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LARGE DEVIATIONS OF THE INTERFERENCE IN THE

GINIBRE NETWORK MODEL

By Giovanni Luca Torrisi and Emilio Leonardi

Under different assumptions on the distribution of the fading ran-
dom variables, we derive large deviation estimates for the tail of the
interference in a wireless network model whose nodes are placed, over
a bounded region of the plane, according to the β-Ginibre process,
0 < β ≤ 1. The family of β-Ginibre processes is formed by deter-
minantal point processes, with different degree of repulsiveness. As
β → 0, β-Ginibre processes converge in law to a homogeneous Poisson
process. In this sense the Poisson network model may be considered
as the limiting uncorrelated case of the β-Ginibre network model.
Our results indicate the existence of two different regimes.

When the fading random variables are bounded or Weibull su-
perexponential, large values of the interference are typically origi-
nated by the sum of several equivalent interfering contributions due
to nodes in the vicinity of the receiver. In this case, the tail of the
interference has, on the log-scale, the same asymptotic behavior for
any value of 0 < β ≤ 1, but it differs from the asymptotic behavior
of the tail of the interference in the Poisson network model (again on
a log-scale) [14].

When the fading random variables are exponential or subexpo-
nential, instead, large values of the interference are typically origi-
nated by a single dominating interferer node and, on the log-scale,
the asymptotic behavior of the tail of the interference is insensitive
to the distribution of the nodes, as long as the number of nodes is
guaranteed to be light-tailed.

1. Introduction. An important performance index in a wireless net-
work is the so-called outage (or success) probability, which measures the re-
liability degree of communications channels established between each trans-
mitter and its associated receiver. The outage probability is mainly deter-
mined by the mutual interference among simultaneous transmissions over
the same physical channel [20, 23, 29, 34, 35]. In the last years a huge effort
has been devoted to characterize the interference produced by transmitting
nodes operating over the same channel [3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 21,
24, 28, 30, 33]. Most of these works, however, focused on networks in which
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transmitting nodes are either distributed according to a homogeneous Pois-
son process or, in a few cases, located on a perfectly regular grid.

Although the Poisson assumption offers many analytical advantages, it
appears rather unrealistic in many cases, since it neglects the correlations
among the positions of different transmitters, possibly resulting from the
application of smart scheduling policies or intelligent network planning tech-
niques. The assumption that transmitting nodes are located on a perfectly
regular grid is unrealistic too, since it does not capture the effects of envi-
ronmental constraints that prevent network planners from placing wireless
access points regularly spaced.

In many practical situations, the set of nodes that transmit simultane-
ously over the same channel may be thought as a point process of repulsive
nature, i.e. a point process whose points are negatively correlated. However,
only very recently, the research community has started investigating the
mathematical properties of wireless network models in which transmitting
nodes are distributed according to general point processes [1, 16, 15, 17, 18,
24, 28, 30].

Under various assumptions on the distribution of the fading random vari-
ables (i.e. signal powers) and on the attenuation function, a first attempt to
analyze the performance of a network in which nodes locations are modeled
as a general stationary and isotropic point process has been carried out in
[16, 17] and [18]. In [16] and [18] the authors study the asymptotic behavior
of the outage probability as the intensity of the nodes goes to zero. In [17],
instead, the outage probability of the network is approximated using the fac-
torial moment expansion of functionals of point processes and the proposed
moment expansion can be successfully applied when the joint intensities of
the underlying point process can be efficiently computed. In [1, 24, 28], the
authors propose different methodologies to estimate the outage probability
of networks in which the nodes are distributed according to a Matérn hard-
core process. At last, in [15] authors characterize the outage probability
of wireless networks in which nodes are distributed according to attractive
Poisson cluster processes, such as Neyman-Scott, Thomas and Matérn point
processes and fading variables are exponentially distributed.

This paper may be considered as a natural extension of the study started
in [14], where large deviation estimates for the interference in the Pois-
son network model have been provided, under various assumptions on the
distribution of the fading random variables. Here we move a step forward
targeting networks in which the nodes are placed according to repulsive
point processes. Our main findings can be summarized as follows. When the
fading random variables are bounded or Weibull superexponential and the
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nodes are placed according to the β-Ginibre process, 0 < β ≤ 1, we derive
the large deviations of the interference by relating the tail of the interfer-
ence with the number of points falling in the proximity of the receiver. Our
results show that, on the log-scale, the tail of the interference exhibits the
same asymptotic behavior for any value of β ∈ (0, 1]. At the same time,
our results indicate that, on the log-scale, the asymptotic behavior of the
tail of the interference in the β-Ginibre network model, 0 < β ≤ 1, and the
asymptotic behavior of the tail of the interference in the Poisson network
model are different. Since the Poisson process is the weak limit of the β-
Ginibre process, as β → 0, this enlightens a discontinuous behavior of the
tail of the interference with respect to the convergence in law. When the
fading random variables are exponential or subexponential, we prove that,
on the log-scale, the asymptotic behavior of the tail of the interference is
insensitive to the distribution of the nodes, as long as the number of nodes
is guaranteed to be light-tailed. Such insensitivity property descends from
the fact that large values of the interference are typically originated by a
single dominant interferer node.

From a mathematical point of view, the analysis of the β-Ginibre network
model, 0 < β ≤ 1, carried out in this paper differs from the analysis of the
Poisson network model studied in [14], since we can not anymore resort on
the independence properties of the Poisson process. This difficulty is circum-
vented by combining ad hoc arguments, that leverage the specific structure
of the β-Ginibre process, 0 < β ≤ 1, and the properties of subexponential
distributions.

The paper is organized as follows. In Section 2 we describe the system
model. In Section 3 we give some preliminaries on large deviations, deter-
minantal processes and β-Ginibre processes, 0 < β ≤ 1. The statistical
assumptions on the model are provided in Section 4. In Sections 5 and 6
we derive the large deviations of the interference in the β-Ginibre network
model, 0 < β ≤ 1, when the fading random variables are bounded and
Weibull superexponential, respectively. In Section 7 we provide the large
deviations of the interference in more general network models when the sig-
nal powers are exponential or subexponential. In Section 8 we summarize the
main findings of this paper. We include an Appendix where some technical
results are proved.

2. The system model. We consider the following simple model of
wireless network, which accounts for interference among different simultane-
ous transmissions. Transmitting nodes (antennas) are distributed according
to a simple (i.e. without multiple points) point process N ≡ {Yi}i≥1 on the
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plane. One of the points of N is placed at the origin, say O. A tagged receiver
is then added at y ∈ R

2.
We suppose that the useful signal emitted by the node at the origin is

received at y with power Z0L(y), where L : R2 → (0,∞) is a non increasing
function called attenuation function, and Z0 is a random term modeling
the effects of the fading. Similarly, we assume that the interfering signal
emitted by the node at Yi 6= O is received at y with power ZiL(y − Yi). We
suppose that the fading random variables Zi are non-negative, independent
and identically distributed and independent of {Yi}i≥1. Finally, we denote
by w > 0 the average thermal power noise at the receiver.

Let {Xi}i≥1 denote the points of the point process N \ {O} |O ∈ N

(the law of this process is the so-called reduced Palm probability of N at the
origin, see e.g. [10].) We shall analyze the interference due to simultaneous
transmissions of nodes falling in a measurable and bounded region Λ of
the plane that contains both O and y in its interior. Assuming that all
the random quantities considered above are defined on the same probability
space (Ω,F,P), we define the interference by

IΛ =
∑

i≥1

ZiL(y −Xi)1Λ(Xi)

where, with a slight abuse of notation, we have still denoted by Zi the fading
random variable associated to the transmission of the node at Xi. Here the
symbol 1Λ denotes the indicator function of the set Λ.

The tail of the interference is tightly related to the probability of suc-
cessfully decoding the signal from the transmitter at the origin. Indeed,
depending on the adopted modulation and encoding scheme, the receiver at
y can successfully decode the signal from the transmitter at O if the Signal
to Interference plus Noise Ratio (SINR) at the receiver is greater than a
given threshold, say τ > 0 (which depends on the adopted scheme.) In other
words, the success probability is given by

P(SINR > τ) where SINR =
Z0L(y)

w + IΛ
.

