(ξk) yields a
draw of 1.

Another way to codify the random measure in equa-
tion (17) is as a monotone increasing stochastic process
on [0,1]. Let

Ts =
∞∑

k=1

ξk1{φk ≤ s}.

Then the atoms of μ are in one-to-one correspondence
with the jumps of the process T .

This increasing random function construction gives
us another means of choosing distributions for the
weights ξk . We have already seen that these cannot be
i.i.d. due to the finite summation condition. However,
we will see that if we require that the increments of a
monotone, increasing stochastic process are indepen-
dent and stationary, then we can use the jumps of that
function as the atoms in our random measure for parti-
tions or features.

DEFINITION 12. A subordinator (Bochner, 1955;
Bertoin 1996, 1999) is a stochastic process (Ts, s ≥ 0)

that has the following properties:

• Nonnegative, nondecreasing paths (a.s.),
• Paths that are right-continuous with left limits, and
• Stationary, independent increments.

For our purposes, wherein the subordinator values
will ultimately correspond to (perhaps scaled) proba-
bilities, we will assume the subordinator takes values
in [0,∞), though alternative ranges with a sense of or-
dering are possible.

Subordinators are of interest to us because they
not only exhibit the stationary independent increments
property but they also can always be decomposed into
two components: a deterministic drift component and a
Poisson point process. Recall that a Poisson point pro-
cess on space S with rate measure ν(dx), where x ∈ S,
yields a countable subset of points of S. Let N(A) be
the number of points of the process in set A for A ⊆ S.
The process is characterized by the fact that, first,
N(A) ∼ Pois(ν(A)) for any A and, second, for any dis-
joint A1, . . . ,AK , we have that N(A1), . . . ,N(AK) are
independent random variables. See Kingman (1993)
for a thorough treatment of these processes. An exam-
ple subordinator with both drift and jump components
is shown on the left-hand side of Figure 6.

The subordinator decomposition is detailed in the
following result (Bertoin, 1996).

THEOREM 13. Every subordinator (Ts, s ≥ 0) can
be written as

Ts = cs +
∞∑

k=1

ξk1{φk ≤ s}(18)

for some constant c ≥ 0 and where {(ξk, φk)}k is the
countable set of points of a Poisson point process with
intensity �(dξ)dφ, where � is a Lévy measure; that
is, ∫ ∞

0
(1 ∧ ξ)�(dξ) < ∞.

In particular, then, if a subordinator is finite at time t ,
the jumps of the subordinator up to t may be used as
feature block frequencies if they have support in [0,1].
Or, in general, the normalized jumps may be used as
partition block frequencies. We can see from the right-
hand side of Figure 6 that the jumps of a subordinator
partition intervals of the form [0, t), as long as the sub-
ordinator has no drift component. In either the feature
or cluster case, we have substituted the condition of in-
dependent and identical distribution for the partition or
feature frequencies (i.e., the jumps) with a more natu-
ral continuous-time analogue: independent, stationary
intervals.
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FIG. 6. Left: The sample path (Ts) of a subordinator. T −
s̃

is the limit from the left of (Ts) at s = s̃. Right: The right-continuous inverse (St )

of a subordinator: St := inf{s :Ts > t}. The open intervals along the t axis correspond to the jumps of the subordinator (Ts).

Just as the Laplace transform of a positive ran-
dom variable characterizes the distribution of that ran-
dom variable, so does the Laplace transform of the
subordinator—which is a positive random variable at
any fixed time point—describe this stochastic process
(Bertoin 1996, 1999).

THEOREM 14 (Lévy–Khinchin formula for subor-
dinators). If (Ts, s ≥ 0) is a subordinator, then for
λ ≥ 0 we have

E
(
e−λTs

) = e−�(λ)s(19)

with

�(λ) = cλ +
∫ ∞

0

(
1 − e−λξ )�(dξ),(20)

where c ≥ 0 is called the drift constant and � is a non-
negative, Lévy measure on (0,∞).

The function �(λ) is called the Laplace exponent in
this context. We note that a subordinator is character-
ized by its drift constant and Lévy measure.

