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Abstract: We investigate the large sample behavior of a p-value based
procedure for estimating the threshold level at which a regression func-
tion takes off from its baseline value – a problem that frequently arises
in environmental statistics, engineering and other related fields. The esti-
mate is constructed via fitting a “stump” function to approximate p-values
obtained from tests for deviation of the regression function from its base-
line level. The smoothness of the regression function in the vicinity of the
threshold determines the rate of convergence: a “cusp” of order k at the
threshold yields an optimal convergence rate of n−1/(2k+1), n being the
number of sampled covariates. We show that the asymptotic distribution
of the normalized estimate of the threshold, for both i.i.d. and short range
dependent errors, is the minimizer of an integrated and transformed Gaus-
sian process. We study the finite sample behavior of confidence intervals
obtained through the asymptotic approximation using simulations, con-
sider extensions to short-range dependent data, and apply our inference
procedure to two real data sets.
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1. Introduction

Consider a data generating model of the form Y = µ(X)+ǫ, where µ is a contin-
uous function on [0, 1] such that µ(x) = τ for x ≤ d0, and µ(x) > τ for x > d0.
The covariate X may arise from a random or a fixed design setting and we as-
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sume that ǫ has mean zero with finite positive variance. The function µ need not
be monotone and the baseline value τ is not necessarily known. We are interested
in estimating and constructing confidence intervals (CI’s) for the threshold d0,
d0 ∈ (0, 1), the point from where the function starts to deviate from its baseline
value.

Recently, Mallik et al. (2011) introduced a novel method for estimating the
threshold d0 using a p-value based criterion function but did not provide a recipe
for constructing confidence intervals (CI’s) for the point d0. In this paper, we
address the inference problem: we study the asymptotic properties of their pro-
cedure in the regression setting and use these results to construct asymptotically
valid CI’s for the threshold, both in simulation settings and for two key moti-
vating examples from Mallik et al. (2011). The problem, which falls within the
sphere of non-regular M-estimation is rather hard, and involves non-trivial ap-
plications of techniques from modern empirical processes, as well as results from
martingale theory and the theory of Gaussian processes. Along the way, we also
deduce results on the large sample behavior of a kernel estimator at local points
(see Lemma 2 and Proposition 4) that are of independent interest. In most of
the literature, kernel estimates are considered at various fixed points and are
asymptotically independent (Csörgő and Mielniczuk, 1995a,b; Robinson, 1997).
Hence, they do not admit a functional limit. However, these estimates, when
considered at local points, deliver an invariance principle; see Lemma 2 and the
proof of Proposition 4.

It is instructive to note that our problem of interest has natural connec-
tions with change-point analysis, though it is not a change-point problem for
the regression function itself. Under mild assumptions, estimating d0 can be
treated as a problem of detecting a change-point in the derivative of a certain
order of µ. The literature on change-point detection is enormous; earlier work
includes Hinkley (1970), Korostelëv (1987), Dümbgen (1991), Müller (1992),
Korostelëv and Tsybakov (1993), Loader (1996), Müller and Song (1997). We
also refer the reader to Brodsky and Darkhovsky (1993), Bhattacharya (1994)
and Csörgő and Horváth (1997) for an overview of results on change-point es-
timation in various settings. Change-points have been extensively studied in
time-series and sequential problems as well; see Horváth, Horváth and Hušková
(2008), Hušková et al. (2008), Gut and Steinebach (2009), Steland (2010) and
the references therein. There has also been some work in settings with grad-
ually changing regression functions (local alternative type formulations) but
under certain parametric assumptions (Hušková, 1998; Jarušková, 1998).

In particular, the problem of estimating change-points in derivatives within
the context of regression has been addressed by a number of authors, e.g. Müller
(1992), Cheng and Raimondo (2008), Wishart (2009), Wishart and Kulik (2010).
We compare and contrast our approach to the work of these authors in the next
section. We further note that our problem can be viewed as a special case of
the more general problem of identifying the region where a function, defined
on some multi-dimensional space, assumes its baseline (minimum or maximum)
value. This problem is relevant to applications in fMRI and image detection
(Willett and Nowak, 2007).
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In what follows we show that the smoothness of the function in the vicinity of
d0 determines the rate of convergence of our estimator: for a “cusp” of order k
at d0, the best possible rate of convergence turns out to be n−1/(2k+1). The lim-
iting distribution of an appropriately normalized version of the estimator is that
of the minimizer of the integral of a transformed Gaussian process. The limiting
process is new, and while the uniqueness of the minimizer remains unclear (and
appears to be an interesting nontrivial exercise in probability), we can bypass
the lack of uniqueness and still provide a thorough mathematical framework to
construct honest CI’s. Under the assumption of uniqueness, which appears to be
a reasonable conjecture based on extensive simulations, we establish auxiliary
results to construct asymptotically exact CI’s.

The paper is organized thus: we briefly discuss the estimation procedure and
the basic assumptions in Section 2. The rate of convergence and the asymptotic
distribution of the estimated threshold for a particular version of our proce-
dure, along with some auxiliary results for constructing CI’s, are deduced in
Sections 3.1 and 3.2, assuming a known τ . Asymptotic results for variants of
the procedure are discussed in Section 3.3 and extensions of these results to the
situation with an unknown τ are presented in Section 4. We study the coverage
performance of the resulting CI’s through simulations in Section 5. The applica-
bility of our approach to short-range dependent data is the content of Section 6.
We implement our procedure to two data examples in Section 7 and end with
a discussion in Section 8. The proofs of several technical results are available in
the Appendix.

2. The method

For simplicity, we first consider the uniform fixed design regression model of the
form:

Yi = µ

(
i

n

)
+ ǫi, 1 ≤ i ≤ n, (2.1)

with ǫi’s i.i.d. having variance σ2
0 . Although we suppress the dependence on n,

Yi and ǫi must be viewed as triangular arrays. Let K be a symmetric probability
density (kernel) and hn = h0n

−λ denote the smoothing bandwidth, for some
λ ∈ (0, 1), h0 > 0. Then an estimate of the regression function, at stage n, is
given by

µ̂(x) =
1

nhn

n∑

i=1

YiK

(
x− i/n

hn

)
. (2.2)

For x < d0, the statistic
√
nhn(µ̂(x)− τ), whose variance is

Σ2
n(x) = Σ2

n(x, σ0) = Var(
√
nhnµ̂(x)) =

σ2
0

nhn

n∑

i=1

K2

(
x− i/n

hn

)
, (2.3)

converges to a normal distribution with zero mean and variance Σ2(x) = σ2
0K̄

2

with K̄2 =
∫
K2(u)du. Let σ̂ be an estimator of σ0. Mallik et al. (2011) estimate
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d0 by constructing p-values for testing the null hypothesis H0,x : µ(x) = τ
against the alternative H1,x : µ(x) > τ . The approximate p-values are

pn(x, τ) = 1− Φ

(√
nhn(µ̂(i/n)− τ)

Σn(i/n, σ̂)

)
.