The relationship between the tail of IΛ and the success probability is
highlighted by the following relation

P(SINR > τ | Z0 = z) = P

(
IΛ <

zL(y)

τ
− w

)
.
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3. Preliminaries. In this section, first we recall the notion of large
deviation principle and subexponential distribution (the reader is directed
to [11] for an introduction to large deviations theory and to [2] for more
insight into heavy-tailed random variables), second we recall the definition of
determinantal process, explain its repulsive nature and provide the definition
of β-Ginibre process, 0 < β ≤ 1 (the reader is referred to [9, 10] and [27] for
notions of point processes theory, to [22] for more insight into determinantal
processes and to [6] and [7] for notions of functional analysis.)

3.1. Large deviation principles. A family of probability measures {µε}ε>0

on ([0,∞),B([0,∞))) obeys a large deviation principle (LDP) with rate func-
tion I and speed v if I : [0,∞) → [0,∞] is a lower semi-continuous function,
v : (0,∞) → (0,∞) is a measurable function which diverges to infinity at the
origin, and the following inequalities hold for every Borel set B ∈ B([0,∞)):

− inf
x∈B◦

I(x) ≤ lim inf
ε→0

1

v(ε)
log µε(B) ≤ lim sup

ε→0

1

v(ε)
log µε(B) ≤ − inf

x∈B
I(x),

where B◦ denotes the interior of B and B denotes the closure of B. Similarly,
we say that a family of [0,∞)-valued random variables {Vε}ε>0 obeys an
LDP if {µε}ε>0 obeys an LDP and µε(·) = P (Vε ∈ ·). We point out that the
lower semi-continuity of I means that its level sets:

{x ∈ [0,∞) : I(x) ≤ a}, a ≥ 0,

are closed; when the level sets are compact the rate function I is said to be
good.

In this paper we shall use the following criterion to provide the large
deviations of a non-negative family of random variables. Although its proof
is quite standard, we give it in the Appendix for the sake of completeness.

Proposition 3.1. Let I : [0,∞) → [0,∞) be an increasing function
which is continuous on (0,∞) and such that I(0) = 0 and let v : (0,∞) →
(0,∞) be a measurable function which diverges to infinity at the origin. If
{Vε}ε>0 is a family of non-negative random variables such that Vε ↓ 0 and,
for any x ≥ 0,

lim sup
ε→0

1

v(ε)
log P(Vε ≥ x) ≤ −I(x)

and

lim inf
ε→0

1

v(ε)
logP(Vε > x) ≥ −I(x),

then the family of random variables {Vε}ε>0 obeys an LDP on [0,∞) with
speed v and rate function I.
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A random variable Z is called subexponential if it has support on (0,∞)
and

lim
x→∞

F ∗2(x)

F (x)
= 2,

where F (x) = P(Z ≤ x), F (x) = P(Z > x) and F ∗2 is the two-fold convolu-
tion of F .

Finally, we fix some notation. Let f and g be two real-valued functions
defined on some subset of R. We write f(x) = O(g(x)) if there exist constants
M > 0 and x0 ∈ R such that |f(x)| ≤ M |g(x)| for all x > x0. We write
f(x) = o(g(x)) if for any ε > 0 there exists x0 ∈ R such that |f(x)| ≤ ε|g(x)|
for all x > x0. We write f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1. For any
complex number z ∈ C, we denote by z its complex conjugate. For any
x0 ∈ R

2 or C, we denote by b(x0, r) the closed ball in R
2 or C of radius

r > 0 centered at x0. For any x ≥ 0, we denote by [x] the biggest integer
not exceeding x.

3.2. Determinantal processes and their repulsive nature. We start recall-
ing the notion of joint intensities (or kth order product density functions)
of a point process on the complex field. Let S ⊆ C be a measurable set, λ
a Radon measure on S and N ≡ {Yi}i≥1 a simple point process on S. The
joint intensities of N with respect to λ are measurable functions (if any ex-
ist) ρ(k) : Sk → [0,∞), k ≥ 1, such that for any family of mutually disjoint
subsets Λ1, . . . ,Λk of S

E




k∏

j=1



∑

i≥1

1Λj(Yi)




 =

∫
∏k

j=1 Λj

ρ(k)(x1, . . . , xk)λ(dx1) . . . λ(dxk).

In addition, we require that ρ(k)(x1, . . . , xk) vanishes if xh = xk for some
h 6= k. Intuitively, for any pairwise distinct points x1, . . . , xk ∈ S, ρ(k)(x1, . . . ,
xk)λ(dx1) . . . λ(dxk) is the probability that, for each i = 1, . . . , k, N has a
point in an infinitesimally small region around xi of volume λ(dxi). If ρ

(1)

and ρ(2) exist, we may consider the following second order summary statistic
of N (called pair correlation function)

g(x1, x2) =
ρ(2)(x1, x2)

ρ(1)(x1)ρ(1)(x2)
for ρ(1)(x1) > 0, ρ(1)(x2) > 0

g(x1, x2) = 0 when either ρ(1)(x1) = 0 or ρ(1)(x2) = 0.
Due to the interpretation of the joint intensities, if g ≤ 1 λ⊗2-a.e. then

the points of N repel each other (indeed the process is negative correlated
and has an anti-clumping behavior.)
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N is said to be a determinantal process on S with kernel K : S × S → C

and reference measure λ if

ρ(k)(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k,

where det(K(xi, xj))1≤i,j≤k is the determinant of the k × k-matrix with ij-
entriesK(xi, xj). From now on, we assume thatK is locally square integrable
on S × S with respect to λ⊗2 and let

Kf(x) =

∫

S
K(x, y)f(y)λ(dy), f ∈ L2(S, λ).

be the integral operator with kernelK and reference measure λ. Here L2(S, λ)
is the space of functions f : S → C which are square integrable with respect
to λ. In the sequel, for a compact set Λ′ ⊂ S, we denote by KΛ′ the re-
striction of K to Λ′. If the operator KΛ′ is positive, we denote by Tr(KΛ′)
the trace of KΛ′ . To guarantee the existence and uniqueness (in law) of a
determinantal process with a given kernel K and reference measure λ one
assumes

• K is Hermitian, i.e. K(xi, xj) = K(xj, xi), λ
⊗2-a.e.

• The spectrum of K is contained in [0, 1].
• K is locally of trace class, i.e. Tr(KΛ′) < ∞ for any compact Λ′ ⊂ S.

By the spectral theorem for compact and Hermitian operators, under the
above assumptions, for any fixed compact Λ′ ⊂ S, there exists an orthonor-
mal basis {ϕn,Λ′}n≥1 of L2(Λ′, λ) of eigenfunctions of KΛ′ . We denote by
{κn(Λ′)}n≥1 the corresponding eigenvalues, i.e. KΛ′ϕn,Λ′ = κn(Λ

′)ϕn,Λ′ ,
n ≥ 1. Note that κn(Λ

′) ∈ [0, 1] for any n ≥ 1, because the spectrum of K is
contained in [0, 1]. Note also that the above conditions imply K(x, x) ≥ 0,
λ-a.e.

We remark that for a determinantal process N on S with kernel K and
reference measure λ we have

g(x1, x2) =
K(x1, x1)K(x2, x2)−K(x1, x2)K(x2, x1)

K(x1, x1)K(x2, x2)

= 1− K(x1, x2)K(x2, x1)

K(x1, x1)K(x2, x2)
(1)

= 1− |K(x1, x2)|2
K(x1, x1)K(x2, x2)

≤ 1, λ⊗2-a.e.

which shows the repulsiveness of determinantal processes. Here, in (1) one
uses first the Hermitianity of K and second that K(x, x) ≥ 0 λ-a.e.
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Fig 1. Realizations of the Ginibre process, the β-Ginibre process with β = 0.25 and the
homogeneous Poisson process of intensity 1/π within the ball b(O, 10).

In this paper, we shall consider the Ginibre and more generally the β-
Ginibre process. The Ginibre process is a determinantal process on S = C

with kernel K and reference measure λ defined respectively by

K(x, y) = exy and λ(dx) =
1

π
e−|x|2 dx.