Using subordinators for feature allocation modeling
is particularly easy; since the jumps of the subordina-
tors are formed by a Poisson point process, we can use
Poisson process methodology to find the stick lengths
and EFPF. To set up this derivation, suppose we gen-
erate feature membership from a subordinator by tak-
ing Bernoulli draws at each of its jumps with success
probability equal to the jump size. Since every jump
has strictly positive size, the feature associated with
each jump will eventually score a Bernoulli success for
some index n with probability one. Therefore, we can
enumerate all jumps of the process in order of appear-
ance; that is, we first enumerate all features in which

index 1 appears, then all features in which index 2 ap-
pears but not index 1, and so on. At the nth iteration,
we enumerate all features in which index n appears but
not previous indices. Let K+

n represent the number of
indices so chosen on the nth round. Let K0 = 0 so that
recursively Kn := Kn−1 + K+

n is the number of sub-
ordinator jumps seen by round n, inclusive. Let ξk for
k = Kn−1 + 1, . . . ,Kn be the distribution of a particu-
lar subordinator jump seen on round n. We now turn to
connecting the subordinator perspective to the earlier
derivation of stick lengths in Section 4.

EXAMPLE 15 (Indian buffet process). In our ear-
lier discussion, we found a collection of stick lengths
to represent the featural frequencies for the IBP [equa-
tion (16) of Example 11 in Section 4]. To see the con-
nection to subordinators, we start from the beta process
subordinator (Kim, 1999) with zero drift (c = 0) and
Lévy measure

�(dξ) = γ θξ−1(1 − ξ)θ−1 dξ.(21)

We will see that the mass parameter γ > 0 and con-
centration parameter θ > 0 are the same as those intro-
duced in Example 5 and continued in Example 11.

THEOREM 16. Generate a feature allocation from
a beta process subordinator with Lévy measure given
by equation (21). Then the sequence of subordinator
jumps (ξk), indexed in order of appearance, has the
same distribution as the sequence of IBP stick lengths
(Vk) described by equations (15) and (16).

PROOF. Recall the following fact about Poisson
thinning (Kingman, 1993), illustrated in Figure 7. Sup-
pose that a Poisson point process with rate measure
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FIG. 7. An illustration of Poisson thinning. The x-axis values of
the filled black circles, emphasized by dotted lines, are generated
according to a Poisson process. The [0,1]-valued function h(x) is
arbitrary. The vertical axis values of the points are uniform draws
in [0,1]. The “thinned” points are the collection of x-axis values
corresponding to vertical axis values below h(x) and are denoted
with a × symbol.

λ generates points with values x. Then suppose that,
for each such point x, we keep it with probability
h(x) ∈ [0,1]. The resulting set of points is also a Pois-
son point process, now with rate measure λ′(A) =∫
A λ(dx)h(x) dx.
We prove Theorem 16 recursively. Define the mea-

sure

μn(dξ) := γ θξ−1(1 − ξ)θ+n−1 dξ,

so that μ0 is the beta process Lévy measure � in equa-
tion (21). We make the recursive assumption that μn is
distributed as the beta process measure without atoms
corresponding to features chosen on the first n itera-
tions.

There are two parts to proving Theorem 16. First, we
show that, on the nth iteration, the number of features
chosen and the distribution of the corresponding atom
weights agree with equations (15) and (16), respec-
tively. Second, we check that the recursion assumption
holds.

For the first part, note that on the nth round we
choose features with probability equal to their atom
weight. So we form a thinned Poisson process with rate
measure ξ ·μn−1(dξ). This rate measure has total mass∫ 1

0
ξ · μn−1(dξ) = γ

θ

θ + n − 1
=: γn−1.

