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Instituto de Matemática Aplicada del Litoral and Facultad de Ingenieŕıa Qúımica
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1. Introduction

The classical linear model for the regression of a univariate response Y on a
vector X of p predictors X(j) (j = 1, . . . , p) can be written as

Y = µY + βT (X − µX) + ǫ, (1)

where µY and µX are the marginal means of Y and X , and β ∈ R
p is a vec-

tor of unknown regression coefficients. We assume that the error ǫ ∼ N1(0, σ
2
ǫ ),

that X ∼ Np(µX ,Σ) with Σ > 0 and that ǫ is independent of X . The assump-
tion of multivariate normality is used primarily to facilitate our theoretical de-
velopment. Simulation results indicate that modest deviations from normality
do not affect our results qualitatively, provided that the linear model (1) still
holds. Let σ2

Y = var(Y ), so that σ2
ǫ = σ2

Y − βTΣβ, and let ∆ = var(X |Y ) =
Σ− σXY σ

T
XY /σ

2
Y , where σXY = cov(X,Y ) ∈ R

p and β = Σ−1σXY . We assume
also that the data (Yi, Xi), (i = 1, . . . , n), consist of n independent copies of
(Y,X).

Least squares is surely the most common method of estimating β when
n ≫ p, but there seems to be no corresponding widely used estimator when
n = O(p). In particular, when n ≤ p, β is unidentified in the cases model
Yi = µY + βT (Xi − µX) + ǫi (i = 1, . . . , n), and additional structure or regular-
ization is required. Several regularizing methods exist and their appropriateness
depends on application-specific requirements. The introduction of shrinkage or
sparsity in estimators of β via penalized least squares is now a widely accepted
constraint to facilitate progress. Frank and Friedman (1993) introduced the
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bridge estimators for which ridge regression (Hoerl and Kennard, 1970) and the
lasso (Tibshirani, 1996) are special cases. Alternative penalty functions have
been proposed, including the smoothly clipped absolute deviation penalty (Fan
and Li, 2001), the elastic net penalty (Zou, 2005), and the adaptive lasso penalty
(Zou, 2006). Methods to estimate a sparse β that incorporate regularized esti-
mators of var(X) have also been proposed (Witten and Tibshirani, 2009; Jeng
and Daye, 2011). Working in the context of high-dimensional linear models with
nonstochastic predictors, Shao and Deng (2012) showed that the ridge estimator
of β typically does not give rise to an L2-consistent estimator of the popula-
tion fitted values, even with a sparsity condition imposed on the projection of
β onto the row space of the design matrix. While these various methods have
been shown to perform well in certain settings, there is a need to develop new
methods for high-dimensional regressions when shrinkage or sparse estimators
of β perform poorly.

Cook, Forzani and Rothman (2012) recently studied dimension reduction
in high-dimensional regressions by modeling the inverse regression of X on
Y as E(X |Y ) = E(X) + Γ[g(Y ) − E{g(Y )}], where Γ ∈ R

p×d is unknown
with rank d ≤ p, g : R → R

d is an unknown vector-valued function and
var(X |Y ) = ∆ ∈ R

p×p is positive definite. It follows from Cook (2007) and Cook
and Forzani (2008) that R(X) = (ΓT∆−1Γ)−1Γ∆−1{X−E(X)} is the minimal
sufficient reduction for the regression of Y on X . Cook, Forzani and Rothman
(2012) studied the asymptotic properties of several estimators of R(X): given a

user-specified weight matrix Ŵ , they used weighted least squares to construct

an estimator Γ̂ of Γ, leading to the estimator R̂
Ŵ
(X) = (Γ̂T Ŵ Γ̂)−1Γ̂T Ŵ (X−X̄)

of R(X). They studied several cases, including when Ŵ was the inverse of the
residual sample covariance matrix from the regression of X on Y , and when
Ŵ was a sparse estimator of ∆−1. Conditioning on the observed values of the
responses, they showed that R̂

Ŵ
(XN ) − R(XN ) depends on four terms that

converge to 0, where XN is an independent copy of X . This convergence rate
depends on the rate at which Ŵ converges to its population value W , the agree-
ment between W and ∆−1, and the signal rate in the regression. They showed
also that root-n consistent estimation of R(XN ) is possible when p/n → [0, 1),
the signal rate is abundant and X |Y is normal (Cook, Forzani and Rothman,
2012, prop. 6.2). However, they did not consider convergence rates of actual pre-

dictions of Y , reasoning instead that the regression of Y on R̂ could be studied
using graphical methods or addressed using non-parametric methods when the
dimension of R̂ is small, as often seems to be the case.

In this article we use various estimators of β in model (1) as essential in-
gredients for predicting Y at a new independent observation XN of X from
an abundant regression, in which the addition of predictors accumulates infor-
mation on the response. Since the regressions we consider are allowed to be
abundant, we do not impose sparsity on β or constrain it otherwise. Instead,
we study predictions based on the least squares estimator of β when n > p+ 2,
a natural estimator of β when Σ is known, estimators of β based on the Moore-
Penrose inverse of sample versions of Σ and ∆, and ultimately an estimator of
β based on a sparse estimator of ∆−1.
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Our study links with the approach of Cook, Forzani and Rothman (2012)
in the following ways. Our assumption of multivariate normality of (Yi, Xi)
means that if we condition on Yi, then we cover a special case of the their
model with E(X |Y ) = Γ(Y −µY ); however, unlike Cook, Forzani and Rothman
(2012), our technical results do not condition on Y . This also allowed us to
consider estimators not covered by Cook, Forzani and Rothman (2012) and to
study directly the convergence rates of prediction of Y . The closest point of
commonality between the two studies is described in the preamble to Section 4.
Taken together, the two studies indicate strongly that when appropriate it is
better to deal with abundant regressions in which n < p through restrictions on
the conditional variance of X |Y rather than the marginal variance of X .

2. Preliminaries

Let Ȳ and X̄ denote the sample means of Y and X , and let β̂ denote a generic
estimator of β. Specific instances of β̂ will be studied in subsequent sections.
The predicted value ŶN of Y at a new observation XN on X is then ŶN =

Ȳ + β̂T (XN−X̄). Since the term Ȳ will be common to all estimators considered,
we judge the relative merits of different estimators of β by studying the order
of DN = β̂T (XN − X̄)− βT (XN − µX) as n and p approach infinity in various
alignments. If DN = Op{r(n, p)} and r(n, p) → 0 as n, p → ∞ then the sample
predictions converge to the population prediction at rate at least r−1. When
details permit, we will consider the order of the variance V = var(DN ). If
V = O{r2(n, p)}, then again the sample predictions converge to the population

prediction at rate at least r−1. Additionally, all estimators β̂ are independent
of X̄ and consequently there is no predictive bias since then E(DN ) = 0.

Information about the response accumulates as new predictors are added to
an abundant regression. Several of the estimators we consider depend explicitly
on a measure of the rate at which this accumulation occurs, which we refer to
as the signal rate h(p). We assume throughout this article that h(p) = O(p),
since this seems appropriate for most applications. Let R2

YX denote the usual
squared population multiple correlation coefficient for the regression of Y on X .
Then the signal rate can be expressed as

h(p) =
σT
XY ∆

−1σXY

σ2
Y

=
R2

YX

1−R2
YX

. (2)

We see from the first expression for h(p) that if σXY falls in a reducing subspace
of ∆ with eigenvalues that are bounded away from 0 and ∞ then h(p) ≍ ‖σXY ‖2
as p → ∞, where the notation an ≍ bn means that an = O(bn) and bn = O(an).
If, in addition, sufficiently many elements of σXY are non zero then we can
have h(p) ≍ p. We refer to regressions as abundant if h(p) → ∞ and as sparse
if h(p) ≍ 1. Clearly, a regression is abundant if and only if R2

YX → 1. When
considered in the context of model (1), the signal rate (2) is the same as the
signal rate defined by Cook, Forzani and Rothman (2012, §4.2).
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Let ϕmax(A) and ϕmin(A) denote the largest and smallest eigenvalue of the
matrix A, and let ‖v‖ denote the length of a vector ‖v‖. The signal rate is
minimized over the directions σXY /‖σXY ‖ when σXY lies in the span of the
eigenvector corresponding to ϕmax(∆). In that worst case scenario, h(p) ≍
‖σXY ‖2/ϕmax(∆), and ‖σXY ‖2 needs to increase faster that ϕmax(∆) to have
an abundant regression.

The forms for h(p) stated in the next two lemmas may provide additional
intuition. In preparation, let ρ(u, v|w) denote the matrix of conditional corre-
lations between the elements of the vectors u and v given w. Unconditional
correlation matrices are written without the conditioning argument, and ordi-
nary pairwise correlations result when u and v are scalar variables. Let ωp =∑p

j=1 ρ
2(X(j), Y )/{1− ρ2(X(j), Y )}.

