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Abstract: The present article contributes a goodness of fit test for the
survival function under random right censoring. The test is based on a
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ing in the literature kernel survival function estimate. Establishment of its
asymptotic distribution yields the proposed test statistic for drawing deci-
sion on the null hypothesis of correctness of the assumed survival function.
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1. Introduction

This article considers the goodness of fit testing of the survival function by
a fully specified estimate under the random right censored data setting. The
intention is to provide a statistical test applicable to a wide variety of situations
for assessing the validity of a parametric model. This is achieved by employing
as the test basis, a kernel survival function estimate, which by definition does
not depend on distributional assumptions on the underlying data set.

Typically, formulation of a hypothesis test involves establishing the asymp-
totic distribution of a measure of accuracy of the smooth estimate, under the
null hypothesis that the true survival function is fully specified by a given para-
metric model. The preferred measure here is the Integrated Square Error (ISE)
because it quantifies the performance of the estimate for the available data set
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at hand. The smooth estimate is taken to be the estimate of [15], given in Sec-
tion 2 below. The absence in the literature of a goodness of fit test based on
the estimate employed here, together with the advantages this estimate offers,
discussed in detail in [2], necessitate the development of such a test and extend
its scope of application.

Based on the ISE, development of the test statistic is done in lines parallel
to those of [9] for the density setting which was also used by [12] for the fixed
design nonparametric regression setting. The result reveals that the form of the
obtained statistic is determined by the amount of smoothing applied to the
data. Furthermore, the empirical power of the proposed goodness of fit test is
investigated via an extensive simulation study and is compared under the same
settings with the power of Neyman’s test.

The methodological contributions of the present research include a central
limit theorem for the ISE of the smooth estimate of [15] as well as numerical
evidence on the null performance and power of the proposed test for various
sample sizes and amounts of censoring.

The rest of the paper is organized as follows. The framework of study together
with definition of the smooth estimate is given in Section 2. Section 3 is devoted
to the central limit theorem for the ISE of the estimate and development of
the suggested test. The simulation studies on the nominal level and the power
of both the proposed and the Neyman test are given in Section 4. Section 5
demonstrates how to utilize the test in practice with real data. Section 6 contains
a discussion of the present work with emphasis on when and how the test should
be used. Technical proofs are deferred for the last Section.

2. Notation and preliminaries

Let T1, T2, . . . , Tn be a sample of n i.i.d. survival times censored at the right by
n i.i.d. random variables U1, U2, . . . , Un, independent of the Ti’s. Let f and F be
the density and distribution function of the Ti’s and H the distribution function
of the Ui’s. The observed data are then the pairs (Xi,∆i), i = 1, 2, . . . , n with
Xi = min{Ti, Ui} and ∆i = 1{Ti≤Ui} where 1{·} is the indicator random vari-
able of the event {·}. The observed data form an i.i.d. sample with probability
density g and distribution function G which satisfies 1−G = (1−F )(1−H). An
estimate of the unknown survival function S(x) = P (T > x) for a continuous
duration T is Ŝ(x) = 1− F̂ (x) where

F̂ (x) =
1

n

n
∑

i=1

∆i

1−H(Xi)
W

(

x−Xi

h

)

,

W (x) =

∫ x

−∞
K(u) du.

The real valued function K is called kernel and integrates to 1, while h is
called bandwidth and controls the amount of smoothing applied to the estimate.
Estimator Ŝ(x) cannot be used directly in practice as it involves the unknown
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censoring distribution H(x). One solution is to reverse the intuitive role played
by Ti and Ui and estimate 1−H(x) by the (sightly modified) Kaplan–Meier, [16],
estimator. The result is

1− Ĥ(x) =



















1, 0 ≤ x ≤ Z1

∏k−1
i=1

(

n−i+1
n−i+2

)1−Λi

, Zk−1 < x ≤ Zk, k = 2, . . . , n

∏n
i=1

(

n−i+1
n−i+2

)1−Λi

, Zn < x,

where (Zi,Λi) are the ordered Xi’s, along with their censoring indicators ∆i,
i = 1, . . . , n. This gives rise to the practically useful estimator

Ŝn(x) = 1− 1

n

n
∑

i=1

∆i

1− Ĥ(Xi)
W

(

x−Xi

h

)

, (1)

which is used next as the basis of the proposed goodness of fit test.

3. Assumptions and main results

The main result of this research is presented in this section in the form of
Theorem 1 below which is then applied to drawing inference about the true
survival curve. Prior to that, the necessary notation and assumptions are given.

First, denote with µi(K) the ith moment, i = 0, 1, 2 of the function K and
with R(K) the integral of the real function K2 over its domain. The following
conditions are assumed throughout

1. S(x) is twice differentiable and S′′(x) is bounded and uniformly continu-
ous.

2. For l = 0, 1, 2, the lth derivative of K, K(l), is bounded and absolutely
integrable with finite second moments.

3. R(K) < +∞ and µ0(K) = 1, µ1(K) = 0, µ2(K) < +∞, i.e. the kernel K
is of order 2.

4. There exists small enough h such that W ((y − x)h−1)/(1−G(y)) is uni-
formly bounded for |y − x| > M , for any M > 0.

A consequence of condition 2 is that W (x) is bounded, while condition 3 and
particularly µ0(K) = 1 implies

lim
x→−∞

W (x) = 0, and lim
x→+∞

W (x) = 1.

Conditions 1–3 are satisfied by virtually all kernels in use in practice, see for ex-
ample [19]. Condition 4 essentially means that there should be enough censored
data at the right end of the estimation region for the asymptotics to apply. It
has to be noted that it is automatically satisfied when the kernel has bounded
support.
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A widely used measure of closeness of two curves is the ISE. In the case of
estimator Ŝ(x) it is defined as

In ≡ ISE(Ŝ, S) =

∫

(Ŝ(x)− S(x))2 dx =

∫

(F̂ (x)− F (x))2 dx.

Set k = µ2(K)/2,

B(u) =

∫

W (t)W (u+ t) dt

and

d(n) =











nh−3/2 if nh3 → 0

n−1/2h−3 if nh3 → +∞
n3/2 if nh3 → λ 6= 0.

Also let Z denote an asymptotic standard normal random variable. Then, the
limiting distribution of In is given in the next theorem

Theorem 1. Assume conditions 1–4. Also assume that h → 0 and nh → +∞
as n → +∞. Then

d(n) (In − EIn) →











21/2σ1Z if nh3 → 0

2kσ4Z if nh3 → +∞
(21/2λ1/2σ1 + 2λ1/3kσ4)Z if nh3 → λ

with 0 < λ < +∞ and

σ2
1 = R

(

f(z)(1−H(z))−1
)

R(B(u))

σ2
4 =

{
∫

F ′′(x)2
f(x)

1−H(x)
dx

}

R(B(u))−
∫

F ′′(x)2F (x) dx.