So the number of features chosen is Poisson-distributed
with mean γ θ(θ + n − 1)−1, as desired [cf. equa-
tion (15)]. And the atom weights have distribution
equal to the normalized rate measure

γ −1
n−1ξ · γ θξ−1(1 − ξ)θ+(n−1)−1 dξ

= Beta(ξ |1, θ + n − 1) dξ

as desired [cf. equation (16)].
Finally, to check the recursion assumption, we note

that those sticks that remain were chosen for having
Bernoulli failure draws; that is, they were chosen with
probability equal to one minus their atom weight. So
the thinned rate measure for the next round is

(1 − ξ) · γ θξ−1(1 − ξ)θ+(n−1)−1 dξ,

which is just μn. �
The form of the EFPF of the feature allocation gener-

ated from the beta process subordinator follows imme-
diately from the stick-length distributions we have just
derived by the discussion in Example 11 in Section 4.

We see from the previous example that feature al-
location stick lengths and EFPFs can be obtained in a
straightforward manner using the Poisson process rep-
resentation of the jumps of the subordinator. Partitions,
however, are not as easy to analyze, principally due
to the fact that the subordinator jumps must first be
normalized to obtain a probability measure on [0,1];
a random measure with finite total mass is not suffi-
cient in the partition case. Hence, we must compute the
stick lengths and EPPF using partition block frequen-
cies from these normalized jumps instead of directly
from the subordinator jumps.

In the EPPF case, we make use of a result that gives
us the exchangeable probability function as a func-
tion of the Laplace exponent. Though we do not de-
rive this formula here, its derivation can be found in
Pitman (2003); the proof relies on, first, calculating the
joint distribution of the subordinator jumps and parti-
tion generated from the normalized jumps and, second,
integrating out the subordinator jumps to find the par-
tition marginal.

THEOREM 17. Form a probability measure μ by
normalizing jumps of the subordinator with Laplace
exponent � . Let (�n) be a consistent set of exchange-
able partitions induced by i.i.d. draws from μ. For
each exchangeable partition πN = {A1, . . . ,AK} of
[N ] with Nk := |Ak| for each k,

P(�N = πN)

= p(N1, . . . ,NK)

= (−1)N−K

(N − 1)!
∫ ∞

0
λN−1e−�(λ)

K∏
k=1

�(Nk)(λ) dλ,(22)

where �(Nk)(λ) is the Nk th derivative of the Laplace
exponent � evaluated at λ.
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EXAMPLE 18 (Chinese restaurant process). We
start by introducing the gamma process, a subordinator
that we will see below generates the Chinese restaurant
process EPPF. The gamma process has Laplace expo-
nent �(λ) [equation (19)] characterized by

c = 0 and �(dξ) = θξ−1e−bξ dξ(23)

for θ > 0 and b > 0 [cf. equation (20) in Theorem 14].
We will see that θ corresponds to the CRP concentra-
tion parameter and that b is arbitrary and does not af-
fect the partition model.

We calculate the EPPF using Theorem 17.

THEOREM 19. The EPPF for partition block mem-
bership chosen according to the normalized jumps (ρk)

of the gamma subordinator with parameter θ is the
CRP EPPF [equation (4)].

PROOF. By Theorem 17, if we can find all order
derivatives of the Laplace exponent � , we can calcu-
late the EPPF for the partitions generated with frequen-
cies equal to the normalized jumps of this subordina-
tor. The derivatives of � , which are known to always
exist (Bertoin, 2000; Rogers and Williams, 2000), are
straightforward to calculate if we begin by noting that,
from equation (20) in Theorem 14, we have in general
that

� ′(λ) = c +
∫ ∞

0
ξe−λξ�(dξ).

Hence, for the gamma process subordinator,

� ′(λ) =
∫ ∞

0
e−λξ θe−bξ dξ = θ

λ + b
.

Then simple integration and differentiation yield

�(λ) = θ log(λ + b) − θ log(b)

since �(0) = 0 and

�(n)(λ) = (−1)n−1 (n − 1)!θ
(λ + b)n

, n ≥ 1.