Lemma 2.1. Assume that the eigenvalues of ρ(X,X |Y ) are bounded away from
0 and ∞ as p → ∞. Then h(p) ≍ ωp.

This lemma says essentially that if the conditional correlation matrix ρ(X,
X |Y ) is well behaved as p → ∞ and a sufficient number of predictors are
marginally correlated with Y then the regression is abundant. For instance,
if the marginal correlations ρ2(X(j), Y ) are bounded away from 0 and 1 then
h(p) ≍ p.

The next lemma describes the change in h when adding a single new predictor
X(p+1) to a regression with p predictors X .

Lemma 2.2. Let α denote the coefficient of Y in the population regression of
X(p+1) on X and Y , and let R2 denote the squared population multiple correla-
tion coefficient for the regression of X(p+1) on X given Y . Then

h(p+ 1) = h(p) +
σ2
Y

var(X(p+1))

α2

(1 −R2)
.

The result in this lemma indicates that conditional collinearity, as measured
by R2, between the predictors X in the regression and the new predictor X(p+1)

may result in a substantial increase in the signal rate, provided that there is a
sufficient relationship α2 between the new predictor and the response adjusting
for the predictors already in the regression.

3. Forward regression estimators

3.1. Σ known

Let σ̂XY =
∑n

i=1(Xi − X̄)(Yi − Ȳ )/(n− 1), which is an unbiassed estimator of
σXY relative to the joint distribution of X and Y . In this section we consider the
natural estimator β̂ = Σ−1σ̂XY , assuming that Σ is know. Although this setting
is used primarily as a reference point, Σ could be known in some computer
experiments where the predictors are generated as inputs to a computer code.

Proposition 3.1. Assume that model (1) holds and that Σ is known. Then with

β̂ = Σ−1σ̂XY , we have V ≍ p/n.
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As a consequence of this result, we see that knowledge of Σ does not really
suggest advances in methodology since we may still need n ≫ p for useful
results. The lack of progress here may be a reflection of the fact that model (1)
is conditional on X while the estimator is based on marginal moments. If this
is so, then better rates might be obtained by using an estimator of Σ, even if Σ
is known.

3.2. Σ estimated

We divide the discussion of the case when Σ is estimated by the relation-
ship between n and p. Consider first regressions in which n > p + 2. Let
Σ̂ =

∑n
i=1(Xi − X̄)(Xi − X̄)T /(n − 1). Then Σ̂−1 exists with probability 1

and we can use the usual ordinary least squares estimator β̂ = Σ̂−1σ̂XY . Let
κ2 = p/{nh(p)}.

Proposition 3.2. Assume that model (1) holds and that n > p + 2. Let β̂ =

Σ̂−1σ̂XY . Then V = O{κ2(n+ 1)/(n− p− 2)}.
This proposition implies that if p/n → r ∈ [0, 1) then V = O(κ2). From the

definition of κ we see that there is a synergy between the sample size and the
signal rate, the signal rate serving to multiply the sample size to produce an
effective sample size of nh(p). For instance, if h(p) ≍ p then V = O(n−1) and
we obtain the usual root-n convergence rate, although we need not have n ≫ p.
These results suggest that we might reasonably expect useful predictions in an
abundant regression with, say, n = 1000 and p = 750. On the other hand, if the
regression is sparse then V = O(p/n) and we are back to the usual requirement
that n ≫ p. Consider next regressions in which h(p) ≍ p and n − p = c > 2,
where c is a constant. In such regressions, p/n → 1 and V = O(1), which suggest
that we might not obtain useful prediction in abundant regressions when, say,
n = 1000 and p = 997, depending on the size of V .

Comparing Propositions 3.1 and 3.2, we conclude that if Σ is known it can still
be better to form β̂ using Σ̂ instead of its known population value. While this
result might seem counterintuitive, it appears to be an instance of the general
paradox described by Henmi and Eguchi (2004).

We turn next to regressions in which p > n. It follows from classical results
in linear model theory that a best linear unbiassed predictor can be estimated
by taking β̂ to be any solution of the linear equations Σ̂β̂ = σ̂XY (Christensen,

1987, §VI.3). Here we use the specific estimator β̂ = Σ̂−σ̂XY , where A
− denotes

the Moore-Penrose inverse of A.

Proposition 3.3. Assume that model (1) holds, that n < p, and that the eigen-

values of Σ are bounded away from 0 and ∞ as p → ∞. Let β̂ = Σ̂−σ̂XY . Then
V ≍ 1 if either (a) n/p → r ∈ [0, 1) or (b) p− n is constant, so n/p → 1, and
h(p) ≍ p.

This proposition requires that the eigenvalues of Σ be bounded, which is
required also by current methods for estimating a sparse covariance matrix. It



Prediction in abundant high-dimensional linear regression 3065

indicates that we should not necessarily expect useful predictions when n <
p and the Moore-Penrose inverse is used in β̂, since then V converges to a
positive constant. Of course, we could obtain good predictions if that constant is
sufficiently small, but generally the result is not promising for the use of Moore-
Penrose inverses. The primary issue is apparently that predictions outside of
span(X(1), . . . , X(p)) can be relatively variable, as discussed in the next section.

The results of this section exclude regressions in which n = p+j for j = 0, 1, 2.
If n = p+1 or n = p+2 then Σ̂−1 still exists with probability 1, but the variance
of Σ̂−1 does not exist (von Rosen, 1988), which can lead to erratic results in
practice. Similar comments apply when n = p (Cook and Forzani, 2011). The
methodology discussed here should be avoided when n = p+ j for j = 0, 1, 2.

3.3. Prediction at estimable functions with Σ estimated

It seems reasonable to expect that we may get useful results when predicting at
estimable functions βTXN ; that is, at points XN that are linear combinations
of X1, . . . , Xn. This ensures that the predictions are unbiassed. If n > p then
span(X1 − µX , . . . , Xn − µX) = R

p and the restriction places no constraint on
XN . If n < p then we must have XN −µX ∈ span(X1−µX , . . . , Xn−µX) so the
restriction to estimable functions in some sense keeps XN close to the observed
predictors.

Assuming that XN |(X̄, Σ̂) ∼ Np(X̄, Σ̂) ensures that βTXN is an estimable
function and that the distribution of XN is similar to the observed data. Under
this assumption, if n < p then XN − X̄ ∈ span(Σ̂), so XN can always be
represented as a linear combination of the observed predictors. The reasoning
in the asymptotic analysis of the predictions follows the same general steps as
given previously in Section 3.2, but the details are different and the cases n > p
and n < p can be addressed at the same time.

Proposition 3.4. Assume model (1) and that, given (X̄, Σ̂), the new predictors

XN |(X̄, Σ̂) ∼ Np(X̄, Σ̂). Let β̂ = Σ̂−σ̂XY . Then V ≍ min(n, p){nh(p)}−1+n−1.

According to this proposition, if n > p then V ≍ κ2, which is the same rate ob-
tained in Proposition 3.2 when p/n → r ∈ [0, 1). If n < p then V ≍ h−1(p)+n−1

and the convergence rate depends on the relationship between the signal rate
and the sample size. In particular, V ≍ n−1 if h(p) ≍ p. Overall, Proposition 3.4
indicates that we can get favorable convergence rates for predictions at points
that are close to the observed data.

4. Alternative estimators when n < p

The ordinary least squares estimator performs well asymptotically when n >
p+ 2, as indicated in Proposition 3.2, and the estimator β̂ = Σ̂−σ̂XY performs
well when n < p and XN |(X̄, Σ̂) ∼ Np(X̄, Σ̂), as described in Proposition 3.4.
In this section consider the class of predictors that may be suitable for settings
where n < p and XN ∼ Np(µX ,Σ).
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Since Σ−1 = ∆−1 −∆−1σXY σ
T
XY ∆

−1/[σ2
Y {1 + h(p)}], the coefficient vector

can be expressed as β = ∆−1σXY /{1 + h(p)}. Let σ̂2
Y denote the marginal

sample variance of Y and let ∆̂ = Σ̂ − σ̂XY σ̂
T
XY /σ̂

2
Y , so that (n − 1)∆̂ follows

a Wishart Wp(∆, n − 2) distribution. Let Ω̂ be an estimator of ∆−1. Then we
consider estimators of β of the form

β̂ = Ω̂σ̂XY /{1 + ĥ(p)}, (3)

where ĥ(p) = σ̂T
XY Ω̂σ̂XY /σ̂

2
Y and σ̂2

Y is the marginal sample variance of Y .

If n > p + 2 and Ω̂ = ∆̂−1 then the estimator in (3) is equal to ordinary

least squares estimator Σ̂−1σ̂XY whose behaviour was characterized in Propo-
sition 3.2. Otherwise, (3) represents a new class of estimators that may have
advantages over the previously discussed estimators when n < p. We discuss
the estimator with Ω̂ ∝ ∆̂− in §4.1. The general behaviour of the estimator is
characterized in §4.2.

