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1. Prologue: the waiting time paradox

In the famous “waiting time paradox”, see Feller [38, Section I.4], there are two
plausible but conflicting analyses of the waiting time for the next bus, once you
get to the bus stop. More formally, this paradox concerns the waiting timeWt for
the next arrival, starting from an arbitrary instant t, in a standard homogeneous
Poisson process with intensity parameter λ = 1: (a) The lack of memory of the
exponential interarrival time suggests that EWt is not sensitive to the choice of
t; so EWt = EW0 = 1. (b) Since the starting time is chosen uniformly in the
interval between two successive arrivals, an interval of mean length 1, symmetry
suggests that EWt = 1/2.

As Feller shows, the reasoning behind both analyses is faulty, because it is the
instant and not the interval which is arbitrary: a longer interval thereby becomes
more likely than the relative frequencies of interarrival lengths would suggest, a
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canonical instance of size biasing. So an unqualified appeal to properties of the
original interarrival distribution is fallacious.

In fact, as we will discuss, a reasonable but precise interpretation of “arbitrary
instant” leads to the answer given in (a), though not for the reason given in (a).

Not just recreational chestnuts, but also practical matters, such as statistical
sampling tasks, are bedeviled by size bias; we provide a few references later.
Surprisingly, however, size bias plays a role in such unexpected contexts as
Stein’s method, Skorohod embedding, nonuniqueness in the method of moments,
infinite divisibility of distributions, branching processes, and number theory. We
will return to the “paradox” shortly, after giving the basics of size bias. Then
we will survey size bias as it appears in some of the non-sampling contexts.1

In [7, pp. 78–80], the authors introduce their two and one half page survey of
size bias by saying “Size-biasing arises naturally in statistical sampling theory
(cf. Hansen and Hurwitz (1943) [46], Midzuno (1952) [66] and Gordon (1993)
[44]), and the results we present below are all well known in the folk literature.”
In the present paper, we feel that we have contributed a number of new results:
the conceptual heuristic given in Section 3 to explain (26), where a sum of inde-
pendent variables is size biased by biasing only a single term, the explanation of
an intimate connection between uniform integrability and tightness in Section
8, the size bias perspective on Skorohod embedding in 10, and the treatment
of infinite divisibility in Section 11 — at least the argument based on (85), size
biasing a sum by size biasing a single summand.

Another survey of size bias, with a different focus, is [24].

2. Size bias basics

2.1. Bias in general

Let h be a nonnegative function, and X be a random variable taking values in
the domain of h, with Eh(X) ∈ (0,∞). For such X and h, we say Xh has the
h-biased X distribution if and only if the distribution of Xh, relative to the
distribution of X, has Radon-Nikodym derivative given by

P(Xh ∈ dx)

P(X ∈ dx)
=

h(x)

Eh(X)
. (1)

The support of (the distribution of) Xh is then a subset of the support of X,
possibly a proper subset due to the set where h=0:

supp(Xh) = (supp(X) \ h−1(0))cl, (2)

where Acl denotes the closure of A. A nice pair of examples, both having equal
support forX andX∗, and using h(x) = x, is presented in Figure 2.1 on page 15.

1An early draft of the present paper, with the title ‘Size biasing, when is the increment
independent?’, has been circulated since 1998, and was cited in [72]; an update, ‘Size bias, sam-
pling, the waiting time paradox, and infinite divisibility: when is the increment independent?’
was cited in [70, 71, 77]. Both of these drafts are superseded by this paper.
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The class of exponential functions, h(x) = eβ x for various choices of β ∈
(−∞,∞), is very important. This class is central to exponential families and
large deviation theory, but no single value β plays a special role. The family of
power functions h(x) = xβ for β > 0 might be viewed as runner up, behind the
family of exponential functions, but here the choice β = 1 is truly special. We
believe that h(x) = x for x ≥ 0 is the most important example of bias.

2.2. Size bias in particular

When h is the function h(x) = x with domain [0,∞), the h-bias above is called
size bias. Thus, one can size bias the distribution of any nonnegative random
variable X for which a := EX ∈ (0,∞). Instead of Xh one writes X∗ or Xs for
a random variable with the size-biased distribution of X. The characterization
(1) reduces to

P(X∗ ∈ dx)

P(X ∈ dx)
=

x

a
. (3)

For the common special cases, where X is discrete with probability mass
function f , or where X is absolutely continuous with density f , the formula

fX∗(x) =
xf(x)

a
, (4)

completely specifies the size-biased distribution.
Does size bias commute with conditioning, on events of the form (X ∈ B)?

The answer, of course, is yes — provided that P(B) > 0. This is made obvious
using the bias-in-general viewpoint of Section 2.1: any two biasings commute,
because multiplication is commutative. In detail: suppose that g, like h in Sec-
tion 2.1, is a nonnegative function whose domain includes the support of X, and
Eg(X) ∈ (0,∞). Then one can bias with respect to g, to specify the distribu-
tion of Xg. Elementary conditioning, on the event (X ∈ B), is precisely the case
where g is the indicator function for B; in this case Eg(X) = P(B) < ∞, and in
the phrase elementary conditioning, the word elementary means that P(B) > 0.
Back to the general case: suppose that the product gh (the pointwise product,
not the composition (g ◦ h)(x) = g(h(x)),) also has strictly positive, finite ex-
pectation, i.e., E(g(X)h(X)) ∈ (0,∞). Then the iterated biased distributions,
of (Xh)g, and of (Xg)h are, of course, equal to each other, since they are both
the same as the distribution of X(gh).

An interesting case of (4) involves the Poisson distributions. Starting from the
assumption that the distribution of X is Poisson (λ), so that f(k) = e−λλk/k!,
then (4) with x = k + 1 for k = 0, 1, 2, . . . gives

fX∗(k + 1) =
(k + 1)f(k + 1)

λ
=

k + 1

λ
e−λ λk+1

(k + 1)!
= f(k). (5)

Hence for X with a Poisson (λ) distribution, 0 < λ < ∞,

X∗ =d X + 1. (6)
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The above result is sometimes called Robbins’ Lemma.
Conversely,

Proposition 2.1. Suppose that X is a nonnegative integer-valued random vari-
able with mean λ ∈ (0,∞), and X∗ =d X + 1. Then X is Poisson (λ).

Proof. Equation (4) shows that for k ≥ 0, the point mass function f for X
satisfies f(k + 1) = λ f(k)/(k + 1), hence by induction f(k) = f(0)λk/k!. The
assumption that X is nonnegative integer-valued implies that

∑
k≥0 f(k) = 1,

hence 1 =
∑

k≥0 f(0)λ
k/k! = f(0)eλ.

The observation that a nonnegative integer-valued random variable X is
Poisson(EX) if and only if X∗ =d X + 1 may be viewed as the starting point
for Stein’s method for the Poisson distribution; see Section 5.

It is also true that if X ≥ 0 and 0 < λ := EX < ∞ and X∗ =d X + 1,
(without assuming that X is integer-valued,) then X is Poisson (λ). This is not
so obvious, and the reader might enjoy giving his own elementary proof, by
combining the support consideration (2) with (4); alternately, see Theorem 11.2
and Corollary 11.3.

If X is Bernoulli(p), meaning that P(X = 1) = p,P(X = 0) = 1 − p, and if
p > 0, then X can be size biased. Using either the support consideration (2), or
the mass function formula (4), we see that

for X ∼ Bernoulli(p), 0 < p ≤ 1, X∗ = 1. (7)

This Bernoulli family example shows that the size bias transformation is not
one to one.

It is easy to see that (3) is implied by

for all bounded continuous g, Eg(X∗) =
1

a
E(Xg(X)), (8)

and that (3) implies2

for all bounded measurable g, Eg(X∗) =
1

a
E(Xg(X)). (9)

Even in the discrete and absolutely continuous cases, where the elementary
identity (4) applies, the characterization of size bias via (9) is very handy for
manipulations.

2.2.1. Generating functions

Let φ ≡ φX be the characteristic function of X, so that φ(u) = EeiuX . A
standard fact, for example from [38, XV.4 Lemma 2], is that E|X| < ∞ implies

2Some would say, by definition, (3) means exactly (9), others might say that by definition,
(3) means (9) restricted to g being the indicator function of a measurable subset of [0,∞).
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φ is differentiable, with φ′(u) = iE(XeiuX). With g(x) = eiux, by taking real
and imaginary parts, (9) implies that for nonnegative X with a := EX ∈ (0,∞),

φX∗(u) := EeiuX
∗
=

1

a
E(XeiuX) =

1

i a
φ′
X(u), (10)

and since characteristic functions determine distribution, (10) also completely
specifies the size bias distribution. Suppressing the dummy variable to get a
clean display, (10) says

φ′
X = i EX φX∗ .

In case the nonnegative random variable X above is integer valued, one
could use probability generating functions instead of characteristic functions
to characterize the distributions of X and X∗. With random variable name N
in place of X, and pn := P(N = n), we have GN (z) =

∑
pnz

n with derivative
G′

N (z) =
∑

npnz
n−1. So if 0 < EN < ∞, the generating function for the size

biased random variable is

GN∗(z) :=
∑
n≥0

P(Z∗ = n)zn =
∑ npn

EN
zn =

z

EN
G′

N (z); G(N∗−1)(z)

=
1

EN
G′

N (z) .

Suppressing the dummy variable to get a clean display, this relation is

G′
N = EN G(N∗−1) . (11)

2.2.2. Compound distributions for random sums

Here is an application of (10). Suppose N is a nonnegative integer valued ran-
dom variable, with finite strictly positive mean, and X,X1, X2, . . . are i.i.d.,
independent of N . With Sn := X1+ · · ·+Xn and Z = SN = X1+ · · ·+XN , the
distribution of the random sum Z is called a compound distribution, although
the phrase itself is often used to refer to mixtures in general. With the notation
G for probability generating functions, and φ for characteristic functions, the
characteristic function of Z = X1 + · · · +XN is φZ = GN ◦ φX . Now if X ≥ 0
and 0 < EX < ∞, so that X can be size biased, then Z can also be size biased.
From (10) we have

φZ∗(u) =
1

iEZ
φ′
Z(u) =

1

iEZ
(GN (φX(u)))′

so from the chain rule, and EZ = EN EX, and (11), we have

φZ∗(u) =
1

iEZ
×G′

N (φX(u))× φ′
X(u)

=
1

iEN EX
× EN G(N∗−1)(φX(u))× i EX φX∗(u)

= G(N∗−1)(φX(u))× φX∗(u). (12)

Since a product of two characteristic functions gives the distribution of the sum
of two independent random variables, (12) specifies a rule:
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Rule for size biasing a random sum. To size bias a random sum Z = SN of
N independent copies of X, where both N and X are nonnegative, with strictly
positive finite mean: (1) Size bias N to get N∗, and then take one less, N∗ − 1,
as the new compounding variable, and (2) Add in an independent copy of the
size biased version of the summand, X∗. To say the same, less formally: size bias
the number of summands, and replace one summand by a size biased version.

Of course, specializing N to be concentrated at a fixed positive integer n
immediately yields a rule for size biasing a sum of n independent identically
distributed terms. However, we will rederive that rule, as (30) in Section 2.4
below, which studies how to size bias a sum of (a nonrandom number of) random
variables, with no need to assume either independence or identical distribution
for the summands.

2.2.3. Unbounded functions, and moments

Recall that for a real valued random variable, “EY ∈ [−∞,∞] exists” means
that it is not the case that both the positive and the negative parts of Y have
infinite expectation. We extend slightly the statement that, if E|Xg(X)| < ∞,
then Eg(X∗) = E(Xg(X))/EX.

Lemma 2.2. Let g : [0,∞) → R be measurable, and let X be a nonnegative
random variable with a := EX ∈ (0,∞).

If E(Xg(X)) ∈ [−∞,∞] exists, then Eg(X∗) =
1

a
E(Xg(X)). (13)

If E(Xg(X)) doesn’t exist in [−∞,∞], then neither does Eg(X∗).

Proof. In outline, the proof is: consider separately the positive and negative
parts of g; for each of these, apply (9) to truncations, and apply monotone
convergence.

In detail: when g(x) ≥ 0, by applying (9) to gn(x) = max(g(x), n), and taking
limits, we conclude that

Eg(X∗) =
1

a
E(Xg(X))

holds, including the case where both sides are infinite. Write y+ and y− for
the positive and negative parts of y. Then the functions g+ and g− given by
g+(x) = (g(x))+ and g−(x) = (g(x))− are nonnegative. Note that on the do-
main [0,∞), (xg(x))+ = xg+(x) and (xg(x))− = xg−(x). Under the hypoth-
esis that E(Xg(X)) ∈ [−∞,∞] exists, at least one of h = g+ and h = g−
has E(Xh(X)) < ∞, and hence Eg(X∗) = Eg+(X

∗) − Eg−(X
∗) ∈ [−∞,∞]

is well defined, with value given by (1/a)E(Xg+(X)) − (1/a)E(Xg−(X)) =
(1/a)E(X(g(X)). Likewise, when E((Xg(X))+) = E((Xg(X))−) = ∞, we have
both Eg+(X

∗) = Eg−(X
∗) = ∞ so that Eg(X∗) does not exist.

In particular, taking g(x) = xn in (13), we have

E(X∗)n = EXn+1/EX (14)
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and this includes the case where both sides are infinite. Apart from the extra
scaling by 1/EX, (14) says that the sequence of moments of X∗ is the sequence
of moments of X, but shifted by one. Hence one way to recognize size biasing
is through the shift of the moment sequence; this plays a role in two interesting
examples, (18) and (62).

2.2.4. Stochastic monotonicity

It is easy to see that, in general, X∗ lies above X in distribution, i.e., P(X∗ >
t) ≥ P(X > t) for all t. In detail: letting g(x) = 1(x > t) in (9) for some fixed t,

P(X∗ > t) =
E(X1(X > t))

EX
≥ EX E1(X > t)

EX
= P(X > t) (15)

where the inequality above is the special case f(x) = x, g(x) = 1(x > t) of
Chebyschev’s correlation inequality: E(f(X)g(X)) ≥ Ef(X) Eg(X) for any
random variable and any two increasing functions f, g.

The condition P(X∗ > t) ≥ P(X > t) for all t is described as “X∗ lies above
X in distribution,” written X ≤st X

∗, and implies that there exist couplings of
X∗ and X in which always X ≤ X∗. Writing Y for the difference, we have

X∗ = X + Y, Y ≥ 0. (16)

In general, the known marginals for X and X∗ do not uniquely determine the
distribution of a coupling; in Section 11 we will study the question: when can
(16) be achieved with X,Y independent?

Suppose the distribution of Z is defined to be that of X, conditional on (X >
0). Recalling the third paragraph of Section 2.2, it is obvious that X∗ =d Z∗.
And of course, Z lies above X in distribution since for t ≥ 0, P(X > t|X >
0) = P(X > t)/P(X > 0) ≥ P(X > t). To summarize, for nonnegative X with
EX ∈ (0,∞), we have the stochastic monotonicity sandwich

X ≤st (X|X > 0) ≤st X
∗.

2.2.5. Scaling, coupling, and limits in distribution

It is easy to see, from (9), that size biasing respects multiplication by positive
constants, that is, with c > 0,

(cX)∗ =d c(X∗). (17)

The notation used above, X =d Y , is often written L(X) = L(Y ), to say that
random variables X and Y have the same law, or distribution. The simpler
notation X = Y would imply a coupling, i.e., that X and Y are defined on the
same probability space, with X(ω) = Y (ω) for all outcomes ω.

It is also true that size bias respects convergence in distribution, provided
one is careful to make the additional hypothesis that the means converge to
the mean of the limit random variable, which is in this context equivalent to
uniform integrability.
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Theorem 2.3. Suppose that X,X1, X2, . . . are nonnegative random variables
with a := EX ∈ (0,∞), an := EXn ∈ (0,∞), that Xn ⇒ X, and that an → a.
Then

X∗
n ⇒ X∗.

Proof. Let h : R → R be a bounded continuous function with compact support.
Then the function g given by g(x) = xh(x) is bounded and continuous. Since g is
bounded, (9) applies, and since g is continuous, the hypothesized distributional
convergence implies Eg(Xn) → Eg(X). Using (9) with h in the role of g, we
have

Eh(X∗
n) =

EXnh(Xn)

an
=

Eg(Xn)

an
→ Eg(X)

a
=

EXh(X)

a
= Eh(X∗).

The necessity of the hypothesis that EX > 0, in Theorem 2.3, is shown
by the example with Xn distributed as Bernoulli(1/n), so that X∗

n ⇒ 1, and
Xn ⇒ X = 0, but the limit random variable X cannot be size biased.

The converse of Theorem 2.3 is false, since the correspondence L(X) 
→
L(X∗) is many to one. In detail, take any A,B with A �=d B and A∗ =d B∗;
then the sequence X1, X2, X3, X4, . . . = A,B,A,B, . . ., together with X = A,
has X∗

n ⇒ X∗ but not Xn ⇒ X.

An interesting natural example, related to the non-converse of Theorem 2.3,
involves Xn which cannot be rescaled to have a nontrivial limit distribution,
while the corresponding X∗

n can. Take Xn to have the Borel distribution3 with
parameter λ = 1−1/n. Calculation shows that E(Xn) = n and for k = 1, 2, . . . ,
E(Xn)

k+1 ∼ n2k+1(2k− 1)(2k− 3) · · · 5× 3× 1, hence one cannot scale the Xn

sequence to get a nontrivial distributional limit. But using (14), we have

E(X∗
n)

k ∼ n2k(2k − 1)(2k − 3) · · · 5× 3× 1, (18)

so that with Z for a standard normal, X∗
n/n

2 ⇒ Z2.