Here dx denotes the Lebesgue measure on C. The β-Ginibre process, 0 <
β ≤ 1, is the point process obtained by retaining, independently and with
probability β, each point of the Ginibre process and then scaling by

√
β the

remaining points. Note that the 1-Ginibre process is the Ginibre process and
that the β-Ginibre process converges weakly to the homogeneous Poisson
process of intensity 1/π, as β → 0 (this latter fact may be easily checked
proving that the Laplace functional of the β-Ginibre process converges to
the Laplace functional of the Poisson process of intensity 1/π, as β → 0;
see e.g. Theorem 4 in [8].) In other words the β-Ginibre processes, 0 <
β < 1, constitute an intermediate class between the homogeneous Poisson
process of intensity 1/π and the Ginibre process. We remark that the β-
Ginibre processes, 0 < β ≤ 1, are still determinantal processes and satisfy
the usual conditions of existence and uniqueness (see e.g. [19].) Figures 1(a)
and 1(b) show, respectively, a realization of the Ginibre processs and of the
β-Ginibre process with β = 0.25 within the ball b(O, 10). For comparison,
a realization of the homogeneous Poisson process of intensity 1/π within
the ball b(O, 10) is reported in the Figure 1(c). Note that the points of the
Ginibre process exhibit the highest degree of regularity, while the points of
the Poisson process exhibit the lowest degree of regularity.
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4. Statistical assumptions. Throughout this paper we assume that
the signal power is attenuated according to the ideal Hertzian law, i.e.

L(x) = max{R, |x|}−α, R > 0, α > 2.

We recall that the simple point process N = {Yi}i≥1 denotes the locations
of the nodes and {Xi}i≥1 are the points of the reduced Palm version at the
origin of N, i.e. N \ {O} |O ∈ N. In the following, any time we refer to a
determinantal process we identify the plane with C.

Lemma 4.1. Let {Xi}i≥1 be a reduced Palm version at the origin of a
β-Ginibre process, {Vi}i≥1 a Ginibre process and G a centered complex Gaus-
sian random variable with E[|G|2] = 1. The point process which is obtained
by an independent thinning of {√βVi}i≥1 with retention probability β has
the same law of the point process which is obtained by adding to {Xi}i≥1 the
point

√
βG with probability β.

Given a measurable and bounded subset Λ′ of the plane, we denote by
N(Λ′) the number of points {Xi}i≥1 in Λ′.

Lemma 4.2. (i) Let {Vi}i≥1 be a Ginibre process and {Ai}i≥1 a sequence
of independent and identically distributed events, independent of {Vi}i≥1.
For any fixed r ∈ (0,∞) and x0 ∈ C,

(2) P



∑

i≥1

1b(x0,r)(Vi)1Ai ≥ m


 = e−

1
2
m2 logm(1+o(1)), as m ↑ ∞.

(ii) Let {Xi}i≥1 be a reduced Palm version at the origin of a β-Ginibre
process. For any fixed r ∈ (0,∞) and x0 ∈ C,

P(N(b(x0, r)) ≥ m) = e−
1
2
m2 logm(1+o(1)), as m ↑ ∞.

Lemma 4.3. Let {Xi}i≥1 be a reduced Palm version at the origin of a
β-Ginibre process. For any compact Λ′ ⊂ C,

(3) E[N(Λ′)] ≤
∑

n≥1

κn(Λ
′/
√

β) < ∞

and

(4) E[eθN(Λ′)] ≤
∏

n≥1

(1 + (eθ − 1)κn(Λ
′/
√

β)) < ∞, θ ≥ 0.
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Here
Λ′/β = {x ∈ C : x = y/

√
β for some y ∈ Λ′}

and κn(Λ
′/β) are the eigenvalues of the integral operator, restricted to Λ′/β,

of the 1-Ginibre process.

Lemma 4.1 is a straightforward consequence of Remark 24 in [19] (see
Theorem 1 in [19] for the case β = 1.) The proofs of Lemmas 4.2 and 4.3
are given in the Appendix. Lemmas 4.1, 4.2 and 4.3 will come in handy in
Sections 5 and 6.

In Section 7, we consider a general simple point process N on the plane
satisfying one of the following two light-tail conditions:

• when the fading is exponentially distributed (see Subsection 7.1) we
assume that

(5) E[eθN(Λ)] < ∞ for any θ > 0;

• when the fading is subexponential (see Subsection 7.2) we assume that

(6) ∃ a > 0 such that E[eθN(Λ)] < ∞ ∀ θ < a.

Note that Conditions (5) and (6) are fairly general. The homogeneous Pois-
son process and the β-Ginibre process, 0 < β ≤ 1, represent just two par-
ticular point processes satisfying (5), and therefore (6). This is a simple
consequence of the Slivnyak Theorem and Lemma 4.3.

5. Large deviations of the interference: Bounded fading. The
standing assumptions of this section are: N is the β-Ginibre process, 0 <
β ≤ 1; the fading random variables Zi, i ≥ 1, have bounded support with
supremum B > 0.

Theorem 5.1. Under the foregoing assumptions, the family of random
variables {εIΛ}ε>0 obeys an LDP on [0,∞) with speed 1

ε2
log 1

ε and good rate

function I1(x) =
R2αx2

2B2 .

The proof of this theorem is based on the following lemmas whose proofs
are given below.

Lemma 5.2. Under the foregoing assumptions, for any x ≥ 0,

lim sup
ε→0

ε2

log(1/ε)
log P(εIΛ ≥ x) ≤ −I1(x).
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Lemma 5.3. Under the foregoing assumptions, for any x ≥ 0,

lim inf
ε→0

ε2

log(1/ε)
log P(εIΛ > x) ≥ −I1(x).

Proof of Theorem 5.1. The claim follows by Proposition 3.1 and Lem-
mas 5.2 and 5.3.

Proof of Lemma 5.2. The claim is clearly true if x = 0. We prove the
claim when x > 0. Since max{R, |Xi − y|} ≥ R we have L(Xi − y) ≤ R−α,
i ≥ 1, and so

(7) P (εIΛ ≥ x) ≤ P


R−αε

∑

i≥1

Zi1Λ(Xi) ≥ x


 , ε > 0

(it is worthwhile to remark that due to its generality this bound will be used
later on even to derive large deviation upper bounds in the case of signals
not necessarily bounded and nodes not necessarily distributed as the reduced
Palm version at the origin of a β-Ginibre process.) Since Λ is bounded and
y ∈ Λ◦ there exists R̃ > 0 so that b(y, R̃) ⊇ Λ. Combining this with (7) and
the assumption on the support of the signals, for any ε > 0, we have

P(εIΛ ≥ x) ≤ P



∑

i≥1

1b(y,R̃)(Xi) ≥
Rαx

Bε


 = P

(
N(b(y, R̃)) ≥ Rαx

Bε

)
.(8)

By this inequality and Lemma 4.2(ii) we then have

lim sup
ε→0

ε2

log(1/ε)
log P(εIΛ≥x) ≤ lim sup

ε→0

ε2

log(1/ε)
logP

(
N(b(y, R̃))≥ Rαx

Bε

)

= −R2αx2

2B2
,

and the proof is completed (note that in the latter equality one makes use

of the elementary relation limε→0
log(c/ε)
log(1/ε) = 1, for any positive constant

c > 0.)