The reduction R̂
Ŵ
(X), studied by (Cook, Forzani and Rothman, 2012) and

described in the Introduction, simplifies when f = Y − Ȳ , ∆̂ is non-singular and
Ŵ = ∆̂−1. Under those conditions

R̂
Ŵ
(X) =

σ̂T
XY ∆̂

−1

σ̂Y ĥ(p)
(X − X̄).

The coefficient vector B̂ = ∆̂−1σ̂T
XY /{σ̂Y ĥ(p)} for this reduction is proportional

to β̂ in (3) when Ω̂ = ∆̂−1, but otherwise they differ. The reduction coefficient

vector B̂ is invariant to scale changes in Y , which is appropriate for a reduction
but not for estimation of β; B̂ is not and was not intended to be an estimator of
β since the linear model (1) played no direct role in the study by Cook, Forzani
and Rothman (2012). If p/n → r ∈ [0, 1) and model (1) holds then, from
Proposition 3.2, DN = Op(κ) and, from Proposition 6.2 of Cook, Forzani and

Rothman (2012), R̂
Ŵ
(XN )−R(XN) = Op(κ). This indicates that β̂

T (XN − X̄)

and R̂
Ŵ
(X) have the same convergence rate, although this result is not implied

directly by Cook, Forzani and Rothman (2012).

4.1. Ω̂ ∝ ∆̂− and ∆ = δ2Ip

Recall from Proposition 3.3 that we obtained the weak result that V ≍ 1 when
n < p, the eigenvalues of Σ are bounded and the Moore-Penrose inverse of Σ̂
is used in β̂ = Σ̂−σ̂XY . We were surprised to find that stronger results can be
obtained when the unbiassed version the Moore-Penrose inverse of ∆̂ is used in
(3) instead.

Proposition 4.1. Assume that model (1) holds, that n+1 < p with n/p → r ∈
(0, 1) and that ∆ = δ2Ip. Let Ω̂ = [p(p−n+1)/{(n− 1)(n− 2)}]∆̂−. Then with

β̂ as defined in (3), we have DN = Op{h−1/2(p)}.
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The scaled version of the Moore-Penrose inverse used in this proposition is
unbiassed, E(Ω̂) = ∆−1. The proposition requires that ∆ = δ2Ip, since this is
the only case for which we have the technical equipment to compute the required
moments of Ω̂. We anticipate that a similar result holds for a general ∆ with
bounded eigenvalues. Nevertheless, comparing the results of Proposition 4.1 with
the corresponding resultDN = Op(1) from Proposition 3.1 for Σ known suggests
that knowledge of ∆ may be more useful than knowledge of Σ. We elaborate on
this point following Corollary 4.1.

4.2. General Ω̂

There are many regularized covariance estimators we could use in place of Ω̂;
Pourahmadi (2011) gives a review of several methods. In some applications, it
may be reasonable to assume that ∆−1 is sparse or approximately sparse. A nat-
ural estimator that exploits this condition is that obtained by L1-penalized like-
lihood (Yuan and Lin, 2007; Friedman, Hastie and Tibshirani, 2008; Rothman
et al., 2008). Let diag(A) denote the diagonal matrix with diagonal elements
the same as those of the square matrix A. We define this estimator by

Θ̂λ = argmin
Θ≻0

[tr{Θdiag−1/2(∆̂)∆̂diag−1/2(∆̂)} − log |Θ|+ λ
∑

i6=j

|θij |], (4)

∆̂−1
λ = diag−1/2(∆̂)Θ̂λdiag

−1/2(∆̂),

where λ ≥ 0 is a tuning parameter. The penalization is done on the inverse
correlation scale, as suggested by Rothman et al. (2008). This ensures that our
estimator is invariant to scaling of the variables. We used the graphical lasso
algorithm (Friedman, Hastie and Tibshirani, 2008) to compute the inverse corre-

lation matrix estimator Θ̂λ, selecting λ by k-fold cross validation to minimizing
prediction error. The QUIC algorithm of Hsieh et al. (2011) could also be used
and performs similarly.

We need to gauge the rate at which Ω̂ converges ∆−1 to characterize gener-
ally the asymptotic behaviour of predictions based on (3). Let S = ∆1/2(Ω̂ −
∆−1)∆1/2 and let ‖S‖ denote the spectral norm of S. The rates given in the next

proposition require Ω̂ to be chosen so that ‖S‖2 = Op(ω
2) and ‖E(S2)‖ = O(ω2)

as ω → 0. The rate ω−1 depends on the particular estimator, but the conditions
are not harsh and hold for many estimators, including when Ω̂ = ∆̂−1

λ .

Proposition 4.2. Assume that model (1) holds and that β is estimated as given
in (3). Assume also that ||S||2 = Op(ω

2) and ‖E(S2)‖ = O(ω2) as ω → 0. Then

DN = Op(κ
2) +Op{κh−1/2(p)} +Op(ω) +Op(n

−1/2).

We know from Proposition 3.2 that DN = Op(κ) when n > p+ 2. Although
Proposition 4.2 holds regardless of the relationship between n and p, it does
not reduce to Proposition 3.2 when n > p + 2 and Ω̂−1 = ∆̂−1 because of
additional bounding necessary to incorporate a general Ω̂. The main purpose of
Proposition 4.2 is to address the case where p > n.
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Corollary 4.1. Under the conditions of Proposition 4.2, if p > n then

DN = Op(κ
2) +Op(ω) +Op(n

−1/2). (5)

If, in addition, ∆ is known then

DN = Op(κ
2) +Op(n

−1/2). (6)

In reference to the rate in (5), κ2 > n−1/2 if and only if p/h >
√
n, and then

the rate reduces to Op(ω) + Op(κ
2). On the other hand, if p/h <

√
n the rate

reduces to Op(ω) +Op(n
−1/2). If h(p) ≍ p and ∆ is known then the rate in (6)

reduces to Op(n
−1/2). This rate stands in contrast to the rate Op(1) when Σ is

known in Proposition 3.1. In effect, knowledge of ∆ is much more important for
prediction than knowledge of Σ.

The next corollary addresses the estimator ∆̂−1
λ in the context of Proposi-

tion 4.2.

Corollary 4.2. Under the conditions of Proposition 4.2, let Ω̂ = ∆̂−1
λ with

λ ≍ (log p/n)1/2. Assume that, as p → ∞, the eigenvalues of ∆ are bounded
away from 0 and ∞ and that the number of non zero off-diagonal elements of
∆−1 is bounded. Then, when h(p) ≍ p, DN = Op(n

−1/2 log1/2 p).

Since ∆̂−1
λ requires that the eigenvalues of ∆ be bounded, the condition

h(p) ≍ p will hold when ‖σXY ‖ ≍ p so that many predictors are marginally
correlated with the response. The condition that the number of non zero off-
diagonal elements of ∆−1 be bounded is perhaps the most stringent theoretical
condition required for ∆̂−1

λ . This condition could be relaxed to allow the number
of non-zero off-diagonal elements in ∆−1 to grow slowly (Rothman et al., 2008).
We expect that with additional assumptions, a convergence rate bound depend-
ing on the row sparsity of ∆−1 could be obtained (Ravikumar et al., 2011). The
alternative sparse estimator of ∆−1 proposed by Cai, Liu and Luo (2011) could
also be explored within this context to achieve rates of convergence depending
on the approximate row sparsity of ∆−1. Our conclusions from a variety of sim-
ulations is that ∆̂−1

λ also works well when there are many non zero off-diagonal
elements.

5. Simulation

5.1. Overview

Let β̂∆̂(λ̂) be the proposed estimator of β obtained via (3) using Ω̂ = ∆̂−1

λ̂
,

where λ̂ is selected with 5 fold cross validation, minimizing prediction error.
When p > n + 2, let β̂∆̂ be the proposed estimator obtained via (3) using

Ω̂ = [p(p− n+ 1)/{(n− 1)(n− 2)}]∆̂−.
To illustrate regressions with p > n, we set n = p/2 and evaluated the

performance of β̂∆̂(λ̂), β̂∆̂, and β̂Σ̂−
= Σ̂−σ̂XY . For p < n, we set n = 2p and

compared β̂∆̂(λ̂) to β̂Σ̂−1 = Σ̂−1σ̂XY .
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For each of 100 replications, we generated a realization of n independent
copies of the random vector (Y,X). Multiple joint distribution specifications
were considered. Performance was measured with the prediction error, defined as

1

1000

1000∑

k=1

{β̂T (XN,k − X̄)− βT (XN,k − µX)}2, (7)

where XN,k, k = 1, . . . , 1000 are independent copies of X .

