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Abstract: The Propagation-Separation Approach is an iterative proce-
dure for pointwise estimation of local constant and local polynomial func-
tions. The estimator is defined as a weighted mean of the observations with
data-driven, iteratively updated weights. Within homogeneous regions it
ensures a similar behavior as non-adaptive smoothing (propagation), while
avoiding smoothing among distinct regions (separation). In order to enable
a proof of stability of estimates, the authors of the original study introduced
an additional memory step aggregating the estimators of the successive it-
eration steps. Here, we study theoretical properties of the simplified algo-
rithm, where the memory step is omitted. In particular, we introduce a new
strategy for the choice of the adaptation parameter yielding propagation
and stability for local constant functions with sharp discontinuities.
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1. Introduction

The Propagation-Separation Approach [15] is an adaptive method for nonpara-
metric estimation. This iterative procedure relates to Lepski’s method [6, 11] and
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extends the Adaptive Weights Smoothing (AWS) procedure from Polzehl and
Spokoiny [14]. The Propagation-Separation Approach supposes a local para-
metric model. It is especially powerful in case of large homogeneous regions
and sharp discontinuities. However, it can be extended to local linear or lo-
cal polynomial parameter functions, as well. Hence, the method is applicable
to a broad class of nonparametric models. In our study, we concentrate on
the local constant model for the sake of simplicity. Important application can
be found in image processing, where the local constant model is often satis-
fied.

In this study, we aim to provide a better understanding of the procedure and
its properties. The crucial point of the algorithm is the choice of the adaptation
bandwidth. We present a new formulation of what is known as propagation con-
dition ensuring an appropriate choice. This formulation allows the verification
of propagation and stability of estimates for local constant parameter functions
with sharp discontinuities.

In comparison to the study of Polzehl and Spokoiny [15], there are two im-
portant differences which we want to emphasize. First, we avoid the problematic
Assumption S0 on which the theoretical results in [15] were partially based on.
This assumption requires the statistical independence of the adaptive weights
from the observations. Theoretically, this can be ensured by means of the stan-
dard splitting technique. However, in practice, such a split is questionable due
to the iterative approach of the algorithm. Second, we omit the memory step
which was included into the algorithm to enable a theoretical study. In each it-
eration step, the new estimate is compared with the estimate from the previous
iteration step. In case of a significant difference the new estimate is replaced
by a value between the two estimates, providing a smooth transition, that is
relaxation. This is related to the work of Belomestny and Spokoiny [4] about
spatial aggregation of local likelihood estimates. The theoretical results in [15]
are mainly based on the memory step. However, we show for piecewise constant
functions that the adaptivity of the method yields similar results even if the
memory step is removed from the algorithm. This gains importance as it turned
out, that for practical use the memory step is questionable. Therefore, in later
application of the algorithm, the memory step has been omitted, see e. g. Becker
et al. [2], Li et al. [9, 8], Tabelow et al. [19], Divine et al. [5] still yielding the
desired behavior in practice.

We will show that, for a local constant model, the simplified algorithm be-
haves very similar as before. Here, we aim to justify the omittance of the memory
step, but we do not compare the results with other estimation methods or eval-
uate the estimation error since this has been done in previous works by Polzehl
and Spokoiny, see [14, 15, 16]. Instead, we deduce similar properties for the sim-
plified algorithm as they have been shown for the original procedure in [15]. We
compare the theoretical results and discuss the impact of the memory step for
the case that the unknown parameter function complies with the local constant
model. Consequences of model misspecification will be analyzed in a separate
study.
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The outline is as follows. After a short introduction of the model and the
estimation procedure we introduce a new parameter choice strategy for the
adaptation bandwidth. Then, we consider some numerical examples that illus-
trate the general behavior of the algorithm. The main properties, as these are
propagation, separation and stability of estimates, will be verified in Section 3
for piecewise constant parameter functions with sharp discontinuities. Here, we
take advantage of our new choice of the adaptation bandwidth, which provides
the desired properties under homogeneity. For piecewise constant parameter
functions, the algorithm separates the homogeneity regions and treats each of
them as under homogeneity, provided that the discontinuities are sufficiently
large to be detected. In Section 4, we justify our new choice of the adaptation
bandwidth by analyzing its invariance w.r.t. the unknown parameter function
and by discussing some further questions concerning its application in practice.
We finish with a discussion of the question whether the memory step is needed
and if, where.

We use two results from Polzehl and Spokoiny [15] which do not base on
Assumption S0. These are given in Appendix A. In order to improve readability
we give longer proofs in Appendix B.

2. Model and methodology

In this section we briefly introduce the setting of our study and the estimation
procedure resulting from the Propagation-Separation Approach. The behavior
of the algorithm depends on the adaptation bandwidth, and we introduce a new
strategy for its choice.

2.1. Model

We consider a local parametric model.

Notation 2.1 (Setting). Let Z1, . . . , Zn be independent random variables with
Zi = (Xi, Yi) ∈ X × Y. Here, the metric space X denotes the design space and
Y ⊆ R the observation space. The observations Yi are assumed to follow the
distribution Pθ(Xi) ∈ P, where P denotes some parametric family of probability
distributions and θ : X → Θ ⊆ R is the parameter function that we aim to
estimate. We suppose the deterministic design {Xi}ni=1 to be known.

Typical examples of this general setting are Gaussian regression or the in-
homogeneous Bernoulli, Exponential, and Poisson models, see [15, Section 2]
for a detailed description. In general, the procedure may work for any vector
space Y ⊆ M with Yi ∼ Pθ(Xi), θ : X → Θ ⊆ M , where M is a metric space.
Following Polzehl and Spokoiny [15] we suppose the parametric family to be an
exponential family with standard regularity conditions. This allows an explicit
expression of the Kullback-Leibler divergence simplifying our following analysis.
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Assumption 1 (Local exponential family model). P = (Pθ, θ ∈ Θ) is an expo-
nential family with a convex parameter set Θ ⊆ R and non-decreasing functions
C,B ∈ C2(Θ,R) such that

p(y, θ) := dPθ/dP(y) = p(y) exp [T (y)C(θ)−B(θ)] , θ ∈ Θ,

where P denotes a dominating measure, p(y) is some non-negative function on Y,
T : Y → R, and B′(θ) = θ C ′(θ). For the parameter θ it holds∫

p(y, θ)P(dy) = 1 and Eθ [T (Y )] =

∫
T (y)p(y, θ)P(dy) = θ. (2.1)

Remark 2.2.

• In [15, Assumption (A1)], the authors assumed T (y) ≡ y, i.e. the identity
map. Any invertible transformation T leaves the Kullback-Leibler diver-
gence unchanged. Since the results in Equations (A.2) and (A.1), see Ap-
pendix A, depend on the Kullback-Leibler divergence only, they remain
valid for invertible maps T . In this study, we consider the general case
explicitly in order to clarify, where this transformation T comes into play.

• Equation (2.1), i.e. Eθ[T (Y )] = θ, can be achieved via reparametrization
with θ := t(ϑ), where t(ϑ) := Eϑ[T (Y )]. For invertible functions t(.) this
allows estimation of ϑ by the adaptive estimator ϑ̃ := t−1(θ̃). Additionally,
it follows for all ϑ1, ϑ2 ∈ Θ that KL(ϑ1, ϑ2) = KL(θ1, θ2), where θi = t(ϑi),
i = 1, 2. If t(ϑ) is invertible and linear in ϑ, then we get KL(ϑ̃,Eϑ̃) =
KL(θ̃,Eθ̃). Hence the algorithm remains unmodified and the results in
Sections 3 and 4 below remain valid if t(ϑ) is invertible and linear in ϑ.

• A list of parametric families satisfying Assumption (1), probably after
reparametrization, is given in Table 1.

• We suppose Assumption (1) throughout this article while all later As-
sumptions will be required for specific results only.

In our subsequent analysis the notions of the Kullback–Leibler divergence,
given here as

KL (Pθ,Pθ′) :=

∫
ln

(
d(Pθ)
d(Pθ′)

)
Pθ(dy), θ, θ′ ∈ Θ,

and the Fisher information

I(θ) := −E
[
∂2

∂θ2
log p(y, θ)

]
, θ ∈ Θ,

will be important.

Lemma 2.3 (Fisher information and Kullback-Leibler divergence). Under As-
sumption (1) we have that I(θ) = C ′(θ), θ ∈ Θ. Moreover, the following holds.

• For every compact and convex subset Θκ ⊆ Θ there is a constant κ ≥ 1
such that

I(θ1)

I(θ2)
≤ κ2, for all θ1, θ2 ∈ Θκ . (2.2)
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Table 1
One-parametric exponential families which satisfy Assumption (1), possibly after

reparametrization

P, support(fϑ) Θ p(y) T (y) C(ϑ) B(ϑ) Eϑ [T (Y )]

N (ϑ, σ2) R
e−y

2/(2σ2)

√
2πσ2

y
ϑ

σ2

ϑ2

2σ2
ϑ

y ∈ R

N (0, ϑ) (0,∞)
1
√

2π
y2 −

1

2ϑ

lnϑ

2
ϑ

y ∈ R

logN (ϑ, σ2) (0,∞)
e−(ln y)2/(2σ2)

y
√

2πσ2
ln y

ϑ

σ2

ϑ2

2σ2
ϑ

y ∈ (0,∞)

Γ(p, ϑ) (0,∞)
yp−1

Γ(p)
y −

1

ϑ
p lnϑ pϑ

y ∈ (0,∞)

Exp

(
1

ϑ

)
(0,∞) 1 y −

1

ϑ
lnϑ ϑ

y ∈ [0,∞)

Erlang

(
n,

1

ϑ

)
(0,∞)

yn−1

(n− 1)!
y −

1

ϑ
n lnϑ nϑ

y ∈ [0,∞)

Rayleigh(ϑ) (0,∞) y y2 −
1

2ϑ2
2 lnϑ 2ϑ2

y ∈ [0,∞)

Weibull(ϑ, k) (0,∞) kyk−1 yk −
1

ϑk
k lnϑ ϑk

y ∈ [0,∞)

kY/ϑ ∼ χ2(k) (0,∞)
kk/2yk/2−1

2k/2Γ (k/2)
y −

k

2ϑ

k lnϑ

2
ϑ

y ∈ [0,∞)