Proof of Lemma 5.3. The idea is to produce a suitable lower bound for
the quantity P(εIΛ > x) by a thinning argument. For this we shall combine
Lemma 4.1 and Lemma 4.2(i). The claim of the lemma is clearly true if
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x = 0 and so we consider x > 0. Since y ∈ Λ◦, there exists r ∈ (0, R) such
that b(y, r)◦ ⊂ Λ. So, for any ε > 0, we have

P(εIΛ > x) ≥ P(εIb(y,r)◦ > x) = P



∑

i≥1

Zi1b(y,r)◦(Xi) >
Rαx

ε


 ,(9)

where the equality is a consequence of the fact that r ∈ (0, R). Letting
{U}∪{Ui}i≥1 denote a sequence of independent random variables uniformly
distributed on [0, 1] and Z denote a random variable distributed as Z1, and
assuming that the random variables {U,Z} ∪ {Ui}i≥1 are independent of all
the other random quantities, we have

P

(
∑

i≥1

Zi1b(y,r)◦(Xi) >
Rαx

ε

)

= P

(
∑

i≥1

Zi1b(y,r)◦(Xi) + Z1b(y,r)◦(√βG)1{U < β}

>
Rαx

ε
+ Z1b(y,r)◦(√βG)1{U < β}

)

≥ P

(
∑

i≥1

Zi1b(y,r)◦(Xi) + Z1b(y,r)◦(√βG)1{U < β} >
Rαx

ε
+B

)
(10)

= P

(
∑

i≥1

Zi1b(y,r)◦(√βVi)1{Ui < β} >
Rαx

ε
+B

)
,(11)

where (10) follows by the upper bound

Z1b(y,r)◦(√βG)1{U < β} ≤ B

and (11) is consequence of Lemma 4.1. Since Z1 has bounded support with
supremum B > 0, for arbitrarily small δ ∈ (0, 1) there exists pδ > 0 such
that P(Z1 > (1− δ)B) = pδ. Using the elementary relations

1 ≥ 1((1−δ)B,∞)(Zi), 1b(y,r)◦(√βVi) = 1b(y/√β,r/
√
β)◦(Vi)

we have

P



∑

i≥1

Zi1b(y,r)◦(√βVi)1{Ui < β} >
Rαx

ε
+B




(12)

≥ P



∑

i≥1

Zi1b(y/√β,r/
√
β)◦(Vi)1{Ui < β}1((1−δ)B,∞)(Zi) >

Rαx

ε
+B


 .
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Note also that

P





∑

i≥1

Zi1b(y/√β,r/
√
β)◦ (Vi)1{Ui < β}1((1−δ)B,∞)(Zi) >

Rαx

ε
+B





≥ P



(1− δ)B
∑

i≥1

1b(y/√β,r/
√
β)◦(Vi)1{Ui < β}1((1−δ)B,∞)(Zi) >

Rαx

ε
+ B





(13)

= P





∑

i≥1

1b(y/√β,r/
√
β)◦ (Vi)1{Ui < β}1((1−δ)B,∞)(Zi) >

Rαx

(1 − δ)Bε
+

1

1− δ





≥ P





∑

i≥1

1b(y/√β,r/
√
β)◦ (Vi)1{Ui < β}1((1−δ)B,∞)(Zi) >

[

Rαx

(1− δ)Bε
+

1

1− δ

]

+ 1



 ,

where the latter inequality follows by the definition of [x] (i.e. the biggest
integer not exceeding x.) Collecting (9), (11), (12) and (13) we deduce

P(εIΛ > x)
(14)

≥ P





∑

i≥1

1b(y/√β,r/
√
β)◦ (Vi)1{Ui < β}1((1−δ)B,∞)(Zi) >

[

Rαx

(1− δ)Bε
+

1

1− δ

]

+ 1



 .

By this inequality and (2), we have

lim inf
ε→0

ε2

log(1/ε)
log P(εIΛ > x) ≥ −1

2
lim
ε→0

ε2

log(1/ε)

[
Rαx

(1− δ)Bε

]2
log

[
Rαx

(1− δ)Bε

]

= −1

2

R2αx2

(1 − δ)2B2
.

The claim follows letting δ tend to zero.

We conclude this section stating the following immediate corollary of The-
orem 5.1.

Corollary 5.4. Under the assumptions of Theorem 5.1,

(15) lim
x→∞

logP(IΛ ≥ x)

x2 log x
= −1

2

R2α

B2
.

The proof of Theorem 5.1 suggests that large values of the interference
are typically obtained as the sum of the signals coming from a large number
of interfering nodes. This interpretation follows by inequalities (8) and (14).

Now we can compare (15) against its analogue for Poisson networks de-
rived in [14] and here repeated (see also Proposition 5.1 in [33]):
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Proposition 5.5. If N is a homogeneous Poisson process and the fading
random variables have bounded support with supremum B > 0,

lim
x→∞

log P(IΛ ≥ x)

x log x
= −Rα

B
.

We conclude that: i) on the log-scale, the asymptotic behavior of the tail
of the interference is insensitive to the choice of the particular β-Ginibre
network model (it does not depend on 0 < β ≤ 1), as a consequence of
the fact that the tail of the number of points falling in a ball has the same
asymptotic behavior for any value of β ∈ (0, 1] (see Lemma 4.2); ii) the tail
of the interference in the β-Ginibre network model is significantly lighter
than the tail of the interference in the Poisson network model. This is a
direct consequence of the repulsiveness of the β-Ginibre process, 0 < β ≤ 1.
Since the β-Ginibre process converges weakly to the homogeneous Poisson
process with intensity 1/π, as β → 0, the tail of the interference exhibits a
discontinuous behavior with respect to the convergence in law.

From an application point of view, our results lead to the following con-
clusion: when transmissions are marginally affected by fading such as in
outdoor scenarios with (almost) line of sight transmissions, the impact of
the node placement can be significant. Network planners should place net-
work nodes as regularly as possible, avoiding concentration of nodes in small
areas.

6. Large deviations of the interference: Weibull superexponen-

tial fading. The standing assumptions of this section are: N is the β-
Ginibre process, 0 < β ≤ 1; the fading random variables Zi, i ≥ 1, are
Weibull superexponential in the sense that − log P(Z1 > z) ∼ czγ , for some
constants c > 0 and γ > 1.

Hereafter, for a constant µ ∈ R and x > 0 we use the standard notation
logµ x = (log x)µ.

Theorem 6.1. Under the foregoing assumptions, the family of random var-
iables {εIΛ}ε>0 obeys an LDP on [0,∞) with speed 1

ε2γ/(γ+1) log
(γ−1)/(γ+1)(1ε )

and good rate function

I2(x) =
1

2
R2αγ/(γ+1)

(
γ

γ − 1

)(γ−1)/(γ+1)

(c(γ + 1))2/(γ+1)x2γ/(γ+1).

The proof of this theorem is based on the following lemmas whose proofs
are given below.
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Lemma 6.2. Under the foregoing assumptions, for any x ≥ 0,

lim sup
ε→0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log P(εIΛ ≥ x) ≤ −I2(x).

Lemma 6.3. Under the foregoing assumptions, for any x ≥ 0,

lim inf
ε→0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log P(εIΛ > x) ≥ −I2(x).

Proof of Theorem 6.1. The claim follows by Proposition 3.1 and Lem-
mas 6.2 and 6.3.

Proof of Lemma 6.2. The claim is clearly true if x = 0. We prove
the claim when x > 0 in four steps. In the first step we provide a general
upper bound for P(εIΛ ≥ x), ε > 0, by applying the Chernoff bound (it is
worthwhile to remark that due to its generality the bound obtained in this
step will be used later on even to derive large deviation upper bounds in
the case of exponential signals and nodes not necessarily distributed as the
reduced Palm version at the origin of a β-Ginibre process.) In the second
step, using the determinantal structure of the Ginibre process and the bound
derived in Step 1, we give a further upper bound for P(εIΛ ≥ x). In the
third step we show how the conclusion can be derived by the bound proved
in Step 2. This is done up to a technical point which is addressed in the
subsequent Step 4.

Step 1: An upper bound for P(εIΛ ≥ x). Let Λ′ be a bounded set of the
complex plane such that Λ′ ⊇ Λ and let θ > 0 be an arbitrary positive
constant. By the Chernoff bound and the independence, we deduce

P


εR−α

N(Λ′)∑

i=1

Zi ≥ x


 ≤ exp

(
−θx+ logE

[
eθεR

−α
∑N(Λ′)

i=1 Zi

])

(16)

= exp

(
−θx+ logE

[
E

[
eθεR

−αZ1

]N(Λ′)
])

.