We selected the tuning parameter for β̂∆̂(λ̂) from {10−5+0.5j : j = 0, . . . , 12}
when p < 128 and from {10−3+0.5j : j = 0, . . . , 8} when p ≥ 128. In the simula-
tions with n = 2p, there were no selected tuning parameters on the boundaries
of these sets. When n = p/2, there was a small fraction of selections on the
lower boundaries, especially at sample sizes n = 8 and n = 16 for which there
was limited information for 5-fold cross-validation.

5.2. Inverse regression simulation

5.2.1. Model description

In this simulation, Y is standard normal and

X = σXY Y + ε, (8)

where ε ∼ Np(0,∆), ε Y and β = ∆−1σXY /(1+σT
XY∆

−1σXY ). We generated
σXY to have round(pα) nonzero entries, where α = 1/2 and 1, with values
independently drawn from the standard normal distribution. Two covariance
structures for ∆ were used, ∆1 = Ip and ∆2 with entries δ2ij = a 0.9|i−j|

where we set a = (1 + 0.92)/(1 − 0.92) to make the expected signal rates, over
simulation replications, similar for ∆1 and ∆2, both being proportional to pα.
We used p = 16, 32, 64, 128, and 256.

5.2.2. Results when n = p/2

For ∆1 with n = p/2, we plotted the average prediction error curves for β̂∆̂,

β̂∆̂(λ̂), and β̂Σ̂−
in Fig. 1a for h ≍ p1/2 and in Fig. 1b. for h ≍ p. All three

estimators appear to give consistent predictions as n and p grow and β̂∆̂(λ̂) per-

forms best, which is expected since ∆−1
1 is diagonal. As our theory suggests,

faster convergence occurs when h ≍ p. Propositions 4.1 and 4.2 guarantee pre-
diction consistency as p → ∞ in this setting for β̂∆̂ and β̂∆̂(λ̂). Since Σ has

unbounded eigenvalues, Proposition 3.3 does not apply, and we do not have
theory to guarantee consistency for β̂Σ̂−

.
For ∆2 with n = p/2, we plotted the average prediction error curves for

β̂∆̂, β̂∆̂(λ), and β̂Σ̂−
in Fig. 1c for h ≍ p1/2 and in Fig. 1d. for h ≍ p. We see

that the three estimators give consistent predictions as n and p grow, where
again β̂∆̂(λ) performs best, which is expected since ∆−1

2 is tri-diagonal. We do
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Fig 1. Average prediction error for the inverse regression simulation based on 100 replications
for β̂

Σ̂−
(solid), β̂

∆̂
(dashes), and β̂

∆̂(λ)
(dots), with n = p/2.

not have theory to guarantee consistency for β̂∆̂ in this case because ∆2 is not
proportional to Ip.

5.2.3. Results when n = 2p

When n = 2p, we plotted the average prediction error curves for β̂∆̂(λ̂) and

β̂Σ̂−1 in Fig. 2a and 2b for ∆1; and in Fig. 2c and 2d for ∆2. A pattern similar

to the n = p/2 case is illustrated: β̂∆̂(λ̂) performs best and both estimators

appear to give consistent predictions as n increases. Proposition 3.2 guarantees
consistency for β̂Σ̂−1 under these settings as p → ∞.

5.2.4. Results when Σ and ∆ are known

We also investigated the prediction performance of the estimator Σ−1σ̂XY of
β that uses the known Σ, and of the estimator of β that uses the known ∆,
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Fig 2. Average prediction error for the inverse regression simulation based on 100 replications
for β̂

Σ̂−1 (solid) and β̂
∆̂(λ)

(dots), with n = 2p.

obtained via (3) with Ω̂ = ∆−1. For the same simulation as described in Section
5.2.1, we plotted the average prediction error curves for ∆1 in Fig. 3a and 3b
for n = p/2; and in Fig. 3c and 3d for n = 2p. Proposition 3.1 guarantees
the inconsistency of using the known Σ under these settings, which is clearly
illustrated, and Proposition 4.2 guarantees the consistency of using the known
∆, which is also clearly illustrated. The curves for ∆2 were essentially the same
as those for ∆1 and consequently they were omitted.

5.3. Elliptical t regression simulation

5.3.1. Model description

Let T = (Y,XT )T and let tkν(µ,Ξ) denote the k dimensional elliptical t distribu-
tion with ν degrees of freedom and parameters µ ∈ R

k and Ξ ∈ R
k×k (Muirhead,

1982). This implies that E(T ) = µ and var(T ) = ν/(ν − 2)Ξ, when ν > 2. In
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(a). h ≍ p1/2, n = p/2 (b). h ≍ p, n = p/2
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(c). h ≍ p1/2, n = 2p (d). h ≍ p, n = 2p
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Fig 3. Average prediction error for based on 100 replications using known Σ (solid) and
known ∆ (dashes) and ∆ = Ip.

this simulation, T ∼ tp+1
5 (µ,Ξ), where µ = 0 and, representing Ξ according to Y

and X , ΞY Y = 1, ΞXY = σXY , ΞYX = ΞT
XY and ΞXX = Σ. As a consequence,

Y |X follows an elliptical t with ν + p = 5+ p degrees of freedom. We generated
σXY in the same way as in §5.2 and set Σ = Ip +σXY σ

T
XY , which has the same

spirit as setting ∆ = Ip in the multivariate normal simulations of §5.2. Since
β = Σ−1σXY , we have that E(Y |X) = βTX and var(Y |X) = g(X)(1− βTΣβ),
where g is some function. We used p = 16, 32, 64, 128, and 256.

5.3.2. Results

When n = p/2, we plotted the average prediction error curves for β̂∆̂, β̂Σ̂−
, and

β̂∆̂(λ) in Fig. 4a for h ≍ p1/2 and in Fig. 4b. for h ≍ p. The estimators appear

to give consistent predictions as n and p grow with slightly worse absolute
performance as compared to the multivariate normal simulations presented in
Fig. 1.
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Fig 4. Average prediction error for the elliptical t regression simulation based on 100 repli-
cations for β̂

Σ̂−
(solid), β̂

∆̂
(dashes), and β̂

∆̂(λ)
(dots), with n = p/2.
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Fig 5. Average prediction error for the elliptical t regression simulation based on 100 repli-
cations for β̂

Σ̂−1 (solid) and β̂
∆̂(λ)

(dots), with n = 2p.

When n = 2p, we plotted the average prediction error curves for β̂Σ̂−1 and

β̂∆̂(λ̂) in Fig. 5a for h ≍ p1/2 and in Fig. 5b. for h ≍ p. Both estimators ap-

pear consistent, but perform worse than in the multivariate normal simulations
presented in Fig. 2.

We also ran this simulation using the tp+1
3 (µ,Ξ) distribution and noticed

similar patterns to those illustrated above, but we recommend that our proposed
methods only be applied to distributions that have fourth moments.

Following a referee’s suggestion, we also ran this simulation using the tp+1
1 (µ,Ξ)

distribution. We were unable to compute β̂∆̂(λ̂) because of numerical instability.
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(a). h = p1/2 (b). h = p
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Fig 6. Average prediction error for β̂
Σ̂−

(solid) and average sample prediction error for β̂
Σ̂−

(dashes), using the forward regression simulation based on 100 replications with n = p/2.

The estimators β̂Σ̂−1 , β̂∆̂, and β̂Σ̂−
performed very poorly: most of their average

prediction errors were between 104 and 107. This may not be surprising since in
this case E(Y |X) and var(Y |X) exist, but the expectation of our performance
criterion (7) does not exist since neither E(X) nor var(X) exists.

5.4. Forward regression simulation

To illustrate Propositions 3.3 and 3.4, we constructed a simulation where var(X)
has bounded eigenvalues as p grows. Specifically, X ∼ Np(0, Ip) and Y = βTX+
ǫ, where ǫ ∼ N1(0, 1 − βTβ) and ǫ X . This implies σ2

Y = 1, β = σXY ,
∆−1 = Ip + (1− βTβ)−1ββT and h = (1− βTβ)−1βTβ. For h = p1/2 and p, we
set all elements of β equal to [{p(h+1)}−1h]1/2, and used p = 16, 32, 64, 128, 256,
and 512 with n = p/2.

In addition to the prediction error, we measured performance with the sample
prediction error, defined by (7), where the predictions were at 1000 independent

copies of XN ∼ Np(X̄, Σ̂). We plotted the average prediction and sample predic-

tion erros for β̂Σ̂−
in Fig. 6a for h = p1/2 and in Fig. 6b. for h = p. The prediction

error curve appears inconsistent and bounded as Proposition 3.3 guarantees and
the sample prediction error curve appears consistent as Proposition 3.4 guaran-
tees.