To the left of d0, the null hypothesis holds and these approximate p-values con-
verge weakly to the Uniform(0,1) distribution which has mean 1/2. Moreover, to
the right of d0, where the alternative is true, the p-values converge in probability
to 0. This dichotomous behavior of the p-values motivates minimizing



∑

i:i/n≤d

{
pn(i/n, τ)−

1

2

}2

+
∑

i:i/n>d

{pn(i/n, τ)}2

 (2.4)

over values of d in (0, 1) to yield an estimate of d0. Simple calculations show
that this is equivalent to minimizing

M̃n(d) ≡ M̃n(d, σ̂) (2.5)

=
1

n

n∑

i=1

{
Φ

(√
nhn(µ̂(i/n)− τ)

Σn(i/n, σ̂)

)
− γ

}
1

(
i

n
≤ d

)
.

Here, γ = 3/4. We refer to the above approach as Method 1.
We next describe an approach which avoids estimating σ0 altogether. Relying

upon the simple fact that E[Φ(Z)] = 1/2 for a normally distributed Z with
zero mean and arbitrary variance, it can be seen that E[Φ(

√
nhn(µ̂(x) − τ))]

converges to 1/2 for x < d0, while for x > d0, it converges to 1. So, the desired
dichotomous behavior is preserved even without normalization by the estimate
of the variance. To this end, let

Mn(d) =
1

n

n
∑

i=1

[

Φ

(√
nhn

(

µ̂

(

i

n

)

− τ

))

− γ

]

1

(

i

n
≤ d

)

. (2.6)

Then, an estimate of d0 is given by

d̂n = sargmin
d∈[0,1]

Mn(d),

where sargmin denotes the smallest argmin of the criterion function, which does
not have a unique minimum. We refer to this approach as Method 2 and study
its limiting behavior in the paper. Analyzing this method is useful in illustrating
the core ideas while avoiding some of the tedious details encountered in analyzing
Method 1.

Remark 1. The above methods are based on a known τ . When τ is unknown, a
plug-in estimate can be substituted in its place (more about this in Section 4).
Also, for any choice of γ ∈ (1/2, 1) in (2.5) and (2.6), the estimator of d0 is
consistent. The proof follows along the lines of arguments in Mallik et al. (2011,
pp. 898–900).
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2.1. Variants

If the covariateX is random, one could still use the Nadaraya-Watson estimator
to construct p-values. More precisely, let Pn denote the empirical measure of
(Yi, Xi), i = 1, . . . , n, which are independent realizations from the model Y =
µ(X) + ǫ with σ2

0(x) = Var(ǫ | X = x) > 0 and X having a continuous positive
density f on [0, 1]. Then the Nadaraya-Watson estimator is:

µ̃(x) =
Pn[Y K ((x−X)/hn)]

Pn[K ((x−X)/hn)]
.

and a consistent estimator of d0 is:

d̃n = sargmin
d∈(0,1)

Pn

[{
Φ
(√

nhn(µ̃(X)− τ)
)
− γ
}
1(X ≤ d)

]
(2.7)

(see Mallik et al. (2011, pp. 892)). An estimate based on p-values normalized by
the estimate of variance can also be constructed but is computationally more
complicated as an estimate of the variance function is needed.

2.2. Basic assumptions

We adhere to the setup of Section 2, i.e., we assume the errors to be independent
and homoscedastic and consider a fixed design for the regression setting. The
smoothness of the function in the vicinity of d0 plays a crucial role in deter-
mining the rate of convergence. Throughout this paper, we make the following
assumptions.

1. Assumptions on µ:

(a) µ is continuous on [0, 1]. We additionally assume that µ is Lipschitz
continuous of order α1 with α1 ∈ (1/2, 1].

(b) µ has a cusp of order k, k being a known positive integer, at d0, i.e.,
µ(l)(d0) = 0, 1 ≤ l ≤ k − 1, and µ(k)(d0+) > 0, where µ(l)(·) denotes
the l-th derivative of µ. Also, the k-th derivative, µ(k)(x) is assumed
to be continuous and bounded for x ∈ (d0, d0 + ζ0] for some ζ0 > 0.

2. The error ǫ possesses a continuous positive density on an interval.
3. Assumptions on the kernel K:

(a) K is a symmetric probability density.

(b) K(u) is non-increasing in |u|.
(c) K is compactly supported, i.e., K(x) = 0 when |x| ≥ L0, for some

L0 > 0.

(d) K is Lipschitz continuous of order α2 ∈ (1/2, 1].

As a consequence of these assumptions, µ and K are bounded, K̄2 =∫
K2(u)du < ∞ and E|W |k < ∞, where W has density K. Also, both µ and

K are Lipschitz continuous of order α = min(α1, α2). These facts are frequently
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used in the paper. Common kernels such as the Epanechnikov kernel and the
triangular kernel conveniently satisfy the assumptions mentioned above. The
results in the next section are developed for a γ ∈ (1/2, 1) (cf. Remark 1) and a
known τ . It will be seen in Section 4 that τ can be estimated at a sufficiently fast
rate; consequently, even if τ is unknown, appropriate estimates can be substi-
tuted in its place to construct the p-values that are instrumental to the methods
of this paper, without changing the limit distributions. Without loss of gener-
ality, we take τ ≡ 0 in the next section, as one can work with (Yi − τ)s in place
of Yis.

Comparison with existing approaches. Under the above assumptions, d0 is
a ‘change-point’ in the k-th derivative of µ. Our procedure for estimating this
change-point relies on the discrepancy of p-values, the construction of which
requires a kernel-smoothed estimate (or if one desires, local polynomial esti-
mate) of µ. As noted in the Introduction, the estimation of a change-point in
the derivative of a regression function has been studied by a number of authors
using kernel-based strategies. However, the approaches in these papers are quite
different from ours and more importantly, our problem cannot be solved by
these methods without making stronger model assumptions than those above.
In Müller (1992), the change-point is obtained by direct estimation of the k-th
derivative (k corresponds to ν in that paper) on either side of the change-point
via one-sided kernels and measuring the difference between these estimates. In
contrast, our approach does not rely on derivative estimation. We use an ordi-
nary kernel function to construct a smooth estimate of µ which is required for
the point wise testing procedures that lead to the p-values. In fact, a consis-
tent estimate that attains the same rate of convergence as our current estimate
could have been constructed using a simple regressogram estimator with an ap-
propriate bin-width, in contrast to the approach in Müller (1992) which uses a
k–times differentiable kernel. Müller (1992) also assumes that the k-th deriva-
tive of the regression function is at least twice continuously differentiable at all
points except d0 – see, pages 738–739 of that paper – which is stronger than
our continuity assumption on µ(k) (1(b) above). Cheng and Raimondo (2008)
develop kernel methods for optimal estimation of the first derivative building
on an idea by Goldenshluger, Tsybakov and Zeevi (2006), which is followed up
in the context of dependent errors by Wishart and Kulik (2010), and Wishart
(2009), but these papers do not consider the case k > 1. We also note that our
method is fairly simple to implement.