Remark 1. It is evident from Theorem 1 that the limiting distribution of the
centered and scaled In depends on the amount of smoothing applied to the data.

If nh3 → 0, then the data are undersmoothed and the stochastic part of
the deviation dominates the systematic part. In this situation the stochastic
behavior of the centered and scaled ISE is determined by the term

∫

(F̂ (x) − EF̂ (x))2 dx.

In the case of oversmoothing (nh3 → +∞), the stochastic part of d(n) (In − EIn)
is asymptotically negligible compared to the systematic part. Then, the limiting
distribution of the centered and scaled ISE is determined by the term

∫

(F̂ (x) − EF̂ (x))(EF̂ (x)− F (x)) dx.

For optimal smoothing, i.e. nh3 → λ neither term dominates as asymptoti-
cally they both have the same magnitude. In this case the limiting distribution
centered and scaled ISE is the sum of the distributions of the two terms above.
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Theorem 1 is applied next in creating a goodness of fit test. The test is given in
the form of the simple null hypothesis H0 : S(x) = S0(x) against the alternative
H1 : S(x) 6= S0(x). S0(x) denotes the assumed true parametric model and is
completely known. By Corollary 1 in [2], Theorem 1 and under H0, the proposed
test statistic, Tn, is obtained by replacing Ŝ(x) by Ŝn(x) and S(x) by S0(x) in
the expression of In. By lemma 3, the scaled and centered Tn, say Tn,∗, can be
written as

Tn,∗ = d(n)

(∫

(Ŝn(x)− S0(x))
2 dx− c(n)

)

where

c(n) =

∫

(EŜn(x)− S0(x))
2 dx+ σ2

2 (2)

σ2
2 = n−1

{

hR(W )

∫

f(x)

1−H(x)
dx

− h2

(∫∫

K(t)K(t+ v) dt dv

)∫

F (x)F (x + hv) dx
}

.

Thus, in testing H0 against H1 with significance level a we have

Tn,∗/
√

Var{Tn,∗} → N(0, 1)

where

Var{Tn,∗} =











(21/2σ1)
2 if nh3 → 0

(2kσ4)
2 if nh3 → +∞

(21/2λ1/2σ1 + 2λ1/3kσ4)
2 if nh3 → λ.

(3)

Consequently, the test suggests rejection of H0 when Tn,∗(Var{Tn,∗})−1/2 > za
where za is the standard normal quantile at level a. Implementation of the test
is discussed in the next section.

4. Simulations

The primary objective of this section is the study of the power function of the
proposed test for small samples. Efficient implementation of the test in practice
is discussed first, together with the test’s operational characteristics. The power
function is then simulated for various sample sizes, amounts of censoring and
lifetime distributions in order to provide numerical evidence for its small sample
practical performance.

In order to obtain a computationally convenient formula for realizing the
test, the sample density is employed as a weight function for the integrands in
Tn,∗’s definition. This has the additional benefit of trimming out low density
areas. Repeated use of the fact that weighting the integrand of a functional
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by the population’s density leads to its expected value, which in turn can be
reasonably estimated by its sample mean, yields the sample version of Tn,∗,

T̃n,∗ = d(n)

{

1

n

n
∑

i=1

(

Ŝn(Xi)− S0(Xi)
)2

− h2µ2
2(K)

2n

n
∑

i=1

Ŝ′′
n(Xi)

2 − σ̂2
2

}

(4)

where the second term on the RHS of (4) results from applying the bias expres-
sion of Ŝn(x) (Theorem 1, [2]) on (2) and

σ̂2
2 = n−2

{

hR(W )

n
∑

i=1

fn(Xi)

1− Ĥ(Xi)
− h2R(K)

n
∑

i=1

(1− Ŝn(Xi))
2 dx

}

. (5)

The quantities involved in (4) and (5) are discussed next. First, the Epanech-
nikov kernel

K(x) =

{

3
4
√
5

(

1− x2

5

)

for |x| ≤
√
5

0 otherwise

is used throughout this section. Its integrated version, W (x), is given by

W (x) =

∫ x

−∞
K(u) du =











0 for x < −
√
5

− 1
100

√
5x3 + 1

2 + 3
20

√
5x for −

√
5 ≤ x ≤

√
5

1 for x >
√
5.

By direct calculation, the constants in (4), (5) and elsewhere throughout this
section are given by

µ2
2(K) = 1, R(W ) =

26

35

√
5, and R(K) =

3

25

√
5. (6)

Now, Ŝn(x), defined in (1), uses the MSE optimal (local) bandwidth of [15],
(3.3.1). Note here that this is also the bandwidth h used in (4) and (5). As this
expression involves unknown quantities, following [15], a practical version is

h =

{

2f̃(x)
∫

xK(x)W (x) dx

n(1− Ĥ(x))(f̃ ′(x))2µ2
2(K)

}
1

3

. (7)

In (7), f̃(x) and f̃ ′(x) are estimates of the unknown f(x) and f ′(x) respec-
tively based on an exponential reference distribution with its mean estimated
by maximum likelihood. That is,

f̃(x) = e−xθ̂−1

, f̃ ′(x) = −θ̂−2e−xθ̂−1

, θ̂ =

∑n
i=1 Zi

∑n
i=1 ∆i

. (8)

Further, by direct calculation based on the Epanechnikov kernel, (7) is imple-
mented with

∫

√
5

−
√
5

xK(x)W (x) dx =
9

70

√
5.
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Next, fn(x) is the estimate of the underlying density which is discussed exten-
sively in [21]. It is given by

fn(x) =

n
∑

i=1

∆i

n(1− Ĥ(Xi))h0

K

(

x−Xi

h0

)

(9)

and is implemented with MSE optimal (local) bandwidth (see also [21], page 1525)

h0 =

{

R(K)f̃(x)

n(1− Ĥ(x))µ2
2(K){f̃ ′′(x)}2

}
1

5

,

where f̃ ′′(x) denotes an estimate of the second derivative of the underlying den-

sity. Following the rationale that was used for obtaining (8), f̃ ′′(x) = θ̂−3e−xθ̂−1

.
Furthermore, in implementing fn(x), the reflection method of [13] has been em-
ployed to reduce boundary bias. This means that in practice, K

(

(x−Xi)h
−1
0

)

in (9) is replaced by

K
(

(x−Xi)h
−1
0

)

+K
(

(−x−Xi)h
−1
0

)

.

Estimator Ŝ′′
n(x) in (4) corresponds to an estimate of the negative of f ′(x).