6. Data analysis

6.1. Overview

We illustrate an abundant regression with data introduced by Sæbø et al. (2007),
where the percentage of fat in beef or pork samples is predicted with absorbance
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spectral measurements. There are p = 100 wavelengths and n = 103 cases of
which 54 are pork samples.

6.2. Pork samples

The pork samples provide an illustration of a regression with p > n. Many regu-
larized regression procedures could be applied, including penalized least-squares,
principal component regression, and partial least squares. Such alternative meth-
ods could perform well depending on characteristics of the regression. For in-
stance, penalized least squares may be appropriate when β is sparse, but we do
not anticipate sparsity for these data, as discussed in §6.3. Partial least squares
might perform well when σXY lies in the span of the first few eigenvectors of Σ,
although Chung and Keleş (2010) showed recently that its estimator of the co-
efficient vector in the linear regression of Y on X is inconsistent unless p/n → 0.

We restrict comparisons of our proposed methods to the standard estimator
β̂Σ̂−

since it is the default option in many software packages when p ≥ n. We
performed leave-one-out cross validation to compare the prediction performance
of β̂∆̂ and β̂Σ̂−

. Due to numerical instability, β̂∆̂(λ̂) could not be computed for

values of λ that cross-validation recommended. To circumvent this instability, we
considered a similar estimator β̂∆̂(λ̂,R) obtained by replacing λ

∑
i6=j |θij | in (4)

with λ
∑

i6=j θ
2
ij (Rothman et al., 2008). For each excluded case, we selected the

tuning parameter for β̂∆̂(λ̂,R) using 5-fold cross-validation on the remaining 53

cases, where validation prediction error was minimized and the optimal tuning
parameter value was selected from {10−10+0.5j : j = 0, 1, . . .24}. There were no
selections on the boundary of this set.

The average squared prediction error, computed from the 54 left out cases,
was 5.60 for β̂Σ̂−

, 3.46 for β̂∆̂ and 2.79 for β̂∆̂(λ̂,R). These prediction errors are

represented with boxplots in Fig. 7a.

6.3. Pork and beef samples

Analysis of both the pork and beef samples illustrates a regression where p ≈ n.
We exclude the shortest and longest three wavelengths from the analysis to avoid
the moment issues mentioned at the end of §3.2, leaving p = 94 and n = 103.
The ordinary least squares fit is excellent in this case; the fit is represented with
a response versus fitted values plot in Fig. 7b.

Our interest is to investigate the presence of abundance. Let a subscript of
[j] indicate that an estimate is based on the first j predictors and let β̂ =

Σ̂−1σ̂XY . We will see how the estimate ĥ(j) = β̂T
[j]Σ̂[j]β̂[j]/(σ̂

2
Y [j] − β̂T

[j]Σ̂[j]β̂[j])
increases as j increases from 1 to p. Although these spectral predictors have a
natural ordering, we will also consider random orderings in our investigation. To
establish a benchmark comparison, within each of 500 replications we randomly
selected α × 100 percent of the predictors and randomly permuted their case
orderings. In this way the selected predictors with permuted case orderings had
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Fig 7. Boxplots of the 54 squared prediction errors for the pork samples (a) and observed
responses versus fitted values for both pork (circles) and beef (×’s) samples (b).
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Fig 8. ĥ(j) (solid), ĥ0.1(j) (dashes), ĥ0.5(j) (dots), ĥ0.9(j) (dash–dot), and ĥ1(j) (long
dashes) versus j when the predictors are ordered with increasing wavelength (a) and ran-
domly ordered (b).

no contribution to the regression and only the remaining (1−α)×100 percent of

the predictors could be relevant. The estimated signal rates ĥ(j), (j = 1, . . . , p)

were then computed within each replication. We report ĥα(j), defined as the

average ĥ(j) over the 500 replications with case orderings permuted for α× 100
percent of the predictors.

Using the natural predictor ordering, we plotted ĥ(j), ĥ0.1(j), ĥ0.5(j), ĥ0.9(j),

and ĥ1(j) versus j in Fig. 8a. We only show j = 1, . . . , 80 for ease of illustration.

It is clear that ĥ(j) is growing rapidly as j increases indicating that an abundant
signal is plausible in this regression. Permuting 10 percent of the predictors’ case
orderings has only a small effect on the signal rate estimate, while permuting
90 and 100 percent strongly attenuates the estimated signal rate.
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We randomly permuted the predictors within each of 500 replications and
plot the average value of ĥ(j) versus j as well as ĥ0.1(j), ĥ0.5(j), ĥ0.9(j), and

ĥ1(j) versus j in Fig. 8b. We again see the same pattern as with the natural
ordering.

7. Discussion

A referee requested that we contrast our approach with that in an arXiv paper
by Dicker (2012), who considered four methods of prediction in high dimensional

linear models, including the ordinary least squares estimator β̂ = Σ̂−σ̂XY that
we addressed in Propostions 3.2 and 3.3. Although stated a bit differently, our
results in Proposition 3.2 are consistent with those in Dicker’s Proposition 2
for the case when n > p + 2 (Dicker’s d = p + 1). However, our results in
Proposition 3.3 do not agree with those in Dicker’s Proposition 2 for the case
when n < p. In developing his result for n < p, Dicker claimed in effect that,
for any full rank matrix A ∈ R

p×p,

A−1Σ̂−σ̂XY = (AT Σ̂A)−AT σ̂XY . (9)

Choosing A = Σ enabled Dicker to restrict attention to the case Σ = Ip
without loss of generality. Equation (9) holds when Σ̂ > 0, but not gener-
ally otherwise because the Moore-Penrose inverse is not equivariant; that is,
(AT Σ̂A)− 6= A−1Σ̂−A−T (Cook and Forzani, 2011). Consequently, we find
Dicker’s result for n < p to be of uncertain value. Dicker also considered James-
Stein and Ridge estimators, which we did not evaluate since they are outside
the scope of this article.
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Appendix A: Preliminary results

In this appendix we give a series of preliminary results that will be used in
the proofs of Appendix B. All notation is as provided in the body of the paper
unless indicated otherwise. We also use additional notation: an ≍p bn means that
an = Op(bn) and bn = Op(an), Wp(Σ, d) stands for the p-dimensional Wishart
distribution with covariance matrix Σ and d degrees of freedom, and χ2

d stands
for the chi-squared distribution with d degrees of freedom. We let F denote the
n × p matrix with rows (Xi − X̄)T , (i = 1, . . . , n), let Kp,p denote the p × p
commutation matrix, let ε denote the n × 1 vector with elements consisting of
the errors ǫi from model (1), so that ε ∼ Nn(0, σ

2
ǫ Ip), and let vec : Rp×q 7→ R

pq
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denote the operator that maps a matrix to a vector by stacking its columns. We
used Z as local notation whose definition varies depending on the proof being
developed.

The following algebraic relationships follow from the definition of h(p) =
σT
XY ∆

−1σXY /σ
2
Y and from the identities β = Σ−1σXY , σ

2
Y = σ2

ǫ + βTΣβ and

Σ = ∆+ σXY σ
T
XY /σ

2
Y , which implies that

Σ−1 = ∆−1 −∆−1σXY σ
T
XY ∆

−1/(σ2
Y + σT

XY ∆
−1σXY ).

tr(Σ∆−1) = p+ h(p) ≍ p, (10)

tr(∆−1/2Σ∆−1/2)2 ≍ p+ h2(p), (11)

βTΣ∆−1Σβ = h(p)σ2
Y ≍ h(p), (12)

βTΣ∆−1Σ∆−1Σβ = σT
XY ∆

−1Σ∆−1σXY ≍ h2(p) (13)

σT
XY Σ

−1σXY = σT
XY ∆

−1σXY − (σT
XY ∆

−1σXY )
2/(σ2

Y + σT
XY ∆

−1σXY )

= σ2
Y h(p)/(1 + h(p))

σ2
ǫ = σ2

Y − βTΣβ

= σ2
Y − σT

XY Σ
−1σXY

= σ2
Y /(1 + h(p)).

As a consequence,

σ2
ǫ = σT

XY Σ
−1σXY /h(p) = βTΣβ/h(p) ≍ h−1(p). (14)

The next series of results gives various moments involving σ̂XY . All operators
are with respect to the joint distribution of X and Y .