Pareto(xm, ϑ) (1,∞)
1

y
ln

(
y

xm

)
−ϑ − ln (ϑ)

1

ϑ
y ∈ [xm,∞)

Poiss(ϑ) (0,∞) 1/k! k lnϑ ϑ ϑ
y := k ∈ N

Bin(n, ϑ) (0, 1]

(
n
k

)
k ln

(
ϑ

1− ϑ

)
−n ln(1− ϑ) nϑ

y := k ∈ 1 : n

NegativeBin(r, ϑ) (0, 1]

(
k + r − 1

k

)
k lnϑ −r ln(1− ϑ)

rϑ

1− ϑ
y := k ∈ N

Bernoulli(ϑ) (0, 1] 1 k ln

(
ϑ

1− ϑ

)
− ln(1− ϑ) ϑ

y := k ∈ {0, 1}

• The Kullback-Leibler divergence is convex w.r.t. the first argument. It sat-
isfies the following explicit formula and locally a quadratic approximation
given as

KL (Pθ,Pθ′) = θ [C(θ)− C(θ′)]− [B(θ)−B(θ′)] (2.3)

= I(θ) [θ − θ′]2 /2 + r(θ∗)(θ − θ′)3/6, (2.4)

where r(θ∗) := −I ′(θ∗)/[I(θ∗)]
3 with θ∗ between θ and θ′.
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Proof sketch. The first assertion follows with B′(θ) = θC ′(θ). Then, Equa-
tion (2.2) holds due to the compactness of Θκ and C ∈ C2(Θ,R). The con-
vexity is satisfied since the second derivative of the Kullback-Leibler divergence
is non-negative

∂2

∂θ2 KL (Pθ,Pθ′) = C ′(θ) > 0.

The local approximation follows from the reparametrization v := C(θ) and
D(v) := B(θ) by Taylor’s Theorem, where the remainder is given in Lagrange
form.

The set Θκ should be sufficiently large such that θ(Xi) ∈ Θκ holds for all
i ∈ {1, . . . , n}. Later on, we need that even the corresponding estimators are
elements of Θκ , see Section 3.3. Explicit choices of κ and their consequences
are discussed in Example A.2 for several probability distributions.

2.2. Methodology of the Propagation-Separation Approach

The Propagation-Separation Approach provides pointwise estimates of the un-
known parameter function θ(.) introduced in Notation 2.1. In other words, for
every design point Xi with i ∈ {1, . . . , n} it yields a local estimator of the
unknown parameter θ(Xi).

The algorithm is iterative, and in each iteration step the pointwise estimator
of the parameter function is defined as a weighted mean of the observations. In
each design point the weights are chosen adaptively as product of two kernel
functions. The location kernel acts on the design space X , and the adaptation
kernel compares the pointwise parameter estimates of the previous iteration
step in terms of the Kullback-Leibler divergence. For each of the two kernels,
a bandwidth controls how much information is taken into account. The loca-
tion bandwidth increases along the number of iterations. Starting at a small
vicinity, in each iteration step the considered region is extended. The increasing
number of included observations enables a monotone variance reduction during
iteration, while the adaptation kernel leads to a decreasing or (in case of model
misspecification) bounded estimation bias. It will be clear from the subsequent
analysis that, by doing so, one obtains similar results as non-adaptive smoothing
within homogeneity regions (propagation) and avoids smoothing across struc-
tural borders (separation). We turn to a formal description, and we start with
introducing some notation.

Notation 2.4.

• θi := θ(Xi);
• ∆ denotes a metric on X ;
• KL(θ, θ′) := KL(Pθ,Pθ′) is the Kullback-Leibler divergence of the proba-

bility distributions Pθ and Pθ′ with parameter θ, θ′ ∈ Θ;
• Kloc,Kad : [0,∞) → [0, 1] are non-increasing kernels with compact sup-

port [0, 1] and K·(0) = 1, where Kloc denotes the location and Kad the
adaptation kernel;
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• {h(k)}k∗k=0 is an increasing sequence of bandwidths for the location kernel
with h(0) > 0;

• λ > 0 is the bandwidth of the adaptation kernel;

• U (k)
i := {Xj ∈ X : ∆(Xi, Xj) ≤ h(k)}.

For comparison and for the initialization of the algorithm we define the non-

adaptive estimator θ
(k)

i .

Definition 2.5 (Non-adaptive estimator). Let i ∈ {1, . . . , n} and k ∈ {0, . . . , k∗}.
The non-adaptive estimator θ

(k)

i of θi is defined by

θ
(k)

i :=

n∑
j=1

w
(k)
ij T (Yj)/N

(k)

i

with weights w
(k)
ij := Kloc(∆(Xi, Xj)/h

(k)), and N
(k)

i :=
∑
j w

(k)
ij .

Corollary 2.6 (Relation to maximum likelihood estimation). Assumption (1)
implies that the standard local weighted maximum likelihood estimator

θ
(MLE)
i := argsupθL(W

(k)

i , θ) with L(W
(k)

i , θ) :=
∑
j

w
(k)
ij log p(Yj , θ),

where W
(k)

i := {w(k)
ij }j, equals the non-adaptive estimator θ

(k)

i in Definition 2.5.
Moreover, it follows for the ”fitted log-likelihood” with θ ∈ Θ that

L(W
(k)

i , θ
(MLE)
i , θ) := L(W

(k)

i , θ
(MLE)
i )− L(W

(k)

i , θ) = N
(k)

i KL
(
θ

(k)

i , θ
)
.

Now, we present the (slightly modified) algorithm of the Propagation-Sepa-
ration Approach allowing T (y) 6= y and omitting the memory step [15, Sec-
tion 3.2] by setting ηi ≡ 1. Modifications to obtain the original algorithm as in
[15, Section 3.3] are discussed in Remark 2.8, below. More details can be found
in [15, Section 3].

Algorithm 1 (Propagation-Separation Approach).

1. Input parameters: Sequence of location bandwidths {h(k)}k∗k=0, adaptation
bandwidth λ.

2. Initialization: θ̃
(0)
i := θ

(0)

i and Ñ
(0)
i := N

(0)

i for all i ∈ {1, . . . , n}, k := 1.
3. Iteration: Do for every i = 1, . . . , n

θ̃
(k)
i :=

n∑
j=1

w̃
(k)
ij T (Yj)/Ñ

(k)
i (2.5)

with weights w̃
(k)
ij := Kloc(∆(Xi, Xj)/h

(k)) · Kad(s
(k)
ij /λ), where s

(k)
ij :=

Ñ
(k−1)
i KL(θ̃

(k−1)
i , θ̃

(k−1)
j ) and Ñ

(k)
i :=

∑
j w̃

(k)
ij .

4. Stopping: Stop if k = k∗ and return θ̃
(k∗)
i for all i ∈ {1, . . . , n}, otherwise

increase k by 1.



A different perspective on the Propagation-Separation Approach 2709

Remark 2.7 (Choice of the input parameters).

• The amount of adaptivity is determined by the adaptation bandwidth λ
which can be specified by the propagation condition independent of the
observations at hand, see Sections 2.3, 4 and [15, Sections 3.4 and 3.5].
The choice λ =∞ (formally) yields non-adaptive smoothing, while a small
adaptation bandwidth λ leads to adaptation to noise such that the adap-

tive estimator equals the observation, i.e. θ̃
(k)
i = Yi.

• The initial location bandwidth h(0) should be sufficiently small in order to
avoid smoothing among distinct homogeneous regions, before adaptation

starts. In practice, any choice of h(0) such that U
(0)
i = {Xi} for every

i ∈ {1, . . . , n} seems to be recommendable. Its drawback is discussed in
Remark A.3.

• The sequence of bandwidth {h(k)}k∗k=0 can be chosen such that h(k) :=
akh(0) with a ≈ 1.251/d, where d denotes the dimension of the design
space X , see [15, Section 3.4]. Alternatively, we could ensure a constant
variance reduction of the estimator, see [2].

• The procedure provides an intrinsic stopping criterion yielding a certain
stability of estimates, see Section 3 and the simulations in Figures 1 and 2.
Hence, the maximal bandwidth h(k∗), specified by the maximal number of
iterations k∗, is only bounded by the available computation time.

Note, that the input parameters, the non-adaptive weights w
(k)
ij and their

sum N
(k)

i are deterministic while the adaptive weights w̃
(k)
ij and their sum Ñ

(k)
i

are random due to the data-driven statistical penalty s
(k)
ij . In particular, we em-

phasize that the Propagation-Separation Approach does not use adaptive pa-
rameters. It is adaptive in the sense that the returned estimator function θ̃(k∗)(.)

is based upon structure-adaptive weights w̃
(k)
ij , which describe the homogeneity

regions of the unknown parameter function θ.

Remark 2.8 (Original procedure). In Algorithm 1, we omitted the memory
step. In order to get the original version of the Propagation-Separation Ap-
proach as introduced in [15, Section 3.3] the memory step can be included in

the following manner. Denoting the aggregated estimator by θ̂
(k)
i the procedure

is initialized with θ̂
(0)
i := θ

(0)

i and N̂
(0)
i := N

(0)

i for all i, see item (2) in Algo-

rithm 1. Then, we relax the adaptive estimator θ̃
(k)
i in Equation (2.5) by adding

in item (3) of Algorithm 1 the additional step

θ̂
(k)
i := ηiθ̃

(k)
i + (1− ηi)θ̂(k−1)

i , where ηi := (1− η0)Kme

(
m

(k)
i /τ

)
. (2.6)

This uses the memory kernel Kme : [0,∞) → [0, 1], the memory bandwidth
τ > 0, the minimal memory effect η0 ∈ [0, 1) and the memory penalty

m
(k)
i := N

(k−1)

i KL(θ̃
(k)
i , θ̂

(k−1)
i ) with N

(k−1)

i =
∑
j

w
(k)
ij ,
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which measures the difference between the new adaptive estimator θ̃
(k)
i and

the aggregated estimator θ̂
(k−1)
i of the previous iteration step. Additionally, we

replace the statistical penalty

s
(k)
ij := N̂

(k−1)
i KL(θ̂

(k−1)
i , θ̂

(k−1)
j )

and define

N̂
(k−1)
i := ηiÑ

(k−1)
i + (1− ηi)N̂ (k−1)

i .