2.2.6. Mixtures, biasing a conditional probability

First, we give Lemma 2.4, an elementary result on how to size bias a mixture
of distributions. An application of Lemma 2.4 will be given by Lemma 9.2 and
the subsequent Theorem 9.4. Mixtures are often discussed in conjunction with
regular conditional probabilities; see for example [28, 61].

Suppose that I ⊂ R, that h is a probability measure on I, that for each b ∈ I
μb is a distribution for a nonnegative random variable Xb, with m(b) := EXb ∈
(0,∞), and that b 
→ μb is measurable. Note, we have assumed that for every b,
m(b) ∈ (0,∞) in order that, for every b, the size-biased distribution for X∗

b be

3For λ ∈ [0, 1), one says X has the Borel(λ) distribution if X is the total progeny in the
subcritical Galton-Watson branching process where the individual offspring distribution is
Poisson with mean λ, equivalently, P(X = i) = exp(−λ i)(λ i)i−1/i! for i = 1, 2, . . .; see [2].
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defined. We say that (the distribution of) X is the mixture of (the distributions
of) Xb, governed by h, if for all bounded measurable g,

Eg(X) =

∫
Eg(Xb) dh(b).

Of course, for such a mixture, EX =
∫
m(b) dh(b) ∈ (0,∞], but since we are

interested is size bias, we make the additional assumption that a := EX < ∞.

Lemma 2.4. Under the setup of the previous paragraph, with a =
∫
m(b) dh(b) ∈

(0,∞), the distribution of X∗ is a mixture of the distributions of the X∗
b . The

measure hs governing this mixture is defined in terms of the original governor
h via its Radon-Nikodym derivative, dhs(b)/dh(b) = m(b)/a. In particular, if
m(b) is constant, then hs = h, i.e., the measure governing X∗ as a mixture of
the X∗

b is equal to the measure governing X as a mixture of the Xb.

Proof. For bounded measurable g

Eg(X∗) =
E(Xg(X))

a
=

∫
E(Xbg(Xb))

m(b)

m(b) dh(b)

a
=

∫
Eg(X∗

b ) dh
s(b).

In a different direction, the following result from [41] can be useful for con-
structing size bias couplings for continuous random variables that are not rep-
resented as sums, though it may also be noted that Lemma 2.5 implies (26) for
sums of indicator variables, see [16, Lemma 2.6 ff].

Lemma 2.5. Let X = Pr(A|F) where F is some σ-algebra and A is some event
with 0 < Pr(A) < 1. Then X∗ has the distribution of X conditioned on A.

Proof. For any bounded measurable g, we have

Eg(X∗) =
E(g(X)E(1A|F))

EX
=

E(E(g(X)1A|F))

P(A)

=
E(g(X)1A)

P(A)
= E[g(X)|A].

2.2.7. Many to one, one to one

We describe the preimage, under size biasing, of a random variable Z. Note first
that if Z =d X∗, then for any mixture M = bδ0+(1− b)L(X) with 0 ≤ b < 1, a
random variable Y with L(Y ) = M is also a preimage. We claim that changing
the amount of point-mass at 0 is the only source of non-uniqueness.

Lemma 2.6. A random variable Z satisfies Z =d X∗ for some X iff 1 = P(Z >
0) and E(1/Z) < ∞, and then there is a unique law for Y > 0 such that any X
having X∗ =d Z is distributed as bδ0 + (1− b)L(Y ) for some 0 ≤ b < 1.
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Proof. Let Z =d X∗ for some X; this implies X ≥ 0, 0 < EX < ∞, and
P(Z > 0) = 1. Let b := P(X = 0), so clearly b ∈ [0, 1). Let Y have the dis-
tribution of X conditioned on X > 0, so Y > 0, Z =d Y ∗, and L(X) =
bδ0 + (1 − b)L(Y ). With c = EX/(1 − b) = EY ∈ (0,∞), we have, as in (3),
that the distributions ν of Z and μ of Y , as measures on (0,∞), are mutually
absolutely continuous, with Radon-Nikodym derivative

ν(dx)

μ(dx)
≡ P(Z ∈ dx)

P(Y ∈ dx)
=

x

c
.

This shows the uniqueness of the law for Y ; that E(1/Z) < ∞ follows from the
explicit calculation

E
1

Z
=

∫
0<x<∞

1

x
ν(dx) =

∫
1

x

dν

dμ
μ(dx) =

∫
1

c
μ(dx) =

1

c
.

Conversely, if Z > 0 with probability measure ν(dz) satisfies 0 < E(1/Z) <
∞, then with 1/c = E(1/Z), the law μ on (0,∞) with μ(dy)/ν(dy) = c/y, as
the distribution for Y , yields Z =d Y ∗.

A paraphrase of Lemma 2.6 is that size bias is a bijection, between equivalence
classes of distributions for nonnegative random variables with strictly positive
finite mean, modulo varying the size of the point mass at zero, and distributions
for strictly positive random variables having finite minus first moment.

2.3. To bias a process by one coordinate

The following is taken from [43]. Readers who dislike technicalities might prefer
to jump directly to Section 2.4, which leads up to (23), and then come back
only if they feel uncomfortable that our proof of (27) doesn’t involve any limits!
Suppose that X = (X1, X2, . . .) ∈ [0,∞)N has joint law μ, and for a particular
choice of i, ai := EXi ∈ (0,∞). To bias by Xi means, analogous to (3), to switch
to the joint law μ(i) on [0,∞)N with Radon-Nikodym derivative

dμ(i)

dμ
=

xi

ai
. (19)

We write X(i) = (X
(i)
1 , X

(i)
2 , . . .) for a process having this joint distribution μ(i).

Equivalent to (19) is the following statement,

for all bounded measurable g, Eg(X(i)) =
1

ai
E(Xig(X)), (20)

which looks very much like (9), except that now we have g : [0,∞)N → R. Note
that given a bounded measurable h : [0,∞) → R, applying (20) to the special
case g(x) := h(xi) shows that our notion of process bias by one coordinate,
restricted to viewing that coordinate, agrees with the original notion of size
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bias, i.e., X
(i)
i =d X∗

i . In general, there is no similarly compact description
of what happens to the other coordinates. However, as we will see in Section
7.1, if the process X is a martingale then biasing the process by any single
coordinate results in size-biasing the marginal distribution of each coordinate
simultaneously.

In a different direction, suppose that under μ the coordinates are initially
independent. Then as we now show, after biasing by the ith coordinate they
remain independent, and only the ith coordinate is affected.

Lemma 2.7. Fix a particular value i. Assume that X1, X2, . . . are mutually
independent, nonnegative, and that 0 < EXi < ∞. For j �= i let Yj =d Xj,
let Yi =

d X∗
i , and let Y1, Y2, . . . be mutually independent. Then the law μ(i) for

X(i), as given by (19), reduces to the law for Y = (Y1, Y2, . . .), i.e.

(X
(i)
1 , X

(i)
2 , . . .) =d (Y1, Y2, . . .).

Proof. First we check that the marginals match, i.e., that for each j, X
(i)
j =d Yj .

We already noted that this is so, for j = i, as a consequence of (20), even without
the hypothesis of mutual independence. For j �= i, and a bounded measurable
h : [0,∞) → R, applying (20) to the special case g(x) := h(xj) yields the relation

Eg(X(i)) = Eh(X
(i)
j ) = (1/ai)E(Xih(Xj)). Using the independence of Xi and

Xj , we get Eh(X
(i)
j ) = (1/ai)E(Xih(Xj)) = (1/ai)(EXi)Eh(Xj) = Eh(Xj),

proving that for j �= i, X
(i)
j =d Xj , as required, since for j �= i, Yj =

d Xj .

Next we show that X(i) and Y have the same joint distribution, either
by showing that X(i) has independent coordinates, or by checking that for
all measurable C ⊂ [0,∞)N, P(X(i) ∈ C) = P(Y ∈ C), first by checking
finite-dimensional cylinder sets, then applying the π − λ theorem — either
route seems to require the same work. Without loss of generality, the cylin-
der set C includes a restriction on the ith coordinate, i.e., it has the form
C = (Xi ∈ Bi) ∩

⋂
j∈J (Xj ∈ Bj), where i /∈ J . Write g1(x) = 1(xi ∈ Bi)

and g2(x) = 1(xj ∈ Bj for j ∈ J). With g = g1g2 in (20), calculation that
Eg(X(i)) = Eg(Y) is a simple extension of the calculation for the special case
where the cylinder restricts only one coordinate, given in the first paragraph of
this proof.

Another technical issue involves the value infinity. It would have been possible
to present the basic discussion of size bias, in particular (3) and (9), in terms
of a random element Y with values in [0,∞]. But since 0 < EY < ∞ implies
P(Y = ∞) = 0, it is of course possible, and simpler, to deal with Y taking values
in [0,∞), and this is what everyone does. However, in dealing with infinite sums
of finite nonnegative random variables, one cannot simply declare that the space
of values for the sum be taken as [0,∞), even if one knows that the sum is finite
with probability one.

Our goal is to deal with the distribution of random variables Y = h(X), such
as Y = X1 +X2 + · · · ,4 and to specify the distribution of Y (i), distributed as

4Thanks to only having nonnegative numbers for the coordinates of the domain, there are
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Y with μ changed to μ(i). Hence we consider measurable h : [0,∞)N → [0,∞],
and bounded measurable f : [0,∞] → R. The composition g(X) = f(h(X))
is a bounded measurable function from [0,∞)N → R, hence (20) applies. The
distribution of Y (i) is then specified by

for bounded measurable f : [0,∞] → R, E(f(Y (i))) =
1

ai
E(Xif(Y )). (21)

2.4. To size bias a sum

Consider a finite sum S = X1 + · · · + Xn, n ≥ 1, or an infinite sum S =
X1+X2+ · · · , with Xi ≥ 0 and ai := EXi > 0, and a = ES < ∞. After biasing

by Xi, as in (19), we have a sum5 S(i) = X
(i)
1 + · · ·+X

(i)
n , so that, as a special

case of (21), for bounded nonnegative measurable g,

Eg(S(i)) =
1

ai
E(Xig(S)),

and then with (9) to justify the first line, and elementary algebra (here using
g ≥ 0) to justify the second line,

Eg(S∗) = E(Sg(S))/a

=
∑
i

1

a
E(Xig(S))

=
∑
i

ai
a

Eg(S(i)). (22)

Suppose furthermore that the summands X1, X2, . . . are independent. If size
biased random variables X∗

1 , X
∗
2 , . . . are realized on the same probability space,

with (X1, X
∗
1 ), (X2, X

∗
2 ), . . . mutually independent, then for each i, by Lemma

2.7, S(i) =d S − Xi + X∗
i so that (22) simplifies to: for bounded nonnegative

measurable g,

Eg(S∗) =
∑ ai

a
Eg(S −Xi +X∗

i ). (23)

The result above says precisely that S∗ can be represented by the mixture of the
distributions of S +X∗

i −Xi with mixture probabilities ai/a. With a random I
having distribution defined by

P(I = i) = ai/a, (24)

and all of I, (X1, X
∗
1 ), (X2, X

∗
2 ), . . . mutually independent, the mixture formula

(23) can be restated as
S∗ =d S −XI +X∗

I . (25)

no convergence issues in dealing with the sum X1 +X2 + · · · ∈ [0,∞].
5Warning: our notation here conflicts with some standard expositions of Stein’s method,

such as [25], [15, Theorem B.1], and [45], where notation Vi refers to the sum, with ith term
omitted, size biased by the ith term.
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In the preceding coupling, for each i, marginal distributions of Xi, X
∗
i are spec-

ified, but the joint distribution of (Xi, X
∗
i ) is otherwise arbitrary. Allowing

such dependence is important for use with Stein’s method; see Section 5. Of
course, mutual independence for I,X1, X2, . . . , X

∗
1 , X

∗
2 , . . . implies mutual in-

dependence for I, (X1, X
∗
1 ), (X2, X

∗
2 ), . . . .

For each case, S = X1 + · · ·+Xn or S = X1 +X2 + · · · , (25) can be written
out with notation to emphasize that a single term has been biased6:

(X1 +X2 + · · ·+Xn)
∗ =d X1 + · · ·+XI−1 +X∗

I +XI+1 + · · ·+Xn, (26)

and
(X1 +X2 + · · · )∗ =d X1 + · · ·+XI−1 +X∗

I +XI+1 + · · · . (27)

It is a natural abuse of notation to view (26) as a special case of (27). The
reason that this is abuse, rather than the special case Xn+1 = Xn+2 = · · · = 0
is that the identically zero random variable X cannot be size biased. Specifically,
X = 0 doesn’t satisfy the conditions of the definition in (3), and size biasing
this X, if allowed, would abrogate Lemma 2.6. Nonetheless, it is customary to
follow the notational abuse that if X = 0 then X∗ =d X = 0, so that one can
view (26) as the special case of (27), and later, write formulas such as (33) for
a sum with infinitely many terms, without writing out a second instance for a
sum with finitely many terms.

In contrast to a sum of independent nonnegative summands, which is size bi-
ased by biasing a single term, a productW = X1X2 · · ·Xn, of independent, non-
negative random variables X1, . . . , Xn, each with finite, strictly positive mean,
is size biased by biasing every factor: taking X∗

1 , . . . , X
∗
n independent, one has

W ∗ =d X∗
1 · · ·X∗

n. (28)

Here, we leave the proof as an exercise; this result comes from [63]. For the
case of dependent summands, the decomposition (22) is useful; in contrast, for
dependent factors, we don’t know of any useful relation.

An interesting example of the use of (27) involves S =
∑

i≥1 2Bi/3
i with in-

dependent Bi, with P(Bi = 0) = P(Bi = 1) = 1/2. The cumulative distribution
of this sum S is known as the Cantor function; the distribution of S is, by all
reasonable interpretations, the uniform distribution on the Cantor middle thirds
set. By (24), the random index I has the geometric distribution P(I = i) = 2/3i

for i = 1, 2, . . ., and by (7), the size biased version of Bi is B
∗
i = 1 = Bi+(1−Bi),

so that (25) simplifies to

S∗ =d S + 2(1−BI)/3
I .

A closely related example, using the same Bi, is the standard uniform (0,1)
random variable U =

∑
i≥1 Bi/2

i. With a random index J having geometric

distribution P(J = i) = 1/2i for i = 1, 2, . . ., independent of B1, B2, . . ., (25)
simplifies to

U∗ =d U + (1−BJ)/2
J =

B1

2
+

B2

4
+ · · ·+ BJ−1

2J−1
+

1

2J
+

BJ+1

2J+1
+ · · · . (29)

6and hence the title of this paper
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Of course, it is easy to calculate that the density of U∗ is 2x on (0,1), using (4):
multiply the density of the uniform by x and divide by EU = 1/2. But perhaps
the following exercise is not easy.

Exercise Prove, without using size bias, that the sum on the right side of
(29) has density f(x) = 2x on (0,1).

Fig 2.1. Cumulative distribution functions for the uniform distribution on (0,1), the uniform
distribution on the Cantor set, and the size biased versions of these. Image produced using
MathStudio [73].

For the case with a finite number of summands, where the summands are not
only independent but also identically distributed, the recipe (26) simplifies. In
this case it does not matter which summand is biased, as all the distributions
in the mixture are the same; hence we may replace the random I with the fixed
i = 1, yielding

(X1 +X2 + · · ·+Xn)
∗ =d X∗

1 +X2 +X3 + · · ·+Xn. (30)

Here are some elementary consequences of (30). Recall (7), that for p ∈
(0, 1], a Bernoulli random variable with mean p, size biased, is the constant 1.
Summing n independent copies gives us random variables Sn whose distribution
is Binomial(n, p). Hence using (30),

S∗
n =d 1 + Sn−1. (31)
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Finally, taking λ ∈ (0,∞) fixed, Z to be Poisson(λ), andXn to be Binomial(n, λ/n),
the Poisson limit for the Binomial, together with Theorem 2.3 and (31), implies
Z∗ =d Z + 1. Of course, this equality was already verified by direct calculation
using (4) and (5), but the beauty of the argument via (31) is that it is purely
conceptual.

2.4.1. Example: compound Poisson

Given the distribution for a discrete positive random variable Y with finite
mean, and 0 < a < ∞, we will show how to construct a distribution for S such
that

S∗ =d S + Y with S, Y independent, and ES = a. (32)

To specify the distribution of Y , suppose that pi = P(Y = yi), for distinct
constants y1, y2, . . . > 0, with p1 + p2 + · · · = 1. The requirement EY < ∞
becomes

∑
piyi < ∞. Define

λi = a pi/yi.

Let Zi be Poisson with mean λi with Z1, Z2, . . . mutually independent. We will
show that

S =
∑
i≥1

Xi, with Xi = yiZi (33)

gives a solution to (32), using only formula (6) for size biasing a single Poisson
distributed random variable, the scaling property (17), formula (27) for size
biasing a sum of independent, non identically distributed summands, and the
trivial calculation that ai := EXi = λi yi = api, hence ES =

∑
λi yi =

∑
api =

a.
First, using (6), Z∗

i =d Zi + 1. Second, using the scaling property (17),
X∗

i =d Xi + yi. In the recipe (27), there is a random index I, independent of
the X1, X2, . . ., with

P(I = i) = EXi/a = λiyi/a = pi, (34)

and we can take the coupling in which X∗
i = Xi + yi for each i. This yields

S∗ =d S + yI , with S, I independent. Since the yi are distinct, for each i, as
events, (YI = yi) = (I = i), hence the distribution of yI is the given distribution
for Y . To summarize, we were given the distribution for Y , and we constructed
a distribution for S so that (32) holds. We will revisit the relation S∗ =d S + Y
with S, Y independent in Section 11; the preceding is then seen as an explicit
example of (83), with the distribution of Y specified in advance. In the standard
literature, the random variable S in (33) is said to have a compound Poisson
distribution, given the further restriction that

∑
i λi < ∞. Compound Poisson

with finite mean requires both
∑

i λi < ∞ and
∑

λi yi < ∞; in contrast, we
require only the latter.