3. Main results

We state and prove results on the limiting behavior of the estimator obtained
from Method 2. Results on the variant of the procedure discussed in Section 2.1
follow analogously and are stated in Section 3.3. We consider the model stated in
(2.1) with homoscedastic errors and uniform fixed design, and study the limiting

behavior of d̂n which minimizes (2.6). Recall that τ is taken to be zero without
loss of generality.
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3.1. Rate of convergence

We first consider the population equivalent of Mn, given here by Mn(d) =
E {Mn(d)}, and study the behavior of its smallest argmin. Let

Zin =
1√
nhn

n∑

l=1

ǫlK

(
i/n− l/n

hn

)
,

for i = 1, . . . , n, and Z0 be a standard normal random variable independent of
Zin’s. Also, let

µ̄(x) =
1

nhn

n∑

l=1

µ

(
l

n

)
K

(
x− l/n

hn

)
. (3.1)

Note that
√
nhnµ̂(i/n) =

√
nhnµ̄(i/n) +Zin and Var(Zin) = Σ2(i/n) with Σ(·)

as in (2.3). We have

E
[
Φ
(√

nhnµ̂(i/n)
)]

= E
[
Φ
(√

nhnµ̄(i/n) + Zin

)]

= E
[
1
(
Z0 ≤

√
nhnµ̄(i/n) + Zin

)]

= Φi,n

( √
nhnµ̄(i/n)√
1 + Σ2

n(i/n)

)
, (3.2)

where Φi,n denotes the distribution function of (Z0 − Zin)/
√
1 + Σ2

n(i/n). Hence,

Mn(d) =
1

n

n∑

i=1

{
Φi,n

( √
nhnµ̄(i/n)√
1 + Σ2

n(i/n)

)
− γ

}
1

(
i

n
≤ d

)
.

For L0hn ≤ i/n ≤ 1−L0hn, Φi,n’s and Σn(i/n)’s do not vary with i. We denote

them by Φ̃n and Σ̃n for convenience. Using Corollary 1 and (A.1) from the

Appendix, Σ̃n converges to σ0
√
K̄2. Also, for such i’s, any η > 0 and sufficiently

large n,

1

nhnΣ̃2
n

n∑

l:|l−i|≤L0nhn

E

[
ǫ2lK

2

(
(i− l)/n

hn

)
1

( |ǫl|K ((i− l)/(nhn))√
nhnΣ̃n(l/n)

> η

)]

is bounded from above by

2 ⌈2L0nhn⌉ ‖K‖2∞
nhn(σ2

0K̄
2)

E

[
ǫ211

(
2‖K‖∞

nhn(σ0
√
K̄2)

|ǫ1| > η

)]
,

which converges to zero. Hence, by Lindeberg–Feller CLT, Zin/Σ̃n and conse-
quently, Φ̃n converge weakly to Φ. In fact, for any i, we can also show that Φi,n

converges weakly to Φ.
Let dn = sargmindMn(d). As mentioned earlier, sargmin denotes the smallest

argmin of the objective function Mn which does not have a unique minimizer.
The following lemma provides the rate at which dn converges to d0.
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Lemma 1. Let νn = min(h−1
n , (nhn)

1/2k). Then νn(dn − d0) = O(1).

Proof. It can be shown by arguments analogous to Mallik et al. (2011, pp. 898–
900) that (dn−d0) is o(1). As d0 is an interior point of [0,1], dn ∈ (L0hn, 1−L0hn)
and corresponds to a local minima ofMn for sufficiently large n, i.e., dn satisfies

Φ̃n



√
nhnµ̄(dn)√
1 + Σ̃2

n


 ≤ γ and Φ̃n



√
nhnµ̄(dn + 1/n)√

1 + Σ̃2
n


 > γ. (3.3)

By Pólya’s theorem, Φ̃n converges uniformly to Φ. Consequently,

0 ≤
√
nhnµ̄(dn) ≤ Φ−1(γ)

√
1 + σ2

0K̄
2 + o(1). (3.4)

Note that µ̄(x) = 0 for x < d0 − L0hn and Φ̃n(0) converges to Φ(0) = 0.5 < γ.
So, if dn < d0, then for (3.3) to hold, dn+1/n+L0hn > d0 for large n and thus
h−1
n (dn−d0) = O(1) which gives the result. Also, when d0 < dn ≤ d0+L0hn, the

result automatically holds. So, it suffices to consider the case dn > d0 + L0hn.
Let un(x, v) = (1/hn)µ(v)K((x − v)/hn) for x ∈ [0, 1] and v ∈ R. By

Lemma 4 from the Appendix,

∣∣∣∣µ̄(dn)−
∫ 1

0

un(dn, v)dv

∣∣∣∣ = O

(
1

(nhn)α

)
.

By a change of variable,
∫ 1

0
un(dn, v)dv =

∫ L0

−L0

µ(dn + uhn)K(u)du for large n.

As dn > d0 + L0hn, the first part of the integrand, µ(dn + uhn), is positive for
u ∈ [−L0, L0]. Let [−L1, L1] be an interval where K is positive. Such an interval

exists due to assumptions 4(a) and 4(b). Hence,
∫ L1

−L1

µ(dn + uhn)K(u)du =

2L1µ(dn + ξnhn)K(ξn) ≤
∫
un(dn, v)dv, where ξn is some point in [−L1, L1].

Using Taylor expansion around d0, µ(dn + ξnhn) = {µ(k)(ζn)/k!}(dn + ξnhn −
d0)

k, for some ζn lying between d0 and dn + ξnhn. By (3.4), we get

2L1
µ(k)

k!
(ζn)(dn + ξnhn − d0)

kK(ξn) = O((nhn)
−1/2).

As dn → d0, µ
(k)(ζn) converges to µ(k)(d0+), which is positive. Also, as ξn ∈

[−L1, L1], K(ξn) is bounded away from zero, and thus (dn + ξnhn − d0) =
O((nhn)

−1/2k), which yields the result. �

As d̂n is, in fact, estimating dn, its rate of convergence for d0 can at most
be ν−1

n . Fortunately, ν−1
n turns out to be the exact rate of convergence of d̂n.

Theorem 1. Let νn be as defined in Lemma 1. Then νn(d̂n − d0) = Op(1).