Based on [13], page 143, (8.3), it is straightforward to derive

f ′
n(x) = − 1

nh2
dµ2(K)

n
∑

i=1

h−1
d (x−Xi)K

(

(x−Xi)h
−1
d

) ∆i

1− Ĥ(Xi)
(10)

as the second derivative of Ŝn(x), adjusted for boundary bias. In (10), hd =

(4/(5n))
1/7

σ̃ where σ̃ is the standard deviation of the sample. That is, hd is
the univariate version of the normal scale bandwidth selector of [6], page 815,
(3.2). It is important to note that a separate simulation on the performance of
f ′
n(x) (not reported here) indicated that the use of reflection further improves
its performance at the boundary.

Attention is now shifted to the implementation of the denominator of the
test statistic, i.e. Var{Tn,∗}−1/2 ≡ 1/σ(T̃n,∗). By the same weighting argument
as in (4) and (5), and assuming the optimal smoothing version of (3) due to h
and h0, we have

σ(T̃n,∗) = σ̂1

√

2λ̂+ 2λ̂1/3kσ̂4 (11)

where, λ̂ = nh3 and

σ̂2
1 =

s

n

n
∑

i=1

(

fn(Xi)

1− Ĥ(Xi)

)2

σ̂2
4 =

s

n

n
∑

i=1

(

Ŝ′′
n(Xi)

2 fn(Xi)

1− Ĥ(Xi)
− Ŝ′′

n(Xi)
2(1 − Ŝn(Xi))

)

(12)

s = R(B(u)) =
136277

29400

√
5. (13)
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Note that (12) is realized by using the negative of (10) in place of Ŝ′′
n(Xi) and

(13) is obtained by direct calculation specifically for the Epanechnikov distri-
bution function. Combining (4) and (11), the test statistic used in practice is
T̃n,∗/σ(T̃n,∗).

Performance of the test statistic under the null and alternative hypotheses is
discussed next. Three families of common lifetime distributions are assumed for
this purpose: the exponential with rate λ (exp(λ)) and the Weibull and Gamma
distributions with shape parameter κ and scale parameter λ (W(κ, λ) and
G(κ, λ) respectively). The null hypothesis is formulated as H0 : S(x) = S0(x)
where S0(x) = 1 − e−x. This corresponds to the survival function of any of
the null distributions exp(1), W(1, 1) or G(1, 1). In order to estimate the power
of the test, the probability of rejecting the null hypothesis given that the al-
ternative is true is approximated at each one of 12 specific alternatives. Each
alternative survival function, say S1(x), is seen as a member of a sequence which
all belong to the same family of distributions with S0(x) and their parameter(s)
selected so that the Kullback–Liebler divergence between S0(x) and S1(x) be-
comes increasingly deviant. Thus for each distribution, sample size and amount
of censoring, the conditional probability of rejecting H0 : S(x) = S0(x) given
that H1 : S(x) = S1(x) is true is approximated from m = 10, 000 independent
random samples by

P (T̃n,∗/σ(T̃n,∗) > cut-off) =
#{T̃n,∗/σ(T̃n,∗) > cut-off}

m
, (14)

where, for each specific alternative, S0(x) in the definition of T̃n,∗ in (4) is re-
placed by S1(x). Assuming significance level a = 5% (probability of type I error),
the cut-off points in (14) are estimated by the 95% quantile of the numerical
distribution of T̃n,∗/σ(T̃n,∗). The distribution of the statistic is approximated by
generating 100,000 values for each different sample size, assuming no censoring
and under H0. Definition 7 of [11] is then used for obtaining the cut–off point. It
has to be noted that the cut-off points vary by sample size but not by censoring
level so as to get an indication on how censoring affects power.

The results of the simulation are presented in Fig. 1 which contains the power
of the test for each combination of distribution, sample size and censoring level.
The simulation results indicate that, as expected, power increases as divergence
from H0 increases. In parallel, power increases as sample size increases. On av-
erage, the test is consistent with the nominal level under no censoring. However,
censoring has a drastic effect on the test’s nominal level and power. For as low
as 10% censoring, the nominal level of the test is (on average) doubled. As ex-
pected, the more the censoring increases, the more the type I error and power
increases. We conjugate though that by using cut–off points based on the test
statistic’s distribution under censoring – calculated in an obvious manner – to
get nominal level and power figures closer to the uncensored ones. Censoring
aside, the rejection percentages of Fig. 1 suggest that the further the divergence
from the null, the more sensitive the test becomes in detecting the inappropriate
fit resulting from H1. Furthermore it has to be noted that even though many
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Fig 1. Rejection percentages, based on 10,000 replications, of the suggested goodness–of–fit
test when testing H0 : S(x) = 1− e−x versus

• Top row: H1 : S(x) = 1− exp{−λx} (Exponential, denoted by: Exp(λ)) for increasing
values of λ(= 1, 1.1, 1.2, . . . , 2.2),

• Middle row: H1 : S(x) = 1 − exp{−
(

xλ−1
)κ

} (Weibull, denoted by: W(κ, λ)) for
increasing values of κ = λ = 1, 1.1, 1.2, . . . , 2.2,

• Bottom row: H1 : S(x) = 1− γ(κ,x/λ)
Γ(κ)

, (the Gamma distribution, denoted by: G(κ, λ),

where γ is the lower incomplete gamma function and Γ is the gamma function), for
increasing values of κ = λ = 1, 1.05, 1.1, 1.15, . . . , 1.6.

Censoring (denoted by C) is either 0% (no censoring), 10%, 20% or 30% and the sample
sizes considered are n = 30, 40, . . . , 100 at significance level a = 5%.

data driven estimates are used in (4) and (5), this does not prevent the test from
possessing reasonable power. Theoretical explanation for this, at least asymp-
totically, is provided by first noticing that using Ĥ(x), fn(x) and f ′

n(x) instead
of H(x), f(x) and f ′(x) respectively in (4) and (5) results in an error of order
op(n

−1/2), o(n−2/5) and o(n−2/7) in each of these estimations. In (4), the sub-
stitution of f ′(x) by f ′

n(x) on the second term of the RHS (which involves the
derivative estimate) will incur an additional term of order n−1.62 (assuming op-
timal bandwidth of order n−1/3) which converges to zero very quickly. Similarly
in (5), the substitution of H(x) and f(x) by Ĥ(x) and fn(x) respectively will
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result in an additional bias term of rate n−2.7 which again, is negligible. There-
fore, in practice it is expected that the test statistic, at least asymptotically,
will perform quite reasonably.

In addition, for comparison purposes, the same examples under exactly the
same settings as in Fig. 1, have been replicated using the Neyman data driven
goodness of fit test for completely specified distributions. The test is imple-
mented in the R package surv2sample, [20]. The package is not currently avail-
able from CRAN, however can be incorporated into existing MS Windows R in-
stallations via the Rtools package.