We can substitute these quantities into the general
EPPF formula in equation (22) of Theorem 17 to ob-
tain

p(N1, . . . ,NK)

= (−1)N−K

(N − 1)!
∫ ∞

0
λN−1(λ + b)−θbθ

·
K∏

k=1

(−1)Nk−1 (Nk − 1)!θ
(λ + b)Nk

dλ

= bθ θK

(N − 1)!
[

K∏
k=1

(Nk − 1)!
]
bN−1−N−θ+1

·
∫ ∞

0
xN−1(x + 1)−N−θ dx for x = λ/b

= θK

(N − 1)!
[

K∏
k=1

(Nk − 1)!
]

�(N)�(θ)

�(N + θ)

= θK

[
K∏

k=1

(Nk − 1)!
]

1

θ(θ + 1)N−1↑1
.

The penultimate line follows from the form of the beta
prime distribution. The final line is the CRP EPPF from
equation (4), as desired. We note in particular that the
parameter b does not appear in the final EPPF. �

Whenever the Laplace exponent of a subordinator is
known, Theorem 17 can similarly be applied to quickly
find the EPPF of the partition generated by sampling
from the normalized subordinator jumps.

To find the distributions of the stick lengths—that is,
the partition block frequencies—from the subordinator
representation for a partition, we must find the distri-
butions of the normalized subordinator jumps.

As in the feature case, we may enumerate the jumps
of a subordinator used for partitioning in the order of
their appearance. That is, let ρ1 be the normalized sub-
ordinator jump size corresponding to the cluster of the
first data point. Recursively, suppose index n joins a
cluster to which none of the indices in [n − 1] belong,
and suppose there are k clusters among [n − 1]. Then
let ρk+1 be the normalized subordinator jump size cor-
responding to the cluster containing n.

EXAMPLE 20 (Chinese restaurant process). We
continue with the CRP example.

THEOREM 21. The normalized subordinator
jumps (ρk) in order of appearance of the gamma sub-
ordinator with concentration parameter θ (and arbi-
trary parameter b > 0) have the same distribution as
the CRP stick lengths [equation (14) of Example 10 in
Section 4].

PROOF. First, we introduce some notation. Let τ =∑
k ξk , the sum over all of the jumps of the subordina-

tor. Second, let τk = τ − ∑k
j=1 ξk , the total sum minus

the first k elements (in order of appearance). Note that
τ = τ0. Finally, let Wk = τk/τk−1 and Vk = 1 − Wk .
Then a simple telescoping of factors shows that ρk =
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Vk

∏k−1
j=1(1 − Vj ):

Vk

k−1∏
j=1

(1 − Vj ) =
(

1 − τk

τk−1

) k−1∏
j=1

τj

τj−1

= τk−1 − τk

τ0
= ξk

τ
= ρk.

It remains to show that the Vk have the desired distri-
bution. To that end, it is easier to work with the Wk . We
will find the following lemma (Pitman, 2006) useful.

LEMMA 22. Consider a subordinator with Lévy
measure �, and suppose τ equals the sum of all jumps
of the subordinator. Let ρ be the density of � with re-
spect to the Lebesgue measure. And let f be the den-
sity of the distribution of τ with respect to the Lebesgue
measure. Then

P(τ0 ∈ dt0, . . . , τk ∈ dtk)

= f (tk) dtk

(
k−1∏
j=0

(tj − tj+1)ρ(tj − tj+1)

tj
dtj

)
.

With this lemma in hand, the result follows from
a change of variables calculation; we use a bijection
between {W1, . . . ,Wk, τ } and {τ0, . . . , τk} defined by
τk = τ

∏k
j=1 Wj . The determinant of the Jacobian for

the transformation to the former variables from the lat-
ter is

J =
k∏

j=1

[
τ

j−1∏
i=1

Wi

]
=

k−1∏
j=0

τj (τ,W1, . . . ,Wk).

In the derivation that follows, we start by expressing
results in terms of the τj terms with the dependence on
{τ,W1, . . . ,Wk} suppressed to avoid notational clutter,
for example, J = ∏k−1

j=0 τj . At the end, we will evaluate
the τj terms as functions of {τ,W1, . . . ,Wk}.

For now, then, we have

P(W1 ∈ dw1, . . . ,Wk ∈ dwk, τ ∈ dt0)

= P(τ0 ∈ dt0, . . . , τk ∈ dtk) · J

= f (tk) dtk

(
k−1∏
j=0

(tj − tj+1)ρ(tj − tj+1)

)
.