This leads to the modified output θ̂
(k∗)
i for all i ∈ {1, . . . , n} in item (4). In

Section 5, we discuss the impact of the memory step. There, we concentrate on
the question whether the memory step is needed to obtain the properties of the
algorithm shown in [15, Section 5] and if, where.

Both the original and the simplified Propagation-Separation Approach pro-
vide a sequence of estimates with, in general, decreasing variances. Here, the
adaptivity of the weights may be interpreted as a stopping criterion that leads
to a similar model selection as Lepski’s method [6, 11]. More precisely, the
Propagation-Separation Approach and Lepski’s method yield an estimator which
balances the trade-off between the decreasing variance and the increasing bias
when different homogeneity regions are included into the estimator.

2.3. Propagation condition

As mentioned above, an appropriate choice of the adaptation bandwidth λ is
crucial for the behavior of the algorithm. Polzehl and Spokoiny [15, Section 3.5]
suggested a choice, called propagation condition. The basic idea is that the
impact of the statistical penalty in the adaptive weights should be negligible
under homogeneity yielding almost free smoothing within homogeneous regions.
More precisely, the authors proposed to adjust λ by Monte-Carlo simulations in
accordance with the following criterion, where an artificial data set is considered.

“(. . . ) the parameter λ can be selected as the minimal value of λ that, in case of
a homogeneous (parametric) model θ(x) ≡ θ, provides a prescribed probability
to obtain the global model at the end of the iteration process.”

Here, we formally introduce a new criterion which allows, in the setting of Al-
gorithm 1, the verification of propagation and stability under (local) homogene-
ity. Additionally, it provides a better interpretability than earlier formulations,
see e.g. [17]. In [18], the authors presented a similar approach in the context of
model selection using a propagation condition for the choice of the critical values
zk determining some confidence intervals. Here, we consider quantiles instead of
confidence intervals.

Under homogeneity, i.e. if θ(.) ≡ θ, Equation (A.1) in Appendix A shows

that the non-adaptive estimator satisfies P(N
(k)

i KL(θ
(k)

i , θ) > z) ≤ 2e−z for

all i ∈ {1, . . . , n} and every k ∈ {0, . . . , k∗}. Hence, KL(θ
(k)

i , θ) decreases at
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least with rate N
(k)

i . The following condition in Definition 2.9 ensures a similar
behavior for the adaptive estimator. We introduce the function

Zλ : {0, . . . , k∗} × (0, 1)×Θ× {1, . . . , n} → [0,∞), λ > 0,

defined as

Zλ(k, p; θ, i) := inf
{
z > 0 : P

(
N

(k)

i KL(θ̃
(k)
i (λ), θ) > z

)
≤ p
}
, (2.7)

where θ̃
(k)
i (λ) denotes the adaptive estimator in position Xi resulting from the

Propagation-Separation Approach with adaptation bandwidth λ > 0 and ob-
servations Yj ∼ Pθ for all j ∈ {1, . . . , n}, i.e. θ(.) ≡ θ.

Definition 2.9 (Propagation condition). We say that λ is chosen in accordance
with the propagation condition at level ε > 0 for θ ∈ Θ if the function Zλ(., p; θ, i)
in Equation (2.7) is non-increasing for all p ∈ (ε, 1) and every i ∈ {1, . . . , n}.

As before, the propagation condition is formulated w.r.t. some fixed param-
eter θ ∈ Θ. In practice, the parameter function θ(.) is unknown. Hence, we
need to ensure that the propagation condition is satisfied for all values θi with
i ∈ {1, . . . , n}. At best, the choice of λ by the propagation condition is invariant
w.r.t. the underlying parameter θ. The study in Section 4.1 points out that this
is the case for Gaussian and exponential distribution and as a consequence for
log-normal, Rayleigh, Weibull, and Pareto distribution. Else, we recommend to
identify some parameter θ∗ yielding a sufficiently large choice of the adaptation
bandwidth λ such that the propagation condition remains valid for all values θi,
i ∈ {1, . . . , n}, see Section 4.1 for more details.

Remark 2.10.

• In Section 4.1, we consider some examples of the propagation condition
with Gaussian, exponential and Poisson distribution, see Figures 3, 4,
and 5.

• In Theorem 1 we need ε to be strictly smaller than 1/n. However, this is
based on a quite rough upper bound. In practice, it seems advantageous
to choose ε appropriately for the respective application.

• The probability P(N
(k)

i KL(θ̃
(k)
i (λ), θ) > z) cannot be calculated exactly.

In Section 4.2, we introduce an appropriate approximation which can be
used in practice.

The propagation condition yields a lower bound for the choice of λ. In general,
it is advantageous to allow as much adaptation as possible without violating the
propagation condition. Hence, the optimal choice of λ is given by the infimum
over the values which are in accordance with the propagation condition. In order
to ensure that λ > 0 we introduce an additional constant λmin > 0.

Notation 2.11. Let λmin > 0 be fixed and consider the set

Λ(ε; θ) := {λ > 0 : Zλ(., p; θ, i) is non-increasing for p ∈ (ε, 1) and all i} .
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Fig 1. Results of Algorithm 1 (black line) for the piecewise constant parameter func-
tion θ1(.) (blue line) with adaptation bandwidth λ1 = 14.6 and location bandwidths (f.l.t.r.)
h1 = 26.6, 388, 5640. The green circles represent the Gaussian observations.

Then, we introduce

λopt(ε, θ;λmin) := max {λmin, inf{λ ∈ Λ(ε; θ)}} .

2.4. Some heuristic observations

In order to provide some intuition, we illustrate the general behavior of Algo-
rithm 1 on two examples, see Figures 1 and 2. We apply the R-package aws [13].
Here, the memory step is omitted by default. It can be included setting memory

= TRUE.
On X := {1, . . . , 6000}, the first test function is piecewise constant

θ1(x) :=



0, if x ∈ {1, . . . , 2200}
2, if x ∈ {2201, . . . , 4400}
−2.5, if x ∈ {4401, . . . , 4800}
−2.25, if x ∈ {4801, . . . , 5200}
−2, if x ∈ {5201, . . . , 5600}
−2.25, if x ∈ {5601, . . . , 6000}

and the second one is piecewise polynomial

θ2(x) :=


x/1500, if x ∈ {1, . . . , 1500}
4 + ((x/100− 27)/6)2/2, if x ∈ {1501, . . . , 4500}
−1− (x/300− 15), if x ∈ {4501, . . . , 6000}.

The observations follow a Gaussian distribution, i.e. Yi ∼ N (θ(Xi), 1).
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Fig 2. Results of Algorithm 1 (black line) for the piecewise polynomial parameter func-
tion θ2(.) (blue line) with adaptation bandwidth λ2 = 14.6 and location bandwidths (f.l.t.r.)
h2 = 13.6, 127, 5640. The green circles correspond to the Gaussian observations.

The plots were provided by the function aws setting hmax := h(k∗) := 6000
and lkern = "Triangle", such that

Kloc(x) := (1− x2)+ and Kad(x) := min{1, 2− 2x}+. (2.8)

The adaptation bandwidth λ = 14.6 was chosen in accordance with the prop-
agation condition of level ε = 5 · 10−4, see Section 2.3 for the definition and
Section 4.1 for a study of its invariance w.r.t. the parameter θ in case of Gaus-
sian observations.

In Figure 1, we show the results for the piecewise constant function θ1(.)
with increasing location bandwidths h1 = 26.6, 388, 5640 corresponding to the
iteration steps k1 = 14, 24, 41. Figure 2 is based on the piecewise smooth func-
tion θ2(.) setting h2 = 13.6, 127, 5640, that is k2 = 14, 24, 41. For both examples,
it holds k∗ = 41 representing the final iteration step. In the steps k1 = k2 = 24
the MSE is minimal.

We summarize the following heuristic observations.

• Homogeneous regions with sufficiently large discontinuities are separated
by the algorithm leading to a consistent estimator, see x ∈ {1, . . . , 4400}
in Figure 1.

• If the discontinuities are too small, separation fails. Then, different homo-
geneous regions are treated as one yielding a bounded estimation bias. This
is illustrated in the right part of Figure 1, where x ∈ {4401, . . . , 6000}.

• In Figure 2, we consider the case of model misspecification, that is a param-
eter function θ(.) that is not piecewise constant. Here, the algorithm forces
the final estimator into a step function. The step size depends mainly on
the smoothness of the parameter function θ(.) and the adaptation band-
width λ. However, the estimation bias can be reduced by an accurate
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stopping criterion. The maximal location bandwidth h(k∗) should be cho-
sen such that the non-adaptive estimator in Definition 2.5 behaves good
within regions without discontinuities. Then, supposing an appropriate
choice of the adaptation bandwidth λ, within these regions, Algorithm 1
would yield similar results as non-adaptive smoothing while smoothing
among distinct regions would be avoided as sharp discontinuities could be
detected by the adaptive weights. Such a choice of k∗ can be advantageous
under model misspecification, but this is beyond the scope of this article.
In case that a local constant model with sharp discontinuities is valid we
will deduce stability results in Proposition 3.1 and Section 3.3 showing
that no stopping criterion is needed.

Thus, the heuristic properties are quite clear. However, the iterative approach
complicates a theoretical verification considerably. Therefore, in Section 3 we
concentrate on piecewise constant functions with sharp discontinuities. Here, our
new propagation condition, see Section 2.3, ensures propagation within homo-
geneous regions and stability of estimates due to separation of distinct regions.
The case of model misspecification will be analyzed in an upcoming study.

3. Theoretical properties

Now, we analyze the behavior of the algorithm in more detail. First, we consider
a homogeneous setting, where propagation and stability of estimates follow as
direct consequence of the propagation condition. Then, we show the separa-
tion property. For locally constant parameter functions with sufficiently sharp
discontinuities this restricts smoothing to the respective homogeneous regions
yielding again propagation and a certain stability of estimates. Throughout this
section, we assume that we have identified λ and ε such that the propagation
condition holds.