The comparison between the two methods indicates that the test suggested
in the present research is more sensitive to subtle differences between the null
and alternative distributions. However, as divergence from the null increases,
the simulation results indicate that Neyman’s test appears to be more powerful,
albeit the rejection percentages of the present test are reasonable too. The source
R code for obtaining the numbers used in Fig. 1–2 together with the code used
for obtaining the cut-off points, as well as full instructions and comments, is
available from the Journal’s website.

5. Real data analysis

As real data analysis, the air conditioning unit failure data set of [22] is presented
here to exhibit the practical usefulness of the test when employed to validate a
parametric model. The data set consists of the time intervals, in hours, between
successive failures of the air conditioning system of each member of a fleet of 13
Boeing 720 jet airplanes. The aim of [22] was to find a characterization of the
distribution of the failure times at fleet level for maintenance purposes. After
pooling the data (yielding thus a total of 213 observations), [22] investigated
fitting an exponential survival function with the parameter of the distribution
estimated by the mean of the failure intervals. The appropriateness of the fit
was assesed by testing the null hypothesis

H0 : S(x) = e−
t

93.14 (15)

which although not rejected by the Kolmogorov–Smirnov test, was found to be
unreasonable for practical use as it suggests that failures decline with time; this
is counter intuitive in view of wear out and ageing effects of air conditioning
units. It further implies that all failure times follow the same distribution irre-
spective of which plane they come from, something questionable too as different
planes might be exposed to different conditions which affect failure occurrences.
Prompted by these issues, [14] developed models individually for each plane
and used those as a basis for suggestions at the fleet level. Moreover, prompted
by [7], another suggestion of [14] was the use of mixture distributions as an
approximation of aggregated individual survival functions for the pooled data.
This route was further followed by [1], [18] and [23], who all assessed the result-
ing fits graphically. As noted by [14] though, use of mixture distributions can
be uncertain as adding or deleting one plane from the sample would change the
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Fig 2. Rejection percentages, based on 10,000 replications, of the Neyman smooth test for
censored data when testing H0 : S(x) = 1− e−x versus

• Top row: H1 : S(x) = 1− exp{−λx} (Exponential, denoted by: Exp(λ)) for increasing
values of λ(= 1, 1.1, 1.2, . . . , 2.2),

• Middle row: H1 : S(x) = 1 − exp{−
(

xλ−1
)κ

} (Weibull, denoted by: W(κ, λ)) for
increasing values of κ = λ = 1, 1.1, 1.2, . . . , 2.2,

• Bottom row: H1 : S(x) = 1− γ(κ,x/λ)
Γ(κ)

, (the Gamma distribution, denoted by: G(κ, λ),

where γ is the lower incomplete gamma function and Γ is the gamma function), for
increasing values of κ = λ = 1, 1.05, 1.1, 1.15, . . . , 1.6.

Censoring (denoted by C) is either 0% (no censoring), 10%, 20% or 30% and the sample
sizes considered are n = 30, 40, . . . , 100 at significance level a = 5%.

mixture distribution. However, while the last examples correspond to distribu-
tions with decreasing failure rate, which despite any ageing or wear out effects
corroborates with the data pattern, increasing failure rate distributions for spe-
cific planes on the dataset have been investigated too. As an example, [17]
and [8] tested the null hypothesis of exponentiality versus increasing failure
rates based on the gamma distribution. In both cases the null is rejected. Yet
another approach was based on the fatigue life distribution (also known as the
Birnbaum–Saunders distribution, (BS)), which is used extensively in reliability
applications to model failure times. Specifically, [5] tested (via the likelihood
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ratio statistic) the null hypothesis that the data are coming from the BS distri-
bution against the alternative that the underlying distribution is a β–BS. The
null was rejected under any usual significance level (p < 0.01).

The fact that all aforementioned approaches are parametric in nature to-
gether with the fact that Ŝn(x) is geared towards revealing the pattern of the
underlying survival makes the suggested goodness-of-fit test an impartial as-
set for testing the validity of a given parametric model. For example, using
T̃n,∗/σ(T̃n,∗) to test (15) leads to a p-value of 0.1178 (the statistic’s value is
equal to 1.1857) which leads to the outcome that the null model may not be the
best option to adopt. On the other hand, testing

H0 : SAL(x) = (1 − 0.4276)e−0.00801x(1− 0.4276e−0.00801x)−1,

suggested by [1], leads to a p-value of 0.03247 (T̃n,∗/σ(T̃n,∗) = 1.8456) which
gives strong evidence in favor of the model.

6. Discussion

This article has proposed a kernel based goodness–of–fit test, useful for assess-
ing how well a parametric survival estimate matches the true curve under the
random right censoring data setting.

The test is based on the asymptotic distribution of the discrepancy between
the estimated and actual survival functions. Thus, it summarizes the divergence
between observed values and the values expected under the model in question
and as a result it is of a very general scope. However, specific applications in-
clude: a) comparison of the distribution of a data set to a normal distribution or
in general to a fully specified distribution/survival function, b) testing the nor-
mality assumption in analysis of variance, c) testing the normality of residuals
in regression and d) whether outcome frequencies follow a specified distribution.

Additionally, by straightforward adjustments, it can serve as a goodness–of–
fit test for Cox proportional hazards models when they are expressed in terms
of the survival function. Further, it can be potentially used as an alternative
approach to resampling techniques as well as to graphical goodness–of–fit tests
when an objective view of the discrepancy between the estimated and the actual
model is needed.

7. Proof of Theorem 1

The present Section starts with an outline description of the proof and continues
with its full mathematical details in Subsections 7.1 and 7.2.

The proof begins by decomposing F̂ (x)’s ISE expression into four terms:
(a) a symmetric U-statistic, (b) its diagonal, (c) the integrated square bias of
F̂ (x) and (d) the integrated product of the stochastic and systematic parts of
the deviation of F̂ (x) from F (x). These terms are studied in Lemmas 1–4 and
the resulting expressions are substituted back so as to obtain the central limit
theorem for In.
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In detail, Lemma 1 shows that (a) is an asymptotically zero mean normal
random variable. This is established by expressing the symmetric U-statistic
as a martingale and then applying a suitable central limit theorem to quan-
tify the distribution of the statistic. Validation of the theorem’s applicability
is done through two conditional Lindeberg and variance conditions given in
Corollary 3.1 of [10]. Proceeding with the term in (b), Lemma 2 uses direct
calculation to show that the expression there equals σ2

2 plus a negligible (under
optimal bandwidth) term. Lemma 3 shows that the expected ISE value equals
the term in (c) plus the result of Lemma 2. Thus, the result of Lemma 3 is used
to shape the LHS of Theorem 1 as well as to cancel out the σ2

2 term result-
ing from Lemma 2. Finally, in Lemma 4 the term in (d) is written as a sum
of independent and identically distributed random variables and so, by a cen-
tral limit theorem, verification of the theorem’s conditions and straightforward
calculations, is proved that the term is asymptotically normally distributed.