Combining (7) and (16), we deduce

(17) P (εIΛ ≥ x) ≤ exp

(
−θx+ logE

[
E

[
eθεR

−αZ1

]N(Λ′)
])

(note that by the assumption on the distribution of Z1 one has E[eδZ1 ] < ∞
for any δ > 0 and so the bound is finite.)
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Step 2: A further upper bound for P(εIΛ ≥ x). Let R̃ > 0 be such that
b(O, R̃) ⊇ Λ and set R′ = R̃/

√
β. Using (4) we deduce

logE

[
E

[
eθεR

−αZ1

]N(b(O,R̃))
]
≤ log

∏

n≥1

(
1 +

(
E

[
eθεR

−αZ1

]
− 1
)
κn(b(O,R′))

)

(18)
=
∑

n≥1

log
(
1 + (E[eθεR

−αZ1 ]− 1)κn(b(O,R′))
)
.

Combining (17) with Λ′ = b(O, R̃) and (18), for any ε, x > 0, we have

P (εIΛ ≥ x) ≤ exp

(
−θx+ logE

[
E

[
eθεR

−αZ1

]N(b(O,R̃))
])

(19)

≤ exp


−θx+

∑

n≥1

log
(
1 + (E[eθεR

−αZ1 ]− 1)κn(b(O,R′))
)

 .

Step 3: Conclusion of the proof. By (19), for any 0 < ε < min{1, x}, we
have

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log P (εIΛ ≥ x)

≤ − ε2γ/(γ+1)θx

log(γ−1)/(γ+1)(1/ε)
(20)

+
ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)

∑

n≥1

log
(
1 + (E[eθεR

−αZ1 ]− 1)κn(b(O,R′))
)
.

From now on we take

θ =
Rαγ̃

ε

(x
ε
log

x

ε

)(γ−1)/(γ+1)
,

where

γ̃ =
1

2

(
Rαγ

γ − 1

)(γ−1)/(γ+1)

(c(γ + 1))2/(γ+1) .

Note that

(21) lim
ε→0

ε2γ/(γ+1)θx

log(γ−1)/(γ+1)(1/ε)
= Rαγ̃x2γ/(γ+1).

We shall show in the next step that
(22)

lim
ε→0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)

∑

n≥1

log
(
1 + (E[eθεR

−αZ1 ]− 1)κn(b(O,R′))
)
= 0.
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The claim follows taking the lim sup as ε → 0 in the inequality (20) and
using (21) and (22).

Step 4: Proof of (22). We start recalling that by Lemma 8 in [14] we have

(23) lim
θ→∞

logE[eθZ1 ]

γ′θγ/(γ−1)
= 1,

where γ′ = (γ − 1)γ−γ/(γ−1)c−1/(γ−1). Since the eigenvalues κn(b(O,R′))
belong to [0, 1], by (23) we deduce

0 ≤ lim sup
ε→0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log
(
1 + (E[eθεR

−αZ1 ]− 1)κn(b(O,R′))
)

≤ lim sup
ε→0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
logE[eθεR

−αZ1 ]

= γ′γ̃γ/(γ−1) lim
ε→0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)

(x
ε
log

x

ε

)γ/(γ+1)
= 0.

So, for (22) we only need to check that we can interchange the limit with
the infinite sum. To this aim, we shall prove that there exists a right neigh-
borhood of zero, say N0, such that

∑

n≥1

sup
ε∈N0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log
(
1 + (E[eθεR

−αZ1 ]− 1)κn(b(O,R′))
)
< ∞.

By (23), for any δ > 0 there exists εδ ∈ (0,min{1, x}) such that for any
ε ∈ (0, εδ)

E[eθεR
−αZ1 ] ≤ exp

(
Cδ

(x
ε
log

x

ε

)γ/(γ+1)
)

where Cδ = (1 + δ)γ′γ̃γ/(γ−1). Therefore, for all ε ∈ (0, εδ), we have

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log

(

1 + (E[eθεR
−αZ1 ]− 1)κn(b(O,R′))

)

(24)

≤
ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log

(

1 +

(

exp

(

Cδ

(x

ε
log

x

ε

)γ/(γ+1)
)

− 1

)

κn(b(O,R′))

)

.

Consequently, it suffices to prove that there exists a right neighborhood of
zero contained in (0, εδ), say N′

0, such that

∑

n≥1

sup
ε∈N′

0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log

(

1 +

(

exp

(

Cδ

(x

ε
log

x

ε

)γ/(γ+1)
)

− 1

)

κn(b(O,R′))

)

< ∞.

(25)
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The first derivative (with respect to ε) of the term in the right-hand side of
(24) is equal to

2γ

γ + 1
ε(γ−1)/(γ+1)

log
(

1 +
(

exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

− 1
)

κn(b(O,R′))
)

log(γ−1)/(γ+1)(1/ε)

+
γ − 1

γ + 1

ε(γ−1)/(γ+1) log
(

1 +
(

exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

− 1
)

κn(b(O,R′))
)

log2γ/(γ+1)(1/ε)

−

γ
γ+1

xγ/(γ+1)Cδ exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

κn(b(O,R′))

1 +
(

exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

− 1
)

κn(b(O,R′))

×
1

ε1/(γ+1)

logγ/(γ+1)(x/ε)

log(γ−1)/(γ+1)(1/ε)

(

1 +
1

logγ/(γ+1)(x/ε) log1/(γ+1)(1/ε)

)

.

This quantity is bigger than or equal to zero if and only if

2γ εγ/(γ+1)
log

(

1 +
(

exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

− 1
)

κn(b(O,R′))
)

logγ/(γ+1)(1/ε)

(26)

+ (γ − 1)
εγ/(γ+1) log

(

1 +
(

exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

− 1
)

κn(b(O,R′))
)

log(2γ+1)/(γ+1)(1/ε)

(27)

≥ γ
xγ/(γ+1)Cδ exp

(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

κn(b(O,R′))

1 +
(

exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

− 1
)

κn(b(O,R′))

×
logγ/(γ+1)(x/ε)

logγ/(γ+1)(1/ε)

(

1 +
1

logγ/(γ+1)(x/ε) log1/(γ+1)(1/ε)

)

Since κn(b(O,R′)) ∈ [0, 1], we have

γ
xγ/(γ+1)Cδ exp

(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

κn(b(O,R′))

1 +
(

exp
(

Cδ

(

x
ε
log x

ε

)γ/(γ+1)
)

− 1
)

κn(b(O,R′))

×
logγ/(γ+1)(x/ε)

logγ/(γ+1)(1/ε)

(

1 +
1

logγ/(γ+1)(x/ε) log1/(γ+1)(1/ε)

)

≤ J(ε) := γ xγ/(γ+1)Cδ
logγ/(γ+1)(x/ε)

logγ/(γ+1)(1/ε)

(

1 +
1

logγ/(γ+1)(x/ε) log1/(γ+1)(1/ε)

)

.

Therefore, the first derivative of the term in the right-hand side of (24) is
bigger than or equal to zero if

H(1)(ε, κn(b(O,R′))) +H(2)(ε, κn(b(O,R′))) ≥ J(ε),
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where, for ease of notation, we denoted by H(1)(ε, κn(b(O,R′))) the term in
(26) and by H(2)(ε, κn(b(O,R′))) the term in (27). By Remark 3.3 in [32] we
have κn(b(O,R′)) = P(Po(R′2) ≥ n+1), where Po(R′2) is a Poisson random
variable with mean R′2. So the sequence {κn(b(O,R′))}n≥1 is decreasing
(and decreases to zero.) Hence

lim
ε→0

sup
n≥1

(H(1)(ε, κn(b(O,R′))) +H(2)(ε, κn(b(O,R′))))

= lim
ε→0

(H(1)(ε, κ1(b(O,R′))) +H(2)(ε, κ1(b(O,R′))))(28)

= 2γ xγ/(γ+1)Cδ.

Furthermore,

(29) lim
ε→0

J(ε) = γ xγ/(γ+1)Cδ.

Let η > 0 be such that γ xγ/(γ+1)Cδ > 2η. By (28) and (29), there exists
εη > 0 such that for all 0 < ε < min{εδ , εη}

sup
n≥1

(H(1)(ε, κn(b(O,R′))) +H(2)(ε, κn(b(O,R′)))) > 2γ xγ/(γ+1)Cδ − η

> γ xγ/(γ+1)Cδ + η >J(ε).