The proof is given in Section A.1 of the Appendix. It involves coming up with
an appropriate distance ρn based on the behavior of Mn near d0 (Lemma 5)
and then establishing a modulus of continuity bound for Mn −Mn with respect
to ρn. As the summands that constitute Mn are dependent, the latter cannot be
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handled directly through VC or bracketing results (Theorems 2.14.1 or 2.14.2
of van der Vaart and Wellner (1996)); rather, we require a blocking argument
followed by an application of Doob’s inequality to the blocks.

The optimal rate is attained when h−1
n ∼ (nhn)

1/(2k) and corresponds to hn =
h0n

−1/(2k+1) and νn = n1/(2k+1). We now deduce the asymptotic distribution
for this particular choice of bandwidth.

3.2. Asymptotic distribution

With hn = h0n
−1/(2k+1), we study the limiting behavior of the process

Zn(t) = h−1
n [Mn(d0 + thn)−Mn(d0)] , t ∈ R, (3.5)

where Mn is defined in (2.6). The process Zn(t) is minimized at h−1
n (d̂n − d0).

At the core of the process Zn(t) lies the estimator µ̂, computed at local points
d0 + thn. Let

Wn(t) =
√
nhnµ̂(d0 + thn) (3.6)

and Bloc(R) denote the space of locally bounded functions on R, equipped with
the topology of uniform convergence on compacta. We have the following lemma
on the limiting behavior of Wn.

Lemma 2. There exists a Gaussian process W (t), t ∈ R, with almost sure
continuous paths and drift

m(t) = E(W (t)) =
h
k+1/2
0 µ(k)(d0+)

k!

∫ t

−∞
(t− v)

k
K (v) dv

and covariance function Cov(W (t1),W (t2)) = σ2
0

∫
K(t1 + u)K(t2 + u)du such

that the process Wn(·) converges weakly to W (·) in Bloc(R).

The proof is given in Section A.2 of the Appendix. For brevity,−
∫ x

y
is written

as
∫ y

x whenever x > y.

Theorem 2. For hn = h0n
−1/(2k+1) and t ∈ R, the process Zn(t) converges

weakly to the process

Z(t) =

∫ t

0

[Φ(W (y)) − γ]dy

in Bloc(R).

Proof. Split Zn(t) as In(t) + IIn(t), where

In(t) =
1

nhn

n∑

i=1

[{
Φ
(√

nhnµ̂(i/n)
)
− γ
}

×
{
1

(
i

n
≤ d0 + thn

)
− 1

(
i

n
≤ d0

)}]
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− 1

hn

∫ d0+thn

d0

(
Φ
(√

nhnµ̂(x)
)
− γ
)
dx

and IIn = h−1
n

∫ d0+thn

d0

(Φ(
√
nhnµ̂(x))− γ)dx. Fix T > 0 and let t ∈ [−T, T ].

Using arguments almost identical to those for proving Lemma 4 in the Appendix,
we have

|In(t)| ≤
∑

|d0−i/n|
≤Thn

∫ (i+1)/n

i/n

1

hn

∣∣∣Φ
(√

nhnµ̂(i/n)
)
− Φ

(√
nhnµ̂(x)

)∣∣∣ dx

+O

(
1

nhn

)
+

γ

nhn
(⌊n(d0 + thn)⌋ − ⌊n(d0)⌋)− γt,

where the O(1/(nhn)) factor accounts for the boundary terms. Using the fact
that x−1 ≤ ⌊x⌋ ≤ x+1, the term γ

nhn
(⌊n(d0+ thn)⌋−⌊n(d0)⌋)−γt is bounded

by 2γ(1/(nhn) + T/n) which goes to zero. The sum of integrals in the above
display is further bounded by

⌈2Tnhn⌉
nhn

sup
|x−y|<1/n

x,y∈[d0−Thn,d0+Thn]

∣∣∣Φ
(√

nhnµ̂(x)
)
− Φ

(√
nhnµ̂(y)

)∣∣∣

≤ ⌈2Tnhn⌉
2πnhn

sup
|u−v|<1/(nhn)
u,v∈[−T,T ]

|Wn(u)−Wn(v)| .

The above display goes in probability to zero due to the asymptotic equiconti-
nuity of the process Wn and hence the term In converges in probability to zero
uniformly in t over compact sets. Further, we have

IIn(t) = h−1
n

∫ d0+thn

d0

(
Φ
(√

nhnµ̂(x)
)
− γ
)
dx

=

∫ t

0

[
Φ
(√

nhnµ̂(d0 + yhn)
)
− γ
]
dy

=

∫ t

0

[Φ (Wn(y))− γ] dy.

As the mapping W (·) 7→
∫ ·
0
Φ(W (y))dy from Bloc(R) to Bloc(R) is continuous,

using Lemma 2, the term IIn converges weakly to the process
∫ t

0
[Φ(W (y))−γ]dy,

t ∈ R. This completes the proof. �

A conservative asymptotic CI for d0 can be obtained using the following
result.

Theorem 3. The process Z(t) goes to infinity almost surely (a.s.) as |t| → ∞.
Moreover, let ξs0 and ξl0 denote the smallest and the largest minimizers of the
process Z. Also, let csα/2 and cl1−α/2 be the (α/2)th and (1−α/2)th quantiles of

ξs0 and ξl0 respectively. For hn = h0n
−1/(2k+1), we have

lim inf
n→∞

P [csα/2 < h−1
n (d̂n − d0) < cl1−α/2] ≥ 1− α.
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Note that ξs0 and ξl0 are indeed well defined by continuity of the sample
paths of Z and the fact that Z(t) goes to infinity as |t| → ∞. Also, they are
Borel measurable as, say for ξs0 , the events [ξs0 ≤ a] and the measurable event
[inft≤a Z(t) ≤ inft>a Z(t)] are equivalent for any a ∈ R. Hence csα/2 and cl1−α/2

are well defined. The proof of the result is given in Section A.3 of the Appendix.
A minimum of the underlying limiting process lies in the set {y : Φ(W (y)) = γ}.

As any fixed number has probability zero of being in this set, the distributions
of ξs0 and ξl0 are continuous. The process {W (y) : y ∈ R} has zero drift for
y < −L0 and is therefore stationary to the left of −L0. Hence, it must cross γ
infinitely often implying that Z has multiple local extrema. On the other hand,
simulations strongly suggest that Z has a unique argmin though a theoretical
justification appears intractable at this point. The issue of the uniqueness of the
argmin of a stochastic process has mostly been addressed in context of Gaus-
sian processes (Lifshits, 1982; Kim and Pollard, 1990; Ferger, 1999), certain
transforms of compound Poisson processes (Ermakov, 1976; Pflug, 1983) and
set-indexed Brownian motion (Müller and Song, 1996). These techniques do not
apply to our setting; in fact, an analytical justification of the uniqueness of the
minimizer of Z appears non-trivial. As the simulations provide strong evidence
in support of a unique argmin, we use the following result for constructing CI’s
in practice.