Putting back the results of all four lemmas in the decomposed In expression
and noting that for optimal bandwidth the asymptotic terms are negligible
concludes the proof.

7.1. ISE decomposition

The proof of Theorem 1 starts with the ISE decomposition. We have

In =

∫

(F̂ (x)− EF̂ (x) + EF̂ (x) − F (x))2 dx

=

∫

(F̂ (x)− EF̂ (x))2 dx+

∫

(EF̂ (x)− F (x))2 dx

+ 2

∫

(F̂ (x) − EF̂ (x))(EF̂ (x)− F (x)) dx.

Let Yi = (Xi,∆i), i = 1, . . . , n denote the observed sample. Then,

∫

(F̂ (x) − EF̂ (x))2 dx = n−2
n
∑

i=1

n
∑

j=1

Hn(Yi, Yj)

where

Hn(Yi, Yj) =

∫

Ri(x)Rj(x) dx

Ri(x) =
∆i

1−H(Xi)
W

(

x−Xi

h

)

− E

{

∆i

1−H(Xi)
W

(

x−Xi

h

)}

.

Note also that

n−2
n
∑

i=1

n
∑

j=1

Hn(Yi, Yj) = n−2
n
∑

i=1

n
∑

i6=j

Hn(Yi, Yj) + n−2
n
∑

i=1

Hn(Yi, Yi).
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Then the ISE becomes

In = n−2
n
∑

i=1

n
∑

i6=j

Hn(Yi, Yj)

+ n−2
n
∑

i=1

Hn(Yi, Yi) +

∫

(EF̂ (x)− F (x))2 dx

+ 2

∫

(F̂ (x) − EF̂ (x))(EF̂ (x) − F (x)) dx

≡ Î1 + Î2 + Î3 + 2Î4. (16)

Apply Lemmas 1, 2, 3 and 4 to (16) to get

In − EIn = 21/2n−1h3/2σ1Z + σ2
2 − σ2

2 + n−1/2h3kσ4Z +Op(n
−3/2h)

and note that for optimal bandwidth h ∼ n−1/3, Op(n
−3/2h) = Op(n

−7/6) which
is asymptotically negligible. This completes the proof.

7.2. Auxiliary Lemmas

Lemma 1. As n → +∞, we have Î1 ∼ N(0, 2n−2h3σ2
1).

Proof. The proof is analogous to the proof of Theorem 1, [9]. Note that,

Hn(Yi, Yj) =

∫

Ri(x)Rj(x) dx =

∫

Rj(x)Ri(x) dx = Hn(Yj , Yi)

and so Î1 is a symmetric U-statistic. Therefore

Î1 = n−2
n
∑

i=1

∑

i6=j

Hn(Yi, Yj) = 2n−2
n
∑

i=2

i−1
∑

j=1

Hn(Yi, Yj) = 2n−2
n
∑

i=2

Ti

where

Ti =

i−1
∑

j=1

Hn(Yi, Yj).

Corollary 3.1 of [10] will be used to prove the asymptotic distribution of Î1.
Note that it is readily established that

k
∑

i=2

Ti, k = 2, . . . , n

is a zero mean, square integrable martingale with differences Ti. Moreover, in
the present setting the conditional Lindeberg condition of corollary 3.1, [10], is
equivalent to its unconditional version ((3.6) in [10], page 53). This means that
the proof will be completed by showing
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(a) For all ε > 0, as n → +∞

s−2
n

n
∑

i=1

E
(

T 2
i I(|Ti| > εsn)

) p→ 0

where s2n = E(Î21 ) and
(b)

s−2
n V 2

n =

n
∑

i=1

E
(

T 2
i |Y1, Y2, . . . , Yi−1

) p→ 1.

First, note that

ET 2
i = E





i−1
∑

j=1

Hn(Yi, Yj)





2

= E





i−1
∑

j=1

Hn(Yi, Yj)





(

i−1
∑

k=1

Hn(Yi, Yk)

)

=

i−1
∑

j=1

i−1
∑

k=1

EHn(Yi, Yj)Hn(Yi, Yk)

=

i−1
∑

j=1

EH2
n(Yi, Yj) + 2

∑∑

j<k

EHn(Yi, Yj)Hn(Yi, Yk)

=

i−1
∑

j=1

EH2
n(Yi, Yj) by (48) in Lemma 6

= (i− 1)EH2
n(Yi, Yj) for any i, j

since the Yi, i = 1, . . . , n are i.i.d. Hence

s2n =

n
∑

i=2

ET 2
i =

1

2
n(n− 1)EH2

n(Yi, Yj). (17)

It is immediately then seen that (a) and (b) imply Î1/sn ∼ N(0, 1) which in
turn verifies the statement of the lemma. Starting with the proof of (a), first
note that by Chebyshev’s inequality

s−2
n

n
∑

i=1

E
(

T 2
i I(|Ti| > εsn)

)

≤ ε−2s−4
n

n
∑

i=1

E
(

|Ti|4
)

. (18)

Now,

n
∑

i=1

E
(

|Ti|4
)

=

n
∑

i=1

E

∣

∣

∣

∣

∣

∣

i−1
∑

j=1

Hn(Yi, Yj)

∣

∣

∣

∣

∣

∣

4

. (19)
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Expanding the summand of the RHS of (19) and using (49) and (50) of Lemma 6
yields

∣

∣

∣

∣

∣

∣

i−1
∑

j=1

Hn(Yi, Yj)

∣

∣

∣

∣

∣

∣

4

=

i−1
∑

j=1

∣

∣H4
n(Yi, Yj)

∣

∣

+ 3
∑∑∑

1≤j,k≤i−1;j 6=k

∣

∣H2
n(Yi, Yj)H

2
n(Yi, Yk)

∣

∣ . (20)

Combining (19) and (20) we get

n
∑

i=1

E
(

|Ti|4
)

=

n
∑

i=1

E

i−1
∑

j=1

∣

∣H4
n(Yi, Yj)

∣

∣

+ 3

n
∑

i=1

E

∑∑∑

1≤j,k≤i−1;j 6=k

∣

∣H2
n(Yi, Yj)H

2
n(Yi, Yk)

∣

∣

=

n
∑

i=1

(i − 1)E
∣

∣H4
n(Yi, Yj)