Recall, if Z is Poisson(λ) then its probability generating function is GZ(s) :=
EsZ = exp(λ(s − 1)). Substituting s = eβ , the moment generating function of
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Z is MZ(β) := Eeβ Z = exp(λ(eβ − 1)). Hence in (33), the moment generat-
ing function of Xi is MXi(β) = exp(λi(e

β yi − 1)) and the moment generating
function of S is

MS(β) = exp

(∑
i

λi(e
β yi − 1)

)
= exp

(
a

∑
i

eβ yi − 1

yi
P(I = i)

)
, (35)

with the distribution of I given by (34). Likewise, the characteristic function of
S, φS(u) := EeiuS is given by

φS(u) = exp

(∑
k

λk(e
iu yk − 1)

)
= exp

(
a

∑
k

eiu yk − 1

yk
P(I = k)

)
. (36)

3. Waiting time paradox: the renewal theory connection

We resolve the waiting time paradox from Section 1 in the general context of
renewal processes, at the same time providing a conceptual explanation of the
identities (26) and (30).

Let the interarrival times in Section 1 be denoted Xi so that, starting from 0,
arrivals occur at times X1, X1+X2, X1+X2+X3, . . ., and assume only that the
Xi are i.i.d., strictly positive random variables with finite mean; the paradox
presented earlier was for the special case with Xi exponentially distributed.

The following argument is heuristic. One way to model the “arbitrary instant
t” is to choose a random T uniformly from 0 to l, independent of X1, X2, . . ., and
then take the limit as l → ∞. For large but finite l, conditional on X1, X2, . . .,
apart from possible cutoff at the extreme right7 the probability of T landing in
a given interarrival interval is proportional to its length. In other words, if the
interarrival times Xi have a distribution dF (x), the distribution of the length
of the selected interval is approximately proportional to x dF (x). In the limit,
it is precisely correct that the distribution of the length of the selected interval
is the distribution of X∗.

For the particular case of exponentially distributed interarrival times, the
density ofX∗ is xe−x, with mean value 2, and so a right–left symmetry argument
gives the answer in a).

A conceptual explanation of identity (30) is given by the following heuristic.
Group the interarrival intervals into successive blocks of n intervals. By con-
sidering only the endpoints of blocks, i.e., the renewal process, decimated by
n, the random time T must find itself in a block with total length distributed
as S∗ = (X1 + · · · +Xn)

∗. But regardless of the grouping, the random time T
still finds itself in an internal interval whose length is distributed as the size
biased distribution of the interarrival times; the lengths of the other intervals
in the same block are not affected. Thus the total block length must also be

7Conditional on T = t and X1 + · · ·+Xm−1 < t < X1 + · · ·+Xm−1 +Xm, there are m
interarrival intervals, and for i = 1 to m−1 interval i is selected with probability proportional
to Xi, but interval m is selected with probability proportional to t−(X1+ · · ·+Xm−1) < Xm.
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distributed as X1+ · · ·+Xi−1+X∗
i +Xi+1+ · · ·+Xn. A small extension of this

heuristic may convince one of the identity (26): given n distributions for strictly
positive X1, . . . , Xn all with finite mean, create the n-alternating renewal pro-
cess, in which the independent interarrival time distributions cycle through the
n given distributions. The decimation by n has independent interarrival times
distributed as S = X1 + · · · + Xn, with independent summands, T picks out
a block with length distributed as S∗, and the contribution EXi makes to the
total block size governs the distribution of which subinterval in a block gets
chosen by T . And for (27), where S = X1 + X2 + · · · with ES < ∞, another
small extension of the heuristic may be convincing. But we don’t really expect
the ∞-alternating renewal process to become a popular model.

The standard rigorous analysis of the waiting time paradox, for instance in
[88], is a bit less direct, based on randomizing the starting point of the arrivals, so
that the arrival times form a stationary sequence. Begin by extendingX1, X2, . . .
to an independent, identically distributed sequence . . . , X−2, X−1, X0, X1,
X2, . . . . Informally, if the arbitrary instant t could be uniform on the whole
line (or by adapting the above limiting argument) then t would fall uniformly
inside a size biased interarrival interval; relabeling, we call t by the name zero,
and the landing interval has length X∗

0 . Then the prior arrival and next ar-
rival would be at times −(1 − U)X∗

0 and UX∗
0 respectively, where the uniform

U ∈ [0, 1] is independent of the Xi’s. Thus motivated, we define a process by
setting arrivals at positive times UX∗

0 , UX∗
0 +X1, UX∗

0 +X1+X2, . . ., as well as
negative times −(1−U)X∗

0 ,−((1−U)X∗
0 +X−1),−((1−U)X∗

0 +X−1+X−2), . . .
. It can be proved that this process is stationary, see [88, Theorem 8.1, Chapter
8]. Our desired waiting time Wt is then equal in distribution to W0 = UX∗

0 .
The interval which covers the origin has expected length EX∗

0 = EX2
0/EX0

(by (14) with n = 1,) and the ratio of this to EX0 is EX∗
0/EX0 = EX2

0/(EX0)
2.

By Cauchy-Schwarz, this ratio is at least 1, (see also (15),) and every value in
[1,∞] is feasible. Since the mean waiting time is EWt = EW0 = E(UX∗

0 ) =
(1/2)EX∗

0 , the ratio EWt/EX0 can be any value between 1/2 and infinity, de-
pending on the distribution of X0.

The exponential case is very special, where “coincidences” effectively hide
all the structure involved in size biasing. As suggested by Feller’s argument (a)
at the start of this paper, but now justified by stationarity, EWt = 1. Fur-
thermore, for the exponential case, where X0 has density e−x for x > 0, one
gets X∗

0 has density xe−x and the two summands UX∗
0 and (1 − U)X∗

0 are
independent, each with the original exponential distribution.8 Thus the gen-
eral recipe for cooking up a stationary process, involving X∗

0 and U in gen-
eral, simplifies beyond recognition: the original simple process with arrivals
at times X1, X1 + X2, X1 + X2 + X3, . . . forms half of a stationary process,
which is completed by its other half, arrivals at −X ′

1,−(X ′
1 + X ′

2), . . . , with
X1, X2, . . . , X

′
1, X

′
2, . . . all independent and exponentially distributed.

The above material deals with renewal processes, and perhaps originated in

8Exercise for the reader: prove that if U X∗ =d X when U is independent of X∗ and U is
distributed uniformly on (0, 1), then X has an exponential distribution — on some scale. Not
hard; or, see [69].
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Doob [36]. A broad generalization, applying to stationary point processes —
dropping the requirement that the interarrival times be independent — was
given by [55]. See also [34, p. 299].

4. Size bias in statistics

We now touch briefly on the topic of inadvertent or unavoidable size bias9 in
statistical sampling by citing two references from a vast literature.10 We also
discuss the deliberate use of size bias, as a sampling tool.

4.1. Inadvertent size bias

In a 1969 paper [33] David Cox identifies, among other topics, length bias in a
then-standard process for estimating the mean length of textile fibers: In outline,
as he describes it, fibers are gripped by a pincer, all ungripped fibers adhering to
the gripped ones are carefully removed, and the remaining fibers are measured.
Cox points out that since shorter fibers are more likely to be missed by the
pincer, the distribution of the sampled lengths is length biased. He proposes
some adapted estimators for getting at parameters of the original distribution
if the sampling process itself cannot be refined.

Nearer to the present, the 2009 paper [50] considers issues arising in assessing
the value of medical screening and the effects of subsequent early treatment
on survival time. As discussed in [50], for reasons analogous to waiting-time
bias, the durations of preclinical disease states detected by certain screening
protocols are subject to length bias. Even though the durations themselves are
not observed, longer durations are likely to derive from slower-acting instances
of the disease under consideration, and hence are correlated a priori with longer
survival times. Therefore, as indicated by the authors, improvement in survival
time is likely to be overestimated by such studies if suitable adjustments are not
made.

4.2. Deliberate size bias to create something unbiased

Somewhat paradoxically, size biasing can occasionally be used to construct un-
biased estimators of quantities that would seem, at first glance, difficult to esti-
mate without bias. The following procedure for unbiased ratio estimation is due
to Midzuno [66]; see also Cochran [31]. Suppose that for each individual i in
some large population there is a pair of numbers (xi, yi), with the value xi easy
to obtain but yi more difficult. Assume each xi ≥ 0, with not all zero. Suppose
that it is desired to estimate the ratio

∑
i yi/

∑
i xi without bias and without

9or length bias, as it is sometimes called in sampling literature
10 An unpublished survey by Termeh Shafie on Length-Biased Sampling, found on her

ETH webpage, contains a quite useful bibliography.
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sampling the entire population. Perhaps xi is how much the ith customer was
billed by their utility company last month, and yi, say a smaller value than xi,
the amount they were supposed to have been billed. Suppose we would like to
know just how severe the overbilling error is; that is, we would like to know
the ‘adjustment factor’, the ratio

∑
i yi/

∑
i xi. Even though

∑
i xi is known,

collecting the paired values for everyone is laborious and expensive, so we would
like to be able to use a sample of m < n pairs to make an estimate. It is not
hard to verify that, if we select a set R of m indices, with all

(
n
m

)
sets equally

likely, then the estimate
∑

j∈R yj/
∑

j∈R xj will be biased.
The following device gets around this difficulty. Draw a random set R of

size m by first selecting i with size-biased probability xi/
∑

j xj . Then draw
m − 1 indices uniformly from the remaining n − 1. Though we are out of the
independent framework, the principle of (30) is still at work: size biasing one
element has size biased the sum. This is so because we have size biased the one,
and then chosen the others from the appropriate conditional distribution. Thus,
we have selected a set r of indices with probability proportional to

∑
j∈r xj .

From this observation it follows that E(
∑

j∈R yj/
∑

j∈R xj) =
∑

j yj/
∑

j xj .

Here is Midzuno’s procedure in a bit more detail. Let

x =
1

n

n∑
j=1

xj and y =
1

n

n∑
j=1

yj .

First choose index I with distribution

P (I = i) =
xi∑n
j=1 xj

.

Then from the remaining set {1, . . . , n} \ {I}, take a simple random sample S
of size m − 1. Let R = S ∪ {I} be the resulting set of size m. We claim the
estimator TR is unbiased for y/x, where, for r a subset of {1, . . . , n},

Tr =
yr
xr

with yr =
1

m

∑
j∈r

yj and xr =
1

m

∑
j∈r

xj .

To see why, consider that R may equal r, any set of size m, in m different
possible ways, one each according to first selecting some element i ∈ r with
probability P (I = i), and then collecting the remaining elements in the simple
random sample. Hence,

P (R = r) =
∑
i∈r

P (I = i)P (S \ {i} = r \ {i})

=
∑
i∈r

xi∑n
j=1 xj

1(
n−1
m−1

)
=

1(
n−1
m−1

) ∑
i∈r xi∑n
j=1 xj
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=
1

n
m

(
n−1
m−1

) xr

x

=

(
n

m

)−1
xr

x
.

Next, applying the easily shown identity

(
n

m

)−1 ∑
|r|=m

yr = y,

we obtain

ETR =
∑

|r|=m

yr
xr

P (R = r) =

(
n

m

)−1 ∑
|r|=m

yr
xr

xr

x

=
1

x

(
n

m

)−1 ∑
|r|=m

yr

=
y

x
.

For the variance of the estimator, see [75].

5. Relation to Stein’s method and concentration inequalities

Implicit in Chen 1975 [25], with improved constants due to [15], see also [45,
Theorem 4.12.12], is the following result from [42], Theorem 1.1, see also [77,
Theorem 4.10], which we paraphrase11 here as

Theorem 5.1. Let X be a nonnegative integer valued random variable with
λ := EX ∈ (0,∞); let Z be Poisson with parameter λ. Then for any coupling
of X with X∗, the total variation distance between the distributions of X and Z
satisfies

dTV(X,Z) ≤ (1− e−λ) E|X∗ − (X + 1)|.

The total variation distance appearing in Theorem 5.1 is defined, for random
variables X,Y in general, by dTV(X,Y ) = supB(P(X ∈ B) − P(Y ∈ B)), with
the supremum taken over all Borel sets.

Size biasing also has a connection with Stein’s method for obtaining error
bounds when approximating distributions by the normal distribution, see [14,
13, 26, 43].

11The theorem in [42] is stated with the condition that X be a finite sum of indicator
random variables. However, an arbitrary nonnegative integer valued X is a sum of indicators,
namely X =

∑
i≥1 1(X ≥ i), and the restriction on finite sum can be removed using Theorem

2.3 applied to Xn := X ∧ n =
∑n

i=1 1(X ≥ i).
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Size bias also plays a role in concentration inequalities, see [40, 39, 8, 16].
The results from [40, 8] include: if X ≥ 0 with a := EX ∈ (0,∞) can be coupled
to X∗ so that P(X∗ ≤ X + c) = 1, then

for 0 < x ≤ a,P(X ≤ x) ≤ (a/x)x/ce(x−a)/c ≤ exp(−(a− x)2/(2ca)),

for x ≥ a,P(X ≥ x) ≤ (a/x)x/ce(x−a)/c ≤ exp(−(x− a)2/(c(a+ x))).

To see how size bias enters, if a coupling satisfies P(X∗ ≤ X + c) = 1, then
for all x, the event X∗ ≥ x is a subset of the event X ≥ x− c. Hence for x > 0,

xP(X ≥ x) = xE1(X ≥ x) ≤ E(X1(X ≥ x))

= aP(X∗ ≥ x)

≤ aP(X ≥ x− c),

and dividing by x we get

∀x > 0, G(x) ≤ a

x
G(x− c), (37)

Iterating (37) leads to the sharp upper bounds on P(X ≥ x), for each x ≥ a.
An extension to exploit the weaker condition P(X∗ ≤ X + c|X∗) ≥ p ∈ (0, 1) is
discussed in [32].

In the context of sums of independent random variables each with a bounded
range, the concentration bounds based on bounded size bias couplings are
stronger than the corresponding Chernoff–Hoeffding bounds, as well as being
broader in scope; see [8]. Applications of these bounds to situations involving
dependence, such as the number of relatively ordered subsequences of a ran-
dom permutation, sliding window statistics including the number of m-runs in
a sequence of coin tosses, the number of local maxima of a random function on
a lattice, the number of urns containing exactly one ball in an urn allocation
model, and the volume covered by the union of n balls placed uniformly over a
volume n subset of Rd, are discussed in [39]. An example showing that the size
bias concentration bounds supply a desired uniform integrability, in a situation
where the usual Azuma-Hoeffding bounded martingale difference inequality is
not adequate, is given in [5].

6. Size bias and Palm distributions

The size bias view of arrival times and stationarity, discussed in Section 3, is
sometimes expressed in the language of Palm measures for stationary point
processes; see [88, Chapter 8] or [34, p. 299] for details. At this level, Palm
measures are derived from simple point processes, that is, random nonnegative
integer valued measures ξ for which any singleton set {s} has measure zero or
one, and the Palm measure ξs corresponds to conditioning on having an arrival
at the point s.
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There is a more general version of Palm measure, which applies to non-
negative random measures; we attribute this to Jagers and Kallenberg, [49,
51, 52]. This version is, quite directly, a generalization of biasing a process
X = (X1, X2, . . .) ∈ [0,∞)N in the direction of its ith coordinate, to get X(i),
described in Section 2.3. The setup is: S is a complete separable metric space
and M is the set of nonnegative sigma-finite measures on S; typical examples
include S = R and S = Rd. Fix a random measure ξ, that is, a random element
of M . The characterizing property of the Palm measures ξs, for s ∈ S, is that,
for bounded measurable functions g : M → R,

Eg(ξs) =
E(ξ(ds)g(ξ))

Eξ(ds)
. (38)

In the restrictive case S = N, a measure ζ ∈ M corresponds naturally to
the sequence (z1, z2, . . .) ∈ [0,∞)N with zi = ζ({i}), the mass assigned by the
measure to the location i in the underlying space S, hence a random measure
ξ corresponds to a stochastic process X = (X1, X2, . . .) with values in [0,∞)N.
In this restrictive case and under this correspondence, with s = i, ξs = X(i) is
the process X biased by its ith coordinate Xi, and Eξ(ds) = EXi =: ai, and
(38) looks identical to (20) — the only difference is that in the setup for (20) we
needed to assume that for each i, EXi > 0 — in particular, one cannot size bias
the random variable X which is identically zero. But in the measure context,
it would be an unreasonable extra assumption, to require that the intensity
measure Eξ be purely atomic.

The above has fully described a sense in which Palm measures are a gener-
alization of simple size bias. As an application, we provide a solution, in the
same spirit, to (part of) Exercise 11.1 in [52]. The exercise asks for a proof of
the following theorem, in which the emphasis is that ξ is not assumed to be
integer-valued.

Theorem 6.1. Suppose ξ is a random measure on S. For s ∈ S write δs for
deterministic measure “unit mass at s”. Suppose the Palm measures satisfy: for
s ∈ S, ξs = ξ + δs. Then ξ is a Poisson process.

Lemma 6.2. Under the hypotheses of Theorem 6.1, for any measurable B ⊂ S
for which Eξ(B) ∈ (0,∞), the random variable X = ξ(B) satisfies X∗ =d X+1.