3.1. Propagation and stability under homogeneity

We show for a homogeneous setting that the propagation condition yields with

Equation (A.1) in Appendix A an exponential bound for P(N
(k)

i KL(θ̃
(k)
i , θ) > z),

the excess probability of the Kullback-Leibler divergence between the adaptive

estimator θ̃
(k)
i and the true parameter θ.

Proposition 3.1. Suppose θ(.) ≡ θ, Assumption (1), and let the adaptation
bandwidth λ be chosen in accordance with the propagation condition at level ε
for θ ∈ Θ. Then, for each i ∈ {1, . . . , n}, k ∈ {0, . . . , k∗}, and all z > 0, it holds

P
(
N

(k)

i KL
(
θ̃

(k)
i , θ

)
> z
)
≤ max

{
2e−z, ε

}
. (3.1)

In particular, we get for all k′ ≥ k that

P
(
N

(k′)

i KL
(
θ̃

(k′)
i , θ

)
> z
)
≤ max

{
P
(
N

(k)

i KL
(
θ̃

(k)
i , θ

)
> z
)
, ε
}
. (3.2)
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Proof. Equation (3.2) follows from the propagation condition, which ensures
that the function Zλ(., p; θ, i) in Equation (2.7) is non-increasing for all p ∈ (ε, 1)

and every i ∈ {1, . . . , n}. Since, see item (2) in Algorithm 1, we have θ̃
(0)
i = θ

(0)

i

this yields

P
(
N

(k)

i KL
(
θ̃

(k)
i , θ

)
> z
) Eq.(3.2)

≤ max
{
P
(
N

(0)

i KL
(
θ

(0)

i , θ
)
> z
)
, ε
}

Eq. (A.1)

≤ max
{

2e−z, ε
}
,

leading to the assertion.

Proposition 3.1 yields with z := µ log(n) and ε := cεn
−µ, where cε > 0 and

µ > 2 that

P
(
∃ i : KL

(
θ̃

(k)
i , θ

)
> µ log(n)/N

(k)

i

)
≤ max {2, cε} · n−1.

If h(k∗) is sufficiently large such that N
(k∗)

i is of order n this leads with Equa-

tion (2.4) to the root-n consistency of θ̃
(k)
i up to a log-factor. This additional

log-factor results from the adaptivity as discussed in [7]. However, asymptotic
results are problematic in this context as we discuss in Section 5. Therefore, we
prefer to consider Proposition 3.1 as error bound for a fixed iteration step k,
where the results for local homogeneity in Section 3.3 are based on.

3.2. Separation property

For considerably different parameter values the corresponding adaptive weights
become zero, see Proposition 3.2 below. The result is similar to the first part
of [15, Theorem 5.9]. It implies that different homogeneous regions with suffi-
ciently large discontinuities will be separated by the algorithm. In particular, we
will see, that the lower bound for the discontinuities allowing exact separation
of the distinct regions depends mainly on the adaptation bandwidth λ and the
achieved quality of estimation in the previous iteration step. Remember that

the adaptive weights w̃
(k)
ij and their sum Ñ

(k)
i are random. In the proofs, we

apply Equation (A.2) in Appendix A, which requires that θ̃
(k)
i ∈ Θκ .

Proposition 3.2 (Separation property). Suppose Assumptions (1). We con-
sider two points Xi1 and Xi2 providing in iteration step k the estimation accu-

racy KL(θ̃
(k)
im
, θim) ≤ z

(k)
m := z/N

(k)

im with some constant z > 0 and θim , θ̃
(k)
im
∈

Θκ with Θκ as in Lemma 2.3, m = 1, 2. If

KL1/2 (θi1 , θi2) > κ
(√

λ/Ñ
(k)
i1

+

√
z

(k)
1 +

√
z

(k)
2

)
(3.3)

then it holds w̃
(k+1)
i1i2

= 0.
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Proof. Due to the compact support of the adaptation kernel Kad, it suffices to
show that the statistical penalty introduced in item (3) of Algorithm 1 satis-

fies s
(k+1)
i1i2

> λ. Equation (A.2) in Appendix A yields for KL(θ̃
(k)
im
, θim) ≤ z

(k)
m

with m = 1, 2 that

KL1/2
(
θ̃

(k)
i1
, θ̃

(k)
i2

)
≥ κ−1KL1/2 (θi1 , θi2)−

√
z

(k)
1 −

√
z

(k)
2

such that

s
(k+1)
i1i2

≥ Ñ (k)
i1

[
κ−1

√
KL (θi1 , θi2)−

√
z

(k)
1 −

√
z

(k)
2

]2

> λ,

by Equation (3.3).

Remark 3.3. The lower bound (3.3) holds if

KL1/2 (θi1 , θi2) > 3κ ·
max

{√
λ,
√
z
}

min

{√
Ñ

(k)
i1
,

√
N

(k)

i1 ,

√
N

(k)

i2

} .
This emphasizes the impact of the involved sample sizes.

3.3. Propagation and stability under local homogeneity

Next, we consider a locally homogeneous setting with sharp discontinuities,
formally described in Assumption (2). In this case, smoothing is restricted to
the homogeneous regions leading to similar results as under homogeneity, that
is, to propagation and to stability of estimates. We introduce some auxiliary
notions.

Notation 3.4.

• C(M) is the smallest connected set that includes the respective set M , i.e.

C(M) :=
⋂
{Mc : Mc is a connected space and M ⊆Mc} .

• We call the discrete set M := {Xlj}mj=1 ⊆ X connected if

Xj ∈M ⇔ Xj ∈ C(M) for allXj ∈ X .

• We call the connected set M := {Xlj}mj=1 ⊆ X convex if C(M) is convex.

Then, the setting is described by the following structural assumption.

Assumption 2 (Structural assumption). There is a non-trivial partition V :=
{Vi}i of X into maximal homogeneity regions, i.e. for each Xi ∈ X there are a
convex neighborhood Vi ⊆ X and a constant ϕi > 0 such that{

KL (θi, θj) = 0 for all Xj ∈ Vi
KL (θi, θj) > ϕ2

i for all Xj /∈ Vi.
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The convexity of the neighborhoods {Vi}ni=1 ensures the comparability of
the homogeneous setting in Proposition 3.1 and the setting within each of these
neighborhoods. A violation of this condition may lead to another behavior of the
adaptive estimator due to the changed impact of the non-adaptive weights. The
specific form of the homogeneity regions does not matter since Equation (A.1)
and hence the probability condition do not depend thereon.

We deduce the propagation property for the present case of local homogene-

ity. Here, we should take into account that the considered neighborhood U
(k)
i

might be much larger than the respective homogeneity region Vi. Obviously, the

divergence KL(θ̃
(k)
i , θi) cannot converge with rate N

(k)

i in this case. Therefore,

we introduce the notion of the effective sample size n
(k)
i .

Notation 3.5. We define for each i ∈ {1, . . . , n} and k ∈ {0, . . . , k∗} the
effective sample size and its local minimum

n
(k)
i :=

∑
Xj∈Vi∩U(k)

i

w
(k)
ij and n

(k)
i := min

Xj∈U(k)
i

n
(k)
j . (3.4)

As it turns out, the quantities n
(k)
i determine the minimal stepsizes ϕi such

that a discontinuity will be detected. During the first iteration steps it holds

n
(k)
i = N

(k)

i . The quotient n
(k)
i /N

(k)

i decreases when U
(k)
i becomes larger than Vi.

In the following theorem, we consider the events

B(k)(z) :=
{
n

(k)
i KL(θ̃

(k)
i , θi) ≤ z for all i

}
, z > 0.

and

M (k′)(z) :=

k′⋂
k=0

n⋂
i=1

{
ϕi > κ

[√
λ/Ñ

(k)
i + 2

√
z/n

(k)
i

]}
, (3.5)

where ϕi > 0 is as in Assumption (2). In B(k)(z) the estimation error is bounded
from above and in M (k′)(z) the discontinuities are sufficiently large for separa-
tion.

We confine our subsequent analysis to the favorable realizations {T (Yi) ∈
Θκ for all i} and quantify the probability pκ of its complementary set, see Ap-
pendix A for further details. We also restrict the range of θ(.) by the subset
Θ∗ ⊆ Θ which may influence the value of pκ .

Theorem 1 (Propagation property under local homogeneity). Suppose As-
sumptions (1) and (2) and let the bandwidth λ be chosen in accordance with the

propagation condition at level ε for all θi, i ∈ {1, . . . , n}. If P
(
M (k′)(z)

)
> 0

then it holds

P
(
B(k′)(z)|M (k′)(z)

)
≥ 1−

[
pκ + (k′ + 1) max

{
2ne−z, nε

}]
/P
(
M (k′)(z)

)
, (3.6)

where pκ is as in Notation A.1.
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Remark 3.6.

• In Equation (3.6), we observe an additional factor (k + 1), which ap-
peared in the propagation property of Polzehl and Spokoiny [15] as well,
see Equation (5.1) in Section 5, below. This factor results from the proof
only and might be avoidable. In particular, we notice that the given bound
is not sharp as we did not take advantage of the intersections of the sets
(B(k)(z))c in Equation (B.2) of the proof. The above theorem provides a
meaningful result for z ≥ q log(n) and ε := cεn

−q with cε > 0 and q > 1.
It is the better the smaller pκ and the larger the discontinuities ϕi which
implies that P(M (k′)(z)) is close to one. Remind that pκ = 0 for Gaussian
and log-normal distributed observations.
• Separation depends via the statistical penalty on the estimation quality

of all data within the local neighborhood U
(k)
i . Therefore, the extension of

the smallest homogeneous region, denoted by n
(k)
i , determines the lower

bound (3.5) for the discontinuities that provide an exact separation of
the distinct homogeneous regions. This bound is closely related to Equa-

tion (3.3) that involves only two points such that the term 2/

√
n

(k)
i from

Equation (3.5) can be replaced by(
1/

√
N

(k)

i1 + 1/

√
N

(k)

i2

)
having the same effect.

Finally, we deduce a similar result as in Equation (3.2) under local homo-
geneity. Thus, we infer from the estimation quality in iteration step k1 on the
estimation quality in step k2 > k1. To this end, we apply again the separation
property, see Proposition 3.2. This requires sure knowledge on the previously
achieved estimation quality. Therefore, we consider the conditional probability
and verify an exponential bound.