This guarantees that the function of ε in the right-hand side of (24) is non-
decreasing on (0,min{εδ , εη}). Consequently, setting ε̄ := min{εδ , εη} and
N′

0 = (0, ε) we have

∑

n≥1

sup
ε∈N

′

0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log
(
1 + (E[eθεR

−αZ1 ]− 1)κn(b(O,R′))
)

≤
∑

n≥1

ε̄2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε̄)
log

(
1 +

(
exp

(
Cδ

(
x

ε̄
log

x

ε̄

)γ/(γ+1)
)

− 1

)
κn(b(O,R′))

)

≤
ε̄2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε̄)
exp

(
Cδ

(
x

ε̄
log

x

ε̄

)γ/(γ+1)
)∑

n≥1

κn(b(O,R′)) < ∞,

where the latter inequality follows by log(1+x) ≤ x, x > −1, and Lemma 4.3.
The proof is completed.

Proof of Lemma 6.3. Since the claim is true if x = 0, we take x > 0.
Since y ∈ Λ◦, there exists r ∈ (0, R) such that b(y, r)◦ ⊂ Λ. For all ε > 0
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and n ≥ 1, we have

P(εIΛ > x) ≥ P(εIb(y,r)◦ > x) = P




∑

i≥1

Zi1b(y,r)◦(Xi) >
Rαx

ε





(30)

≥ P



∑

i≥1

Zi1b(y,r)◦(Xi) >
Rαx

ε
,N(b(y, r)◦) ≥ n


 .

Define the event

(31) A(n)
ε :=

{
min{Z1, . . . , Zn} >

Rαx

nε
,N(b(y, r)◦) ≥ n

}
.

Since

P



∑

i≥1

Zi1b(y,r)◦(Xi) >
Rαx

ε
,N(b(y, r)◦) ≥ n




≥ P

(
n∑

i=1

Zi >
Rαx

ε
,N(b(y, r)◦) ≥ n

)
(32)

≥ P

(
A(n)

ε

)
,

combining (30) and (32) and using the independence and that the signals
are identically distributed, we have

P(εIΛ > x) ≥ P(A(n)
ε ) = P(N(b(y, r)◦) ≥ n)P

(
Z1 >

Rαx

nε

)n

.(33)

For 0 < ε < 1, define the integer

(34) n =

[
κ

εγ/(γ+1) log1/(γ+1)(1/ε)

]
,

where κ > 0 is a constant which will be specified later. By Lemma 4.2(ii),
as ε → 0, we deduce

− logP (N(b(y, r)◦) ≥ n)

∼ 1

2

κ2

ε2γ/(γ+1) log2/(γ+1)(1/ε)
log

(
1

εγ/(γ+1) log1/(γ+1)(1/ε)

)
(35)

∼ γ

2(γ + 1)

κ2

ε2γ/(γ+1)
log(γ−1)/(γ+1)(1/ε).
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Here, for the latter relation we used the following elementary computation

1

log2/(γ+1)(1/ε)
log

(
1

εγ/(γ+1) log1/(γ+1)(1/ε)

)

=
log(1/εγ/(γ+1))

log2/(γ+1)(1/ε)
+

log
(
1/ log1/(γ+1)(1/ε)

)

log2/(γ+1)(1/ε)

=
γ

γ + 1

log(1/ε)

log2/(γ+1)(1/ε)
+

log
(
1/ log1/(γ+1)(1/ε)

)

log2/(γ+1)(1/ε)

=
γ

γ + 1
log(γ−1)/(γ+1)(1/ε) − 1

γ + 1

log log(1/ε)

log2/(γ+1)(1/ε)

∼ γ

γ + 1
log(γ−1)/(γ+1)(1/ε).

Since the fading is Weibull superexponential we have

−n logP

(
Z1 >

Rαx

nε

)
∼ cκ

εγ/(γ+1) log1/(γ+1)(1/ε)

(
Rαx log1/(γ+1)(1/ε)

κε1/(γ+1)

)γ

(36)

=
c(Rαx)γ

κγ−1

log(γ−1)/(γ+1)(1/ε)

ε2γ/(γ+1)
.

Combining (33), (35) and (36) we have

(37) lim inf
ε→0

ε2γ/(γ+1)

log(γ−1)/(γ+1)(1/ε)
log P(εIΛ > x) ≥ − γκ2

2(γ + 1)
− c(Rαx)γ

κγ−1
.

The maximum value of the lower bound is attained at

κ =

(
c(γ2 − 1)(Rαx)γ

γ

)1/(γ+1)

.

The claim follows by a straightforward computation substituting this value
of κ in (37).

We conclude this section stating the following immediate corollary of The-
orem 6.1.

Corollary 6.4. Under the assumptions of Theorem 6.1,

lim
x→∞

log P(IΛ ≥ x)

x2γ/(γ+1) log(γ−1)/(γ+1) x
(38)

= −1

2
R2αγ/(γ+1)

(
γ

γ − 1

)(γ−1)/(γ+1)

(c(γ + 1))2/(γ+1) .
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In this case huge values of the interference are typically obtained as the
sum of a large number of interfering nodes with large signals. This inter-
pretation follows from the proof of Theorem 6.1, which establishes that the

event A
(n)
ε defined by (31) with n defined as in (34) is a dominating event,

as ε → 0.
Again, we can compare (38) against its analogue for Poisson networks

derived in [14] and here repeated (see also Proposition 5.2 in [33]):

Proposition 6.5. If N is a homogeneous Poisson process and the fading
random variables are Weibull superexponential as in Theorem 6.1,

(39) lim
x→∞

log P(IΛ ≥ x)

x log(γ−1)/γ x
= −γ(γ − 1)−(γ−1)/γc1/γRα.

We conclude that also when the fading is Weibull superexponential the
tail of the interference can be significantly reduced by carefully placing trans-
mitting nodes as regularly as possible. Note that the differences between the
terms in (38) and (39) vanish as γ → 1. This is hinting at the fact that for
exponential or subexponential fading random variables, on the log-scale, the
asymptotic behavior of the tail of the interference becomes insensitive to the
node placement process. This issue will be investigated in Section 7.

7. Large deviations of the interference: Exponential and subex-

ponential fading.

7.1. Exponential fading. The standing assumptions of this subsection
are: (5) and the fading random variables Zi, i ≥ 1, are exponential in the
sense that − logP(Z1 > z) ∼ cz, for some constant c > 0.

Theorem 7.1. Under the foregoing assumptions, the family of random
variables {εIΛ}ε>0 obeys an LDP on [0,∞) with speed 1

ε and good rate func-
tion I3(x) = cRαx.

The proof of this theorem is based on the following lemmas whose proofs
are given below.

Lemma 7.2. Under the foregoing assumptions, for any x ≥ 0,

lim sup
ε→0

ε log P(εIΛ ≥ x) ≤ −I3(x).

Lemma 7.3. Under the foregoing assumptions, for any x ≥ 0,

lim inf
ε→0

ε log P(εIΛ > x) ≥ −I3(x).
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Proof of Theorem 7.1. The claim follows by Proposition 3.1 and Lem-
mas 7.2 and 7.3.

Proof of Lemma 7.2. Since the claim is true if x = 0, we take x > 0.
By the assumption on the tail of Z1, one may easily realize that E[eδZ1 ] < ∞,
for any δ < c. We note here that the inequality (17) holds indeed for general
positive random variables Zi, i ≥ 1, (not necessarily Weibull distributed),
a general point process {Xi}i≥1 (not necessarily a reduced Palm version at
the origin of a β-Ginibre process), any ε, θ > 0 and any bounded set Λ′ such
that Λ′ ⊇ Λ. Setting Λ′ = Λ and θ = (c− δ)Rα/ε in (17), we deduce

P (εIΛ ≥ x) ≤ exp

(
−(c− δ)Rαx/ε+ logE

[
E

[
e(c−δ)Z1

]N(Λ)
])

.

Therefore by assumption (5) we have

lim sup
ε→0

ε log P (εIΛ ≥ x) ≤ −(c− δ)Rαx.

The claim follows letting δ tend to zero.