Proof. Write μ = Eξ for the intensity measure; this is the deterministic element
of M with μ(B) = E(ξ(B)) for measurable B ⊂ S. With this notation, (38) says

Eg(ξs) =
E(ξ(ds)g(ξ))

μ(ds)
. (39)

The characterization of Palm measures, as written in (39), is shorthand for
its multiplied out version,

Eg(ξs) μ(ds) = E(ξ(ds)g(ξ)),

so that for measurable B ⊂ S,
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∫
B

Eg(ξs) μ(ds) =

∫
B

E(ξ(ds)g(ξ)) = E

∫
B

(ξ(ds)g(ξ)) = E(g(ξ)ξ(B)).

Now fix a measurable B ⊂ S with a := Eξ(B) ∈ (0,∞), and fix a bounded
measurable f : R → R. This induces a bounded measurable function g : M →
R via g(ζ) = f(ζ(B)). This yields g(ξ) = f(ξ(B)), so with X = ξ(B) the
right side of the display above is E(f(X)X). From the hypothesis ξs = ξ + δs
we have, for every s ∈ B, g(ξs) = f(ξs(B)) = f((ξ + δs)(B)) = f(ξ(B) +
1) = f(X + 1), and the left side of the display is

∫
B
Eg(ξs) μ(ds) = Ef(X +

1)
∫
B
μ(ds) = Ef(X+1)μ(B) = Ef(X+1)EX. Hence, for bounded measurable

f , E(Xf(X)) = Ef(X + 1)EX. This last relation, now proved for an arbitrary
bounded measurable f : R → R, shows that X∗ =d X + 1.

Lemma 6.3. Suppose that G is an event, and X is Poisson(λ). Write

pi = P(X = i),

qi = E(1(X = i)1(G)),

ri = E(1(X = i)1(Gc)),

so that pi = qi + ri for i = 0, 1, 2, . . .. Suppose that for i = 0, 1, 2, . . .,

(i+ 1) qi+1 = λ qi, (i+ 1) ri+1 = λ ri. (40)

Then X and G are independent.

Proof. The proof is similar to that of Proposition 2.1. In particular, applying
induction as there to (40), we obtain qi = P(G)e−λλi/i! = P(G)P(X = i).

Proof of Theorem 6.1. Consider a measurable B ⊂ S for which λ := Eξ(B) ∈
(0,∞). Lemma 6.2, combined with Corollary 11.3, shows that X = ξ(B) is
Poisson(λ). Now consider an event G which is measurable with respect to the
restriction of ξ to Bc. Lemma 6.3 shows that G is independent of X, with an
argument similar to the proof of Lemma 6.2 verifying that the hypotheses of
Lemma 6.3 are satisfied. Hence for disjoint subsets B1, B2, . . . ⊂ S each having
0 < Eξ(Bi) < ∞, ξ(B1) is independent of (ξ(B2), ξ(B3), . . .), so by induction,
the Poisson distributed random variables ξ(B2), ξ(B3), . . . are mutually inde-
pendent.
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7. Martingale size bias, and size bias for Galton Watson trees

This section is based mostly on [64], which employs a notion of size-biased
Galton Watson trees to give a conceptual and intuitive proof of the Kesten-
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Stigum theorem, which we briefly describe below. We also found [79], [35], and
[65] useful for clarifying lingering issues involving the “spine” or “backbone” of
the size biased Galton Watson trees.

For the reader already familar with the size biased Galton Watson tree, here
is a brief description of these issues. a) Is the spine intrinsic to the size-biased
tree, or is it just an ingredient in a particular construction? b) Given just the
tree, generated using a spine but without labels to show where the spine lies, can
the spine be located? c) Can one start with the unbiased Galton Watson tree,
and then add a process, of immigrants and their descendants, to get a coupling
with a size biased tree? d) If yes to c), can this be done so that the original tree
and the difference are independent? We answer a) and b), but leave c) and d)
alone.12

The Kesten-Stigum theorem concerns the following: Suppose we are given a
Galton-Watson branching process with offspring variable L, whose distribution
is given by P(L = k) = pk, with mean m =

∑
kpk ∈ (0,∞), so that the number

of individuals Zn at time n has EZn = mn. The process given by Wn := Zn/m
n

is a nonnegative martingale, hence converging almost surely to some limit W .
For m ≤ 1, it is easy to prove that Zn → 0 a.s., so W = 0; equivalently EW = 0.
In particular the martingale is not uniformly integrable. But things are more
subtle when 1 < m < ∞. For this case the Kesten-Stigum theorem asserts that
if EL logL < ∞, then EW = 1, while if EL logL = ∞, then EW = 0.

The proof of the Kesten-Stigum theorem in [64] begins with the observa-
tion that Wn serves as Radon-Nikodym derivative with respect to the usual
distribution of [T ]n, the branching process tree T observed up to time n, of
the distribution size-biased by Zn; and since the resulting size biased distri-
butions are consistent, there results a notion of size-biased tree, which we call
T ∗. Namely, this tree is obtained by picking one “special” individual from each
generation, and changing its offspring distribution from that of L to that of the
size-biased version L∗, which satisfies, in particular, 1

mE logL∗ = EL logL. The
Kesten-Stigum criterion is thus whether E logL∗ is finite or infinite. Write Yn

for the number of extra children injected into generation n+1 by size-biasing the
number of children of the selected special individual from generation n; these
individuals counted by Yn (but not their descendants), are called immigrants.

It turns out that if E logL∗ < ∞ then the process of immigrants grows sub-
exponentially, so the contribution from immigrants and their descendants, up
to time n, is O(mn). Then under the size-biased distribution, W < ∞ a.s. and
the size-biased law of t is absolutely continuous with respect to the original law.
On the other hand, if E logL∗ = ∞ then the contribution from immigrants,
even without counting their descendants, grows faster than any exponential;

12Our reason for leaving c) and d) alone is that there are conflicting notions of the use
of immigrants in constructing the size biased tree (though leading, in the end, to the same
distribution on trees). In [64], the notion is implicitly established by declaring that the size
biased process, with spine removed, is a branching process with immigration — starting with
zero individuals, so that every individual is either an immigrant, or else descended from an
immigrant. Our construction (48) uses a different notion, leading to a coupling in which there
is the original unbiased tree, plus immigrants, plus individuals descended from immigrants.
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in particular W = ∞ a.s. under the size-biased distribution, and W = 0 a.s.
under the original distribution. Thus size-biasing plays a natural role in the
understanding of this result. See [64] for a proof and further information.

7.1. Martingale size bias

Recall that in Section 2.3 we discussed size-biasing a processX = (X1, X2, . . .) ∈
[0,∞)∞ with joint law μ, by size-biasing one of its coordinates Xi, assuming
that ai := EXi ∈ (0,∞). The recipe is given by (19), and we wrote X(i) =

(X
(i)
1 , X

(i)
2 , . . .) for the resulting process. A natural question: what is the result

if X is a martingale?
So assume now that X is a martingale, nonnegative and nonconstant. This

implies, in particular, that for each i = 1, 2, . . ., the mean ai := EXi is in
(0,∞), with a1 = a2 = . . . ; call the common value a. For any i, n ≥ 1, the
specifications (19) of the distributions of X(i) and X(n), restricted to the first
n coordinates, with Radon-Nikodym derivatives expressed in terms of arbitrary
bounded measurable gn : [0,∞)n → R, are that

Egn(X
(i)
1 , X

(i)
2 , . . . , X(i)

n ) =
1

a
E(Xi gn(X1, X2, . . . , Xn)), (41)

and

Egn(X
(n)
1 , X

(n)
2 , . . . , X(n)

n ) =
1

a
E(Xn gn(X1, X2, . . . , Xn)). (42)

By the martingale property of X, for all i ≥ n ≥ 1, the righthand sides of (41)
and (42) are equal to each other; hence

for i ≥ n ≥ 1, (X
(i)
1 , X

(i)
2 , . . . , X(i)

n ) =d (X
(n)
1 , X

(n)
2 , . . . , X(n)

n ). (43)

Now (43) says that we have a consistent family of finite dimensional distribu-
tions for a process, which we naturally call a size-biased martingale, and which
we denote by X∗ = (X∗

1 , X
∗
2 , . . .). The justification for this notation is that each

individual coordinate X∗
i of the process X∗ is a size biased version of Xi, in the

sense of the original definition (9). The proof, in turn, of this latter statement

is that from (43) and the discussion in Section 2.3 we must have X
(n)
n =d X∗

n,
while (43) applies for every n. To recapitulate, the joint distribution of the first
n coordinates of X∗ is given by

Egn(X
∗
1 , X

∗
2 , . . . , X

∗
n) =

1

a
E(Xn gn(X1, X2, . . . , Xn)) (44)

for all bounded measurable gn : [0,∞)n → R. Considering the n-th coordinate
marginally, the distribution of X∗

n agrees with the elementary definition (9) ap-
plied to Xn in the role of X. The martingale property of X plays an essential
role in this construction; had X1, X2, . . . been arbitrary non-negative random
variables, each with strictly positive finite mean, while the size biased distribu-
tions for the X∗

1 , X
∗
2 , . . . considered individually would still be given by (9), the

joint distribution is not specified by (9).
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Sometimes, one starts with a nonnegative process Z = (Z1, Z2, . . .) with
means ai := EZi ∈ (0,∞), in which the sequence a1, a2, . . ., is not constant;
but after scaling out the means by defining Xi := Zi/ai, the new process X =
(X1, X2, . . . ) turns out to be a martingale. (An example of this is given by
Zn := the size of the population at time n, in any Galton Watson process where
the mean number of offspring per individual is m ∈ (0, 1) ∪ (1,∞).) Then X
can be size biased as above, yielding X∗ = (X∗

1 , X
∗
2 , . . .). In light of (17), if we

set Z∗
i := aiX

∗
i for each i, the distribution of this Z∗

i necessarily agrees with
the elementary definition (9) of size bias applied to Zi in the role of X, but
in addition the joint distribution of the size biased process X∗ induces a joint
distribution on Z∗ := (Z∗

1 , Z
∗
2 , . . .), i.e we have obtained a natural coupling of the

marginal size biased distributions. To recapitulate: given nonnegative random
variables Z1, Z2, . . . with EZi ∈ (0,∞), and a joint distribution for a process
Z = (Z1, Z2, . . .), if Z is a martingale, or the process derived from Z by scaling
out the mean motion is a martingale, then there is a process Z∗, simultaneously
size biasing every coordinate.

Note that if we start with a martingale X, there is no particular reason for X∗

to be a martingale. Similarly, the process with mean motion scaled out, say Y
with Yn := X∗

n/EX
∗
n, need not be a martingale. However, there is an important

class for which the martingale-based process bias preserves structure: namely,
if the process is also a Markov chain, then Markov structure is preserved. We
will prove this, in Lemma 7.1.

We limit ourselves to the case where the state space is Z+, the nonnegative
integers, for the sake of easy notation, and also we limit ourselves to the time
homogeneous case; neither of these restrictions is essential. To comply with the
common convention for indexing time, we switch the index set from N, the
natural numbers, to Z+. And for later application to the special case of Galton
Watson processes, we explicitly allow the possibility that state 0 is a trap.

Lemma 7.1. Suppose X = (X0, X1, . . .) is a Markov chain on S = Z+ with
transition matrix M ; assume that X0 = 1. Suppose that ri :=

∑
j j Mij < ∞,

for all i ∈ S. Define a new stochastic matrix N , row by row, by size biasing the
rows of M , if possible:

if ri > 0, then Nij := j Mij/ri; if ri = 0, then Nij := Mij . (45)

Let Y = (Y0, Y1, . . .) be the Markov chain governed by N , with Y0 = 1. Assume
that for all n, an := EXn ∈ (0,∞). Let Wn := Xn/an. If (W0,W1, . . .) is a
martingale, then the size biased process X∗ has the same distribution as the
Markov chain Y.

Note: the process Y in the statement of the Lemma may be considered as a
special case of Doob’s h-transform; see [76, p. 296]. The letter h is mnemonic for
harmonic, and (45) is the special case where h is the identity function — as we
pointed out, using the fortuitous choice of the letter h for the identity function,
at the start of Section 2.2.
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Proof. Fix a time n and a sequence z0z1 · · · zn ∈ Sn+1, with z0 = 1. We need
to show that P(Y0Y1 · · ·Yn = z0z1 · · · zn) := N1z1Nz1z2 · · ·Nzn−1zn is equal to
P(X∗

0X
∗
1 · · ·X∗

n = z0z1 · · · zn) := (zn/EXn)P(X0X1 · · ·Xn = z0z1 · · · zn) =
(zn/EXn)M1z1Mz1z2 · · ·Mzn−1zn . Observe that the martingale hypothesis im-
plies that state 0 is a trap for both processes, i.e., M00 = N00 = 1, and that
no other state leads only to 0, i.e., for i > 0, Mi0 < 1 and Ni0 < 1, hence
ri > 0 and Ni0 = 0. So if some zk = 0, then zn = 0 and using k as the
earliest index for which zk = 0, we have Nzk−1zk = 0, hence P(Y0Y1 · · ·Yn =
z0z1 · · · zn) = 0 = P(X∗

0X
∗
1 · · ·X∗

n = z0z1 · · · zn). Otherwise, all zi �= 0, and
the factor for time k, of the form Nij , is given by j Mij/ri, specifically with
i = zk−1, j = zk. To use the martingale property for W , recall that Xn = anWn,
and note that (Xk−1 = i) is the same event as (Wk−1 = i/ak−1). Hence
ri = E(Xk|Xk−1 = i) = E(akWk|Wk−1 = i/ak−1) = i ak/ak−1. Hence the
product N1z1Nz1z2 · · ·Nzn−1zn telescopes, to the desired value.

7.2. Tree size bias

Following [64] ‘tree’ will denote a rooted plane tree, possibly infinite, in which
every individual has a finite number, possibly zero, of descendants. We consider
the set T of all trees, and for t ∈ T we let [t]n be the set of all trees whose first
n levels agree with t. Write Tn ⊂ T for the set of trees of height at most n; each
Tn is countable. The sigma algebra Fn on T is generated by sets of the form
[t]n, t ∈ Tn, and the sigma algebra F is generated by the union of the Fn. A
probability distribution on (T ,F) can then be specified via a consistent family
of probability distributions on Fn, n = 1, 2, . . ..

Write zn(t) ≥ 0 for the number of individuals in level n of t; for each fixed
n ≥ 1, this gives a nontrivial notion of size. (By our convention that the tree is
rooted, we always have z0(t) = 1.) Any probability distribution on T , yielding
random trees T , can be size biased, giving a new distribution yielding trees
T ∗, provided that with Zn := zn(T ), we have both EZn ∈ (0,∞) and that
the process W = (W0,W1,W2, . . .) with Wn := Zn/EZn is a martingale with
respect to the filtration {Fn}. Specifically, for each n we bias the distribution
of trees of height at most n, via the following formula: for a given deterministic
tree tn of height at most n, with zn ≥ 0 individuals at level n, we set

P(T ∗ ∈ [tn]n)) =
zn
EZn

P(T ∈ [tn]n)). (46)

The proof that the distributions are consistent, and that we have thus defined
a tree-valued process, depends on the martingale property of the process W.

7.3. The size biased Galton Watson tree, with or without a spine

Returning to Galton Watson trees, we would like to point out that passing from
a Galton-Watson branching process to the associated random tree depends not
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only on the offspring distribution (p0, p1, p2, . . .), but also an (often implicit)
imposition of symmetry. Specifically, let L = (Ln,i)n≥0,i≥1 be an array with
independent identically distributed entries, where P(Ln,i = k) = pk. The usual
recursive construction for the process of counts, in which Z0 := 1, and then for
n ≥ 0 we set

Zn+1 :=
∑

1≤i≤Zn

Ln,i, (47)

gives rise to a plane tree if we declare that, for i = 1 to Zn, the ith individual
in generation n has Ln,i children. The distribution of the plane tree from this
standard construction has maximal symmetry: at any time n, all Zn subtrees,
rooted at an individual of generation n, are equal in distribution to the original
process.

But alternatively, for certain purposes, given Zn = k we could sort Ln,1, . . . ,
Ln,k in nonincreasing order, now renamed An,1 ≥ · · · ≥ An,k, and then declare
that the ith individual in generation n has An,i children. With this construction
we would still have the same counts Zn+1 as before, and hence the same pro-
cess (Z0, Z1, Z2, ...), but now a different tree lacking distributional symmetry.
Namely, if a parent has more than one child, then his second-born child is guar-
anteed to produce no more grandchildren than his first-born child produces, and
so forth.

By common agreement, the Galton Watson tree is the one given by the first
construction, with maximal symmetry, rather than the one arising, say, from
sorted offspring counts. To size bias this tree let us once again start with (26),
which says that a sum of independent (non-negative, finite nonzero mean) ran-
dom variables is size biased by applying size bias to a single summand. In the
spirit of maximal symmetry, we fix one particular joint distribution for (L,L∗),
with L∗ ≥ L always; see (15). Then augment the array L so that it becomes
L = ((Ln,i, L

∗
n,i))n≥0,i≥1 whose entries are i.i.d. pairs, but possibly with depen-

dence within in each pair. (In Section 11, Theorem 11.2 says precisely when it
is possible to have L and L∗ − L independent.)