Proposition 3.7 (Stability of estimates under local homogeneity). In the sit-
uation of Theorem 1, it holds for all k1, k2 ∈ {0, . . . , k∗} with k1 < k2 ≤ k′ such
that 2pκ + (k2 + 1) max{2ne−z, nε} < P(M (k2)(z)) that

P
(
B(k2)(z)|B(k1)(z) ∩M (k2)(z)

)
≥

P
(
M (k2)(z)

)
− 2pκ − (k2 + 1) max {2ne−z, nε}

P
(
M (k2)(z)

)
− pκ − (k1 + 1) max {2ne−z, nε}

.

Remark 3.8. The assumptions on the choices of k1 and k2 ensure that the
lower bound in Proposition 3.7 is larger than zero and smaller than one. This
lower bound for the conditional probability P(B(k2)(z)|B(k1)(z) ∩M (k2)(z)) im-
proves the lower bound of P(B(k2)(z)|M (k2)(z)) in Theorem 1 if pκ is small and
P(M (k2)(z)) is large, that is, if Θκ and the discontinuities are sufficiently large.
However, the result allows a comparison of the established lower bounds only,
but not of the exact probabilities.
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4. Justification of the propagation condition

In this section, we dwell into the propagation condition and discuss its applica-
tion in practice.

4.1. Invariance of the propagation condition w.r.t. the parameter

The propagation condition in Definition 2.9 is formulated w.r.t. the unknown
parameter θ ∈ Θ. In this section, we evaluate its variability w.r.t. this parameter.
To this end, we start with a more general problem yielding a sufficient criterion.
This criterion suggests the invariance of the propagation condition w.r.t. the
parameter θ in case of Gaussian and exponential distribution and as a conse-
quence of log-normal, Rayleigh, Weibull, and Pareto distribution. Additionally,
we discuss the choice of λ if the associated function Zλ in Equation (2.7) is not
invariant w.r.t. the parameter θ, where we concentrate on the Poisson distribu-
tion.

We introduce a general criterion for the invariance of the composition of two
functions w.r.t. some parameter θ.

Proposition 4.1. Let f : Ωf → R and g : Ωg → R be continuously differentiable
functions with open domains Ωf ,Ωg ⊆ R2. We denote Ωfθ := {y : (y, θ) ∈ Ωf},
fθ : Ωfθ → R with fθ(y) := f(y, θ), and analogous Ωg and gθ. Then, we suppose

gθ(Ω
g
θ) ⊆ Ωfθ and |∂gθ∂y | > 0, such that the composition fθ ◦ g−1

θ : gθ(Ω
g
θ)→ R is

well-defined. The function

h(z, θ) := fθ
(
g−1
θ (z)

)
, (z, θ) ∈ g(Ωg),

is invariant w.r.t. θ if a variable ζ(y, θ) and functions f̃ and g̃ exist such that

f̃(ζ) = fθ(y) and g̃(ζ) = gθ(y). (4.1)

Now, we are well prepared to evaluate the invariance of the propagation con-
dition in Definition 2.9, and hence of the choice of λ, w.r.t. the parameter θ.
The estimator is defined as linear combination of the terms T (Yj), where the
adaptive and the non-adaptive estimator differ only in the definition of the
weights. Thus, we approach the problem in three steps. We start from the spe-
cial case, where the estimator is restricted to a single point T (Yj). Then, we
consider the non-adaptive estimator describing its probability density as con-
volution of the respective densities corresponding to the weighted observations.
Here, we take advantage of the statistical independence of the involved random

variables w
(k)
ij T (Yj)/N

(k)

i . In case of the adaptive estimator we cannot follow the
same approach. This would require knowledge about the probability distribu-

tion of the random variables w̃
(k)
ij T (Yj)/Ñ

(k)
i , where the adaptive weights follow

an unknown distribution. Furthermore, these variables are not statistically in-
dependent. To compensate the resulting lack of a theoretical proof, we illustrate
by simulations that the adaptive estimator shows almost the same behavior as
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the non-adaptive estimator, if the propagation condition is satisfied. This sug-

gests that the probability distribution of KL(θ̃
(k)
i , θ) is invariant w.r.t. θ if the

same holds true w.r.t. the non-adaptive estimator. The single observation case
is treated first.

Lemma 4.2. Let P = {Pθ}θ∈Θ with Θ ⊆ R be a parametric family of con-
tinuous probability distributions. Suppose that Y ∼ Pθ and T (Y ) ∈ Θ almost
surely, and that the density fYθ of Y is continuously differentiable. Consider the

random variable Z := gθ(Y ) := KL(PT (Y (ω)),Pθ), and assume that ∂gθ
∂y 6= 0.

The density fZθ of Z is invariant w.r.t. the parameter θ if a variable ζ(y, θ) and

functions f̃ and g̃ exist such that

f̃(ζ) = fYθ (y) ·
∣∣∣∣∂gθ∂y (y)

∣∣∣∣−1

and g̃(ζ) = gθ(y). (4.2)

Proof. The assertion follows as special case of Proposition 4.1 with

h(z, θ) := fZθ (z) = fYθ
(
g−1
θ (z)

)
·
∣∣∣∣∂gθ∂y (g−1

θ (z)
)∣∣∣∣−1

since Pθ(|∂gθ∂y (y)| > 0) = Pθ(T (Y ) 6= θ) = 1.

This Lemma yields the desired results for Gaussian and Gamma-distributed
observations.

Example 4.3. We consider the same setting as in Lemma 4.2. In the following
cases, the density of Z is invariant w.r.t. the parameter θ.

• P = {N (θ, σ2)}θ∈Θ with σ > 0 fixed: Equation (2.3) and Table 1 yield for
the Kullback-Leibler divergence of Pθ,Pθ′ ∈ P the explicit formula

KL (θ, θ′) =
(θ − θ′)2

2σ2
such that

∂gθ
∂y

(y) =
y − θ
σ2

.

Since fYθ (y) = exp(− (y−θ)2
2σ2 )/

√
2πσ2 we get the invariance w.r.t. θ from

Lemma 4.2 by setting

ζ(y, θ) := y − θ, f̃(ζ) :=
σ e−

ζ2

2σ2

ζ
√

2π
, and g̃(ζ) :=

ζ2

2σ2
.

• P = {Γ(p, θ)}θ∈Θ with p > 0 fixed: It holds fYθ (y) = yp−1 e−y/θ

θpΓ(p) , such that

KL (θ, θ′) = p [θ/θ′ − 1− ln (θ/θ′)] and
∂gθ
∂y

(y) = p

(
1

θ
− 1

y

)
.

Thus, Lemma 4.2 can be applied with

ζ(y, θ) :=
y

θ
, f̃(ζ) =

ζp e−ζ

p(ζ − 1)Γ(p)
and g̃(ζ) = p [ζ − 1− ln ζ] .
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This extends to non-adaptive linear combinations as follows. Lemma 4.2 can

be applied w.r.t. the non-adaptive estimator with Y := θ
(k)

i considering the

composition of the density f
θ
(k)
i

θ and the Kullback-Leibler divergence described
by the function gθ. While the latter depends on the assumed parametric family P
only, the density f

θ
(k)
i

θ is determined via convolution of the probability densities

of w
(k)
ij T (Yj)/N

(k)

i , where Yj ∼ Pθ ∈ P. Hence, it depends directly on the
function T (.) introduced in Assumption (1).

Theorem 2. Let P = {Pθ}θ∈Θ with Θ ⊆ R be a parametric family of probability
distributions. We consider the random variable

Z := gθ(θ
(k)

i ) :=
[
ω 7→ KL

(
P
θ
(k)
i (ω)

,Pθ
)]
,

where θ
(k)

i denotes the non-adaptive estimator depending on the observations

Yj
iid∼ Pθ with j ∈ {1, . . . , n} and some θ ∈ Θ. The density of Z is invariant

w.r.t. the parameter θ in the following cases.

• P = {N (θ, σ2)}θ∈Θ with σ > 0 fixed;
• P = {logN (θ, σ2)}θ∈Θ with σ > 0 fixed;
• P = {Exp(1/θ)}θ∈Θ;
• P = {Rayleigh(θ)}θ∈Θ;
• P = {Weibull(θ, k)}θ∈Θ with k > 0;
• P = {Pareto(xm, θ)}θ∈Θ with xm ≥ 1.

The density of the convolution of exponential distributions has been studied
for instance in [1].

Remark 4.4. The following is known from Example 4.3: The random variable
[ω 7→ KL(PT (Y (ω)),Pθ)] is invariant w.r.t. the parameter θ if the observations
follow a Gamma distribution. However, the probability distribution of the corre-
sponding non-adaptive estimator has a quite sophisticated form [10, 12], where
the corresponding summands could not been proven to be invariant w.r.t. θ.
Though, in case of a location kernel that attains only values in {0, 1} we get

Yj
iid∼ Γ(p, θ) =⇒ θ

(k)

i ∼ Γ(N
(k)

i p, θ/N
(k)

i ) if w
(k)
ij ∈ {0, 1} for all j.

This yields via Example 4.3 the invariance w.r.t. θ. The same holds true for the
Erlang and scaled chi-squared distribution since

Erlang(n, 1/θ) = Γ(n, θ)

and
Y ∼ Γ(k/2, 2θ/k) if kY/θ ∼ χ2(k) = Γ(k/2, 2).

The new propagation condition is included into the R-package aws [13]. Simu-
lation tests yield smaller values of the adaptation bandwidth λ than the previous
version of the propagation condition, hence allowing for better smoothing results
with a smaller estimation bias.
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Fig 3. Plots of the propagation condition for the Gaussian distribution with (f.l.t.r.) λ =
22.4, 13.6, 9.72. The isolines of the probability p for values between 10−6 and 0.5 are plotted
w.r.t. the location bandwidth h(k) described by the iteration step k and the corresponding value
z = Zλ(k, p; θ = 1, i) for some i ∈ {1, . . . , n}. The black solid lines represent the isolines of
the adaptive estimator, the red dotted lines correspond to the non-adaptive estimator.