∣

∣

+ 3
n
∑

i=1

(i− 1)(i− 2)E
∣

∣H2
n(Yi, Yj)H

2
n(Yi, Yk)

∣

∣ j, k fixed

≤ n2CE
(

H4
n(Yi, Yj)

)

+ n3CE
(

H2
n(Yi, Yj)H

2
n(Yi, Yk)

)

where C is a positive generic constant. Now, by (36) in Lemma 5 we have that for
optimally chosen bandwidth (h ∼ n−1/3), n3

E
(

H2
n(Yi, Yj)H

2
n(Yi, Yk)

)

= O(n)

which is smaller than n3CE
(

H4
n(Yi, Yk)

)

= O(n4/3). Thus we conclude

n
∑

i=1

E
(

|Ti|4
)

≤ n3CE
(

H4
n(Yi, Yj)

)

. (21)

Using (17), (21) and (37) in (18) proves (a). We now turn our attention to
prove (b). First,

V 2
n =

n
∑

i=2






E







i−1
∑

j=1

Hn(Yi, Yj)







2

|Y1, . . . , Yi−1







=

n
∑

i=2

E





i−1
∑

j=1

Hn(Yi, Yj)
2
∣

∣

∣Y1, . . . , Yi−1





+ 2

n
∑

i=2

E





i−1
∑

j=1

i−1
∑

l=j+1

Hn(Yi, Yj)Hn(Yi, Yl)
∣

∣

∣Y1, . . . , Yi−1



 .

It is easily seen that (b) will be proved if we show that

s−4
n E(V 2

n − s2n)
2 → 0. (22)
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Set

vi = E





i−1
∑

j=1

Hn(Yi, Yj)
2
∣

∣

∣Y1, . . . , Yi−1



 .

Then

EV 4
n = 2

∑∑

2≤i≤j≤n

E(vivj) +

n
∑

i=2

Ev2i

Working in exactly the same way as in as in [9], page 5 we have

EV 4
n = 2

n
∑

i=2

(i− 1)(i− 2)(2n− 2i+ 1)E (EH∗
n(Xi, x)H

∗
n(Xj , y))

2

+

n
∑

i=2

(i− 1)(2n− 2i+ 1)Var{(EH∗
n(Xi, x)H

∗
n(Xi, y))}

+
1

2
n(n− 1)E (EH∗

n(Xi, x)H
∗
n(Xi, y))

2

with

H∗
n(Xi, x) =

∫

A(u, x)A(u, y) du,

A(u, x) =
1

1−H(u)
W

(

u− x

h

)

− E
1

1 −H(Xi)
W

(

u−Xi

h

)

Then, for a positive generic constant C

E(V 2
n − s2n)

2 ≤ C
{

n4
E (EH∗

n(Xi, x)H
∗
n(Xj , y))

2
+ n3

EH2
n(Xi, Xj)

}

. (23)

Working as in the proof of (4.6) of [9], we get that

E (EH∗
n(Xi, x)H

∗
n(Xj , y))

2
= O(h7) (24)

Now, (23), (24) and (36) prove (22) which in turn proves (b).

For the remainder of this Section and in order to simplify notation define

wi(x) =
∆i

1−H(Xi)
W

(

x−Xi

h

)

.

Lemma 2. As n → +∞

Î2 = σ2
2 +Op(n

−3/2h).

Proof. Write

Î2 = n−2
n
∑

i=1

Li ≡ n−2
n
∑

i=1

∫

(wi(x)− Ewi(x))
2
dx.
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Now,

ELi = E

∫

(wi(x) − Ewi(x))
2
dx

=

∫

Ew2
i (x) dx +

∫

{Ewi(x)}2 dx− 2E

∫

{wi(x)} {Ewi(x)} dx

=

∫

Ew2
i (x) dx −

∫

{Ewi(x)}2 dx.

By the definition of wi(x), (40) for x = y and (41),

ELi =

∫ (

h

∫

W 2(t)
f(x− ht)

1−H(x− ht)
dt

)

dx

−
∫ (

h

∫

K(t)F (x− ht) dt

)2

dx

= hR(W )

∫

f(x)

1−H(x)
dx

− h2

(∫∫

K(t)K(t+ v) dt dv

)∫

F (x)F (x + hv) dx+ o(h2) (25)

after using a Taylor series expansion around x on the term f(x)(1−H(x))−1 in
the third step above. Also, for a positive generic constant C1,

EL2
i =

∫∫

E

(

{wi(x)− Ewi(x)}2 {wi(y)− Ewi(y)}2
)

dx dy

≤ C1

∫∫

Ew2
i (x)w

2
i (y) dx dy + C1

∫∫

Ewi(x)w
2
i (y) dx dy

+ C1

(
∫

Ewi(x)

)2

. (26)

Applying the definition of wi(x) and (40) for x = y yields
(∫

Ewi(x)

)2

= O(h2). (27)

Similarly

∫∫

Ewi(x)w
2
i (y) dx dy = h2

(∫∫

W (t)W 2(t+ v) dt dv

)

×
∫

f(x+ hv)

(1 −H(x+ hv))2
dx+ o(h2) = O(h2) (28)

and
∫∫

Ew2
i (x)w

2
i (y) dx dy = h2

(∫∫

W 2(t)W 2(t+ v) dt dv

)

×
∫

f(x+ hv)

(1−H(x+ hv))3
dx+ o(h2) = O(h2). (29)
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Using (27)–(29) back to (26) yields EL2
i = O(h2) and so

Var
{

Î2

}

= Var

{

n−2
n
∑

i=1

Li

}

= n−4nVar {Li} , since Yi and therefore Li are i.i.d.,

= n−3
{

EL2
i − (ELi)

2
}

= n−3
EL2

i = n−3O(h2) = O(n−3h2). (30)

By (25), setting σ2
2 = n−1

ELi and using (30) completes the proof.

Lemma 3.

E

∫

(

F̂ (x)− F (x)
)2

dx =

∫

(

EF̂ (x)− F (x)
)2

dx+ σ2
2 +Op(n

−3/2h)

Proof. This is verified by straight calculation

E

∫

(

F̂ (x) − F (x)
)2

dx = E

∫

(

F̂ (x) − EF̂ (x) + EF̂ (x)− F (x)
)2

dx

= E

∫

(

F̂ (x) − EF̂ (x)
)2

dx + E

∫

(

EF̂ (x) − F (x)
)2

dx

−2E

∫

(

F̂ (x)− EF̂ (x)
) (

EF̂ (x)− F (x)
)

dx

= E

∫

(

F̂ (x) − EF̂ (x)
)2

dx + E

∫

(

EF̂ (x) − F (x)
)2

dx

−µ2(K)h2
E

∫

(

F̂ (x) − EF̂ (x)
)

F ′′(x) dx,

by Theorem 1 in [2]. Now, note that

∫

(

F̂ (x)− EF̂ (x)
)2

dx = Î2

and that

E

∫

(

F̂ (x) − EF̂ (x)
)

F ′′(x) dx = 0.