Continuing in the spirit of maximum symmetry, to construct the size biased
tree t∗, one would naturally start with i.i.d. uniform (0,1) random variables
U0, U1, . . ., independent of L, with Un used to decide which individual in gen-
eration n will have a size biased number of children. A little more formally, the
tree is constructed recursively: for each n ≥ 0, given the tree t∗ observed up to
time n, with Z∗

n individuals at time n (and, always Z∗
n ≥ 1), take In := �Z∗

nUn�;
then for i �= In the ith individual in generation n has Ln,i children, but for
i = In the number of children is L∗

n,i. The resulting tree t∗ has

Z∗
n+1 :=

∑
1≤i≤Z∗

n

Ln,i + (L∗
n,In − Ln,In), (48)

and by (26), this is equal in distribution to (
∑

1≤i≤Z∗
n
Ln,i)

∗ — note that the
sum, being size-biased, has Z∗

n i.i.d. summands, rather than Zn summands as
in (47).
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Exercise 7.2. Check that the distribution of the tree produced by the above
procedure has distribution satisfying (46).

To be complete, without spoiling the reader’s fun, we supply a solution but
postpone it until the end of Section 7.5. For historical reasons, we hereby name
the tree from above procedure as the spineless (biased) tree.

In contrast to the maximal symmetry spineless procedure described above,
and following [64], for n ≥ 1, we could restrict the nth generation candidates for
size bias, instead of all Zn individuals, to just the Sn−1 := L∗

n−1,Vn−1
children

of the individual Vn−1 in generation n − 1 who was size biased. So in this tree
V0 = 1 and, for n > 0, Vn is descended from Vn−1; and the non backtracking
path from the root, (V0, V1, V2, . . .) is called the spine of the biased tree. We
refer to the tree in this construction as the spinal (biased) tree. To recapitulate:
the spineless tree has a list (I0 = 1, I1, I2, . . .) of biased individuals, i.e., person
In in generation n uses the distribution of L∗ to dictate his unusually large
number of children. By contrast, while the spinal tree has a similar list of biased
individuals, (V0 = 1, V1, V2, . . .), with Vn in generation n, these biased nodes
form a path. The procedure with a spine can be traced back to [57] Kesten
1986, who was studying critical GW processes, conditional on nonextinction,
and used the term backbone instead of spine.

Here are two natural questions:
Question 1 Given a random spineless tree and a random spinal tree, without
being told which individuals are biased, can one tell which tree came from which
procedure?
Question 2 Given a random spinal tree, without being told where the spine
is, can one identify the spine?

Question 2 is easily answered for subcritical or critical Galton Watson proce-
ses, since in these cases there is a unique infinite path. We will say more about
these cases in Section 7.6.

Initially, we found it hard to guess the answer to Question 1; it is not obvious
whether the spineless tree and the spinal tree have the same distribution. But
since a computation confirms that the spinal tree also satisfies (46), the answer
to Question 1 is a definite no: while the two procedures have different joint
distributions for (tree, bias markers), they have the same marginal distribution
for tree.

Exercise 7.3. Derive the marginal distribution for spinal trees. Hint, it may
help to show, at the same time, that conditional on the tree up to time n, with
k = Z∗

n individuals at level n, the spinal position Vn in generation n is uniformly
distributed from 1 to k.

The marginal distribution for spinal trees is derived in [64], and we give a deriva-
tion, at the end of Section 7.5.

The answer to Question 2, for supercritical processes, depends, as does the
Kesten-Stigum result, on whether EL logL is finite or infinite. We spend the rest
of this section on this dichotomy, and then return, in section 7.6, to consideration
of the subcritical and critical cases.
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Theorem 7.4. Consider a supercritical Galton Watson process, with offspring
distribution L having EL < ∞, and the size biased tree generated by the spinal
procedure. Given the tree alone:

1. If EL logL = ∞, the spine can be correctly identified, with probability 1.
2. If EL logL < ∞, any procedure to find the spine fails, with probability 1.

Before giving the proof, we remark that case (1) is easy, because EL logL =
∞ implies that the distributions of tree and size-biased tree are mutually sin-
gular. In the other case, with EL logL < ∞, the distribution of biased tree
is absolutely continuous with respect to the unbiased tree, but some work is
needed. We need something similar to Fano’s inequality, giving a lower bound
on the error probability for classification, but Fano requires the Kullback-Liebler
divergence to be finite. So we are led to prove two lemmas about selection in a
general setting.

7.4. Selecting one special item out of k choices, assuming Q � P

We want to detect the one item sampled from Q, when mixed in with k − 1
others sampled from P .

Lemmas 7.5 and 7.6 below are stated and proved for a fairly general pair
of distributions P and Q satisfying Q � P , meaning that Q is dominated
by P , i.e., Q is absolutely continuous with respect to P , i.e., P (A) = 0 implies
Q(A) = 0. We will apply Lemma 7.6 to a Galton Watson tree for which EL logL
is finite and m > 1; then P will be the GW tree law, and Q the size-biased law.
We remark that though case 1) in the proof of Lemma 7.6 cannot occur in the
Galton Watson situation, nonetheless we prefer to have Lemma 7.6 in its natural
generality.

Setup for selecting the special one, out of k choices. Fix k > 1. Let P,Q
be laws on a Polish space S. Let Y1, . . . , Yk be independent, with Y1 sampled
from Q, and Y2, . . . , Yk sampled from P , and let X1, . . . , Xk be obtained from
the Y s by an independent uniformly distributed random permutation π ∈ Sk. So
Xi = Yπ(i), and then I := π(1) identifies the index of the X value sampled from

Q; one might write X = Y ◦ π. A selection procedure is a function f : Sk → [k],
meant as a guess of I as a function of the sample X = (X1, . . . , Xk). The score
for a selection procedure f is s(f) := P(f(X) = I).

In the case Q � P , it is “obvious” that the best selection procedures, i.e.,
those with maximal score, are precisely those which inspect the likelihood ratio
r(x) = dQ/dP (x), and pick I arbitrarily from those indices i which maximize
r(Xi), relative to the k-sample. To prove this, while taking into account possible
ties, we define a particular candidate f0 for best selection procedure, by picking
the earliest index among those i for which r(Xi) = max(r(X1), . . . , r(Xk)).

Lemma 7.5. Optimal selection. In the setup above, any selection procedure
f : Sk → [k] satisifes

s(f) ≤ s(f0),
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and furthermore s(f) = s(f0) implies that with J := f(X) we have r(XJ) =
max(r(X1), . . . , r(Xk)) with probability one.

Proof. Write x = (x1, . . . , xk) and z = r(x1) + · · · + r(xk). Conditional on
X = x, the odds [P(I = 1) : P(I = 2) : · · · : P(I = k)] are equal to [r(x1) :
r(x2) : · · · : r(xk)], hence P(I = i|X = x) = r(xi)/z. Thus P(f0(X) = I|X =
x) = max(r(x1), . . . , r(xk))/z; any competing procedure f has P(f(X) = I|X =
x) = r(xf(x))/z, with the same denominator z, and no larger a numerator, hence
P(f(X) = I|X = x) ≤ P(f0(X) = I|X = x) with equality holding if r(xf(x)) =
r(xf0(x)). Taking expectation yields the inequality s(f) ≤ s(f0), and the claim
regarding when s(f) = s(f0).

Lemma 7.6. Lost in the noise. Let P and Q be distinct probability distri-
butions on S, with Q dominated by P . Given ε > 0, there exists k0 < ∞ such
that for all k ≥ k0, in the setup above, with Y1 distributed according to Q and
Y2, . . . , Yk distributed according to P , every selection procedure f has s(f) < ε.

Proof. Using Lemma 7.5, we may assume that the selection procedure is f0,
choosing an item of maximal likelihood ratio r.

Take any version r of the Radon-Nikodym derivative, r(x) = dQ/dP (x);
our hypothesis implies that Er(Y2) = 1, and r is Q-almost surely finite, i.e.,
P(r(Y1) < ∞) = 1. Let u ∈ (0,∞] be the essential sup of r; we get the same
essential sup with respect to P and with respect to Q. We deal with two separate
cases. Informally, in case 1, the special item might achieve the maximal value,
i.e., r(Y1) = u, but even so, there is likely to be a many-way tie against noise.
In case 2, the value u is unobtainable, and most likely, some nonspecial choice
strictly beats the special, i.e., there is some random J ∈ [2, k], with r(YJ ) >
r(Y1). More formally:

Case 1: p := P(r(Y1) = u) > 0. Note, this implies that u < ∞, hence
P(r(Y2) = u) = p/u > 0. So we pick k0 so that, if N is distributed Binomial(k0−
1, p/u), then P(N ≤ 2/ε) < ε/2. Hence the event that no more than 2/ε items
in the sample have r(Xi) = u contributes at most ε/2 to P(f(X) �= I), and
on the complementary event, by exchangeability, the conditional probability of
picking I correctly is less than ε/2.

Case 2: P(r(Y1) = u) = 0. We can pick t < u so that q := P(r(Y1) ≥ t) ∈
(0, ε/2). Note that P(r(Y2) ≥ t) ≥ q/u > 0. When r(Y1) < t and k is large, with
high probability at least one of the k − 1 items generated from P will have a
higher value for r than that of the item generated from Q. That is, by taking k0
large enough, so that (1− q/u)k0−1 < ε/2, we can guarantee that for all k ≥ k0,
P( at least one of Y2, . . . , Yk has r(Yi) ≥ t) > 1 − ε/2. Hence a procedure, like
f0, that picks one item from among those achieving max(r(X1), . . . , r(Xk)), has
probability at least 1− ε of picking incorrectly.

7.5. Proof of the spinal identification dichotomy

Proof of Theorem 7.4. Identification of the spine (V0, V1, V2, . . .) is the con-
junction of identifying Vn, for n ≥ 0. So with respect to the 0–1 dichotomy,
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for (1) it suffices to show that for each n, Vn can be correctly identified with
probability 1, while for (2), it suffices to show that for arbitrary ε > 0, there
exists n = n(ε) for which the probability of correct identification of Vn is less
than ε.

For the spinal tree, observed up to time n, and conditional on the event
Z∗
n = k, the distribution of the k rooted subtrees with roots at time n fits exactly

the setup described in Section 7.4: one of the trees is distributed according to
Q, the law of the size biased GW tree, the other k− 1 are distributed according
to P , the unbiased GW tree law, all k are mutually independent, and, using
the uniformity of Vn in [k], as proved in [64], the joint distribution of these k
trees matches that of the random permutation π applied to an ordered sample
Y1, . . . , Yk in which Y1 has the distribution Q.

For (1), with EL logL = ∞, Theorem A in [64] includes the statement that P
and Q are mutually singular. So pick a subset A ⊂ T having P (A) = 0, Q(A) =
1, and given the k rooted subtrees, pick the node whose subtended tree lies in
A, thereby finding Vn correctly with probability 1.

For (2), with EL logL < ∞, Theorem A in [64] includes the statement that
Q � P . Given ε > 0, apply Lemma 7.6 to find a value k0 that works for ε/2.
Then use the supercriticality to find a single value n for which P(Zn ≥ k0|Zn >
0) > 1 − ε/2. The combination shows that, given all the subtrees rooted at
time n, the chance of correctly picking the one whose root is Vn is less than ε.
Then, since conditional on the tree up to time n, the location of Vn was uniform
from 1 to Z∗

n, and using conditional independence of past and future, given the
present, any function applied to the entire tree, attempting to identify Vn, has
probability less than ε of gettng the correct value.
QED

Answers to the exercises on spineless and spinal trees. Suppose the
given tree tn of height at most n has zj nodes at height j, for j = 0 to n. Write
GW (tn) for the Galton Watson probability that the tree observed up to time n
matches this tree, corresponding to the last factor on the right side of (46). For
both the spineless tree and the spinal tree, we calculate the joint distribution
of tree and bias markers up to time n, then sum over possible locations of the
bias markers, to show that the marginal distribution of tree satisfies (46).

Answer to Exercise 7.2 For the spineless procedure, recall our notation
In designating which individual in generation n gets biased, and write I =
(I0, I1, I2, . . . , In−1) for the process naming those individuals arising in form-
ing a tree up to time n. The possible values for I form a set S, with |S| =
z0z1 · · · zn−1, and using the notation [k] := {1, 2, . . . , k}, S is the Cartesian
product S = [z0] × [z1] × · · · × [zn−1]. Given both tn and i ∈ S, so that we
specify the tree up to time n, and which nodes were biased, at stages 0 to n−1,
write k0, k1, . . . , kn−1 for the respective offspring counts for the biased nodes.
For the joint probability of tree and bias markers, taking into account first size
bias factors of the form P(L∗ = k)/P(L = k) = k/m, and then factors of the
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form 1/zj = P(Ij = ij), and using z0 = 1, we have

P(T ∗ ∈ [tn]n), I = i) =
k0
m

k1
m

· · · kn−1

m
GW (tn)

1

z1z2 · · · zn−1
.

When we sum over S to get the marginal distribution of tree up to time n, the
sum factors as a product indexed by time j = 0 to n− 1, and the kj values sum
to zj+1, explicitly kj,1 + kj,2 + · · ·+ kj,zj = zj+1, yielding

P(T ∗ ∈ [tn]n) =
∑
i∈S

P(T ∗ ∈ [tn]n), I = i) =
z1
m

z2
m

· · · zn
m

GW (tn)
1

z1z2 · · · zn−1
.

=
zn
mn

GW (tn),

which is (46) in the Galton-Watson case.
Answer to Exercise 7.3 For the spinal procedure, write V0, V1, . . . , Vn for
the random spine, for the tree restricted up to time n. Given the tree, the
initial segments of spine, down through times 0, . . . , n, are in one-to-one cor-
respondence with the nodes V0, V1, . . . , Vn along the spine. Given both tn, and
vn ∈ [zn] to serve as the value of Vn, so that we specify the tree up to time
n, and which nodes were biased, yielding a path v0, v1, . . . , vn from root to vn,
write k0, k1, . . . , kn−1 for the respective offsping counts for the biased nodes. For
the joint probability of tree and bias markers, taking into account first size bias
factors of the form P(L∗ = k)/P(L = k) = k/m, and next factors of the form
1/kj = P(Vj+1 = vj+1), we have

P(T ∗ ∈ [tn]n), Vn = vn)) =
k0
m

k1
m

· · · kn−1

m
GW (tn)

1

k0k1 · · · kn−1

=
1

mn
GW (tn).

Summing over the zn possible values for vn, to give the marginal distribution
of tree up to time n, shows that the spinal tree satisfies (46).

7.6. Subcritical and critical GW, conditional on survival forever

For a Galton Watson process, consider the event of survival forever, that is,
A := {∀n,Zn > 0}. If the process is subcritical — 0 < m < 1, or critical
— m = 1, then P(A) = 0. Conditioning on A, by definition, means taking the
limit, as n → ∞, of conditioning on Zn > 0. Athreya-Ney [12, pp. 58] prove that,
when P(A) = 0, conditioning on A achieves the same distribution as size biasing,
although their result imposes the extra hypothesis that p1 := P(L = 1) > 0. In
this section, we give an elementary proof, without the extra hypothesis.

Lemma 7.7. Suppose that q and q(
) are probability measures on N, (indexed
by 
 ∈ N or 
 ∈ R) so that, in particular, qj ≥ 0 for all j ∈ N, and 1 =

∑
j≥1 qj.

Let S := {j : qj > 0} be the support of q, and assume that S is also the support
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of q(
), for every 
. Suppose that as 
 → ∞, the q(
)-odds converge to the q-odds,
that is

∀j, k ∈ S,
qj(
)

qk(
)
→ qj

qk
. (49)

Suppose also that
the family {q(
)} is tight. (50)

Then q(
) →d q, equivalently,

∀j ∈ N, qj(
) → qj . (51)

Proof. By tightness, every subsequence of the q(
) has a subsubsequence with
a limit. Pick such a subsubsequence, and call its limit p. Along this subsubse-
quence, qj(
) → pj and qk(
) → pk; if pk > 0 then pj/pk = lim qj(
)/qk(
) =
qj/qk, for every j ∈ S. This implies p = q, and of course all convergent subse-
quential limits being the same q implies that q(
) →d q as 
 → ∞.

Lemma 7.8. Take the same setup as Lemma 7.7, assuming (49), but in place
of (50), supposing instead that

∀j, k ∈ S with j > k,
qj(
)

qk(
)
↗ qj

qk
, (52)

where the upward arrow denotes convergence upward. Then (50) holds, so the
conclusion (51) holds.

Proof. Using (52), for any k ∈ S∑
j>k qj(
)∑
j≤k qj(
)

≤
∑

j>k qj∑
j≤k qj

.

Given ε > 0, pick k ∈ S so that the right side above is less than ε. This implies
that for every 
, the left side is also less than ε, which implies the tightness
hypothesis (50).

Theorem 7.9. Let Z be a subcritical or critical Galton Watson process, so that
the offspring distribution L has m := EL ∈ (0, 1]. Then the size biased process,
Z∗, is equal in distribution to Z conditional on survival forever; equivalently, as
n → ∞, (Z|Zn > 0) →d Z∗.

Proof. The core of the proof is the asymptotic relation, for fixed k, (1 − (1 −
δ)k) ∼ k δ as δ → 0.

Fix a time n > 0 and a value i > 0 with P(Zn−1 = i) > 0. We use Lemma 7.1
with the Galton Watson process serving as the Markov process whose transition
matrix is M ; row i of M gives the distribution of Zn conditional on Zn−1 = i,
and size biasing leads to row i of N giving the distribution of Z∗

n conditional on
Z∗
n−1 = i. For use in Lemma 7.8, we take q to be the distribution on N given

by row i of N , as specified by (45), and we take q(
) to be the distribution
of Zn conditional on (Zn−1 = i and Zn+� > 0). Writing δ(
) := P(Z� > 0),
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the probability of survival for an additional 
 units of time, starting from a
population of size 1, we have, with proportional to denoted by ∝,

qk(
) := P(Zn = k|Zn−1 = i, Zn+� > 0)

= Mik
1− (1− δ(
))k

1− (1− δ(
+ 1))i
(53)

∝ Mik (1− (1− δ(
))k).