In Figures 3 and 4, we show some examples to illustrate the close relation
of the adaptive and the non-adaptive estimator under a satisfied propagation
condition. The plots have been realized using the function awstestprop on
a two-dimensional design with 5000 × 5000 points and the same kernels as in
Equation (2.8). The maximal location bandwidth h(k∗) was set to 50 requiring 38
iteration steps. Running the simulation with different parameters θ yield exactly
the same plots. In Figure 3, we show the results for the Gaussian distribution
with three different values of λ. In Figure 4, we consider the same setting w.r.t.
the exponential distribution. Both Theorem 2 and the numerical simulations
suggest the invariance of the propagation condition w.r.t. the parameter θ.

Finally, we discuss how to proceed if the function Zλ in Equation (2.7) varies
with the parameter θ. We want to ensure that our choice of the adaptation band-
width λ is in accordance with the propagation condition for all θi, i ∈ {1, . . . , n}.
Certainly, we do not know the exact parameters {θi}i. Instead, we could analyze
the monotonicity of the optimal choice λopt(ε, θ, λmin), see Remark 2.10, for a
fixed constant ε > 0 and varying parameters θ ∈ Θ. For the sake of simplicity, we
prefer to observe for a fixed adaptation bandwidth λ and varying parameters θ
for which probabilities p the propagation condition is satisfied. This can be done
by the function awstestprop in the R-package aws. Thus, we get for every θ
the corresponding value ελ(θ). Then, ελ(θ) ≥ ελ(θ′) indicates that the parame-
ter θ requires a larger adaptation bandwidth than the parameter θ′. Taking the
range of our observations into account, we tempt to identify a finite number of
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Fig 4. Plots of the propagation condition for the exponential distribution with (f.l.t.r.) λ =
13.2, 10.2, 8.78.

parameters θ∗ ∈ Θ such that every λ that satisfies the propagation condition for
these parameters θ∗ ∈ Θ remains valid with high probability for the unknown
parameters θi, i ∈ {1, . . . , n}.

For observations following a Poisson distribution it turned out that different
parameters θ yield comparable propagation levels ελ(θ), even though the result-
ing isolines differ clearly. This is illustrated in Figure 5, where we consider the
same kernels as in Equation (2.8), a regular design with 5000×5000 points, and
h(k∗) = 50, i.e. 38 iteration steps. In case of Bernoulli distributed observations it
seems to be recommendable to ensure the propagation condition for θ∗ := 0.5.
In both cases the implemented algorithm avoids that the Kullback-Leibler di-
vergence becomes infinity by slightly shifting the estimator.

4.2. The propagation condition in practice

The propagation condition is based on the function Zλ. This depends on the

exceedence probability P(N
(k)

i KL(θ̃
(k)
i (λ), θ) > z) which cannot be calculated

exactly. Therefore, in practice, we need an appropriate approximation. Recall
that the propagation condition depends on the function Zλ via its behavior
during iteration, only. We know from Equation (A.1) that the behavior of the

non-adaptive term N
(k)

i KL(θ
(k)

i , θ) during iteration does not depend on the po-
sition Xi within the design X . Since the noise is independent and identically
distributed, we may assume that this property extends to the adaptive esti-
mator and consequently to the function Zλ(., p; θ, i). Then, we may estimate
the above probability by the relative frequency of design points Xi ∈ X with
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Fig 5. Plots of the propagation condition for the Poisson distribution with (f.l.t.r.) θ =
1, 10, 100, 1000 and (from top to bottom) λ = 13.2, 9.88, 7.69 yielding ε13.2(θ) ≤ 10−6,
ε9.88(θ) ≈ 5 · 10−5, and ε7.69(θ) ≈ 5 · 10−4.
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N
(k)

i KL(θ̃
(k)
i (λ), θ) > z as we discuss in Definition 4.5 and Lemma 4.6. In order

to avoid boundary effects in the resulting estimate, we restrict the approxima-
tion to the interior of the design space, that is to all points Xi ∈ X where

the final neighborhood U
(k∗)
i is not restricted by the boundaries of the consid-

ered region {Xi}ni=1. This subset of {Xi}ni=1 is denoted by X 0. Without loss of
generality we assume that X 0 = {Xi}n0

i=1 for some n0 < n.

Definition 4.5 (Approximation). We consider the same setting as in Defini-
tion 2.9 and set

M
(k)
λ (z) := {Xi ∈ X 0 : N

(k)

i KL(θ̃
(k)
i (λ), θ) > z}.

Then we define the following estimator

p̂
(k)
λ (z) := n−1

0

n0∑
i=1

1
M

(k)
λ (z)

(Xi) (4.3)

where 1 denotes the indicator function with 1M (x) = 1 if x ∈M and 1M (x) = 0,
else.

Lemma 4.6. We consider the same setting as in Definition 2.9 and suppose
the conditions of Proposition 3.1 to be satisfied. Then, it holds for each j ∈
{1, . . . , n0} that∣∣∣E [p̂(k)

λ (z)
]
− P

(
N

(k)

j KL(θ̃
(k)
j (λ), θ) > z

)∣∣∣ ≤ max{2e−z, ε}

and
Var

[
p̂

(k)
λ (z)

]
≤ max{2e−z, ε}. (4.4)

Remark 4.7. Simulations are carried out using an artificial data set that en-
sures a sufficiently large number of effectively independent regions for estimating
the propagation level on the basis of a single realization. Theorem 1 provides
a meaningful result only if ε := cεn

−q with cε > 0 and q > 1. We approxi-

mate the probability P(N
(k)

i KL(θ̃
(k)
i (λ), θ) > z) by the corresponding relative

frequency (4.3). This estimate can be calculated for ε ≥ 1/n only. Additionally,
it becomes unstable if ε is close to 1/n. In case of a regular design, the sample
can be extended in a natural way allowing arbitrary sample sizes and as a con-
sequence any ε > 0. Otherwise, that is for random or irregular designs, we can
achieve ε := cεn

−q with cε > 0 and q > 1 solely by application of the propaga-
tion condition on an artificial data set with m design points, where m� n. In
this case, one should evaluate carefully under which conditions the propagation
condition generalizes from the artificial data set to the data set at hand.

5. Discussion

Finally, we compare our theoretical results with the study in [15] in order to
clarify the impact of the memory step. In the original study by Polzehl and
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Spokoiny [15], the authors demonstrated propagation, separation and stability
of estimates up to some constant. We will summarize these results briefly. Apart
from the separation property, all associated proofs were based on the memory
step. Here, we have shown similar properties for the simplified algorithm, where
the memory step is omitted. However, our results are restricted to locally con-
stant parameter functions with sharp discontinuities. Theoretical properties of
the algorithm in case of model misspecification will be analyzed in an upcoming
study.

Both studies include a certain separation property, see [15, Section 5.5] and
Proposition 3.2. This justifies that in case of sufficiently large discontinuities
smoothing is restricted to the homogeneity regions.

For the propagation property, Polzehl and Spokoiny supposed, among other
things, the statistical independence of the adaptive weights from the observa-
tions. They then showed for θ(.) ≡ θ that

P
(
N

(k)

i KL
(
θ̂

(k)
i , θ

)
≤ µ log(n) ∀i

)
> 1− 2k/n, µ ≥ 2, (5.1)

where θ̂
(k)
i denotes the adaptive estimator after modification by the memory

step, see Remark 2.8 and [15, Section 3.2 and 3.3]. For locally almost constant
parameters the authors established a similar result. Equation (5.1) could be
improved by Proposition 3.1 taking advantage of the new propagation condition
introduced in Section 2.3. Setting z := µ log(n) and ε := cεn

−q Proposition 3.1
implies

P
(
N

(k)

i KL
(
θ̃

(k)
i , θ

)
≤ µ log(n) ∀i

)
> 1−max {2/n, cε/n} , µ, q ≥ 2,

where the additional factor k is avoided. Theorem 1 sheds light on the interplay
of propagation and separation during iteration. Here, we do not restrict the
analysis to the respective homogeneous region as in Proposition 3.1 and [15].
Instead, we use the separation property to verify the propagation property for
piecewise constant functions with sharp discontinuities. Setting z ≥ µ log(n)
and ε := cεn

−µ with cε > 0 and µ ≥ 2 the resulting exponential bound in
Equation (3.6) differs from Equation (5.1) by the terms pκ and P(M (k)(z)),
only. These are required for the separation of distinct homogeneity regions.

The results on stability of estimates are difficult to compare. Our correspond-
ing results are stated in Propositions 3.1 and 3.7. Polzehl and Spokoiny proved
under weak assumptions stability of estimates up to some constant. More pre-
cisely, they showed that

N
(k)

i KL
(
θ̂

(k)
i , θi

)
≤ µ log(n)

implies with probability one

N
(k)

i KL
(
θ̂

(k∗)
i , θi

)
≤ c log(n), c := κ2

(√
c1Cτ +

√
µ
)2

, (5.2)

where κ is as in Lemma 2.3, τ := Cτ log(n) denotes the bandwidth of the
memory kernel and c1 := κ2ν(1−

√
ν)−2 depends on the constant ν satisfying
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ν1 ≤ N
(k−1)

i /N
(k)

i ≤ ν with ν1, ν ∈ (2/3, 1). Hence, the constant c might be
quite large. This result allowed to verify, under smoothness conditions on the
parameter function θ(.), the optimal rate of convergence. Equation (5.2) is based

upon Lemma 2.3 and consequently requires that θi, θ̂
(k)
i , θ̂

(k∗)
i ∈ Θκ . This leads

again to the discussion in Section 3.3, not mentioned in [15]. In particular, we
refer to Notation A.1, Example A.2 and Remark A.3.

Here, we did not study the asymptotic behavior of the Propagation-Sepa-
ration Approach. This has the following reason. An asymptotic study requires
to decrease the propagation level ε with increasing sample size n, such that
lim
n→∞

ε(n) = 0. However, the adaptation bandwidth λ depends on the propaga-

tion level ε. For a fixed sample size, the simulations in Section 4.1 suggest that
lim
ε→0

λ(ε) =∞ holds under weak conditions. As large values of λ yield similar re-

sults as non-adaptive smoothing, this leads to a setting which is not convenient
to study properties of the Propagation-Separation Approach. Unfortunetely, a
detailed analysis with varying sample sizes is hampered by the complexity of
the adaptive estimator, which depends on the whole sample via the statistical
penalty. The adaptation bandwidth is the crucial parameter which distinguishes
the Propagation-Separation Approach from non-adaptive smoothing. Hence, an
asymptotic study is useless if we do not know how the increasing sample size
affects the adaptation bandwidth or if lim

n→∞
λ(n) =∞.