Theorem 4. Assuming that the process Z has a unique argmin, we have

h−1
n (d̂n − d0)

d→ argmin
t∈R

{Z(t)},

for hn = h0n
−1/(2k+1).

Note that when the argmin is unique, Theorem 3 and Theorem 4 yield the
same CI. The proof of Theorem 4 is a direct application of the argmin(argmax)-
continuous mapping theorem; see Kim and Pollard (1990, Theorem 2.7) or
van der Vaart and Wellner (1996, Theorem 3.2.2).

3.3. Limit distributions for variants of the procedure

The rates of convergence and asymptotic distributions can be obtained similarly
for most of the variants of the procedure that were discussed in Section 2.1. In
what follows, we state the limiting distributions for some of these variants.

Results analogous to Theorem 3 can be shown to hold in the setting with het-
eroscedastic errors, i.e., Var(ǫi) = σ2

0(i/n), where σ
2
0(·) is a positive continuous

function. The process Z has the same form as in Theorem 2 apart from the fact
that the σ2

0 involved in the covariance kernel of the process W that appears in
the definition of Z is replaced by σ2

0(d0). When normalized p-values are used to
estimate d0, we have the following form for the limiting distribution; an outline
of its proof is given in Section A.4 of the Appendix.

Proposition 1. Consider the setting with homoscedastic errors and covariates
sampled from the fixed uniform design, as discussed in Section 2. Let d̂1n denote
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the estimate obtained from Method 1 by minimizing M̃n defined in (2.5). Let
hn = h0n

−1/(2k+1) and W 1(t), t ∈ R, be a Gaussian process with drift

E(W 1(t)) =
h
k+1/2
0 µ(k)(d0+)

k!σ0
√
K̄2

∫ t

−∞
(t− v)

k
K (v) dv

and covariance function Cov(W 1(t1),W
1(t2)) = (K̄2)−1

∫
K(t1+u)K(t2+u)du.

Let Z1(t) =
∫ t

0
{Φ(W 1(y)) − γ}dy, for t ∈ R. If σ̂ is a

√
n-consistent estimate

of σ0, then h−1
n (d̂1n − d0) is Op(1). For Z

1 possessing a unique argmin a.s., we
have

h−1
n (d̂1n − d0)

d→ argmin
t∈R

Z1(t).

When the covariate is sampled from a random design with heteroscedastic
errors, the result extends as follows for the estimate based on non-normalized
p-values. A sketch of the proof is given in Section A.5 of the Appendix.

Proposition 2. Consider the setting with covariates sampled from a random
design with design density f and heteroscedastic errors, as discussed in Sec-
tion 2.1. The variance function σ2

0(x) = Var(ǫ | X = x) is assumed to be
continuous and positive. Let hn = h0n

−1/(2k+1) and W̃ (t), t ∈ R, be a Gaussian
process with drift

E(W̃ (t)) =
h
k+1/2
0 µ(k)(d0+)

k!

∫ t

−∞
(t− v)

k
K (v) dv

and covariance function Cov(W̃ (t1), W̃ (t2)) =
σ2

0
(d0)

f(d0)

∫
K(t1 + u)K(t2 + u)du.

Let Z̃(t) =
∫ t

0
{Φ(W̃ (y)) − γ}dy, for t ∈ R. For d̃n defined as in (2.7), assume

that h−1
n (d̃n − d0) is Op(1). For Z̃ possessing a unique argmin a.s., we have

h−1
n (d̃n − d0)

d→ argmin
t∈R

Z̃(t).

4. The case of an unknown τ

Although most of the results have been deduced under the assumption of a
known τ , in real applications τ is generally not known. In this situation, one
would need to impute an estimate of τ in the objective function to carry out
the procedure. It can be shown that the rate of convergence and the limit dis-
tribution does not change as long as we have a

√
n-consistent estimator of τ .

The following result makes this formal; its proof is given in Section A.6 of the
Appendix.

Proposition 3. Let d̂n now denote the minimizer of

Mn(d, τ̂ ) =
1

n

n∑

i=1

[
Φ

(√
nhn

(
µ̂

(
i

n

)
− τ̂

))
− γ

]
1

(
i

n
≤ d

)
,
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where
√
n(τ̂ − τ) = Op(1) and hn = h0n

−1/(2k+1). Then h−1
n (d̂n − d0) is Op(1).

Assuming that the process Z defined in Theorem 2 has a unique argmin, we have

h−1
n (d̂n − d0)

d→ argmin
t∈R

{Z(t)}.

Quite a few choices are possible for estimating τ . If d0 can be safely assumed
to be larger than some η, then a simple averaging of the observations below
η would yield a

√
n-consistent estimator of τ . If a proper choice of η is not

available, one can obtain an initial (consistent) estimate of τ using the method

proposed in Section 2.4 of Mallik et al. (2011) (see (5.1)), compute d̂n and then

average the responses from, say, [0, cd̂n], c ∈ (0, 1), to obtain a
√
n-consistent

estimator of τ . This leads to an iterative procedure which we discuss in more
detail in Section 5. In what follows, we justify that such an estimate of τ is
indeed

√
n-consistent.

Lemma 3. Let 0 < c < 1. For any consistent estimator d′n of d0, define

τ̂ :=
1

⌊ncd′n⌋

n∑

i=1

Yi1

(
i

n
≤ cd′n

)
.

We have
√
n(τ̂ − τ) = Op(1).

Proof. Note that for T > 0 and 0 < κ < min(c, (1− c))d0,

P
[√
n|τ̂ − τ | > T

]
≤ P

[√
n|τ̂ − τ | > T, κ < cd′n < d0 − κ

]

+ P [d′n − d0 < (κ− cd0)/c]

+ P [d′n − d0 > ((1− c)d0 − κ)/c] .

The second and the third term on the right side of the above display both
converge to zero. Also,

E
[
n(τ̂ − τ)21 (κ < cd′n < d0 − κ)

]

= nE







1

⌊ncd′n⌋

⌊ncd′

n⌋∑

i=1

ǫi




2

1 (κ < cd′n < d0 − κ)




≤ n

(nκ− 1)2
E


 sup
a≤d0−κ




⌊na⌋∑

i=1

ǫi




2



≤ 4n

(nκ− 1)2
E







⌊n(d0−κ)⌋∑

i=1

ǫi




2

 ≤ 4n(n(d0 − κ) + 1)σ2

0

(nκ− 1)2
.