Proof of Lemma 7.3. Since the claim is true if x = 0, we take x > 0.
Since y ∈ Λ◦, there exists r ∈ (0,min{1, R}) such that b(y, r)◦ ⊂ Λ. For all
ε > 0, we have

P(εIΛ > x) ≥ P(εIb(y,r)◦ > x) = P



∑

i≥1

Zi1b(y,r)◦(Xi) >
Rαx

ε




≥ P

(
Z1 >

Rαx

ε
,N(b(y, r)◦) ≥ 1

)
(40)

= P

(
Z1 >

Rαx

ε

)
P(N(b(y, r)◦) ≥ 1),

where the latter equality follows by the independence of N(b(y, r)◦) and
{Zi}i≥1.

The claim follows by the exponential decay of the tail of Z1, taking first
the logarithm on the above inequality, multiplying then by ε and finally
letting ε tend to zero.

We conclude this section stating the following immediate corollary of The-
orem 7.1.
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Corollary 7.4. Under the assumptions of Theorem 7.1,

(41) lim
x→∞

log P(IΛ ≥ x)

x
= −cRα.

The fact that under the exponential fading the tail of the interference is
given by (41), for any point process satisfying condition (5), can be explained
by observing that large values of the interference are typically originated
by a single strong interfering contribution (by (40) clearly emerges that
{Z1 > Rαx/ε} is the dominating event, as ε → 0.) In view of these premises,
it is reasonable to expect a similar result also when the distribution of the
fading is heavier than the exponential law. This issue is analyzed for a family
of subexponential fading random variables in the Subsection 7.2.

7.2. Subexponential fading. The standing assumptions of this subsection
are: (6) and the fading random variables Zi, i ≥ 1, are subexponential and
such that

(42) For any σ > 0, lim
z→∞

logF (σz)

log F (z)
= σγ , for some constant γ ≥ 0.

In particular, note that the above condition is satisfied if Z1 is subexpo-
nential and such that − logF (z) ∼ czγ (Weibull subexponential fading) or
− log F (z) ∼ c log z (Pareto fading), for some constants c > 0 and γ ∈ (0, 1).

Theorem 7.5. Under the foregoing assumptions, the family of random
variables {εIΛ}ε>0 obeys an LDP on [0,∞) with speed − logF (1ε ) and rate
function I4(0) = 0 and I4(x) = Rαγxγ , x > 0.

The proof of this theorem is based on the following lemmas whose proofs
are given below.

Lemma 7.6. Under the foregoing assumptions, for any x ≥ 0,

lim sup
ε→0

− 1

logF
(
1
ε

) logP(εIΛ ≥ x) ≤ −I4(x).

Lemma 7.7. Under the foregoing assumptions, for any x ≥ 0,

lim inf
ε→0

− 1

log F
(
1
ε

) logP(εIΛ > x) ≥ −I4(x).

Proof of Theorem 7.5. The claim follows by Proposition 3.1 and Lem-
mas 7.6 and 7.7.
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Proof of Lemma 7.6. Since the claim is true if x = 0, we take x > 0.
By assumption N(Λ) has a convergent Laplace transform in a right neigh-
borhood of zero, therefore since Z1 is subexponential by e.g. Lemma 2.2
p. 259 in [2] it follows

(43) P




N(Λ)∑

i=1

Zi ≥ x


 ∼ E[N(Λ)]F (x), as x → ∞.

We note here that the inequality (7) holds indeed for general positive random
variables Zi, i ≥ 1, (not necessarily with bounded support), a general point
process {Xi}i≥1 (not necessarily a reduced Palm version at the origin of a
β-Ginibre process) and any ε, x > 0. By (7) and (43) easily follows that

lim sup
ε→0

− 1

logF (1/ε)
log P(εIΛ ≥ x)

≤ lim sup
ε→0

− 1

logF (1/ε)
logP



∑

i≥1

Zi1Λ(Xi) ≥
Rαx

ε




= lim sup
ε→0

− 1

logF (1/ε)
log

(
E[N(Λ)]F

(
Rαx

ε

))
= −Rαγxγ ,

where the latter equality is consequence of condition (42).

Proof of Lemma 7.7. Since the claim is true if x = 0, we take x > 0.
Arguing as in the proof of Lemma 7.3 we have the inequality (40). The
claim follows by the subexponential decay of the tail of Z1, taking first the
logarithm on the inequality (40), multiplying then by − 1

logF (1/ε)
and finally

letting ε tend to zero.

We conclude this section stating the following immediate corollary of The-
orem 7.5.

Corollary 7.8. Under the assumptions of Theorem 7.5,

lim
x→∞

log P(IΛ ≥ x)

logF (x)
= Rαγ .

Note that also when the fading is subexponential large values of the in-
terference are due to a single strong interfering node, for any point process
which satisfies (6).
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Table 1

LDPs of the family {εIΛ}, when the nodes are distributed according to a β-Ginibre
process, 0 < β ≤ 1

Fading distribution Speed Rate function

Bounded 1
ε2

log
(

1
ε

)

R2αx2

2B

Weibull superexponential ε
− 2γ

γ+1 log
γ−1
γ+1

(

1
ε

)

1
2
R

2αγ

γ+1

(

γ
γ−1

)
γ−1
γ+1

(c(γ + 1))
2

γ+1 x
2γ

γ+1

Table 2

LDPs of the family {εIΛ}, when the nodes are distributed according to a Poisson process

Fading distribution Speed Rate function

Bounded 1
ε
log

(

1
ε

)

Rαx
B

Weibull superexponential 1/ε log
1− 1

γ

(

1
ε

)

γ(γ − 1)
1
γ
−1

c
1
γ Rαx

Table 3

LDPs of the family {εIΛ}, when the number of nodes is light-tailed. Here F = 1− F ,
being F the distribution function of the fading and σ > 0, γ ≥ 0

Fading distribution Speed Rate function

Exponential 1/ε cRαx

logF (σx) ∼ σγ logF (x) − logF (1/ε) 0 if x = 0; Rαγxγ if x > 0

8. Conclusions. The results of this paper contribute to better under-
stand the reliability of large scale wireless networks. We proved asymptotic
estimates, on the log-scale, for the tail of the interference in a network whose
nodes are placed according to a β-Ginibre process (with 0 < β ≤ 1) and the
fading random variables are bounded or Weibull superexponential. We gave
also asymptotic estimates, on the log-scale, for the tail of the interference in
a network whose nodes are placed according to a general point process and
the fading random variables are exponential or subexponential. The results,
summarized in Tables 1 and 3, show the emergence of two different regimes
(for the ease of comparison results for the Poisson model under bounded or
Weibull superexponential fading are reported in Table 2). When the fading
variables are bounded or Weibull superexponential, the tail of the interfer-
ence heavily depends on the node spatial process. Instead, when the fading
variables are exponential or subexponential, the tail of the interference is
essentially insensitive to the distribution of nodes, as long as the number of
nodes is guaranteed to be light-tailed.

APPENDIX

Proof of Proposition 3.1. Let F be a closed subset of [0,∞) and let
x denote the infimum of F . Since I is increasing, I(x) = infy∈F I(y). Since
F is contained in [x,∞), by the large deviation upper bound for closed
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half-intervals [x,∞) we deduce

lim sup
ε→0

1

v(ε)
log P(Vε ∈ F ) ≤ lim sup

ε→0

1

v(ε)
logP(Vε ≥ x)

≤ −I(x) = − inf
y∈F

I(y).

This establishes the large deviation upper bound for arbitrary closed sets.
Now, let G be an open subset of [0,∞). Suppose first that 0 /∈ G. Since

infy∈G I(y) < ∞, for arbitrary δ > 0, we can find x ∈ G such that I(x) ≤
infy∈G I(y) + δ. Since G is open, we can also find η > 0 such that (x − η,
x+ η) ⊂ G. By the large deviation bounds on half-intervals we have

lim inf
ε→0

1

v(ε)
log P (Vε > x− η) ≥ −I(x− η)

and

lim sup
ε→0

1

v(ε)
log P(Vε ≥ x+ η) ≤ −I(x+ η),

and by the monotonicity of I we deduce I(x− η) ≤ I(x+ η). Consequently,
after an easy computation we get

lim inf
ε→0

1

v(ε)
log(P(Vε > x− η)− P(Vε ≥ x+ η)) ≥ −I(x− η).