E (σ̂XY ) = σXY (15)

var (σ̂XY ) = (σ2
Y Σ+ σXY σ

T
XY )/(n− 1) (16)

E
(
σ̂XY σ̂

T
XY

)
= (σ2

Y Σ+ nσXY σ
T
XY )/(n− 1) (17)

E
(
σ̂T
XY ∆

−1σ̂XY

)
= σ2

Y {h(p)(n+ 1) + p}/(n− 1) (18)

var(σ̂T
XY ∆

−1σ̂XY ) ≍ h2(p)/n. (19)

h−1(p)E
(
σ̂T
XY ∆

−1σ̂XY − σT
XY ∆

−1σXY

)
≍ κ2, (20)

with κ2 = p/{nh(p)}.
Proofs of relationships (15)–(20) involve the moments of the Wishart matrix

W = (n − 1)Σ̂ = FTF ∼ Wp(Σ, n − 1): E(W ) = (n − 1)Σ and var(W ) = (n −
1)(Ip2+Kp,p)(Σ⊗Σ) (Magnus and Neudecker, 1979, Corollary 4.2). Results (15)
and (16) follow from the identity σ̂XY = (n−1)−1(Wβ+Fε), the independence
of F and ε, β = Σ−1σXY and σ2

Y = σ2
ǫ + βTΣβ. These imply that E(σ̂XY ) =

E(Wβ)/(n− 1) = σXY , and

var (σ̂XY ) = {var(Wβ) + σ2
ǫE (W )}/(n− 1)2

= {(βT ⊗ Ip)var(vec(W ))(β ⊗ Ip) + σ2
ǫE (W )}/(n− 1)2
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= {(βT ⊗ Ip)(Ip2 +Kp,p)(Σ⊗ Σ)(β ⊗ Ip) + σ2
ǫΣ}/(n− 1)

= {(βTΣβ + σ2
ǫ )Σ + ΣββTΣ}/(n− 1),

where the final step, which implies (16), makes use of properties of Kp,p from
Magnus and Neudecker (1979, Theorem 3.1).

Result (17) is a direct consequence of (15) and (16), and (18) follows from
(17) using that the trace is a cyclic operation, the definition of h(p) and (10).
Result (20) follows from (18) and the definition of h(p).

We now justify the final relationship (19). Let

U = ∆−1/2W∆−1/2 ∼ Wp(∆
−1/2Σ∆−1/2, n− 1).

The mean and variance of a quadratic form in ε are given by (Magnus and
Neudecker, 1979, Corollary 4.1)

E(εTΛε) = σ2
ǫ tr{Λ}

var(εTΛε) = 2σ4
ǫ tr{Λ2},

where Λ is an n-dimensional symmetric matrix, and var(λT ε) = σ2
ǫλ

Tλ for
λ ∈ R

n. Using these moments, the independence of F and ε, writting σ̂XY =
(n − 1)−1(Wβ + Fε), and letting V = (n − 1)4var(σ̂T

XY ∆
−1σ̂XY ) and G =

FT∆−1F , we have

V = (n− 1)4{varXEε|X

(
σ̂T
XY ∆

−1σ̂XY

)
+ EXvarε|X

(
σ̂T
XY ∆

−1σ̂XY

)
}

= varX
{
σ2
ǫ tr{G}+ βTWT∆−1Wβ

}
+ EX

{
2σ4

ǫ tr{G2}
+ 4 σ2

ǫβ
TWT∆−1FFT∆−1Wβ

}

= var{tr(σ2
ǫU + βT∆1/2U2∆1/2β)} + 2σ4

ǫE{tr(U2)}
+ 4σ2

ǫE(β
T∆1/2U3∆1/2β)

= I + II + III, (21)

where the term labels – I, II and III – are defined implicitly. Using the moments
of a Wishart matrix, it can next be shown that I/(n− 1)4 ≍ h2(p)/n, II/(n−
1)4 ≍ 1/n and III/(n − 1)4 ≍ h(p)/n. The conclusion follows because h(p) is
a monotonically increasing function of p. We conclude our discussion of (19) by
giving the details on the orders of the terms in (21).

Using an expression for E(U3) from Letac and Massan (2004, page 295), we
have

III

(n− 1)4
≍ σ2

ǫn
−3[{tr2(∆−1/2Σ∆−1/2) + ntr(∆−1/2Σ∆−1/2)2}βTΣβ

+ nβTΣ∆−1Σβtr(∆−1/2Σ∆−1/2) + n2βTΣ∆−1Σ∆−1Σβ]

≍ n−1h(p),

where the final relationship follows from the definition of h(p), (10)–(14) and
p/{h(p)n} = O(1). The calculations for the term II/(n − 1)4 follow similarly.
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Using an expression for E(U2) from Letac and Massan (2004, page 308), we
have

II

(n− 1)4
≍ σ4

ǫn
−3

[
tr2(∆−1/2Σ∆−1/2) + ntr(∆−1/2Σ∆−1/2)2

]

≍ 1/n,

where the final relationship follows from (10), (11), (14) and p/{h(p)n} = O(1).
The evaluation of the term I/(n − 1)4 is more involved. For this term it is

sufficient to consider the orders of I1 = (n − 1)−4var{tr(σ2
ǫU)} and I2 = (n −

1)−4var(βT∆1/2U2∆1/2β). Now, I1 = σ4
ǫ (n− 1)−4vecT (Ip)var{vec(U)}vec(Ip).

Using an expression for var{vec(U)} from Magnus and Neudecker (1979, Theo-
rem 4.4), it follows that I1 = O(1/n), again using (11), (14) and the fact that
p/{h(p)n} = O(1). Let Z = Σ−1/2X , σZY = cov(Z, Y ), WI ∼ Wp(Ip, n − 1)
and σ0 be an orthonormal basis for span⊥(σXY ). For the term I2, from ∆ =
Σ− σXY σ

T
XY /σ

2
Y and σ2

Y = σ2
ǫ + βTΣβ = σ2

ǫ + σT
XY Σ

−1σXY , we have

∆−1 = Σ−1 − Σ−1σXY σ
T
XY Σ

−1/(−σ2
Y + σT

XY Σ
−1σXY )

= Σ−1 +Σ−1/2σZY σ
T
ZY Σ

−1/2/σ2
ǫ .

This allows us to express

βT∆1/2U2∆1/2β = βT∆1/2U∆1/2∆−1∆1/2U∆1/2β

= βTΣ1/2WIΣ
1/2∆−1Σ1/2WIΣ

1/2β

= σT
ZY WIΣ

1/2∆−1Σ1/2WIσZY

= σT
ZY W

2
I σZY + (σT

ZY WIσZY )
2/σ2

ǫ .

Now, let P = σZY σ
T
ZY /||σZY ||2 be the projection onto σZY and let Q = Ip−P =

σ0σ
T
0 denote the orthogonal projection. Then,

σT
ZY W

2
I σZY = σT

ZY WI(P +Q)WIσZY

= (σT
ZY WIσZY )

2/||σZY ||2 + σT
ZY WIσ0σ

T
0 WIσZY

and then since ||σZY ||2 = βTΣβ,

βT∆1/2U2∆1/2β = (σT
ZY WIσZY )

2{(βTΣβ)−1 + σ−2
ǫ }+ σT

ZY WIσ0σ
T
0 WIσZY .

We next make use of certain orthogonality relations. Write WI = NNT where
N ∈ R

p×(n−1) is a matrix of independent standard normal variates. Define
N1 = NTσZY /(β

TΣβ)1/2 ∈ R
(n−1) and N2 = NTσ0 ∈ R

(n−1)×(p−1) so that N1

and N2 are independent and each comprised of independent standard normal
variates. Then we have

βT∆1/2U2∆1/2β = (βTΣβ)2(NT
1 N1)

2{(βTΣβ)−1 + σ−2
ǫ }

+ (βTΣβ)NT
1 N2N

T
2 N1

= T1 + T2.
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To study the order of var(I2) is enough to study the order of the variances of
T1 and T2. Since NT

1 N1 ∼ χ2
n−1, E(N

T
1 N1)

r ≍ nr, var(NT
1 N1) = 2(n − 1) and

var(NT
1 N1)

2 ≍ n3. As a consequence, using (14) and σ2
Y = σ2

ǫ + βTΣβ,

var(T1) ≍ {(βTΣβ)−1 + σ−2
ǫ }2n3 ≍ h(p)2n3.

Since NT
1 N2N

T
2 N1|N1 ∼ NT

1 N1χ
2
p−1 and p/{h(p)n} ≍ O(1), we have

var(T2) = varN1
(E(T2|N1)) + EN1

var(T2|N1)

= (βTΣβ)2(p− 1)2var(NT
1 N1) + 2(βTΣβ)2(p− 1)E(NT

1 N1)
2

≍ p2n+ pn2

≍ h2(p)n3.

This implies that the order of I2 is h2(p)/n and, together with the order of I1,
the order of I/(n− 1)4 is h2(p)/n.