Then

E

∫

(

F̂ (x)− F (x)
)2

dx = E

∫

(

EF̂ (x)− F (x)
)2

dx+ Î2

and so, by applying Lemma 2, the result follows immediately.

Lemma 4. Under conditions 1, 2, 3 and under H0 : F (x) = F0(x),

Î4 ∼ N(0, n−1h6kσ2
4). (31)

Proof. Let

Î4 =

∫

(F̂ (x)− EF̂ (x))(EF̂ (x) − F (x)) dx = n−1
n
∑

i=1

Zi
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with

Zi =

∫

(wi(x)− Ewi(x)) (EF̂ (x) − F (x)) dx.

Write Zi = Di − EDi with

Di =

∫

wi(x)(EF̂ (x) − F (x)) dx.

Obviously EZi = 0. Now, set Di,1 = EDi, Di,2 = ED2
i and note that

EZ2
i = E(Di − EDi)

2 = E(D2
i − 2DiEDi + (EDi)

2

= ED2
i − 2(EDi)

2 + (EDi)
2 = ED2

i − (EDi)
2 = Di,2 −D2

i,1. (32)

From Theorem 1, [2],

EF̂ (x) − F (x) =
h2

2
F ′′(x)µ2(K) +O(h4). (33)

Then we have

Di,1 =

∫

E
∆i

1−H(Xi)
W

(

x−Xi

h

)

(EF̂ (x)− F (x)) dx

=

∫

(EF̂ (x)− F (x)) dx

∫

f(y)

1−H(y)
W

(

x− y

h

)

dx

=
h3

2
µ2(K)

∫

F ′′(x) dx

∫

K(t)F (x− ht) dt+ o(h2) by (33) and (41)

=
h3

2
µ2(K)

∫

F ′′(x)F (x) dx + o(h2). (34)

Also,

Di,2 =

∫∫

E
∆i

(1−H(Xi))2
W

(

x−Xi

h

)

W

(

y −Xi

h

)

× (EF̂ (x) − F (x))(EF̂ (y)− F (y)) dx dy

= h

∫∫∫

W (t)W

(

y − x+ ht

h

)

f(x− ht)

1−H(x− ht)

× (EF̂ (x) − F (x))(EF̂ (y)− F (y)) dt dx dy by (40).

Using the change of variable y − x = hu yields,

Di,2 = h2

∫∫

(EF̂ (x)− F (x))(EF̂ (x+ hu)− F (x+ hu)) dx du

×
∫

W (t)W (u+ t)
f(x− ht)

1−H(x− ht)
dt
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=
h6

4
µ2
2(K)

∫∫

F ′′(x)F ′′(x+ hu) dx du

×
∫

W (t)W (u+ t)
f(x− ht)

1−H(x− ht)
dt+ o(h6) by (33).

Expanding in Taylor series around x gives

Di,2 =
h6

4
µ2
2(K)

{∫

(F ′′(x))2
f(x)

1−H(x)
dx

}

R(B(u)) + o(h6). (35)

By (34) and (35), (32) becomes

EZ2
i =

h6

4
µ2
2(K)

{∫

(F ′′(x))2
f(x)

1−H(x)
dx

}

R(B(u))

− h6

4
µ2
2(K)

∫

F ′′(x)2F (x) dx + o(h2).

Working in the same way it is shown that EZ4
i = O(h12). By setting

s2n =

n
∑

i=1

EZ2
i

we get

s−2
n

n
∑

i=1

E
{

Z2
i I(|Zi| > εsn)

}

≤ ε−2s−4
n

n
∑

i=1

EZ4
i → 0

as n → +∞. Therefore, Î4 is normally distributed with zero mean and variance

Var
{

Î4

}

= Var

{

n−1
n
∑

i=1

Zi

}

= n−2nVar {Zi} , since Yi and therefore Zi are i.i.d.,

= n−1(EZ2
i − (EZi)

2) = n−1
EZ2

i .

Lemma 5. For i, j fixed

EH2
n(Yi, Yj) = h3R

(

f(x)(1−H(x))−1
)

R(B(u)) +O(h5) (36)

EH4
n(Yi, Yj) = O(h5). (37)

Proof. The proof is based on conditioning on the number of the uncensored
observations of the observed sample Yi = (Xi,∆i), i = 1, . . . , n. If N denotes
the number of the uncensored observations then N ∼Binomial(n, p) where p =
∫

f(x)(1 − H(x)) dx. For given N = ν, (Xi : ∆i = 1) is a set of i.i.d random
variables with density f(x)(1 −H(x))/p for ν = 1, 2, . . . , n. Now,

EH2
n(Yi, Yj) =

∫∫

{ERi(x)Ri(y)}2 dx dy (38)
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For fixed i,

ERi(x)Ri(y) = E {wi(x)− Ewi(x)} {wi(y)− Ewi(y)}
= E {wi(x)wi(y)}−wi(x)Ewi(y)−wi(y)Ewi(x)+E {wi(y)Ewi(x)}
= E {wi(x)wi(y)} − E {wi(y)Ewi(x)} . (39)

Since i is fixed, (Xi : ∆i = 1) is a Bernouli random variable with mean p. Then,

Ewi(x)wi(y)

= E

{

E

(

∆i

1−H(Xi)
W

(

x−Xi

h

)

∆i

1−H(Xi)
W

(

y −Xi

h

)

∣

∣

∣∆i = 1

)}

= E

{∫

1

1−H(z)
W

(

x− z

h

)

1

1−H(z)
W

(

y − z

h

)

f(z)(1−H(z))

p
dz

}

= E

{

1

p

∫

f(z)

1−H(z)
W

(

x− z

h

)

W

(

y − z

h

)

dz

}

= p
1

p

∫

f(z)

1−H(z)
W

(

x− z

h

)

W

(

y − z

h

)

dz

= h

∫

W (t)W

(

y − x+ ht

h

)

f(x− ht)

1−H(x− ht)
dt (40)

where in the last step above the change of variable x−z = ht was used. Similarly,

E (wi(x)) = E

{

E

(

∆i

1−H(Xi)
W

(

x−Xi

h

)

∣

∣

∣∆i = 1

)}

= E

{∫

1

1−H(z)
W

(

x− z

h

)

f(z)(1−H(z))

p
dz

}

= E

{

1

p

∫

f(z)W

(

x− z

h

)

dz

}

= p
1

p

∫

W

(

x− z

h

)

f(z) dz

= h

∫

W (t)f(x− ht) dt = h

∫

K(t)F (x − ht) dt. (41)