Note that

P(Vε ∈ G) ≥ P(Vε ∈ (x− η, x+ η)) = P(Vε > x− η)− P(Vε ≥ x+ η),

and so

lim inf
ε→0

1

v(ε)
log P(Vε ∈ G) ≥ −I(x− η).

Since I is continuous on (0,∞), by letting η tend to zero we get

lim inf
ε→0

1

v(ε)
log P(Vε ∈ G) ≥ −I(x) ≥ − inf

y∈G
I(y)− δ,

where the latter inequality follows by the choice of x. The large deviation
lower bound for arbitrary open sets not containing the origin follows letting
δ tend to zero. If 0 ∈ G, then, since G is open, there is an η > 0 such that
[0, η) ⊂ G. Hence,

P(Vε ∈ G) ≥ 1− P(Vε ≥ η).

By similar arguments to the above, we can show that

lim inf
ε→0

1

v(ε)
log P(Vε ∈ G) ≥ 0.

Since I is increasing we have infy∈G I(y) = I(0) = 0, and the proof is
completed.
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Proof of Lemma 4.2. Proof of (i) By Theorem 6 in [26], for any fixed
r > 0 and x0 ∈ C, we have

(44) P



∑

i≥1

1b(x0,r)(Vi) ≥ m


 = e−

1
2
m2 logm(1+o(1))

(note that the processes {Xi}i≥1 and {Vi}i≥1 are different and so a priori one
can not say that the tails of P(

∑
i≥1 1b(x0,r)(Vi) ≥ m) and P(N(b(x0, r)) ≥

m) are equal.) Since the Ginibre process is stationary, so is the independently
thinned process and thus it suffices to check (2) with x0 = O. By (44) we
have

P



∑

i≥1

1b(O,r)(Vi)1Ai ≥ m


 ≤ e−

1
2
m2 logm(1+o(1)).

It remains to check the matching lower bound. The function

r 7→ P



∑

i≥1

1b(O,r)(Vi)1Ai ≥ m




is clearly nondecreasing. Since we are going to check the lower bound, we
may assume 0 < r < 1. We have

P



∑

i≥1

1b(O,r)(Vi)1Ai ≥ m


 ≥ P

(1b(O,r)(Vi)1Ai = 1, ∀ i = 1, . . . ,m
)

= P (|Vi| < r, Ai, ∀ i = 1, . . . ,m)(45)

= P(A1)
m
P(|Vi| < r, ∀ i = 1, . . . ,m).

By Theorem 1.1 in [25] (see also Theorem 4.7.3 p. 73 in [22]) the set {|Vi|}i≥1

has the same distribution as the set {ρi}i≥1, where the random variables ρ
are independent and ρ2i has the Gamma(i,1) distribution for every i ≥ 1.
Hence ρ2i has the same distribution of ξi1+ · · ·+ ξii, where the random vari-
ables {ξjk}j,k≥1 are independent and have the Exponential(1) distribution.
So

P (|Vi| < r, ∀ i = 1, . . . ,m) = P
(
ρ2i < r2, ∀ i = 1, . . . ,m

)

= P

(
i∑

k=1

ξik < r2, ∀ i = 1, . . . ,m

)

=
m∏

i=1

P

(
i∑

k=1

ξik < r2

)
(46)
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≥
m∏

i=1

P
(
ξik < r2/i, ∀ k = 1, . . . , i

)

=

m∏

i=1

i∏

k=1

P

(
ξik <

r2

i

)
=

m∏

i=1

(
1− e−

r2

i

)i

(47)

≥
m∏

i=1

(
r2

2i

)i

,(48)

where (46) and the first equality in (47) follow by the independence of the
random variables ξjk and the inequality (48) is a consequence of the fact
that 0 < r2/i < 1 for any i = 1, . . . ,m and 1 − e−x ≥ x/2 for 0 < x < 1.
Combining (45) and (48) and using the elementary inequality

P(A1)
m ≥ P(A1)

m(m+1)/2 =

m∏

i=1

P(A1)
i

we have

(49) P



∑

i≥1

1b(O,r)(Vi)1Ai ≥ m


 ≥

m∏

i=1

(
P(A1)r

2

2i

)i

.

A straightforward computation shows that

m∏

i=1

(
P(A1)r

2

2i

)i

=

(
P(A1)r

2

2

)m(m+1)
2

exp

(
−

m∑

i=1

i log i

)

≥

(
P(A1)r

2

2

)m(m+1)
2

exp

(
−
1

2
(m+ 1)2 log(m+ 1) +

(m+ 1)2

4
−

1

4

)
(50)

= e−
1
2m

2 logm(1+o(1)),

where the inequality in (50) follows by the elementary relation:

m∑

i=1

i log i ≤ 1

2
(m+ 1)2 log(m+ 1)− (m+ 1)2

4
+

1

4
, m ≥ 1.

The proof is completed.
Proof of (ii) Letting {U} ∪ {Ui}i≥1 denote a sequence of independent

random variables uniformly distributed on [0, 1] and Z denote a random
variable distributed as Z1, and assuming that the random variables {U,Z}∪
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{Ui}i≥1 are independent of all the other random quantities. For any bounded
and measurable set Λ′ ⊂ C, by Lemma 4.1 we have

N(Λ′) + 1Λ′(
√

βG)1{U < β} law
=
∑

i≥1

1Λ′(
√

βVi)1{Ui < β}

(51)
=
∑

i≥1

1Λ′/
√
β(Vi)1{Ui < β},

where the symbol
law
= denotes the identity in law. Note that

P

(
N(b(x0, r)) + 1b(x0,r)(

√
βG)1{U < β} ≥ m+ 1

)

≤ P

(
N(b(x0, r)) + 1b(x0,r)(

√
βG)1{U < β} ≥ m

+ 1b(x0,r)(
√

βG)1{U < β}
)

= P (N(b(x0, r)) ≥ m) .

Combining (51) (with Λ′ = b(x0, r)) and this latter relation, we have

P



∑

i≥1

1b(x0/
√
β,r/

√
β)(Vi)1{Ui < β} ≥ m+ 1




≤ P(N(b(x0, r)) ≥ m)

≤ P(N(b(x0, r)) + 1b(x0,r)(
√

βG)1{U < β} ≥ m)

≤ P



∑

i≥1

1b(x0/
√
β,r/

√
β)(Vi)1{Ui < β} ≥ m


 .

The claim follows by (2).

Proof of Lemma 4.3. By (51) we have

E[N(Λ′)] ≤ E

[
N(Λ′) + 1Λ′(

√
βG)1{U < β}

]

= E



∑

i≥1

1Λ′/
√
β(Vi)1{Ui < β}




(52)

≤ E



∑

i≥1

1Λ′/
√
β(Vi)




=
∑

n≥1

κn(Λ
′/
√

β) < ∞,
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where (52) follows by e.g. Proposition 2.3 in [32] and formula (3.41) in [31].
Now we prove (4). Let θ ≥ 0 be arbitrarily fixed. We start checking that

∏

n≥1

(1 + (eθ − 1)κn(Λ
′/
√

β)) < ∞.

We have

log
∏

n≥1

(1 + (eθ − 1)κn(Λ
′/
√

β)) =
∑

n≥1

log(1 + (eθ − 1)κn(Λ
′/
√

β))

(53)
≤ (eθ − 1)

∑

n≥1

κn(Λ
′/
√

β) < ∞,

where in (53) we used the inequality x ≥ log(1+x), x ≥ 0, and (3). Finally,
we prove the first inequality in (4). Using again (51), for any θ ≥ 0, we have

E[eθN(Λ′)] ≤ E

[
eθ(N(Λ′)+1Λ′ (

√
βG)1{U<β})

]
≤ E


exp


θ
∑

i≥1

1Λ′/
√
β(Vi)






=
∏

n≥1

(1 + (eθ − 1)κn(Λ
′/
√

β)),

where the latter equality follows by e.g. Proposition 2.2 in [32]. The proof
is completed.
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