Appendix B: Proofs

Proof of Lemma 2.1. Let ρXY denote the p×1 vector of correlations ρ(X(j), Y ),
let rXY denote the p× 1 vector with elements ρ(X(j), Y )/{1− ρ2(X(j), Y )}1/2
(j = 1, . . . , p), and recall that ρXX|Y is the p×p matrix of conditional predictor
correlations given Y . Using the relationship

ρ2(X(j), Y ) = 1− var(X(j)|Y )/var(X(j)),

which follows from the joint normality of (X(j), Y ), the signal rate can be ex-
pressed as

h(p) = σT
XY ∆

−1σXY /σ
2
Y = ρTXY {diag−1/2(Σ)∆diag−1/2(Σ)}−1ρXY

= ρTXY {diag−1/2(Σ)diag1/2(∆)ρXX|Y diag
1/2(∆)diag−1/2(Σ)}−1ρXY

= rTXY ρ
−1
XX|Y rXY .

Consequently, ϕ−1
max(ρXX|Y )r

T
XY rXY ≤ h(p) ≤ ϕ−1

min(ρXX|Y )r
T
XY rXY .

Proof of Lemma 2.2. For notational convenience we use the subscript 1 to de-
note X and the subscript 2 to denote the added predictor Xp+1. Now, it can be
checked that

∆−1 =

(
∆11 ∆12

∆21 ∆22

)−1

=

(
∆−1

11 0
0 0

)
+ C−1

(
∆−1

11 ∆12∆
T
12∆

−1
11 −∆−1

11 ∆12

−∆T
12∆

−1
11 1

)
, (22)

where ∆22 = var(Xp+1|Y ) is a scalar, ∆11 = var(X |Y ) ∈ R
p×p, and

C = ∆22 −∆21∆
−1
11 ∆12 = ∆22(1−R2

21|Y )
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with R21|Y being the multiple correlation coefficient from the regression of Xp+1

on X given Y . To get h(p + 1) we need to pre and post multiply ∆−1 by
(σT

1Y , σ2Y )/σY and its transpose. Using (22) after some simplifications we get

h(p+ 1) = h(p) +
(σT

1Y ∆
−1
11 ∆12 − σ2Y )

2

σ2
Y ∆22(1−R2

21|Y )

= h(p) +
σ2
Y

∆22

{(σT
1Y ∆

−1
11 ∆12 − σ2Y )/σ

2
Y }2

(1−R2
21|Y )

.

The lemma follows since

E(X2|X1, Y ) = E(X2) + ∆21∆
−1
11 {X1 − E(X1)}

− ((∆21∆
−1
11 σ1Y − σ2Y )/σ

2
Y ){Y − E(Y )}

and thus the term {(σT
1Y ∆

−1
11 ∆12 − σ2Y )/σ

2
Y }2 is the squared coefficient of Y in

the population regression of X2 on X1 and Y .

In Propositions 3.1, 3.2, 3.3, 4.1 and 4.2 we studied the order of V under
model (1) for a new independent XN ∼ N(µX ,Σ). In order to do that we write

DN = β̂T (XN − X̄)− βT (XN − µX)

= (β̂ − β)T (XN − µX) + β̂T (µX − X̄)

= I + II. (23)

Squaring DN and expanding to get V = E(D2
N), the cross product term have

mean 0 because XN is a new independent observation. Now, since X̄ is inde-
pendent of β̂,

V = E{(β̂ − β)T (XN − µX)− β̂T (X̄ − µX)}2

= E{(β̂ − β)TΣ(β̂ − β)} + 1

n
E{β̂TΣβ̂} (24)

= I + II. (25)

Proof of Proposition 3.1. In this case β̂ = Σ−1σ̂XY with Σ known. Re-expressing
(24) by using (15) and (17),

V = E{(σ̂XY − σXY )
TΣ−1(σ̂XY − σXY )} +

1

n
E{σ̂T

XY Σ
−1σ̂XY }

=
n+ 1

n(n− 1)
tr{(σ2

Y Ip + nΣ−1σXY σ
T
XY )} − σT

XY Σ
−1σXY

=
n+ 1

n(n− 1)
(σ2

Y p+ 2σT
XY Σ

−1σXY )

=
n+ 1

n(n− 1)
(σ2

Y p+ 2βTΣβ).

Since βTΣβ is bounded, the conclusion follows.
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For Proposition 3.2 and 3.3, β̂ = W−Wβ + W−FT ε, with W = FTF ∼
Wp(Σ, n− 1). Substituting β̂ into the first term I of V from (25), we have

I = E{βT (Ip −W−W )Σ(Ip −W−W )β} + E{tr(FW−ΣW−FT )}σ2
ǫ

= E{βT (Ip −W−W )Σ(Ip −W−W )β} + tr{ΣE(W−)}σ2
ǫ .

In a similar way we have n II = E(βTWW−ΣW−Wβ)+tr{ΣE(W−)}σ2
ǫ . Plug-

ging I and II in (25),

V = E{βT (Ip −W−W )Σ(Ip −W−W )β} + (1 + n−1)tr{ΣE(W−)}σ2
ǫ

+ n−1E(βTWW−ΣW−Wβ) = T1 + T2 + T3. (26)

where the three terms – T1, T2 and T3 – are defined implicitly.

Proof of Proposition 3.2. Since n > p+ 2, W− = W−1. This implies that T1 =
0 and T3 = n−1βTΣβ = O(n−1) since βTΣβ is bounded. Term T2 involves
tr{ΣE(W−)} = tr{E(W−1

I )}, where WI ∼ Wp(Ip, n − 1). Using Theorem 3.1
from von Rosen (1988), E(W−1

I ) = (n − p − 2)−1Ip and thus T2 = σ2
ǫp(n +

1)/n(n− p− 2), which implies the desired conclusion from (14).

Proof of Proposition 3.3. In the justification of this result we use bounding and
the first moment E(W−

I ) = (n − 1)/{p(p − n)Ip} (Cook and Forzani, 2011,
Theorem 3.1). Let ϕmax and ϕmin be the largest and smallest eigenvalues of
Σ. In the following all inequalities become equalities when Σ = Ip, so ϕmax =
ϕmin = 1.

Write W = Σ1/2ZZTΣ1/2, where Z ∈ R
p×(n−1) is a matrix of indepen-

dent standard normal random variables. Then the matrices W−, WW− and
WW−ΣWW− can be bounded above as follows

W− = Σ1/2Z(ZTΣZ)−2ZTΣ1/2

≤ ϕ−2
minΣ

1/2Z(ZTZ)−2ZTΣ1/2

= ϕ−2
minΣ

1/2W−
I Σ1/2

and therefore

E(W−) ≤ ϕ−2
min

n− 1

p(p− n)
Σ.

Now,

WW− = Σ1/2ZZTΣZ(ZTΣZ)−2ZTΣ1/2

= Σ1/2Z(ZTΣZ)−1ZTΣ1/2 (27)

≤ ϕ−1
minΣ

1/2Z(ZTZ)−1ZTΣ1/2.

WW−ΣWW− = Σ1/2Z(ZTΣZ)−1ZTΣ2Z(ZTΣZ)−1ZTΣ1/2

≤ ϕmaxWW−, (28)

where we used (27) for the last matrix. The distribution of Z(ZTZ)−1ZT is in-
variant under orthogonal transformation of the columns of Z. Consequently,
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its expectation is of the form cIp, and it follows that c = (n − 1)/p since
E(Z(ZTZ)−1ZT ) = cIp implies cp = tr{E(Z(ZTZ)−1ZT )} = n − 1. There-
fore E(WW−) ≤ ϕ−1

min(n − 1)/pΣ. In the same way, letting Z0 ∈ R
p×(p−n+1)

be orthogonal to Z, we get E(Z0(Z
T
0 Z0)

−1ZT
0 ) = (p− n+ 1)/pIp. Plugging Z0

into (27),

(Ip−WW−)Σ(Ip−WW−)=Σ−1/2Z0(Z
T
0 Σ

−1Z0)
−1ZT

0 Z0(Z
T
0 Σ

−1Z0)
−1ZT

0 Σ
−1/2

and therefore we get

E((Ip −WW−)Σ(Ip −WW−)) ≤ ϕ2
maxϕ

−2
min(p− n+ 1)/pΣ.

Lower bounds can be established similarly by replacing ϕmin with ϕmax. We
next use these bounds to obtain orders for the three term on the right hand side
of (26), finding that T1 ≍ (p − n + 1)/p, T2 ≍ σ2

ǫn/(p − n) ≍ n/{h(p)(p − n)}
by (14) and, using (28) and tr{Σ} ≍ p, T3 ≍ p−1, which imply the desired
conclusions.

Proof of Proposition 3.4. In this case we write

DN = β̂T (XN − X̄)− βT (XN − µX)

= (β̂ − β)T (XN − X̄)− βT (X̄ − µX).

For a new observation XN |(X̄, Σ̂) ∼ N(X̄, Σ̂),

V = E{(β − β̂)T Σ̂(β − β̂)} + n−1βTΣβ.