Using the hypothesis that the GW process is subcritical or critical, δ(
) ↘ 0
as 
 → ∞. This easily implies the hypothesis (52) for Lemma 7.8. So (Z|A)
is a Markov process, whose transition matrix is N , and this process, called Y
in Lemma 7.1, is equal in distribution to Z∗, using both the martingale and
Markov properties of GW, but not the full structure of GW, to enable Lemma
7.1.

Next consider a subcritcal or critical Galton Watson tree, conditional on
survival forever. Thanks to (46), combined with Theorem 7.9, it is “obvious”
that the conditioned tree is the size biased tree. A proof can be found in [1],
and we now present a more direct proof.

Theorem 7.10. Consider the tree T for a subcritical or critical Galton Watson
process, so that the offspring distribution L has m := EL ∈ (0, 1]. The size biased
tree T ∗, as specified by (46), is equal in distribution to T conditional on survival
forever; equivalently, as n → ∞, (T |Zn > 0) →d T ∗.

Proof. Fix i, consider the associated q and q(
) from the proof of Theorem 7.9,
and recall the notation δ(
) for P(Z� > 0), the probability of survival for an
additional 
 units of time, starting from a population of size 1. By formula (51)
and Lemma 7.8 we know that qk(
) → qk as 
 → ∞, for k in the support of q.
Therefore, using (53), we see that

Mi,k
kδ(
)

iδ(
+ 1)
→ Ni,j = Mi,k

k

im

Thus we must have δ(
)/δ(
+ 1) → 1/m as 
 → ∞, and hence

for fixed n, δ(
)/δ(
+ n) → 1/mn as 
 → ∞. (54)

Now for fixed n > 0 and t ∈ T , with k := zn(t), using (54),

P(T ∈ [t]n|Zn+� > 0) = P(T ∈ [t]n)
1− (1− δ(
))k

δ(n+ 
)

→ P(T ∈ [t]n)
k

mn
,

in the limit as 
 → ∞. Comparison with (46) completes the proof.
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8. Size bias, tightness, and uniform integrability

Recall that a collection of random variables {Yα : α ∈ I}, where I is an arbitrary
index set, is tight iff for all ε > 0 there exists L < ∞ such that

P(Yα �∈ [−L,L]) < ε for all α ∈ I.

This definition looks quite similar to the definition of uniform integrability,
where we say {Xα : α ∈ I} is uniformly integrable, or UI, iff for all δ > 0 there
exists L < ∞ such that

E(|Xα|;Xα /∈ [−L,L]) < δ for all α ∈ I.

Intuitively, tightness for a family is that uniformly over the family, the probabil-
ity mass due to large values is arbitrarily small. Similarly, uniform integrability
is the condition that, uniformly over the family, the contribution to the expecta-
tion due to large values is arbitrarily small. Since size bias relates contribution
to the expectation to probability mass, it should be possible to use size bias to
express a relation between uniform integrability and tightness.

We show, in Theorems 8.1 and 8.2, that for random variables, i.e., real valued
random elements, there is an intimate connection between tightness and uni-
form integrability, and that this connection is made via size bias. But we must
note, the concept of tightness is much broader than the concept of uniform inte-
grability, in that tightness applies to random elements of metric and topological
spaces, whereas uniform integrability is inherently a real valued notion. In more
general spaces, to define tightness, the closed intervals [−L,L] are replaced by
arbitrary compact sets, and the discussion below relates only to metric spaces
with the property that balls {x : d(x, y) ≤ L} are compact.

To discuss the connection between size biasing and uniform integrability, it is
useful to restate the basic definitions in terms of nonnegative random variables.
It is clear from the definition of tightness above that a family of nonnegative
random variables {Yα : α ∈ I} is tight iff for all ε > 0 there exists L < ∞ such
that

P(Yα > L) < ε for all α ∈ I, (55)

and from the definition of UI, that a family of nonnegative random variables
{Xα : α ∈ I} is uniformly integrable iff for all δ > 0 there exists L < ∞ such
that

E(Xα;Xα > L) < δ for all α ∈ I. (56)

For general random variables, the family {Gα : α ∈ I} is tight [respectively UI]
iff {|Gα| : α ∈ I} is tight [respectively UI]. Hence we specialize in the remainder
of this section to random variables that are non-negative.

Care must be taken to distinguish between the additive contribution to ex-
pectation, and the relative contribution to expectation. The following example
makes this distinction clear. Let

P(Xn = n) = 1/n2,P(Xn = 0) = 1− 1/n2, n = 1, 2, . . . .
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Here, EXn = 1/n, the family {Xn} is uniformly integrable, but 1 = P(X∗
n = n),

so the family {X∗
n} is not tight; the additive contribution to the expectation

from large values of Xn is small, but the relative contribution is large — one
hundred percent! The following two theorems, which exclude this phenomenon,
show that tightness and uniform integrability are very closely related.

Theorem 8.1. Assume that for α ∈ I, where I is an arbitrary index set, the
random variables Xα satisfy Xα ≥ 0 and 0 < EXα < ∞, and let Yα =d X∗

α.
Then

{Xα : α ∈ I} is UI if {Yα : α ∈ I} is tight.

Assume further that the values EXα are uniformly bounded away from 0, say
c > 0 and ∀α, c ≤ EXα. Then

{Xα : α ∈ I} is UI iff {Yα : α ∈ I} is tight.

Proof. Since Yα =d X∗
α, by (9), for every L we have P(Yα > L) = E(1(Yα >

L)) = E(Xα1(Xα > L))/EXα, so

E(Xα;Xα > L) = EXα P(Yα > L).

First, we show that tightness implies UI. Assume that {Yα : α ∈ I} is tight,
and take L0 > 0 to satisfy (55) with ε = 1/2, so that P(Yα > L0) < 1/2 for all
α ∈ I. Hence, for all α ∈ I,

E(Xα;Xα > L0) = EXαP(Yα > L0) < EXα/2,

and therefore,

L0 ≥ E(Xα;Xα ≤ L0) = EXα − E(Xα;Xα > L0)

> EXα − EXα/2 = EXα/2,

and hence EXα < 2L0. Now given δ > 0 let L satisfy (55) for ε = δ/(2L0).
Hence ∀α ∈ I,

E(Xα;Xα > L) = EXα P(Yα > L) < 2L0 P(Yα > L) < 2L0 ε = δ,

establishing (56).
Second we show that UI implies tightness, in the presence of means bounded

uniformly away from zero . Assume that {Xα : α ∈ I} is UI, and let ε > 0 be
given to test tightness in (55). Let L be such that (56) is satisfied with δ = εc.
Now, using EXα ≥ c, for every α ∈ I,

P(Yα > L) = E(Xα;Xα > L)/EXα ≤ E(Xα;Xα > L)/c < δ/c = ε,

establishing (55).

As an alternate to Theorem 8.1, for the sake of having cleaner hypotheses
and a cleaner conclusion, we also give the following theorem. Note below that
the Xα to be involved in size bias are allowed to have EXα = 0 — it is not a
typo — because we will be taking (Xα + c)∗ for some c > 0.
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Theorem 8.2. Assume that for α ∈ I, where I is an arbitrary index set, the
random variables Xα satisfy Xα ≥ 0 and EXα < ∞. Pick any c ∈ (0,∞), and
for each α let Yα = (c+Xα)

∗. Then

{Xα : α ∈ I} is UI iff {Yα : α ∈ I} is tight.

Proof. By Theorem 8.1, the family {c+Xα} is UI iff the family {(c+Xα)
∗} is

tight. As it is easy to verify that the family {Xα} is tight [respectively UI] iff
the family {c+Xα} is tight [respectively UI], Theorem 8.2 follows directly from
Theorem 8.1.

9. Size bias, the lognormal, and Chihara–Leipnik

In this section we review a construction due to Chihara in 1970, [27], and Leipnik
in 1979, [59, 60], of a family of discrete distributions having the same moment
sequence as the lognormal. Durrett [37] presents this result with the comment
“Somewhat remarkably, there is a family of discrete random variables with these
moments.” We hope here to show that, from the point of view of size bias, this
construction is natural and inevitable, but we can only speculate that for the
original discoverers, size bias played a role in the creative process, perhaps via
(10); see [60, page 332, formula (16)]. As a reward for using size bias, we are able
to show, in Theorem 9.4, that the lognormal itself is a mixture of these discrete
distributions, and furthermore that these discrete distributions are the extreme
points of a Choquet simplex — in this case, the set Uc of solutions of (65), which
is a subset of the closed convex set Vc formed by all distributions having the
same moments as the lognormal X = exp(

√
log c Z). The results in this section,

linking the lognormal distribution with size bias, appear in [29, 69, 68]; see also
[62].

Throughout this section, we write Z for a standard normal, with moment
generating function M(β) = eβ

2/2. The standard lognormal is given by X = eZ ,
with moments

EXn = E exp(nZ) = M(n) = en
2/2, (57)

for n = 0, 1, 2, . . .. (It is clear that (57) holds for all n ∈ (−∞,∞), but histor-
ically, moments usually refer to the case n = 0, 1, 2, . . ..) Similarly, for σ > 0,
the lognormal X = eσZ obtained by exponentiating the normal with mean zero
and variance σ2 has moments EXn = E exp(nσZ) = M(σn) = en

2σ2/2. Hence

it is natural to define, taking c = eσ
2 ∈ (1,∞),

Vc := {μ : μ = L(X) for some X ≥ 0, with EXn = cn
2/2, n ≥ 0}. (58)

The famous fact that Vc is not a singleton set, i.e., that the lognormal distri-
bution is not determined by its moments, is from Stieltjes in 1894 [83, Section
56, page J. 106], reprinted in [84]. The family of examples in (61) is also from
Stieltjes [83], although probabilists, e.g., [37, 38], attribute it to Heyde, who
rediscovered it in 1963 [48]. These alternate probability distributions having the
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same moments as the lognormal are continuous, with density presented via a
perturbation of the lognormal density, as follows. We will write f0,σ2 for the
density of the lognormal X = eσZ :

f0,σ2(x) =
1

xσ
√
2π

exp(−(log x)2/(2σ2)), x ∈ (0,∞). (59)

For positive integers m and real δ ∈ [−1, 1] define

gm,δ(x) = 1 + δ sin(2πm log x/σ2), x ∈ (0,∞), (60)

so in case δ = 0, one has gm,δ(x) = 1 for all x. Let hm,δ be given by

hm,δ(x) = f0,σ2(x)× gm,δ(x), x ∈ (0,∞). (61)

One then checks that for integers n,
∫
xnhm,δ(x) dx =

∫
xnf0,σ2(x) dx =

en
2σ2/2. In particular, the case n = 0 shows that hn,δ, clearly a non-negative

function, is a density.
Let X = eZ , and consider its size biased version, X∗. By (14) and (57), for

integers n,

E(X∗)n =
EXn+1

EX
=

M(n+ 1)

M(1)
= enM(n) = enEXn = E(eX)n. (62)

Of course, since the lognormal distribution is not characterized by its moments,
this only suggests, and does not prove, that X∗ =d eX. Similarly, the general
lognormal and its moments are given by

X = exp(σZ + μ), EXn = eμn+σ2n2/2 (63)

and calculation of the moments of X∗ suggests that for X = exp(σZ + μ) we

have X∗ =d eσ
2

X. Simple computation with the density and (4) shows that
indeed,

X = exp(σZ + μ) has X∗ =d cX, with c = exp(σ2). (64)

We leave the proof of (64) as an exercise for the reader, with our solution given
by this13 footnote.

As regards the distributional family, varying μ corresponds to scaling X, and
X 
→ yX is a trivial transformation, so it makes sense to study only the case
μ = 0. But varying σ is nontrivial; it corresponds to taking ordinary powers,
X 
→ (X)σ. So, we fix μ = 0 and let σ > 0 be arbitrary. We will write c =
exp(σ2) > 1; alongside our standard notation, a = EX, for X = eσZ we have
a = EX =

√
c.

13The density of exp(μ+σZ) is fμ,σ2 (x) = 1/(x
√
2πσ) exp(−(log x−μ)2/(2σ2)). Expand-

ing the square in the exponent, and keeping track only of factors that vary with x, we have

fμ,σ2 (x) ∝ (1/x)x−(log x)/(2σ2)xμ/σ2
. Hence for any real β, fμ+βσ2,σ2 (x) ∝ xβfμ,σ2 (x).

The case β = 1 shows that xfμ,σ2(x) is proportional to fμ+σ2,σ2 (x), hence by (4),

(exp(μ+ σZ))∗ =d exp((μ+ σ2) + σZ).
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For the remainder of this section, for c ∈ (1,∞), we investigate random
variables satisfying

X ≥ 0, EX =
√
c, X∗ =d cX, (65)

along with the corresponding set of probability distributions,

Uc := {μ : μ = L(X), for some random variable X, satisfying (65)}. (66)

With this notation, (63) and (64) assert that X = exp(
√
log cZ) satisfies (65),

and its lognormal distribution is an element of Uc.
As the first step in our investigation of (65), inspired by Feynman’s maxim,14

we note that our considerations lead twice to a homogenous system of equations,
of the form

∀n ∈ Z, sn+1 = acnsn, which has solution sn = s0a
ncn(n−1)/2. (67)

For the first instance of (67), write mn := EXn, with m1 = EX = a, so the
moment shift relation (14) can be written as E(X∗)n = mn+1/a. Using (65), we
have E(X∗)n = E(cX)n = cn mn, hence

mn+1 = acn mn. (68)

Combining m0 = 1 with the solution to (67), we have

mn = ancn(n−1)/2 = cn
2/2 (using a =

√
c), (69)

for all n ∈ Z. In summary, so far we have shown that Uc ⊂ Vc, i.e., any solution
of (65) has the same moments as the lognormal eσZ .

For the second instance of (67), if X satisfying (65) has any pointmass at
some b > 0, then it must have pointmass at every point b cn for n ∈ Z. With
the benefit of hindsight15 we go doubly negative, and for n ∈ Z define pn and
rn by rn = 1/pn = 1/P(X = bc−n). We have pn+1 = P(X = bc−n−1) = P(cX =
bc−n) = P(X∗ = bc−n) = (bc−n/a)P(X = bc−n) = (bc−n/a)pn, so that

rn+1 = (a/b)cn rn. (70)

This is (67) with rn in the role of sn and a/b in the role of a, so quoting the

solution, and using a =
√
c, we get p0/pn = rn/r0 = (a/b)ncn(n−1)/2 = b−ncn

2/2.
Finally, replacing n by −n in pn = P(X = bc−n), we have, for n ∈ Z,

P(X = bcn) = b−nc−n2/2 P(X = b). (71)

With some fixed c > 1 in mind, for any b ∈ (0,∞) we call the set

{. . . , b/c2, b/c, b, bc, bc2, bc3, . . .}
14Feynman Lectures on Physics, Vol. 2, Chapter 12.1 and oft again, “the same equations

have the same solutions.”
15Defining for example sn = P(X = bcn) or sn = 1/P(X = bcn) or sn = P(X = bc−n)

does not lead directly to (67) — the reader might enjoy trying these.
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the “orbit of b,” for short, or to say it fully, the orbit of b modulo multiplication
by powers of c. The language here comes from the theory of a group acting on
a set; orbits are equivalence classes, and (0,∞) is a disjoint union of orbits. For
a set containing exactly one representative for each orbit, the natural choice is
[1, c).

If we want X supported on a single orbit, that is, with 1 =
∑

n∈Z pn, then
we need

P(X = bcn) = b−nc−n2/2/t(b, c), where t(b, c) :=
∑
m∈Z

b−mc−m2/2. (72)

The function t is essentially the Jacobi theta function; the convergence of the
series, for any c > 1, is obvious.

However, the calculation connecting (71) with (65) was done assuming that
EX =

√
c, and we will only have succeeded, in getting a random variable with

X∗ =d cX and supported on a single orbit, if, and only if, it turns out that,
under the mass function (72), one has EX =

√
c. (It is trivial to check that if

(71) and P(X ∈ {. . . , b/c2, b/c, b, bc, bc2, bc3, . . .}) = 1 and EX =
√
c, then (65)

is true.) So crossing our fingers we calculate, from (72),

EX/
√
c =

∑
n∈Z

bcn b−nc−n2/2 c−1/2/ t(b, c) = 1,

with the change of variables m = n− 1 justifying the final equality.
The above discussion shows how the use of size bias, particularly (65), makes

it relatively straightforward to rediscover and prove the following theorem of
Chihara and Leipnik:

Theorem 9.1 (Chihara – Leipnik). For any σ > 0, with c := exp(σ2), and for
any b ∈ (0,∞), there is a distribution 
(b, c) for a discrete random variable Xb,c,
whose support is the single orbit {. . . , b/c2, b/c, b, bc, bc2, bc3, . . .}, with probabil-
ity mass function given by (72). This random variable satisfies (65), which im-
plies that for n ∈ Z, EXn

b,c = exp(n2σ2/2), so taking n ≥ 0 in particular, the
discrete random variable Xb,c has the same moments as the lognormal exp(σZ),
where Z is standard normal.

Another issue is whether the lognormal can be expressed as a mixture of
these discrete distributions. Leipnik 1991, [60, page 337], wrote16 “One hopes
that for some mixing distribution dh(b) we have that the lognormal distribution
for eσZ is a mixture, governed by h, of the single orbit distributions, and so too

φ(t) =

∫ ∞

0

φb(t) dh(b).