In summary, there are two theoretical properties of the original Propagation-
Separation Approach which could not be justified for the simplified version, yet.
First, our study is restricted to piecewise constant functions. This restriction
prohibits a proof of the optimal rate of convergence under smoothness con-
ditions. Additionally, our approach is not constructed to provide asymptotic
results, see above. Second, our stability results hold for piecewise constant pa-
rameter functions with sharp discontinuities, only. In other words, we lose the
general stability of estimates in Equation (5.2). To ensure stability of estimates
under model misspecification for the simplified algorithm will be an interest-
ing subject for future research. The examples in Section 2.4 suggest that the
estimator results in any case in a step function. However, it remains to show
its immutability for large iteration steps, either by a theoretical proof or by
introducing an appropriate stopping criterion.

Without memory step we lose the optimal rate and the stability of estimates
under model misspecification. Nevertheless, the essential properties of the algo-
rithm remain valid, that is, propagation and separation. Both properties follow
from the adaptivity of the estimator and not from the memory step. Hence, for
a local constant model with sufficiently sharp discontinuities the memory step
is not needed.

6. Conclusion

This study provides theoretical properties for a simplified version of the Pro-
pagation-Separation Approach, where the memory step is omitted from the
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algorithm. In particular, we have verified the following results, which may help
for a better understanding of the procedure.

In Section 2.3, we introduced an advanced parameter choice strategy for the
adaptation bandwidth λ. Its invariance w.r.t. the unknown parameter function
is analyzed in Section 4.1, showing for the first time theoretical and numerical
results that justify the propagation condition. In practice, this yields a better
interpretability of the adaptation bandwidth λ due to the precise information
of the propagation level. For instance, in a recent work on structural adaptive
smoothing of diffusion-weighted magnetic resonance data the new propagation
condition established heuristically a certain stability of the choice of λ w.r.t.
the number of measured q-shells, the number of diffusion-weighted gradients
and the unknown effective number of MR-receiver coils, see [3, Section 2.5]
for more details. In theory, the propagation condition yields strong results on
propagation and stability of estimates for piecewise constant functions with
sharp discontinuities, see Section 3. This ensures a similar behavior as for the
original procedure and consequently substantiates the omittance of the memory
step.

Additionally, we studied the interplay of propagation and separation during
iteration. Previous work considered these properties only on their own, but not
their interaction. This demonstrated that the behavior of the algorithm, and
hence the achievable quality of estimation, depend mainly on the extension of
the homogeneous regions, on the size of the discontinuities of the parameter
function θ(.), and via the adaptation bandwidth λ on the parametric family
P = {Pθ}θ∈Θ of probability distributions. Future research may concentrate on
the case of model misspecification in order to justify the heuristic observations
in Section 2.4, mathematically.

Appendix A: Exponential bound and technical lemma

We remind of two results which have been proven in [15, Lemma 5.2, Theo-
rem 2.1].

PS 1 (Exponential bound). If θ(.) ≡ θ and Assumption (1) is satisfied then it
holds

P
(
N KL(θ, θ) > z

)
≤ 2e−z, ∀ z > 0, (A.1)

where N :=
∑n
j=1 wj and θ :=

∑n
j=1 wjT (Yj)/N with given weights wj ∈ [0, 1].

PS 2 (Technical Lemma). Under Assumption (1) it holds

KL1/2 (θ0, θm) ≤ κ
m∑
l=1

KL1/2 (θl−1, θl) (A.2)

for any sequence θ0, θ1, . . . , θm ∈ Θκ, where κ > 0 is as in Lemma 2.3.

The proofs of the results in Section 3.3 rely on Equation (A.2). This re-
quires that θi, T (Yi) ∈ Θκ for all i ∈ {1, . . . ., n}. However, if Pθ has unbounded
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support, this cannot be satisfied with probability one. We introduce the proba-
bility pκ that quantifies the probability of the event {T (Yi) /∈ Θκ for some i}.
Here, we use for every κ the most convenient choice of the set Θκ . Additionally,
we restrict the range of θ(.) by the subset Θ∗ ⊆ Θ. This may influence the
respective choice of Θκ and as a consequence the corresponding value pκ , which
we introduce, now.

Notation A.1. We fix a subset Θ∗ ⊆ Θ and a constant ϕ0 > 0. The function
pκ : (Θ∗)n → [0, 1] with κ ≥ 1 maps to the probability that T (Yi) /∈ Θκ for
some i, where Θκ is chosen such that pκ is minimal. More precisely, we set

pκ ({θi}ni=1) := inf{P (∃ i ∈ {1, . . . , n} : T (Yi) /∈ Θκ) : {θi}ni=1 ⊆ Θκ ⊆ Θ},

with Yi ∼ Pθi for all i ∈ {1, . . . , n} and κ sufficiently large such that {θi}ni=1 ⊆
Θκ for some set Θκ ⊆ Θ. Furthermore, we denote the worst choice of {θi}ni=1 ⊆
Θ∗ by

pκ := sup{ pκ ({θi}ni=1) : {θi}ni=1 ⊆ Θ∗}.

This leads to a trade-off between κ and pκ allowing the application of the
following results to every exponential family in accordance with Assumption (1).
The probability pκ is the smaller the larger we choose κ > 0. The following
example illustrates the trade-off between κ and pκ . In practice, the consequences
are attenuated since the effective values of κ and pκ may be much smaller than
the global ones.

Example A.2.

• For Gaussian and log-normal distributed observations, more precisely for
P = {N (θ, σ2)}θ∈Θ and P = {logN (θ, σ2)}θ∈Θ, it holds I(θ) = 1/σ2 such
that κ = 1 and pκ = 0. This is the optimal scenario.

• For Gamma, Erlang, scaled chi-squared, Exponential, Rayleigh, Weibull
and Pareto distribution, it holds I(θ) = 1/θ2. This leads to quite large
values of κ and pκ . More precisely, every κ > 0 implies that Θκ = [a,κa]
with a > 0. For P = {Exp(1/θ)}θ∈Θ and Y ∼ Pθ it follows

P (Y ∈ Θκ) = e−a/θ − e−κa/θ

This depends for ϕ0 = 0 and Θ∗ = {θ} on the explicit choices of θ and Θκ
via the quotient a/θ, only. Hence, we get by maximization of P(Y ∈ Θκ)
w.r.t. a/θ for each value of κ the associated probability pκ = 1 − P(Y ∈
Θκ)n, where

κ 5 8 20 50 100
P(Y ∈ Θκ) 0.535 0.65 0.811 0.905 0.945
a/θ 0.402 0.297 0.158 0.08 0.047

Remark A.3. Alternatively, we could modify slightly the algorithm replacing
Equation (2.5) in item (3) of Algorithm 1 by

θ̃
(k)
i := argmin

θ′∈Θκ

∣∣∣∣∣∣θ′ −
n∑
j=1

w̃
(k)
ij T (Yj)/Ñ

(k)
i

∣∣∣∣∣∣ .
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This projects the adaptive estimator into the set Θκ . Analogous, the initial esti-
mates in item (2) can be defined as the projection of the non-adaptive estimator
into Θκ such that

θ̃
(0)
i := argmin

θ′∈Θκ

∣∣∣θ′ − θ(0)

i

∣∣∣ .
Here, it might be advantageous to decrease the probability of θ

(0)

i /∈ Θκ by

choosing the initial bandwidth h(0) such that the neighborhood U
(0)
i contains

more design points than Xi for each i ∈ {1, . . . , n}. Else, the projection may
change the adaptive weights in later iteration steps leading to slightly shifted

estimators. On the other hand, initialization with U
(0)
i = {Xi} avoids smoothing

among distinct homogeneous regions before adaptation starts.

Appendix B: Proofs

Proof of Theorem 1. Let M c denote the complement of the set M and consider
the event

Ωκ := {T (Yi) ∈ Θκ for all i ∈ {1, . . . , n}} .

The adaptive estimator is defined as weighted mean of the observations. There-
fore, we get for all k ∈ {0, . . . , k∗} that

Ωκ ⊆
{
θ̃

(k)
i ∈ Θκ for all i ∈ {1, . . . , n}

}
. (B.1)

We observe that

P
(
B(k)(z)

)
= 1− P

(
(B(k)(z))c ∩ (B(k−1)(z) ∩ Ωκ)c

)
− P

(
(B(k)(z))c ∩ (B(k−1)(z) ∩ Ωκ)

)
≥ 1− P (Ωcκ)− P

(
(B(k−1)(z))c ∩ Ωκ

)
− n · P

(
{n(k)

i KL
(
θ̃

(k)
i , θi

)
> z} ∩ B(k−1)(z) ∩ Ωκ

)
and analogous for the conditional probability

P
(
B(k)(z)|M (k′)(z)

)
≥ 1−

[
P
(
M (k′)(z)

)]−1

·
[
pκ + P

(
(B(k−1)(z))c ∩ Ωκ ∩M (k′)(z)

)
+ n · P

(
{n(k)

i KL
(
θ̃

(k)
i , θi

)
> z} ∩ B(k−1)(z) ∩ Ωκ ∩M (k′)(z)

)]
. (B.2)

By definition of the events M (k′)(z) in Equation (3.5) and Ωκ in (B.1) the
conditions of Proposition 3.2 are satisfied on B(k−1)(z). Therefore, it follows on

B(k−1)(z)∩Ωκ∩M (k′)(z) that w̃
(k)
ij = 0 for all Xj /∈ U (k)

i ∩Vi. Hence, smoothing
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is restricted to the homogeneous compartment Vi and Eθ̃(k)
i = θi. We get with

Proposition 3.1

P
(
{n(k)

i KL
(
θ̃

(k)
i , θi

)
> z} ∩ B(k−1)(z) ∩ Ωκ ∩M (k′)(z)

)
≤ max

{
2e−z, ε

}
(B.3)

for all k ∈ {1, . . . , k′}. Now, we proceed by induction. Since θ̃
(0)
i = θ

(0)

i by item
(2) of Algorithm 1 it follows from Equation (A.1) in Appendix A that

P
(
B(0)(z)

) n
(0)
i ≤N

(0)
i

≥ 1− n · P
({
N

(0)

i KL(θ
(0)

i , θi) > z
}) Eq. (A.1)

≥ 1− 2ne−z.