Substituting β̂ = W−Wβ +W−Fε into the expression for V , leads to

V ≍ E{βT (Ip −WW−)Σ̂(Ip −W−W )β}+ E(εTFW−Σ̂W−FT ε) + n−1βTΣβ

≍ {nh(p)}−1E{tr(WW−)}+ n−1,

where we use that Σ̂ = W/(n− 1) implies Σ̂(Ip−WW−) = 0, the independence
of ε and F to compute the second expectation, W = FFT and (14). The result
is now a consequence of the fact that tr{WW−} = min(p, n−1), which is trivial
for n > p and it follows from (27) for n ≤ p.

Proof of Proposition 4.1 and Proposition 4.2. For both Propositions 4.1 and 4.2,
we require the order, as n, p → ∞, of DN from (23) for β̂ given in (3) with Ω̂
as defined in its corresponding propositions. Define

B = h−1(p){1 + h(p)} = h−1(p)(1 + σT
XY ∆

−1σXY /σ
2
Y ) and

B̂ = h−1(p){1 + ĥ(p)} = h−1(p)(1 + σ̂T
XY Ω̂σ̂XY /σ̂

2
Y ).

The analysis is facilitated by using the representation β̂ = B̂−1Ω̂σ̂XY /h(p).
B ≍ 1, and we will show later that
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B̂ −B = Op(κ
2 + n−1/2) under the conditions of Proposition 4.1 and (29)

B̂ −B = Op(ω + κ2 + n−1/2) under the conditions of Proposition 4.2, (30)

and as a consequence in both cases B̂ ≍p 1.
Turning to the first term I of the representation of DN from (23), we have

letting εN = XN − µX ∼ N(0,Σ),

I = h−1B̂−1(σ̂T
XY Ω̂− σT

XY ∆
−1)εN + h−1B̂−1(B − B̂)B−1σT

XY ∆
−1εN

= I1 + I2. (31)

Using var(εN ) = Σ and (13) it follows var(h−1(p)σT
XY ∆

−1εN ) ≍ 1 and thus
I2 = Op(κ

2 + n−1/2) under Proposition 4.1 and I2 = Op(ω + κ2 + n−1/2) under
Proposition 4.2. To find the order of I1 we represent it in three terms, I1 = I11+

I12 + I13, as I11 = h−1(p)(σ̂XY − σXY )
T∆−1εN , I12 = h−1(p)σT

XY (Ω̂−∆−1)εN
and I13 = h−1(p)(σ̂XY − σXY )

T (Ω̂ −∆−1)εN . Each term has mean 0, we and
compute their orders individually: Using (15), (17), (11) and (13),

var(I11) = h−2(p)E{(σ̂XY − σXY )
T∆−1Σ∆−1(σ̂XY − σXY )}

= h−2(p){σ2
Y tr(∆

−1Σ)2 + σT
XY ∆

−1Σ∆−1σXY }/(n− 1)

≍ h−2(p){p+ 2h2(p)}/n ≍ κ2/h(p) + n−1,

and therefore I11 ≍p h−1/2κ+ n−1/2.

For the term I12 under Proposition 4.1 we use an expression for var{vec(Ω̂)}
from Cook and Forzani (2011, Theorem 3.1),

var(vec(Ω̂)) ≍ c(Ip2 +Kp,p) + dvec(Ip)vec
T (Ip), (32)

where c ≍ 1/n ≍ 1/p and d ≍ 1/n2 ≍ 1/p2. Then, using the independence of Ω̂
and εN ,

var(I12) = h−2(p)var(σT
XY (Ω̂−∆−1)εN )

= h−2(p)E{(εTN ⊗ σT
XY )var{vec(Ω̂)}(εN ⊗ σXY )}

≍ h−2(p)p−1E{εTNεNσT
XY σXY )}

+ h−2(p)p−2E{(εTN ⊗ σT
XY )vec(Ip)vec

T (Ip)(εN ⊗ σXY )}
≍ h−2(p)p−1tr{Σ}σT

XY σXY

≍ κ2,

since for this case σT
XY σXY ≍ h(p), tr{Σ} = p + σT

XY σXY /σ
2
Y ≍ p + h(p) and

κ2 ≍ h−1(p).

For I12 under the assumptions of Proposition 4.2, recalling that S = ∆1/2(Ω̂−
∆−1)∆1/2 with ‖E(S2)‖ = O(ω2), we have

var(I12) = h−2E{σT
XY (Ω̂−∆−1)εN )}2

= h−2(p)σT
XY ∆

−1/2E(S∆−1/2Σ∆−1/2S)∆−1/2σXY
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≤ h−2(p){1 + h(p)}σT
XY ∆

−1/2E
(
S2

)
∆−1/2σXY

≤ 2h−1(p)σT
XY ∆

−1σXY ‖E(S2)‖,

since ϕmax(∆
−1/2Σ∆−1/2) = 1+h(p). Using the definition of h(p) and the order

of ‖E(S2)‖, we get I12 = Op(ω).

It can be shown that the term I13 has smaller order than I11 and I12 and, as
a consequence, we have I = Op(κ) under Proposition 4.1 and I = Op(ω + κ2 +
h−1/2κ+ n−1/2) under Proposition 4.2.

Turning to term II, we have II = B̂−1σ̂T
XY Ω̂(µX − X̄)/h(p). The first fac-

tor B̂−1 ≍p 1 and consequently it is sufficient to consider II1 = σ̂T
XY Ω̂(µX −

X̄)/h(p).

For Proposition 4.1 the conclusion follows since II1 = Op(n
−1/2), which is

no greater than I = Op(κ). To see that II1 = Op(n
−1/2) we write var(II1) =

E{var(II1|σ̂XY , X̄)}+var{E(II1|σ̂XY , X̄)} and study the two terms in this de-

composition separately. Let Z = µX − X̄. Using the independence of Ω̂, σ̂XY

and X̄ , (32) and (17), and considering that E(ZTZ) = trΣ/n, we have

E{var(II1|σ̂XY , X̄)} = E{(ZT ⊗ σ̂T
XY )var(vec(Ω̂))(Z ⊗ σ̂XY )}/h2(p)

≍ E{ZTZσ̂T
XY σ̂XY )}/{ph2(p)}

≍ tr(Σ) tr{σ2
Y Σ+ nσT

XY σXY }/{pn(n− 1)h2(p)},

From the definition of h(p), tr(Σ) ≍ p and p/{nh(p)} ≍ 1, E{var(II1|σ̂XY , X̄)} ≍
(nh)−1. Now, using again the independence of Z and σ̂XY and (17),

var{E(II1|σ̂XY , X̄)} = var(σ̂T
XY ∆

−1Z)/h2(p)

= E(σ̂T
XY ∆

−1var(Z)∆−1σ̂XY )/h
2(p)

= E(σ̂T
XY ∆

−1Σ∆−1σ̂XY )/{nh2(p)}
= tr{∆−1Σ∆−1(σ2

Y Σ+ nσT
XY σXY )}/{n(n− 1)h2(p)},

(33)

which implies var{E(II1|σ̂XY , X̄)} ≍ n−1, using (11), (12) and p/{nh(p)} ≍ 1.

Using Lemma F.3 of Cook, Forzani and Rothman (2012), the order of II1
under Proposition 4.2 is Op(ω) plus the order of II1 = σ̂T

XY ∆
−1(µX − X̄)/h(p),

which does not depend on Ω̂. This is exactly the variance computed in (33) and
it is of order n−1/2. Thus II = Op(ω + n−1/2). Combining this with the order
of I establishes the claimed order for DN .

It is left to prove(29) and (30). To prove (29) we use the independence of Ω̂
and σ̂XY , (20), the definition of h(p) and p/{nh(p)} = O(1) to get

E(σ̂T
XY Ω̂σ̂XY ) ≍ h(p). (34)

From the independence of Ω̂, σ̂XY , (19), (32) and (34),

var(σ̂T
XY Ω̂σ̂XY ) = var(σ̂T

XY ∆
−1σ̂XY )

+ E
(
(σ̂T

XY ⊗ σ̂T
XY )var(vec(Ω̂))(σ̂XY ⊗ σ̂XY )

)
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≍ h2(p)/n+ E
(
σ̂T
XY σ̂XY

)2
/n

≍ h2(p)/n+ var
(
σ̂T
XY σ̂XY

)
/n+

(
E(σ̂T

XY σ̂XY )
)2

/n

≍ h2(p)/n. (35)

Now, σ̂2
Y = σ2

Y +Op(n
−1/2) implying B̂−B ≍ h−1(p)(σ̂T

XY Ω̂σ̂XY −σT
XY Ω̂σXY ).

Then, (29) follows from (20) and (35).

Using Lemma F.3 of Cook, Forzani and Rothman (2012), (30) for Proposition

4.2 is of order ω plus the order of the same terms where we replace Ω̂ by ∆.
The order of those terms is a direct consequence of (19), (20) and the fact that
σ̂2
Y = σ2

Y +Op(n
−1/2).
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