In the case of the gamma process, we can read
ρ(ξ) = θξ−1e−bξ from equation (23). The function f

is determined by ρ and in this case (Pitman, 2006),

f (t) = Ga(t |θ, b) = bθ�(θ)−1tθ−1e−bt .

So

P(W1 ∈ dw1, . . . ,Wk ∈ dwk, τ ∈ dt0)

∝ tθ−1
k e−bt0 = tθ−1

0 e−bt0

k∏
j=1

wθ−1
j .

Since the distribution factorizes, the {Wk} are inde-
pendent of each other and of τ . Second, we can read
off the distributional kernel of each Wk to establish

Wk
i.i.d.∼ Beta(θ,1), from whence it follows that Vk

i.i.d.∼
Beta(1, θ). �
5.1 Inference

In some sense, we skipped ahead in describing infer-
ence in Sections 3.4 and 4.1. There, we made use of the
fact that random labels for partitions and features imply
exhangeability of the data partition block assignments
(Zn) and data feature assignments (Yn). In the discus-
sion above, we study the object that associates random
uniformly distributed labels with each partition or fea-
ture. Assuming the labels come from a uniform distri-
bution rather than a general continuous distribution is
a special case of the discussion in Section 3.4, and we
defer the general case to the next section (Section 6).

We have seen above that it is particularly straight-
forward to obtain an EPPF or EFPF formulation,
which yields Gibbs sampling steps as described in Sec-
tion 3.4, when the stick lengths are generated according
to a normalized Poisson process in the partition case or
a Poisson process in the feature case. Examples 15 and
18 illustrate how to find such exchangeable probabil-
ity functions. Further, we have already seen the useful-
ness of the stick representation in inference, and Exam-
ples 15 and 20 illustrate how stick-length distributions
may be recovered from the subordinator framework.

6. COMPLETELY RANDOM MEASURES

In our discussion of subordinators, the jump sizes of
the subordinator corresponded to the feature frequen-
cies or unnormalized partition frequencies and were
the quantities of interest. By contrast, the locations of
the jumps mainly served as convenient labels for the
frequencies. These locations were chosen uniformly at
random from the unit interval. This choice guaranteed
the a.s. uniqueness of the labels and the exchangeabil-
ity of the sequence of index assignments: (Zn) in the
clustering case or (Yn) in the feature case.

However, a labeling retains exchangeability and a.s.
uniqueness as long as the labels are chosen i.i.d. from
any continuous distribution (not just the uniform distri-
bution). Moreover, in typical applications, we wish to
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associate some parameter, often referred to as a “ran-
dom effect,” with each partition block or feature. In the
partition case, we usually model the nth data point Xn

as being generated according to some likelihood de-
pending on the parameter corresponding to its block
assignment. For example, an individual animal’s height
and weight, Xn, varies randomly around the height and
weight of its species, Zn. Likewise, in the feature case,
we typically model the observed data point Xn as be-
ing generated according to some likelihood depend-
ing on the collection of parameters corresponding to
its collection of feature block assignments [cf. equa-
tion (11)]. For example, the book-buying pattern of an
online consumer, Xn, varies with some noise based on
the topics this person likes to read about: Yn is a col-
lection, possibly empty, of such topics.

In these cases, it can be useful to suppose that the
partition block labels (or feature labels) φk are not nec-
essarily R+-valued but rather are generated i.i.d. ac-
cording to some continuous distribution H on a general
space �. Then, whenever k is the order-of-appearance
partition block label of index n, we let Zn = φk . Simi-
larly, whenever k is the order-of-appearance feature la-
bel for some feature to which index n belongs, φk ∈ Yn.
Finally, then, we complete the generative model in the

partition case by letting Xn
indep∼ L(Zn) for some distri-

bution function L depending on parameter Zn. And in

the feature case, Xn
indep∼ L(Yn), where now the distri-

bution function L depends on the collection of param-
eters Yn.