Here, the penultimate step followed from Doob’s inequality. Hence, E[n(τ̂ −
τ)21(κ < cd′n < d0 − κ)] = O(1). Thus, by Chebyshev’s inequality,

P
[√
n|τ̂ − τ | > T, κ < cd′n < d0 − κ

]
≤ O(1)/T 2
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which can be made arbitrarily small by choosing T large. This completes the
proof. �

5. Simulations

We consider three choices for the underlying regression function µk(x) = [2(x−
0.5)]k1(x > 0.5), x ∈ [0, 1], k = 1, 2 and µ3(x) = [(x − 0.5) + (1/5) sin(5(x −
0.5))+0.3 sin(100(x− 0.5)2)]1(x > 0.5). All these functions are at their baseline
value 0 up to d0 = 0.5. The functions µ1 (linear) and µ2 (quadratic) both rise to
1 while µ3 exhibits non-isotonic sinusoidal behavior after rising at d0. The right
derivative at d0, a factor that appears in the limiting process Z, is the same for
µ1 and µ3. The functions are plotted in the upper left panel of Figure 1. The
functions µ1 and µ2 are paired up with normally distributed errors having mean
0 and standard deviation σ0 = 0.1, while the noise added with µ3 is from a t-
distribution with 5 degrees of freedom, scaled to have the standard deviation σ0.
The three models, µ1 with normal errors, µ2 with normal errors and µ3 with
t-distributed errors, are referred to by the the name of their regression functions
only. We work with γ = 3/4 as extreme values of γ (close to 0.5 or 1) tend to
cause instabilities.

We construct the estimate of d0 using the normalized p-values as they ex-
hibit better finite sample performance and study the coverage performance of
the approximate CI’s obtained from the limiting distributions with estimated
nuisance parameters. The error variance σ2

0 is estimated in a straightforward
manner using σ̂2 = (1/n)

∑
i{Yi− µ̂(i/n)}2. More sophisticated estimates of the

error variance are also available (Gasser, Sroka and Jennen-Steinmetz, 1986;
Hall, Kay and Titterington, 1990) but we avoid them for the sake of simplicity.
We use the Epanechnikov kernel for constructing the estimate of µ. For moder-
ate samples, the bad behavior of kernel estimates near the boundary affects the
coverage performance. In order to correct for this, we only consider the terms
between hn to 1− hn in our objective function, i.e., for d ∈ (hn, 1− hn),

Mn(d, τ) =
1

n

∑

hn≤ i
n≤1−hn

{
Φ

(√
nhn(µ̂(i/n)− τ)

Σn(i/n, σ̂)

)
− γ

}
1

(
i

n
≤ d

)
.

The asymptotic distribution of the minimizer of this restricted criterion function
still has the same form as in Proposition 1. A good choice for h0 in the optimal
bandwidth hn = h0n

−1/(2k+1) can be obtained through minimizing the MSE
of µ̂(d0). Standard calculations show that

Bias(µ̂(d0)) =
µ(k)(d0+)

k!
hknE[W k1(W > 0)] + o(hkn) +O

(
1

(nhn)α

)
, and

Var(µ̂(d0)) =
σ2
0

nhn
K̄2 + o

(
1

nhn

)
,
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(a) Regression Functions (b) Q-Q plot under µ1

(c) Q-Q plot under µ2 (d) Q-Q plot under µ3

Fig 1. Regression functions and Q-Q plots.

where W has density K. The MSE is minimized at hn = hopt0 n−1/(2k+1) where

hopt0 =

[
σ2
0K̄

2(k!)2

2k{µ(k)(d0+)E[W k1(W > 0)]}2
]−1/(2k+1)

.

This bandwidth goes to 0 at the right rate needed for estimating d0. Moreover,
efficient estimation of µ in the vicinity of d0 is likely to aid in estimating d0.
Hence, we advocate the use of this choice of h0 for our procedure.

With the above mentioned choice of h0, we compare the distribution of
h−1
n (d̂n − d0) for n = 1000 data points over 2000 replications with the deduced

asymptotic distribution. As τ is assumed unknown, we implement an iterative
scheme. We obtain an initial estimate of τ using the method prescribed in Mallik
et al. (2011), i.e.,

τ̂init = argmin
τ̃∈R

∑{
Φ

(√
nhn(µ̂(i/n)− τ̃ )

Σn(i/n, σ̂)

)
− 1

2

}2

. (5.1)

This estimate of τ , based on hopt0 , is used to compute d̂n. We re-estimate τ by

averaging the responses for which i/n ∈ [0, 0.9d̂n], use this new estimate of τ
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to update the estimate of d0, and proceed thus. The Q-Q plots are shown in
Figure 1 which show considerable agreement between the two distributions.

Next, we explore the coverage performance of the CI’s constructed by imput-
ing estimates of the nuisance parameters in the limiting distribution. Computing
h0 requires the knowledge of the k-th derivative of µ at d0 which we also need
to generate from the limit process. To estimate µ(k)(d0+), first observe that
µ(x) = µ(k)(d0+)(x − d0)

k/k! + o((x − d0)
k) for x > d0. Hence, an estimate of

µ(k)(d0+) can be obtained by fitting a k-th power of the covariate to the right

of d̂n. More precisely, an estimate of ξ0 ≡ µ(k)(d0+)/k! is given by

ξ̂ = argmin
ξ

n∑

i=1

{Yi − ξ(i/n− d̂n)
k}21(i/n ∈ (d̂n, d̂n + bn])

=

∑
Yi(i/n− d̂n)

k1(i/n ∈ (d̂n, d̂n + bn])∑
(i/n− d̂n)2k1(i/n ∈ (d̂n, d̂n + bn])

,

where bn ↓ 0 and nb2k+1
n → ∞. For the optimal hn, this provides a good estimate

of ξ0.
We include this in our iterative method where we start with an arbitrary

choice of h0 and compute τ̂init. We use τ̂init to compute d̂n and µ̂(k)(d0+). The
parameter µ̂(k)(d0+) is estimated using a reasonably wide smoothing bandwidth
bn, bn = 5(n/ logn)−1/(2k+1). These initial estimates are used to compute the
next level estimate of h0 using the expression for hopt0 . We re-estimate τ by

averaging the responses for which i/n ∈ [0, 0.9d̂n] and proceed thus. On average,
the estimates stabilize within 7 iterations. The coverage performance over 5000
replications is given below in Table 1. The approximate CI’s mostly exhibit over-
coverage for moderate sample sizes for µ1 and µ3 but converge to the desired
confidence levels for large n. Also, the limiting distribution is same under models
µ1 and µ3 which is evident from the coverages and the length of CI’s for large n.

6. Dependent data

We briefly discuss the extension of Method 2 to dependent data in this section.
Our problem is relevant to applications from time series models (see Section 7)
where it is not reasonable to assume that the errors ǫi’s are independent. A data
generating model of the form (2.1) can be assumed here with the exception that
the errors now arise from a stationary sequence {. . . , ǫ−1, ǫ0, ǫ1, . . .} and ex-
hibit short-range dependence in the sense of Robinson (1997). As with (2.1),
the dependence of Yi’s and ǫi’s on n is suppressed but they must be viewed as
triangular arrays. The extension to this setting would work along the following
lines. The estimate of µ with dependent errors still has the same form as (2.2).
With additional assumptions (Assumptions 1–5 of Robinson (1997)), it is guar-
anteed that

√
nhn(µ̂(xi) − µ(xi)), xi ∈ (0, 1) and x1 6= x2, converge jointly in

distribution to independent normals with zero mean – a fact that justifies the
consistency of our p-value based estimates in this setting (Mallik et al., 2011).