Finally, Equations (B.2) and (B.3) lead for all k ≤ k′ to

P
(
B(k)(z)|M (k′)(z)

)
≥ 1−

[
pκ + kmax

{
2ne−z, nε

}
+ nmax

{
2e−z, ε

}]
/P
(
M (k′)(z)

)
= 1−

[
pκ + (k + 1) max

{
2ne−z, nε

}]
/P
(
M (k′)(z)

)
.

This terminates the proof.

Proof of Proposition 3.7. The lower bound holds since

P
(
B(k2)(z)|B(k1)(z) ∩M (k2)(z)

)
= 1−

P
(
(B(k2)(z))c ∩ B(k1)(z) ∩M (k2)(z)

)
P
(
B(k1)(z) ∩M (k2)(z)

)
and furthermore

P
(

(B(k2)(z))c ∩ B(k1)(z) ∩M (k2)(z)
)

≤ P
(

(B(k2)(z))c ∩ B(k1)(z) ∩M (k2)(z) ∩ Ωκ

)
+ pκ

= P
(

(B(k2)(z))c ∩ B(k2−1)(z) ∩ B(k1)(z) ∩M (k2)(z) ∩ Ωκ

)
+ P

(
(B(k2)(z))c ∩ (B(k2−1)(z))c ∩ B(k1)(z) ∩M (k2)(z) ∩ Ωκ

)
+ pκ

≤ P
(

(B(k2)(z))c ∩ B(k2−1)(z) ∩M (k2)(z) ∩ Ωκ

)
+ P

(
(B(k2−1)(z))c ∩ B(k1)(z) ∩M (k2)(z) ∩ Ωκ

)
+ pκ

≤
k2∑

k=k1+1

P
(

(B(k)(z))c ∩ B(k−1)(z) ∩M (k2)(z) ∩ Ωκ

)
+ pκ .

Additionally, we know from Equation (B.3) that

P
(

(B(k)(z))c ∩ B(k−1)(z) ∩ Ωκ ∩M (k)(z)
)
≤ max

{
2ne−z, nε

}
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for every k ≤ k′. Hence, we get from Equation (3.6) that

P
(
B(k2)(z)|B(k1)(z) ∩M (k2)(z)

)
≥ 1− pκ + (k2 − k1) max {2ne−z, nε}

P
(
M (k2)(z)

)
− pκ − (k1 + 1) max {2ne−z, nε}

=
P
(
M (k2)(z)

)
− 2pκ − (k2 + 1) max {2ne−z, nε}

P
(
M (k2)(z)

)
− pκ − (k1 + 1) max {2ne−z, nε}

leading to the assertion.

Proof of Proposition 4.1. Substitution with y := g−1
θ (z) yields h(gθ(y), θ) =

f(y, θ) for (y, θ) ∈ Ωf and hence the total derivatives

dh

dθ
=
∂h

∂z

∂g

∂θ
+
∂h

∂θ
=
∂f

∂θ
and

dh

dy
=
∂h

∂z

∂g

∂y
=
∂f

∂y
.

Then, it follows ∂h
∂z = ∂f

∂y /
∂g
∂y and furthermore

∂f

∂y

∂g

∂θ
+
∂h

∂θ

∂g

∂y
=
∂f

∂θ

∂g

∂y
.

This leads with |∂gθ∂y | > 0 to

∂h

∂θ
=

(
∂f

∂θ

∂g

∂y
− ∂f

∂y

∂g

∂θ

)
·
(
∂g

∂y

)−1

such that
∂h

∂θ
= 0 if and only if

∂f

∂θ

∂g

∂y
=
∂f

∂y

∂g

∂θ
.

The chain rule implies with Equation (4.1) that indeed

∂f

∂θ

∂g

∂y
=
∂f̃

∂ζ

∂ζ

∂θ

∂g̃

∂ζ

∂ζ

∂y
=
∂f̃

∂ζ

∂ζ

∂y

∂g̃

∂ζ

∂ζ

∂θ
=
∂f

∂y

∂g

∂θ

yielding that h is invariant w.r.t. θ.

Proof of Theorem 2. The non-adaptive estimator is defined as weighted mean
of T (Yj) with j = 1, . . . , n. We get from Table 1 that

• T (Y ) = ln(Y ) ∼ N (µ, σ2) if Y ∼ logN (µ, σ2);
• T (Y ) = Y 2 ∼ Exp( 1

2θ2 ) if Y ∼ Rayleigh(θ);
• T (Y ) = Y k ∼ Exp( 1

θk
) if Y ∼Weibull(θ, k) with k > 0;

• T (Y ) = ln(y/xm) ∼ Exp(θ) if Y ∼ Pareto(xm, θ).

Hence, in each of these cases, the non-adaptive estimator follows the same distri-
bution as for Gaussian or exponentially distributed observations. Additionally,
the corresponding Kullback-Leibler divergences coincide with the respective di-
vergences of Gaussian or exponential distributions. Therefore, it suffices to con-
sider Gaussian and exponential distribution.
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In the Gaussian case, it follows from the statistical independence of the ob-

servations Yj
iid∼ N (θ, σ2), that

θ
(k)

i ∼ N
(
θ, σ2

i

)
, where σ2

i := σ2 ·
n∑
j=1

(
w

(k)
ij /N

(k)

i

)2

.

Hence, the non-adaptive estimator is again Gaussian, and the invariance w.r.t. θ
follows analogous to Example 4.3, where ζ and g̃ remain unchanged and

f̃(ζ) :=
σ2

ζσi
√

2π
exp

(
− ζ2

2σ2
i

)
.

Next, we consider the exponential distribution supposing Yj
iid∼ Exp(1/θ). We

distinguish two cases. First, if all non-zero weights are equal, and hence w
(k)
ij ∈

{0, 1} as w
(k)
ii = 1 for all k, then the non-adaptive estimator θ

(k)

i is Gamma-
distributed, i.e.

θ
(k)

i ∼ Γ
(
N

(k)

i , θ/N
(k)

i

)
.

This yields the desired invariance w.r.t. θ via Example 4.3 setting Y := θ
(k)

i .

Next, in the general case, we require the existence of non-zero weights w
(k)
ij 6=

w
(k)
ij′ with j, j′ ∈ {1, . . . , n}. If Yj ∼ Exp(1/θ) then it holds ajYj ∼ Exp(1/(θaj))

for all aj > 0, where we denote aj := w
(k)
ij /N

(k)

i for the sake of simplicity. The
linear combination Y := a1Y1 + a2Y2 with a1 6= a2 has the density

fY (y) =
(
fa1Y1 ∗ fa2Y2

)
(y)

=

∫ y

0

1

θa1
e−

y−z
θa1

1

θa2
e−

z
θa2 dz

=
e−

y
θa1

θ2a1a2

∫ y

0

e−z
a1−a2
θa1a2 dz

=
e−

y
θa1

θ2a1a2
· θa1a2

a2 − a1

(
e−y

a1−a2
θa1a2 − 1

)
=

1

θ(a1 − a2)
e−

y
θa1 − 1

θ(a1 − a2)
e−

y
θa2

=
a1

a1 − a2
fa1Y1(y)− a2

a1 − a2
fa2Y2(y),

which is a weighted sum of the component densities. Therefore, this extends to
the more general case Y := a1Y1 + · · · + amYm with aj 6= aj′ for all j 6= j′.
Including subsequently observations with equal weights aj = aj′ for some j, j′ ∈
{1, . . . , n} we conclude by commutativity, associativity and distributivity of the
convolution that

f
θ
(k)
i

θ =

m∑
j=1

cjfj ,
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where the constants cj ∈ R depend again on a1, . . . , am only. The densities fj
follow the distribution Γ(m, θaj), where m ≤ mj and mj denotes the number
of observations Yj′ with weights aj′ = aj . Thus, we get from Example 4.3 the
invariance w.r.t. θ for each summand cjfj yielding the assertion for weighted
sums of exponentials.

Proof of Lemma 4.6. It holds by Proposition 3.1 that∣∣∣E [p̂(l)
λ (z)

]
− P

(
N

(k)

j KL(θ̃
(k)
j (λ), θ) > z

)∣∣∣
≤ n−1

0

n0∑
i=1

∣∣∣∣E [1M(k)

(λ)
(z)

(Xi)

]
− P

(
N

(k)

j KL(θ̃
(k)
j (λ), θ) > z

)∣∣∣∣
≤ max

i∈{1,...,n0}

{∣∣∣P(N (k)

i KL(θ̃
(k)
i (λ), θ) > z

)
− P

(
N

(k)

j KL(θ̃
(k)
j (λ), θ) > z

)∣∣∣}
≤ max

i∈{1,...,n0}
P
(
N

(k)

i KL(θ̃
(k)
i (λ), θ) > z

)
≤ max{2e−z, ε}.

Furthermore, we get

Var
[
p̂

(k)
λ (z)

]
=

∥∥∥∥∥n−1
0

n0∑
i=1

(
1
M

(k)
λ (z)

(Xi)− E
[
1
M

(k)
λ (z)

(Xi)
])∥∥∥∥∥

2

L2

≤

(
n−1

0

n0∑
i=1

∥∥∥1M(k)
λ (z)

(Xi)− E
[
1
M

(k)
λ (z)

(Xi)
]∥∥∥

L2

)2

≤ max
i∈{1,...,n0}

Var
[
1
M

(k)
λ (z)

(Xi)
]
.

Obviously, it holds for any random variable X with values in [0, 1] that Var[X] ≤
E[X]. By definition of M

(k)
λ (z) this yields

max
i∈{1,...,n0}

E
[
1
M

(k)
λ (z)

(Xi)
]

= max
i∈{1,...,n0}

P
(
N

(k)

i KL(θ̃
(k)
i (λ), θ) > z

)
Prop. 3.1

≤ max{2e−z, ε}

leading to Equation (4.4).
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