When we take the jump sizes (ξk) of a subordinator
as the weights of atoms with locations (φk) drawn i.i.d.
according to H as described above, we find ourselves
with a completely random measure μ:

μ =
∞∑

k=1

ξkδφk
.(24)

A completely random measure is a random measure
μ such that whenever A and A′ are disjoint sets, we
have that μ(A) and μ(A′) are independent random
variables.

To see that associating these more general atom loca-
tions to the jumps of a subordinator yields a completely
random measure, note that Theorem 13 tells us that
the subordinator jump sizes are generated according
to a Poisson point process, with some intensity mea-
sure ν(dξ). The Marking Theorem for Poisson point
processes (Kingman, 1993) in turn yields that the tu-
ples {(ξk, φk)}k are generated according to a Poisson
point process with intensity measure ν(dξ)H(dφ). By

Kingman (1967), whenever the tuples {(ξk, φk)}k are
drawn according to a Poisson point process, the mea-
sure in equation (24) is completely random.

EXAMPLE 23 (Dirichlet process). We can form a
completely random measure from the gamma process
subordinator and a random labeling of the partition
blocks. Specifically, suppose that the labels come from
a continuous measure H . Then we generate a com-
pletely random measure G, called a gamma process
(Ferguson, 1973), in the following way:

ν(dξ × dφ) = θξ−1e−bξ dξ · H(dφ),(25) {
(ξk, φk)

}
k ∼ PPP(ν),(26)

G =
∞∑

k=1

ξkδφk
.(27)

Here, PPP(ν) denotes a draw from a Poisson point pro-
cess with intensity measure ν. The parameters θ > 0
and b > 0 are the same as for the gamma process sub-
ordinator. A gamma process draw, along with its gen-
erating Poisson point process intensity measure, is il-
lustrated in Figure 8.

The Dirichlet process (DP) is the random measure
formed by normalizing the gamma process (Ferguson,
1973). Since the Dirichlet process atom weights sum to
one, it cannot be completely random. We can write the
Dirichlet process D generated from the gamma process
G above as

τ =
∞∑

k=1

ξk,

ρk = ξk/τ,

FIG. 8. The gray manifold depicts the Poisson point process in-
tensity measure ν in equation (25) for the choice � = [0,1] and
H the uniform distribution on [0,1]. The endpoints of the line seg-
ments are points drawn from the Poisson point process as in equa-
tion (26). Taking the positive real-valued coordinate (leftmost axis)
as the atom weights, we find the random measure G (a gamma pro-
cess) on � from equation (27) in the bottom plane.
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D =
∞∑

k=1

ρkδφk
.

The random variables ρk have the same distribution as
the Dirichlet process sticks [equation (14)] or normal-
ized gamma process subordinator jump lengths, as we
have seen above (Example 18).

Consider sampling points from a Dirichlet process
and forming the induced partition of the data indices.
Theorem 19 shows us that the distribution of the in-
duced partition is the Chinese restaurant process EPPF.

EXAMPLE 24 (Beta process). We can form a com-
pletely random measure from the beta process subor-
dinator and a random labeling of the feature blocks. If
the labels are generated i.i.d. from a continuous mea-
sure H , then we say the completely random measure
B , generated as follows, is called a beta process:

ν(dξ × dφ) = γ θξ−1(1 − ξ)θ−1 dξ · H(dφ),(28) {
(ξk, φk)

}
k ∼ PPP(ν),(29)

B =
∞∑

k=1

ξkδφk
.(30)

The beta process, along with its generating intensity
measure, is depicted in Figure 9. The (ξk) have the
same distribution as the beta process sticks [equa-
tion (16)] or the beta process subordinator jump lengths
(Example 15).

Now consider sampling a collection of atom lo-
cations according to Bernoulli draws from the atom
weights of a beta process and forming the induced fea-
ture allocation of the data indices. Theorem 16 shows
us that the distribution of the induced feature allocation
is given by the Indian buffet process EFPF.

FIG. 9. The gray manifold depicts the Poisson point process in-
tensity measure ν in equation (28) for the choice � = [0,1] and
H the uniform distribution on [0,1]. The endpoints of the line seg-
ments are points drawn from the Poisson point process as in equa-
tion (29). Taking the [0,1]-valued coordinate (leftmost axis) as the
atom weights, we find the measure B (a beta process) on � from
equation (30) in the bottom plane.