[The display above expresses the characteristic function of the lognormal as
a mixture of the characteristic functions of the distributions 
(b, c).] Unfortu-
nately, the necessary d h(b) is somewhat complicated and hence sheds little light

16Italics to show Leipnik’s exact words, and ordinary text to show our paraphrase.
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on the sum distribution problem. However, the extraordinary non-uniqueness of
the lognormal moment problem is apparent.

The words “one hopes” signal a conjecture; the sentence beginning “Unfor-
tunately · · · ” suggests that he may have had a proof too messy to publish.
Whatever the case, we supply a proof here, in the form of Theorem 9.4 be-
low. Conceivably, the complication encountered by Leipnik might have arisen
from considering mixtures indexed by (0,∞), without exploiting the formula

(b, c) = 
(bc, c) — the proof of which we leave as an exercise for the reader.
It is natural, and simple, to take mixtures indexed by [1, c); then there is a
unique choice for h, with one simple computation to check. For notation, we
follow Leipnik, and write dh(b) to denote a general measure h to govern a mix-
ture; so that h may be discrete, absolutely continuous, singular continuous, or
a mixture of these. In the special case in Theorem 9.4 given by (76), expressing
the lognormal as a mixture of the 
(b, c), we have h absolutely continuous, with
density hc with respect to Lebesgue measure.

We show how to express the lognormal as a mixture of the Chihara–Leipnik
discrete distributions 
(b, c) from Theorem 9.1, via Lemma 9.2, Lemma 9.3,
and Theorem 9.4. There is a related result, expressing a particular continuously
distributed random variable, not the lognormal, but having the same moments,
as a mixture of these discrete distibutions, in [17, Proposition 2.2].

Lemma 9.2. Fix c > 1. For any probability measure h on [1, c), the mixture of
the laws 
(b, c), governed by dh(b), gives a distribution for X which satisfies (65).
The set Uc of distributions which satisfies (65) is closed and convex, hence any
mixture of distributions which satisfy (65) is also a distribution which satisfies
(65).

Proof. Since for each b ∈ [1, c), m(b) := EXb,c =
√
c, we are in the situation for

Lemma 2.4 where the measure h′ governing X∗ as a mixture of the X∗
b,c is the

same as the original h, governing X as a mixture of the Xb,c. Hence (65) holds,
since, obviously, scaling respects mixtures, i.e., the law of cX is the mixture,
governed by h, of the laws of cXb,c.

That Uc is closed is a bit subtle. Assume we are given X1, X2, . . . with each
Xn satisfying (65), and that Xn ⇒ Y . Obviously cXn ⇒ cY , and Theorem 2.3
asserts that X∗

n ⇒ Y ∗, which combined with (17) and (65) gives Y ∗ =d cY .
But (65) also demands that EY =

√
c, so one must know that the family

{X1, X2, . . .} is uniformly integrable. Fortunately, (69) implies that EX2 = c2

for any solution of (65), which implies that the family is uniformly integrable.

Finally, for the convexity of Uc, just as with mixtures of the 
(b, c), Lemma
2.4 applies, with the same measure governing X as mixture of solutions Xα,
governing X∗ as a mixture of the X∗

α, and cX as a mixture of the cXα.

Lemma 9.3. Suppose c > 1, and X,Y are positive random variables which
satisfy

0 < EX = EY < ∞ and X∗ =d cX, Y ∗ =d cY.

If the laws of X and Y , both restricted to [1, c) agree, even only up to a constant
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mass factor k ≥ 0, i.e., if

for all measurable A ⊂ [1, c), P(X ∈ A) = k P(Y ∈ A). (73)

then X =d Y . (The case k = 0 is specifically included in the hypothesis (73),
but in every case, the conclusion implies that k = 1.)

Proof. Let a := EX, so by hypothesis, we also have a = EY , (but unlike (65), we
are not assuming that a =

√
c). Let S(n) be the statement that for all bounded

measurable g which vanish outside [cn, cn+1), we have Eg(X) = kEg(Y ). The
hypothesis (73) clearly implies the statement S(0). Assume now that S(n) holds.
Given a bounded measurable function g which vanishes off of [cn+1, cn+2), we
define new functions g′, g′′ by g′(x) = g(x)/x and g′′(x) = g′(cx). Clearly g′′ is
bounded, and vanishes off of [cn, cn+1). We have

Eg(X) = E(Xg′(X)) = aEg′(X∗) = aEg′(cX) = aEg′′(X)

and similarly Eg(Y ) = aEg′′(Y ). Invoking S(n) for the function g′′, we get

Eg(X) = aEg′′(X) = akEg′′(Y ) = kEg(Y ), (74)

hence S(n) implies S(n+ 1).
A similar argument shows that S(n) implies S(n − 1). In detail, given a

bounded measurable function g which vanishes off of [cn−1, cn), we define new
functions g′, g′′ by g′(x) = g(x/c), so that g′(cx) = g(x), and g′′(x) = xg′(x).
Clearly g′′ is bounded, and vanishes off of [cn, cn+1). We have

Eg(X) = E(g′(cX)) = Eg′(X∗) =
1

a
E(Xg′(X)) =

1

a
Eg′′(X)

and similarly Eg(Y ) = (1/a)Eg′′(Y ); hence (74) holds exactly as before, but
this time showing that S(n) implies S(n− 1).

Finally, knowing S(n) for all n ∈ Z implies that for bounded measurable g,
Eg(X) = kEg(Y ), and the special case g = 1 shows that k = 1, and hence
X =d Y .

The following Theorem 9.4 applies in particular to the case where X has the
lognormal distribution with density f(x) = 1/(x

√
2πσ) exp(−(log x)2/(2σ2)),

recalling that with c = exp(σ2), X satisfies (65).

Theorem 9.4. Let X be any positive random variable which satisfies (65). Then
there is a unique probability measure h on [1, c) such that the distribution of X is
the mixture, governed by dh(b), of the Chihara–Leipnik single orbit distributions

(b, c) of Theorem 9.1, with point mass functions (and Jacobi theta function t)
given by (72). The measure h governing the mixture is specified as follows: let
B be distributed as X, conditional on (X ∈ [1, c)). Then the probability measure
h has Radon-Nikodym derivative, relative to the distribution of B, given by

h(db)

P(B ∈ db)
=

t(b, c)

Et(B, c)
. (75)
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If the distribution of X is absolutely continuous with respect to Lebesgue mea-
sure, so that X has a density f , the recipe (75) says that with t given by (72),
and normalizing constant kc and function hc with domain [1, c), defined by

kc :=

∫ c

x=1

f(x) t(x, c) dx, hc(b) :=
1

kc
f(b) t(b, c), (76)

the measure h governing the mixture has density hc, so that for measurable
A ⊂ [1, c), h(A) =

∫
b∈A

hc(b) db.

Proof. First, we must show that the distribution of B was well-defined, i.e.,
that P(X ∈ [1, c)) > 0. Here we argue by contradiction: if P(X ∈ [1, c)) = 0,
then Lemma 9.3 could be invoked, with Y = eσZ , k = 0, to prove X =d Y , a
contradiction since P(Y ∈ [1, c)) > 0.

Now write Y for a random variable whose distribution is the mixture of the

(b, c), governed by h. We use the Dirac notation, that δx is unit mass at x,
so that

∫
g(z)δx(dz) = g(z) for any measurable g. Restricting our attention to

b ∈ [1, c), the Chihara–Leipnik distributions are then expressed as


(b, c) =
∑
n∈Z

μb,n where μb,n :=
b−nc−n2/2

t(b, c)
δbcn .

so that μb,n is the measure 
(b, c) restricted to the interval [cn, cn+1) — this
uses b ∈ [1, c).

Focus on the case n = 0, so that μb,0 is mass 1/t(b, c) at the point b. The
specification of h in (75) implies directly that the hypothesis (73) holds — with
k = P(X ∈ [1, c))× Et(B, c). Hence by Lemma 9.3, we have X =d Y .

The argument for uniqueness is essentially the same: suppose that Y is a
mixture of 
(b, c), governed by some probability measure h on [1, c), and that
X =d Y , not assuming that h is given by (75). Restricting the distributions of
both X and Y to [1, c), it is clear, from μb,0 = 1/t(b, c) δb, that the Radon-
Nikodym derivative h(db)/P(X ∈ db |X ∈ [1, c)) must be proportional to t(b, c).
The recipe in (75) gives the unique constant of proportionality to make such an
h into a probability measure.

For each c > 1, Lemma 9.2 says that the convex set spanned by the Chihara–
Leipnik distributions 
(b, c), b ∈ [1, c) is a subset of the set Uc of all solutions
of (65). Theorem 9.4 asserts that Uc is spanned by the 
(b, c), so together with
the obvious property that any single 
(b, c) is not a nontrivial mixture of other

(b′, c), one now knows that the extreme points of the set of solutions of (65)
are the distributions 
(b, c), for b ∈ [1, c). For historical naming and perspective:
Choquet’s Theorem states that for a convex compact subset of a normed space,
every point can be represented as a mixture, governed by a probability measure,
of extreme points; this probability measure need not be unique, even in the finite
dimensional setting. However, in the finite dimensional setting, uniqueness holds
when the convex set is a simplex. In honor of this, a convex set, for which
the every point has a unique representation as a mixture of extreme points, is
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called a Choquet simplex. The additional information in Theorem 9.4 about the
uniqueness of h is then summarized by saying that the set Uc of solutions to
(65) forms a Choquet simplex.

It is now natural to ask whether Stietljes’ examples, with density given by
(61), lie in this Choquet simplex.

Proposition 9.5. For every σ > 0, integer m, and real δ ∈ [−1, 1], the random
variable X with density given by Stieltjes’ formula (61) satisfies X∗ =d cX,
with c = exp(σ2), and hence X satisfies (65).

Proof. For random variables with a density, the size bias scaling relation in (65),
can be expressed in terms of the density, as follows. First, when X has density
f , the scaled multiple cX has density (1/c)f(x/c). Second, when X has density
f , and mean a = EX =

√
c, (4) states that X∗ has density (x/

√
c)f(x). Hence,

if X has density f , mean
√
c, and

∀x ∈ (0,∞), f(x/c) = x
√
cf(x), (77)

then X satisfies (65). Now it is clear that (77) holds for f = hm,δ given by (61):

we have c = eσ
2

, and upon substituting x/c for x, the lognormal factor f0,σ2

supplies the factor x
√
c, and the perturbation factor gm,δ supplies no change,

since dividing x by c causes log x to decrease by log c = σ2, so that the argument
to the sine function, 2πm log x/σ2, goes down by 2πm.

To review: both the lognormal and the examples given by Stieltjes are solu-
tions of (65) and hence lie in the Choquet simplex Uc. Do all distributions hav-
ing the lognormal moment sequence lie in this simplex, i.e., does Uc = Vc? Berg
[18, Proposition 2.1], proved Uc � Vc by exhibiting elements of Vc \ Uc. These
distributions can be described as the perturbations of the Chihara–Leipnik dis-
tribution in (72) by a factor of (1 + s(−1)n), for s ∈ [−1, 1]. In detail, Berg
showed that for any c > 1,

b =
√
c, s ∈ {−1, 1}, P(Xs = bcn) = (1+s(−1)n)b−nc−n2/2/t(b, c), n ∈ Z (78)

leads to EXn
s = cn

2/2 for n ∈ Z. In particular, for b =
√
c the Chihara–Leipnik

distribution 
(b, c) is the midpoint of the line connecting the distributions of
X−1 and X1. The construction is special to b =

√
c as the only value of b ∈ [1, c)

for which a line of distributions with moments EXn = cn
2/2 can be constructed,

with 
(b, c) as the midpoint.
We have shown that Uc is a Choquet simplex; the question as to whether Vc

is a Choquet simplex is open. We thank Christian Berg, private communication,
for this information and several references, and also for correcting two erroneous
conjectures from an earlier draft of our paper.

10. Size bias and Skorohod embedding

Skorohod’s embedding theorem states that given a nonconstant mean zero ran-
dom variable X, there is a random time T for Brownian motion (Wt)t≥0 such
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that X =d WT . We discuss Skorohod’s proof as presented, for example, in
[37, 67]. The proof is based on the construction of a joint distribution for a
dependent pair (U, V ) with U, V ≥ 0 so that, with the pair independent of
the Brownian motion, the random time T := TU,V := inf{t : Wt /∈ [−U, V ]}
yields X =d WT . Since P(WT = V |U, V ) = U/(U + V )), and the function
(u, v) 
→ u/(u + v) is nonlinear, it is somewhat surprising that a simple distri-
bution of (U, V ) can satisfy X =d WTU,V

. That distribution, specified in [37, 67]
by the formula

dHμ(u, v) = (v − u)1(u ≤ 0 ≤ v) μ(du)μ(dv)/EX+,

where μ is the distribution of X, is the same17 as the distribution (80) below
in our size bias treatment. Display (82) highlights how size bias overcomes the
nonlinearity of (u, v) 
→ u/(u+ v). The excellent survey by Ob�lój [67] should be
consulted for the history and connections to the potential of a measure.

To define the joint distribution for (U, V ) in [0,∞)2, consider random vari-
ables A,B with values in [0,∞) with distribution given by

L(A) = L(−X|X < 0), L(B) = L(X|X > 0);

since X is nonconstant and mean zero, both p− := P(X < 0) > 0 and p+ :=
P(X > 0) > 0, so the conditioning is elementary. Note that

EA = EX−/p−, EB = EX+/p+, and EX− = EX+. (79)

Write p0 := P(X = 0). Since A and B have finite positive mean, the size biased
distributions of A∗ and B∗ are well defined. Couple so that A,A∗, B,B∗ are
independent. The final recipe, writing δq for unit mass at the point q, is

L(U, V ) = p+ L(A∗, B) + p0 δ(0,0) + p− L(A,B∗), (80)

and then take (U, V ) to be independent of the Brownian motion W .
To prove that (80) and T = TU,V achieve X =d WT , first consider the

case where P(X = 0) = 0. Given a bounded measurable function h : R → R,
conditioning on U, V and using the exit distribution for Brownian motion from
the interval [−u, v] we have

E(h(WT )|U = u, V = v) = h(−u)
v

u+ v
+ h(v)

u

u+ v
=: g(u, v). (81)

Next, since we are in the case where p− + p+ = 1, using (79) we have

p− =
EB

EA+ EB
, p+ =

EA

EA+ EB
.

The size bias relation for processes from Section 2.3, together with the inde-
pendence of A,B, justifies the transition from line 2 to line 3 below: for any

17apart from a notational switch between −u and u; we write −u ≤ 0 ≤ v and they write
u ≤ 0 ≤ v.
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bounded measurable g : R2 → R,

Eg(U, V ) = p+ Eg(A∗, B) + p− Eg(A,B∗)

=
EA Eg(A∗, B) + EB Eg(A,B∗)

E(A+B)

=
E(Ag(A,B)) + E(Bg(A,B))

E(A+B)
(82)

=
E((A+B) g(A,B))

E(A+B)
.

Using this identity for our function g defined in (81), and using the independence
of A and B to go from line 3 to line 4, we have

Eh(WT ) = Eg(U, V )

=
E((A+B) g(A,B))

E(A+B)

=
E (h(−A)B + h(B)A)

E(A+B)

=
EB

E(A+B)
Eh(−A) +

EA

E(A+B)
Eh(B)

= p− Eh(−A) + p+ Eh(B)

= E(h(X)|X < 0) p− + E(h(X)|X > 0) p+

= Eh(X),

and hence L(WT ) = L(X), as claimed.
That X =d WT in the general situation, allowing P(X = 0) ∈ (0, 1), is easily

seen, since the distribution of X is then a mixture of pointmass at zero, and the
distribution of X conditional on X �= 0, and the recipe (80) is the corresponding
mixture of pointmass at (0,0) and the distribution of (U, V ) treated above.

11. Size bias and infinite divisibility

Paul Lévy’s theory of infinitely divisible distributions is celebrated; see any of
[21, 30, 38, 53] for introductory treatments, or [3, 19, 78] for advanced treat-
ments. For the special case of nonnegative random variables with finite mean,
size bias provides an easy handle on the theory.

11.1. Steutel revisited

Theorem 11.1. Suppose X can be size biased, i.e., X ≥ 0 and a := EX ∈
(0,∞). If X is infinitely divisible, then there exists a distribution for Y such
that

X∗ =d X + Y, and X,Y are independent. (83)
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Conversely, given that X can be size biased, and that (83) holds for some Y ,
then X is infinitely divisible.

In either case, the distribution of Y is unique, and P(Y ≥ 0) = 1.

Remark: In [81] (see also [80]), F. Steutel shows that a cumulative distribution
function F on [0,∞) is infinitely divisible iff it satisfies∫ x

0

udF (u) =

∫ x

0

F (x− u)dK(u)

for a non-decreasing K. Our decomposition (83) is clearly a consequence of his
integral formula, though he does not use the language of size biasing –he does
not, in fact, assume that F has finite mean– and his proof proceeds by way of
the Levy representation formula, which we will derive instead as a corollary of
(83). Steutel’s result is also presented in Sato [78], Theorem 51.1, as well as in
the book [82] by Steutel and van Harn.

Proof. We begin by assuming that X is infinitely divisible, which by definition

means that for each n there exists a distribution such that if X
(n)
1 , . . . , X

(n)
n are

i.i.d. with this distribution, then

X =d X
(n)
1 + · · ·+X(n)

n . (84)

Then by (30)

X∗ =d (X −X
(n)
1 ) + (X

(n)
1 )∗, (85)

with X −X
(n)
1 and (X

(n)
1 )∗ independent.