Hence, d̂n, defined using (2.6), can still be used to estimate the threshold. The
limiting distribution would be of the same form as in Lemma 2 but with a dif-
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Table 1

Coverage probabilities and length of the CI (in parentheses) using the true parameters (T)
and the estimated parameters (E) for different sample sizes under µ1, µ2 and µ3

n
90% CI 95% CI

T E T E
30 0.949 (0.462) 0.961 (0.614) 0.989 (0.588) 0.987 (0.659)
50 0.943 (0.420) 0.951 (0.539) 0.971 (0.547) 0.978 (0.625)
100 0.921 (0.357) 0.939 (0.448) 0.965 (0.483) 0.972 (0.559)
500 0.914 (0.218) 0.922 (0.258) 0.961 (0.299) 0.965 (0.346)
1000 0.907 (0.173) 0.911 (0.197) 0.955 (0.237) 0.959 (0.265)
2000 0.900 (0.137) 0.903 (0.153) 0.951 (0.188) 0.954 (0.205)

µ1

n
90% CI 95% CI

T E T E
30 0.957 (0.544) 0.849 (0.651) 0.992 (0.624) 0.899 (0.665)
50 0.948 (0.539) 0.876 (0.615) 0.973 (0.620) 0.908 (0.627)
100 0.933 (0.519) 0.883 (0.602) 0.964 (0.617) 0.917 (0.616)
500 0.917 (0.415) 0.889 (0.477) 0.962 (0.548) 0.934 (0.555)
1000 0.907 (0.385) 0.894 (0.424) 0.957 (0.511) 0.944 (0.525)
2000 0.904 (0.350) 0.899 (0.384) 0.951 (0.471) 0.948 (0.490)

µ2

n
90% CI 95% CI

T E T E
30 0.960 (0.461) 0.968 (0.620) 0.992 (0.590) 0.994 (0.672)
50 0.949 (0.424) 0.959 (0.541) 0.977 (0.548) 0.982 (0.630)
100 0.925 (0.358) 0.941 (0.472) 0.970 (0.482) 0.976 (0.539)
500 0.915 (0.218) 0.925 (0.304) 0.961 (0.299) 0.966 (0.348)
1000 0.906 (0.173) 0.914 (0.199) 0.954 (0.237) 0.958 (0.264)
2000 0.901 (0.138) 0.904(0.154) 0.950 (0.188) 0.954 (0.204)

µ3

ferent scaling factor that appears in the covariance function of the process W .
We outline the form of the limiting distribution below. The technical details are
more involved in the sense of tedium but the approach in deriving the limiting
distribution remains the same at the conceptual level.

To precisely state the limiting distribution, let ρ(i, j) = ρ(i − j) denote the
covariance between ǫi and ǫj and let ψ denote the underlying spectral density
defined through the relation σ2

0ρ(l) =
∫ π

−π ψ(u) exp(ılu)du, l ∈ Z. Let W̄ be a
Gaussian process with drift m(·) (defined in Lemma 2) and covariance function

Cov(W̄ (t1), W̄ (t2)) = 2πψ(0)

∫
K(t1 + u)K(t2 + u)du.

It is not uncommon for the spectral density at zero, ψ(0) = (2π)−1σ2
0

∑
j∈Z

ρ(j),
to appear in settings with short range dependence (Robinson, 1997; Anevski and
Hössjer, 2006).

Proposition 4. Consider the setup of Method 2 with the errors now exhibiting
short-range dependence as discussed above. Assume that for hn = h0n

−1/(2k+1),
the resulting estimate d̂n obtained using (2.6) satisfies h−1

n (d̂n − d0) = Op(1)

and that the process Z̄(t) =
∫ t

0 [Φ(W̄ (y))− γ]dy, t ∈ R, has a unique minimum
a.s. Then

h−1
n (d̂n − d0) = argmin

t∈R

Z̄(t).
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Fig 2. Regression setting with dependent errors: Q-Q plot under µ1.

The proof is outlined in Section A.7 of the Appendix.
An illustration of the above phenomenon is shown through a Q-Q plot (Fig-

ure 2), where we generate ǫi’s from an AR(1) model ǫi = 0.25ǫi−1 + zi. Here,
zi’s are mean 0 normal random variables with variance 0.0094 so that ǫi’s have
variance (0.1)2. The Q-Q plot shows considerable agreement between the em-
pirical quantiles, obtained from samples of size n = 1000, with the theoretical
quantiles.

7. Data analysis

We now apply our procedure to two interesting examples from Mallik et al.
(2011).

The first data set involves measuring concentration of mercury in the at-
mosphere through a LIDAR experiment. There are 221 observations with the
predictor variable ‘range’ varying from 390 to 720 and there is visible evidence
of heteroscedasticity. The observed covariates can be considered to have arisen
from a random design and the threshold d0 corresponds to the distance at which
there is a sudden rise in the concentration of mercury. See pages 2 and 10 of
Mallik et al. (2011) for more details.

We employ a variant of Method 2 based on the Nadaraya–Watson estimator
without normalizing by the estimate of the variance. It is reasonable to assume
here that the function is at its baseline till range value 480. The estimate of τ
is obtained by taking the average of observations until range reaches 480, which
gives τ̂ = −0.0523. The estimate d̂n is obtained through the iterative approach
described in Section 5. The expression for the approximate bias of the Nadaraya-
Watson estimator turns out to be the same as that for the fixed design kernel es-
timator at d0 while the approximate variance turns out to be (σ2

0K̄
2)/(nhnf(d0))

and the optimal value of h0 is adjusted accordingly. The limiting distribution, as
well as the optimal h0, involves the parameter σ0(d0), which we estimate using

σ̂(d̂n) where σ̂
2(x) = [Pn(Y − µ̂(X))2K((x−X)/hn)]/[PnK((x−X)/hn)].

The estimate d̂n has an inherent bias which is a recurring feature in boundary
estimation problems. A simple but effective way to reduce this bias is to subtract
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the median of the limiting distribution with imputed parameters, say q̂0.5, from
our crude estimate, after proper normalization (so that the limiting median

is zero). More precisely, d̂n − n−1/(2k+1)q̂0.5 is our final estimate. Assuming k
to be 1, the resulting estimate of d0 is 551.05 which appears reasonable (see
Figure 1 of Mallik et al. (2011)). Moreover, the CI’s are [550.53, 555.17] and
[549.75, 557.82] for confidence levels of 90% and 95%, respectively, which also
seem reasonable.