6.1 Inference

In this section we finally study the full model first
outlined in the context of inference of partition and
feature structures in Section 3.4. The partition or fea-
ture labels described in this section are the same as the
block-specific parameters first described in Section 3.4.
Since this section focuses on a generalization of the
partition or feature labeling scheme beyond the uni-
form distribution option encoded in subordinators, in-
ference for the atom weights remains unchanged from
Sections 3.4, 4.1 and 5.1.

However, we note that, in the course of inferring un-
derlying partition or feature structures, we are often
also interested in inferring the parameters of the gen-
erative model of the data given the partition block or
the feature labels. Conditional on the partition or fea-
ture structure, such inference is handled as in a normal
hierarchical model with fixed dependencies. Namely,
the parameter within a particular block may be in-
ferred from the data points that depend on this block
as well as the prior distribution for the parameters.
Details for the Dirichlet process example inferred via
MCMC sampling are provided by MacEachern (1994),
Escobar and West (1995), Neal (2000); Blei and Jordan
(2006) work out details for the Dirichlet process using
variational methods. In the beta process case, Griffiths
and Ghahramani (2006), Teh, Görür and Ghahramani
(2007), Thibaux and Jordan (2007) describe MCMC
sampling, and Paisley et al. (2010) describe a varia-
tional approach.

7. CONCLUSION

In the discussion above we have pursued a progres-
sive augmentation from (1) simple distributions over
partitions and feature allocations in the form of ex-
changeable probability functions to (2) the represen-
tation of stick lengths encoding frequencies of the par-
tition block and feature occurrences to (3) subordina-
tors, which associate random R+-valued labels with
each partition block or feature, and finally to (4) com-
pletely random measures, which associate a general
class of labels with the stick lengths and whose labels
we generally use as parameters in likelihood models
built from the partition or feature allocation represen-
tation.

Along the way, we have focused primarily on two vi-
gnettes. We have shown, via these successive augmen-
tations, that the Chinese restaurant process specifies the
marginal distribution of the induced partition formed
from i.i.d. draws from a Dirichlet process, which is
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in turn a normalized completely random measure. And
we have shown that the Indian buffet process specifies
the marginal distribution of the induced feature alloca-
tion formed by i.i.d. Bernoulli draws across the weights
of a beta process.

There are many extensions of these ideas that lie
beyond the scope of this paper. A number of exten-
sions of the CRP and Dirichlet process exist—in either
the EPPF form (Pitman, 1996; Blei and Frazier, 2011),
the stick-length form (Dunson and Park, 2008) or the
random measure form (Pitman and Yor, 1997). Like-
wise, extensions of the IBP and beta process have been
explored (Teh, Görür and Ghahramani, 2007; Paisley
et al., 2010; Broderick, Jordan and Pitman, 2012).

More generally, the framework above demonstrates
how alternative partition and feature allocation mod-
els may be constructed—either by introducing dif-
ferent EPPFs (Pitman, 1996; Gnedin and Pitman,
2006) or EFPFs, different stick-length distributions
(Ishwaran and James, 2001) or different random mea-
sures (Wolpert and Ickstadt, 2004).

Finally, we note that expanding the set of combi-
natorial structures with useful Bayesian priors from
partitions to the superset of feature allocations sug-
gests that further such structures might be usefully
examined. For instance, the beta negative binomial
process (Broderick et al., 2011; Zhou et al., 2012)
provides a prior on a generalization of a feature al-
location where we allow the features themselves to
be multisets; that is, each index may have nonnega-
tive integer multiplicities of features. Models on trees
(Adams, Ghahramani and Jordan, 2010; McCullagh,
Pitman and Winkel, 2008; Blei, Griffiths and Jordan,
2010), graphs (Li and McCallum, 2006) and permuta-
tions (Pitman, 1996) provide avenues for future explo-
ration. And there likely remain further structures to be
fitted out with useful Bayesian priors.
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