It is obvious that, with probability 1, X
(n)
1 ≥ 0, since (84) gives (P(X

(n)
1 <

0))n ≤ P(X < 0) = 0. Next, E|X(n)
1 | = EX

(n)
1 = a/n → 0 as n → ∞ implies

that X
(n)
1 → 0 in L1 and hence in probability. Hence X − X

(n)
1 converges in

distribution to X.
Next, the family of random variables (X

(n)
1 )∗ is tight, because given ε > 0,

there is a K such that P(X∗ > K) < ε, and by (85), for all n, P((X
(n)
1 )∗ > K) ≤

P(X∗ > K). Thus, by Helly’s theorem, there exists a subsequence nk of the n’s

along which (X
(n)
1 )∗ converges in distribution, say (X

(nk)
1 )∗ ⇒ Y . As n → ∞

along this subsequence, the pair (X −Xn
1 , (X

n
1 )

∗) converges jointly to the pair

(X,Y ) withX and Y independent. FromX∗ =d (X−X
(nk)
1 )+(X

(nk)
1 )∗ ⇒ X+Y

as k → ∞ we conclude that X∗ =d X + Y , with Y ≥ 0, and X,Y independent.
This completes the proof that if X is infinitely divisible, then it satisfies (83).

That the law of Y in (84) is unique requires a little work; we will need to
know that the characteristic function φ for X satisfies φ(u) �= 0 for all real u.
Once we have this, uniqueness is easy: from (10) and (83), writing φY for the
characteristic function of Y , we have two expressions for φX∗(u), hence

1

iEX
φ′(u) = φ(u) φY (u). (86)

This determines φY (u), provided we know that φ(u) �= 0.
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The characteristic function of any infinitely divisible X has φ(u) �= 0 for
all u: Feller [38, p. 500 and pp. 555–557], and Chung [30, Theorem 7.6.1], give
straightforward proofs. However, under the hypothesis that (83) holds and EX
is finite, there is a simpler proof, as follows. Suppose that φ(u) �= 0 for all
u ∈ (−t, t), for some t > 0. From equation (86), for u ∈ (−t, t)

(log φ(u))′ =
φ′(u)

φ(u)
= iEX φY (u), hence |(log φ(u))′| ≤ EX.

Since φ is continuous with log φ(0) = 0, it follows that for all u ∈ [−t, t],
| log φ(u)| ≤ tEX < ∞. If it were the case that φ(u) = 0 for any u, we could
take t = inf{|u| : φ(u) = 0} < ∞ to get a contradiction.18

Finally, we prove the converse statement, that (83) implies infinite divisi-
bility. Starting with the assumption (83), we have (86), which — with details
given in the next section — lets us solve for (logφ(u))′, and integrate, to get
(88) below. That (88) is the characteristic function of an infinitely divisible dis-
tribution is well-known, but to review, for the sake of a self-contained proof:
the function in (88) can be expressed as the limit of characteristic functions of
random variables with compound Poisson distribution, as in (36), and scaling
all the Poisson parameters down by a factor of n, and then taking the limit, we

get the distribution for the nth convolutional root X
(n)
1 for use in (84).

11.2. The Lévy representation

We continue to work with an X ≥ 0 with a := EX ∈ (0,∞), assuming also that
X is infinitely divisible, or equivalently, that X satisfies (83). Using (86),

(log φ(u))′ =
φ′(u)

φ(u)
= a i φY (u) (87)

and since φ(0) = 1 with log φ(0) = 0, we get

log φ(u) = a i

∫ u

t=0

φY (t) dt.

Let α be the distribution of Y in (84), so α is a probability measure on [0,∞).
We have ∫ u

t=0

φY (t) dt =

∫ u

t=0

∫
y

eityα(dy) dt =

∫
y

∫ u

t=0

eity dt α(dy)

with the interchange justified by Fubini. We have∫ u

t=0

eity dt =

{
(eiuy − 1)/(iy) if y > 0
u if y = 0

18As to the validity of taking logarithm, log continues uniquely along paths avoiding zero;
see, e.g., [38, pp. 554–5], and [30, p. xv line -7 and Thm. 7.6.2].
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Combining the three previous displayed equations, the characteristic function φ
for X may be expressed as

φ(u) = exp

(
a

(
iu α({0}) +

∫
(0,∞)

eiuy − 1

y
α(dy)

))
. (88)

To review, a ∈ (0,∞), α is the probability distribution of a nonnegative random
variable Y , and φ(u) is the characteristic function of a random variable X, with
a = EX, and, withX,Y independent,X∗ =d X+Y . We have derived (88) under
the assumption that (83) holds. However, given a ∈ (0,∞), and a probability
distribution for a nonnegative random variable Y , it can be seen that (88) is the
characteristic function of a random variable X, by taking distributional limits
of the discrete compound Poisson sums in (36). Then, working back through
(87), one sees easily that EX = a and, with X,Y independent, X∗ =d X + Y .

The calculation above, combined with Theorem 11.1, is summarized in the
next theorem.

Theorem 11.2. Suppose X can be size biased, i.e., X ≥ 0 and a := EX ∈
(0,∞). If X is infinitely divisible, then there exists a distribution for Y such
that

X∗ =d X + Y, and X,Y are independent.

Conversely, given that X can be size biased, and that (83) holds for some Y ,
then X is infinitely divisible.

In either case, the distribution of Y is unique, P(Y ≥ 0) = 1, and X has
characteristic function given by (88).

Corollary 11.3. If X is a nonnegative random variable with λ := EX ∈ (0,∞),
and X∗ =d X + 1, then X is Poisson(λ).

A natural way to rewrite (88), motivated perhaps by the two expressions in
(36), is to absorb the 1/y into the measure α(dy). Writing α0 for the constant
α({0}) = P(Y = 0) in (88), this gives

φ(u) = exp

(
a

(
iuα0 +

∫
(0,∞)

(
eiuy − 1

)
γ(dy)

))
. (89)

Here γ is a nonnegative measure on (0,∞), with γ(dy)/α(dy) = 1/y, and this
allows a broader class than (88). To get EX < ∞, there is the additional require-
ment that

∫
(0,∞)

y γ(dy) < ∞ — this is the price one pays for being able to size

bias. Regardless of whether EX = ∞ or EX < ∞, the nonnegative measure γ
can have infinite mass, due to mass near zero, and the requirement, to get a non-
negative infinitely divisibleX, allowing EX = ∞, is that

∫
(0,∞)

(1∧y)γ(dy) < ∞.

Examples 11.12 and 11.13 illustrate this, where, in both cases, α is a uniform
distribution on an interval, and EX < ∞.

We read (89) as: the random variable X is the constant aα0, plus the sum of
arrivals, in the Poisson process on (0,∞) with intensity measure a γ. Formula
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(89)19 is called the Lévy–Khintchine formula in the survey paper on subordi-
nators [20], the one difference being that the random variable X representing
the value of the subordinator at time a is also allowed to have P(X = ∞) =
1− exp(−ka) > 0, where k is called the killing rate.20

11.3. The size bias equation

When X,Y are both discrete or both absolutely continuous, it is worth high-
lighting how (4), together with (83), yields a simple relation satisfied by the
mass functions or densities. Sato [78] Section 51, especially Corollary 51.2, al-
ready highlights these relations, though of course without referring to them as
being size bias relations.

In the discrete case, if (83) holds, then fX∗ is the convolution of fX and fY :
fX∗(x) =

∑
y fX(x− y)fY (y), and combining with (4) yields, for all x > 0,

fX(x) =
a

x

∑
y

fX(x− y)fY (y). (90)

A common special case is that Y is supported on the positive integers, and X on
the nonnegative integers, so that considering fY as known, and fX to be found,
the homogeneous system (90) specifies a recursion: starting from fX(0) = c, for
m = 0, 1, 2, . . .,

fX(m+ 1) =
a

m+ 1

∑
0≤i≤m

fX(i)fY (m+ 1− i), (91)

and the initial value c is determined by 1 =
∑

i≥0 fX(i). Furthermore, from
(36) and (88) we know that X =

∑
i≥1 iZi with Zi independent Poisson(λi),

λ :=
∑

λi < ∞, fY (i) = iλi/a, hence fX(0) = P (Z1 = Z2 = · · · = 0) = e−λ.
The relation (91) was used in [10], where it was referred to as a result from
[74]. The situation with X =

∑
1≤i≤n iZi with Zi independent Poisson(λi) is

universal to combinatorial assemblies; here X is usually denoted as Tn, and
conditional on the event (Tn = n) one has a labelled combinatorial object of
total size n, in which there are Zi components of size i, jointly for i = 1 to n.
See [11, 7].

Likewise, in the absolutely continuous case, where X and Y have densities,
if (83) holds, then fX∗ is the convolution of fX and fY : fX∗(x) =

∫
y
fX(x −

y)fY (y) dy. Combined with (4), this says that for all x > 0,

fX(x) =
a

x

∫
y

fX(x− y)fY (y) dy. (92)

19Or any of its cousins, such as the Laplace transform version — since the characteristic
function φ(·), moment generating function M(·), and Laplace transform L(·) are essentially
the same, in detail φ(u) := EeiuX , M(β) := EeβX , L(t) := Ee−tX , allowing the formal
substitutions iu = β = −t.

20And when there is killing, then the Laplace transform is preferable to the characteristic
function; see the previous footnote.
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11.4. Examples of infinitely divisible distributions for nonnegative
random variables

Of course, the Lévy representation (89) yields all examples of nonnegative in-
finitely divisible distributions. However, recognizing when a given distribution
for X takes the form (88) or (89) remains a nontrivial problem. We present our
favorite examples in which Theorem 11.1 provides a convenient criterion, and
we will use the notation from Theorem 11.1, in particular (83).

11.4.1. Discrete examples

Example 11.4. P(Y = 1) = 1; X is Poisson(a).

Example 11.5. For p ∈ (0, 1), P(Y = k) = (1−p)k/k. When a = (1−p)/p, X
is geometric, with P(X = n) = (1− p)np, n ≥ 0. When ap/(1− p) is a positive
integer, X is negative binomial.

The infinite divisibility of geometric and negative binomial distributions plays
a key role in estimates comparing logarithmic combinatorial structures with their
limits; see [7]. The compound Poisson representation of the geometric is the
starting point for a coupling, in [4], showing that a random integer may be
chosen uniformly from 1 to n, on the same probability space with a Poisson-
Dirichlet process (L1, L2, . . .), so that if Pi is the ith largest factor of the random
integer,21 then E

∑
i≥1 | logPi − (logn)Li| = O(log logn). This construction is

analogous to Skorohod embedding: it starts with the continuum limit process –
Poisson-Dirichlet instead of Brownian motion– and constructs the nearby (in
the limit) discrete random object –the random integer expressed as a product of
primes instead of a random walk– as a deterministic function of the continuum
limit process, together with a small amount of auxiliary randomization.

A necessary and sufficient condition for a nonnegative integer valued random
variable to be infinitely divisible is given in [56], and a useful sufficient condition
is given in [89]. The sufficient condition is log-convexity : the support of X is the
nonnegative integers, and for all n ≥ 1, P(X = n−1)P(X = n+1) ≥ P(X = n)2.
Example 11.4 shows that the sufficient condition of log-convexity is not necessary
— any Poisson distribution is log-concave, rather than log-convex. See [9] for
a discussion of how the sufficiency of log-convexity is perhaps attributable to
Kaluza, [54]. Of course, for any constant c, X is infinitely divisible if, and only
if, c+X is infinitely divisible; this remark is often used with c = ±1. There are
several famous discrete distributions that can be seen to be infinitely divisible
via log-convexity; some examples of this type are given in [89], and two of our
favorite examples are the following:

Example 11.6. The zeta distributions: For s > 0, P(X = n) = n−s/ζ(s),
n ≥ 1.

Example 11.7. The simplest power law, P(X ≥ n) = 1/n for n ≥ 1.

21with the convention that Pi = 1 when i exceeds the number of prime factors, including
multiplicities
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11.4.2. Continuous examples

Example 11.8. Y is exponential, with P(Y > t) = e−t for t ≥ 0. When a = 1,
X =d Y , and X∗ =d X + Y is the sum of two independent copies of X, as
observed in Section 3 on the waiting time paradox. For positive integers a, X is
the time of the ath arrival in a standard Poisson process. For general a > 0, X
has the Gamma distribution, with shape parameter a.

In the Lévy representation (89) for the characteristic function of the Gamma
random variable X, we have γ(dy) = e−y/y dy. This measure γ, or the increas-
ing process it governs, is also known as the Moran subordinator, and used to
construct the Poisson-Dirchlet process; see [58].

Example 11.9. Pareto distributions, of the form P(X > t) = (1+ t)−α, α > 0.
This is the example for which Thorin [87] first developed his theory of gener-

alized Gamma convolutions, which is a subclass of the infinitely divisible distri-
butions for positive random variables. See [22], as well as [23].

Example 11.10. The lognormal distributions. Again, this is from Thorin in
1977, [86], and his proof is based on a generalized Gamma convolution.

Example 11.11. Distributions with a log-convex density.
Taking limits of discrete distributions on the nonnegative integers with log-

convex pointmass function, Sato [78, Theorem 5.1.4] shows that if X has a
density f on (0,∞), such that log f is convex on (0,∞), then X is infinitely
divisible. This also shows that the Pareto distributions are infinitely divisible!

The next two examples, Examples 11.12 and 11.13, arise by taking Y in
(83) to be uniformly distributed on a bounded interval of nonnegative numbers.
Up to scaling, any such Y is either uniformly distributed on (0, 1), or else on
(b, 1) for some 0 < b < 1. In the former case, X has an absolutely continuous
distribution, and the latter case the distribution of X has an atom and an
absolutely continuous part.

Example 11.12. Y is uniform (0, 1), leading to Dickman’s function ρ, and its
convolution powers.

In (83), take Y to be the standard uniform random variable on (0, 1). Then
(88) specializes to

φX(u) = exp

(
a

∫ 1

0

eiuy − 1

y
dy

)
, (93)

and (92) specializes to

fX(x) =
a

x

∫ 1

y=0

fX(x− y) dy =
a

x

∫ x

x−1

fX(z) dz. (94)

Here as always, a = EX; the choice a = 1 yields fX(x) = e−γρ(x), where ρ is
Dickman’s function, of central importance in the study of integers without large
prime factors; see [85] and [7, Section 4.2]. For the general case a ∈ (0,∞), the



Size bias for one and all 55

density fX is a “convolution power of Dickman’s function,” normalized to be a
probability density; see [47] .

Example 11.13. Y is uniform (b, 1) for 0 < b < 1, leading to Buchstab’s
function ω, and the limit probability for logarithmic structures to have all parts
in a range excluding small parts, or both small and large parts.

Now (89) becomes

φX(u) = exp

(
a

1− b

∫ 1

b

eiuy − 1

y
dy

)
, (95)

with 0 < b < 1. Unlike Example 11.12, X is no longer absolutely continuous,
since P(X = 0) = ba/(1−b) > 0.

This computation of P(X = 0) is easy to understand, by viewing (89) as
the specification that X is the sum of the arrivals in the Poisson process with
arrival intensity measure a γ, where aγ(dy) = a/(1− b) 1(b < y < 1) dy/y. The

expected number of arrivals in this Poisson process is λ =
∫ 1

b
a/(1 − b) dy/y,

and of course P(X = 0) = e−λ. See [6].
The size bias squation, which was (94) for the case b = 0, is more complicated

with 0 < b < 1: the distribution of X has pointmass ba/(1−b) > 0, and a defective
density fX whose support is ∪k≥1[kb, k]. The size bias equation obtained by
combining (4) with (83) takes the form: for x > 0,

fX(x) =
a

x

(
ba/(1−b) 1(b < x < 1)

1− b
+

∫ 1

y=b

fX(x− y)

1− b
dy

)
. (96)

We briefly explain the natural importance of Example 11.13. Let f
(b)
X be the

density of X, for 0 < b < 1 and a = 1 − b. This density arises in the study of

random permutations; see [7, Section 4.3]. Directly, f
(b)
X (1) governs the asymp-

totic probability that a random permutation of n objects has only cycles of length

at least bn. Scale invariance also leads, for fixed b ∈ (0, 1), to f
(b)
X (u) governing

the asymptotic probability that a random permutation on n objects has only cy-
cles with lengths in (bn/u, n/u), for any u > 1. Scale invariance also leads to

ω(u) = f
(1/u)
X (1), with Buchstab’s function ω governing integers free of small

prime factors; see [85].
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[16] J. Bartroff, L. Goldstein, and Ü Işlak. Bounded size biased couplings for log
concave distributions and concentration of measure for occupancy models.
Preprint. 2013. MR3788174

[17] Christian Berg. From discrete to absolutely continuous solutions of indeter-
minate moment problems. Arab J. Math. Sci., 4(2):1–18, 1998. MR1667218

http://www.ams.org/mathscinet-getitem?mr=2512800
http://www.ams.org/mathscinet-getitem?mr=1919568
http://www.ams.org/mathscinet-getitem?mr=3481270
http://www.ams.org/mathscinet-getitem?mr=1630407
http://www.ams.org/mathscinet-getitem?mr=2032426
http://www.ams.org/mathscinet-getitem?mr=3383333
http://www.ams.org/mathscinet-getitem?mr=3225870
http://www.ams.org/mathscinet-getitem?mr=1175278
http://www.ams.org/mathscinet-getitem?mr=1272071
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=1031278
http://www.ams.org/mathscinet-getitem?mr=1048950
http://www.ams.org/mathscinet-getitem?mr=1163825
http://www.ams.org/mathscinet-getitem?mr=3788174
http://www.ams.org/mathscinet-getitem?mr=1667218


Size bias for one and all 57

[18] Christian Berg. On some indeterminate moment problems for measures
on a geometric progression. J. Comput. Appl. Math., 99(1-2):67–75, 1998.
MR1662684
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