By (41),

Ewi(x)Ewi(y) =

(

h

∫

K(t)F (x− ht) dt

)(

h

∫

K(t)F (y − ht) dt

)

= h2

(∫

K(t)F (x − ht) dt

)(∫

K(t)F (y − ht) dt

)

. (42)

Substitute (40) and (42) back to (39) to get

ERi(x)Ri(y) = h

∫

W (t)W

(

y − x+ ht

h

)

f(x− ht)

1−H(x− ht)
dt

− h2

(∫

K(t)F (x− ht) dt

)(∫

K(t)F (y − ht) dt

)

. (43)
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Substitute (43) back to (38) to get

EH2
n(Yi, Yj) =

∫∫

{

h

∫

W (t)W

(

y − x+ ht

h

)

f(x− ht)

1−H(x− ht)
dt

− h2

(∫

K(t)F (x− ht) dt

)(∫

K(t)F (y − ht) dt

)

}2

dx dy

and use the change of variable y − x = uh to get

EH2
n(Yi, Yj) = h

∫∫

h2
{

∫

W (t)W (u + t)
f(x− ht)

1−H(x− ht)
dt

− h

(∫

K(t)F (x− ht) dt

)

×
(∫

K(t)F (x+ uh− ht) dt

)

}2

dx du

= h3

∫∫

{

∫

W (t)W (u+ t)
f(x− ht)

1−H(x− ht)
dt

− h

(∫

K(t)F (x− ht) dt

)

×
(∫

K(t)F (x+ uh− ht) dt

)

}2

dx du. (44)

Note that the terms

h2

(∫

K(t)F (x− ht) dt

∫

K(t)F (x+ uh− ht) dt

)2

and

h

{∫

W (t)W (u+ t)
f(x− ht)

1 −H(x− ht)
dt

}{∫

K(t)F (x− ht) dt

}

×
{∫

K(t)F (x+ uh− ht) dt

}

are for optimal bandwidth h ∼ n−1/3, asymptotically negligible compared to
(∫

W (t)W (u + t)
f(x− ht)

1−H(x− ht)
dt

)2

.

With this observation into account, (44) becomes

EH2
n(Yi, Yj) = h3

∫∫

{

∫

W (t)W (u + t)
f(x− ht)

1−H(x− ht)
dt
}2

dx du +O(h5)

= h3

{

∫ (

f(x)

1−H(x)

)2

dx

}{

∫ (∫

W (t)W (u + t) dt

)2

du

}

+O(h5)
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and hence the proof of (36) is completed. In proving (37), first note that

EH4
n(Yi, Yj) =

∫∫∫∫

(ERi(x)Ri(y)Ri(z)Ri(u))
2 dx dy dz du.

The product of the above summand consists of several terms, each one being of
order h5. As an illustration, the first term is

∫∫∫∫

(Ewi(x)wi(y)wi(z)wi(u))
2 dx dy dz du. (45)

Now,

Ewi(x)wi(y)wi(z)wi(u)

=

∫

W

(

x− v

h

)

W

(

y − v

h

)

W

(

z − v

h

)

W

(

u− v

h

)

f(v)

(1−H(v))3
dv

= h

∫

W (t)W

(

y − v

h

)

W

(

z − v

h

)

W

(

u− v

h

)

f(x− th)

(1 −H(x− th))3
dt (46)

after applying the change of variable x− v = ht. In view of (46), (45) becomes

h2

∫∫∫∫

{

∫

W (t)W

(

y − v

h

)

W

(

z − v

h

)

W

(

u− v

h

)

× f(x− th)

(1−H(x− th))3
dt
}2

dx dy dz du. (47)

Set y− v = wh, z− v = sh and u− v = rh. Then, in view of (47), (45) becomes

h5

∫∫∫∫

{

∫

W (t)W (w + t)W (s+ t)W (r + t)
f(x− th)

(1−H(x− th))3
dt
}2

× dx ds dw dr

≤ h5

{

∫ (

f(x)

(1−H(x))3

)2

dx

}

×
∫∫∫∫

{

W (t)W (w + t)W (s+ t)W (r + t)
}2

dt ds dw dr = O(h5).

The rest terms are treated in exactly the same way which concludes in prov-
ing (37).

Lemma 6. For i, j, k, l, r fixed and all different,

E(Hn(Yi, Yj)Hn(Yi, Yk) = 0 (48)

E(Hn(Yi, Yj)Hn(Yi, Yk)Hn(Yi, Yl), Hn(Yi, Yr)) = 0 (49)

EHn(Yi, Yj)H
3
n(Yi, Yk) = 0. (50)



2574 D. Bagkavos et al.

Proof. We have

E(Hn(Yi, Yj)Hn(Yi, Yk))

= E

(∫

Ri(x)Rj(x) dx

)(∫

Ri(x)Rk(x) dx

)

= E

∫∫

Ri(x)Rj(x)

∫

Ri(y)Rk(y) dx dy

= E

∫∫

(wi(x) − Ewi(x))(wj(x) − Ewj(x))(wi(y)

− Ewi(y))(wk(y)− Ewk(y)) dx dy

E

∫∫

(wi(x)wj(x) − wi(x)Ewj(x)− wj(x)Ewi(x) + Ewi(x)Ewj(x))

× (wi(y)wk(y)− wi(y)Ewk(y)− wk(y)Ewi(y) + Ewi(y)Ewk(y)) dx dy

= E

∫∫

(wi(x)wj(x)wi(y)wk(y)− wi(x)wj(x)wi(y)Ewk(y)

− wi(x)wj(x)wk(y)Ewi(y) + wi(x)wj(x)Ewi(y)Ewk(y)

− wi(x)wi(y)wk(y)Ewj(x) + wi(x)wi(y)Ewj(x)Ewk(y)

− wi(x)Ewj(x)wk(y)Ewi(y)− wi(x)Ewj(x)Ewi(y)Ewk(y)

+ wi(y)wk(y)Ewi(x)Ewj(x)− wi(y)Ewk(y)Ewi(x)Ewj(x)

− wk(y)Ewi(y)Ewi(x)Ewj(x) + Ewi(y)Ewk(y)Ewi(x)Ewj(x)) dx dy

Now, the identity

E

4
∏

i=1

Xi =
4
∏

i=1

EXi

for independent Xi’s is a standard result. Since i 6= j 6= k and since the Yi, i =
1, . . . , n are i.i.d., applying the identity in the integrand of the above double
integral gives the result. Verification of (49) and (50) is entirely similar (although
longer).
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