Our second data set, which comes from the last example in the Introduc-
tion of Mallik et al. (2011) (see pages 3 and 10 of that paper for more details),
involves the measurement of annual global temperature anomalies, in degree
Celsius, over the years 1850 to 2009. The depiction of the data (see Figure 1
of Mallik et al. (2011)) suggests a trend function which stays at its baseline
value for a while followed by a nondecreasing trend. We follow the approach of
Wu, Woodroofe and Mentz (2001) and Zhao and Woodroofe (2012), and model
the data as having a non-parametric trend function and short-range dependent
errors. The flat stretch at the beginning is also noted in Zhao and Woodroofe
(2012), where isotonic estimation procedures are considered in settings with de-
pendent data. They also provide evidence for the errors to be arising from a
lower order auto-regressive process. A comprehensive approach would incorpo-
rate a cyclical component as well (Schlesinger and Ramankutty, 1994), which
we do not pursue in our paper.

The estimate of the baseline value, after averaging the anomalies up to the
year 1875, is τ̂ = −0.3540. Using this estimate of τ , we employ Method 2 with
non-normalized p-values (see (2.6)) in this example with the optimal h0 chosen
through an iterative approach. Constructing the CI involves estimating an extra
parameter ψ(0) for which we use the estimates computed in Wu, Woodroofe and
Mentz (2001, pp. 800) (the parameter σ2 estimated in that paper is precisely
2πψ(0)). Assuming k to be 1, the estimate of the threshold d0 after bias cor-
rection, which signifies the advent of global warming, turns out to be 1912. The
CI’s are [1908, 1917] and [1906, 1919] for confidence levels 90% and 95% respec-
tively. This is compatible with the observation on page 2 of Zhao and Woodroofe
(2012) that global warming does not appear to have begun until 1915.

8. Conclusion

We conclude with a discussion of some open problems that can provide avenues
for further investigation into this problem.

Adaptivity. In this paper we have provided a comprehensive treatment of the
asymptotics of a p-value based procedure to estimate the threshold d0 at which
an unknown regression function µ takes off from its baseline value, with the
aim of constructing CI’s for d0. We have assumed knowledge of the order of
the ‘cusp’ of µ at d0, which we need to achieve the optimal rate of convergence
(and construct the corresponding CI’s), though not for consistency. When k
is unknown, ideas from multiscale testing procedures for white noise models
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(Dümbgen and Spokoiny, 2001; Dümbgen andWalther, 2008) can conceivably be
used to develop adaptive procedures in our model. This is a hard open problem
and will be a topic of future research.

Resampling. A natural alternative to using the limit distribution (with esti-
mated nuisance parameters) to construct CI’s for d0 would be to use boot-
strap/resampling methods. Drawing from results obtained in similar change-
point and non-standard problems (see e.g., Sen, Banerjee andWoodroofe (2010);
Seijo and Sen (2011)) it is very likely that the usual bootstrap method will be
inconsistent in our setup. However, model based bootstrap procedures have re-
cently been studied in the change-point context and have been shown to work
(Seijo and Sen, 2011). Similar ideas may work for our problem as well, but a
thorough understanding of such bootstrap procedures is beyond the scope of
the present paper. Subsampling can be proven to be consistent in our setting,
but its finite sample properties were seen to be rather dismal.

Behavior near the boundary. For our simulations, we concentrated on the case
d0 = 0.5. The estimate also performs well (in terms of MSE’s) in settings where
d0 is close to the boundary as long as there are sufficiently many observations
on either side of d0 (see Section 2.3 of Supplementary material of Mallik et al.
(2011)). We do not address the cases where d0 is exactly at the boundary, e.g,
d0 = 0. This leads to a testing problem (flat stretch vs. no flat stretch) which
goes beyond the scope of our discussion. However, we would like to point out
that d̂n would be consistent even when d0 = 0 or 1 regardless of the bad behavior
of the kernel estimates near the boundary.

Simultaneous estimation of d0 and τ . When τ is unknown, we have provided a
procedure which estimates the threshold d0 and the baseline value τ simultane-
ously through an iterative scheme (see Section 5); however, our method requires
the use of two objective functions, one for updating the estimate of d0 and the
other that of τ . While estimating τ and d0 from a single objective function, say
by minimizing (2.4) over putative values of both d0 and τ would be ideal, this
optimization problem is hard to solve. In fact, it is unclear whether a tractable
solution that provides consistent estimates can be obtained. For example, note
that minimizing the least squares criterion in (2.4) naively over choices of τ (say
τ̃ ) does not necessarily yield meaningful estimates as the criterion goes to 0 when
τ̃ → −∞ and d→ 0, so constraining the optimization would appear necessary.

Of course, modifications to the above least squares criterion are possible.
As the average of the responses up to d0 yields an estimate of τ0, one can
alternatively minimize




∑

i:i/n≤d

{
pn(i/n, τd)−

1

2

}2

+
∑

i:i/n>d

{pn(i/n, τd)}2


 ,

where τd = (1/⌊nd⌋)∑i≤n Yi1[i/n ≤ d]. This is expected to yield consistent
estimates for d0 and τ (τ̂ = τd̂). However, the estimate of τ may be biased
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and it is far from clear whether the estimate of d0 will exhibit the same rate
of convergence. Note that the above criterion runs over the data twice (once
while computing τd and the second time through the sum up to d) and is harder
to handle analytically. One can also consider a slightly different criterion by
replacing τd by cτd (c ∈ (0, 1)) in the above display, which does not estimate τ
as efficiently as its predecessor but avoids the bias issue. Finally, it is unclear
whether other useful criteria can be formulated to simultaneously estimate d0
and τ in this non-parametric setup, mainly owing to the fact that d0 is a feature
of the covariate domain while τ is a feature of the response domain.

Minimaxity. The estimators studied in our paper attain the convergence rate
of n−1/(2k+1). This leads to a natural question as to whether this is the best pos-
sible rate of convergence. When µ is monotone increasing, d0 is precisely µ

−1(τ),
where µ−1 is the right continuous inverse of µ. Wright (1981) (Theorem 1) shows
that the rate of convergence of the isotonic least squares estimate µ at a point,
x0, where the first k − 1 derivatives vanish but the kth does not, is precisely
n−k/(2k+1). A slightly more general result establishing a process convergence is
stated in Fact 1 of Banerjee (2009). Using this in conjunction with the tech-
niques for the proof of Theorem 1 in Banerjee and Wellner (2005), it can be
deduced that the rate of convergence of the isotonic estimate of µ−1 at µ(x0) is
n−1/(2k+1), which matches the rate attained by our approach. Hence, we expect
this rate to be minimax in our setting. We note that this rate is not the same
as the faster rate min(n−2/(2k+3), n−1/(2k+1)) obtained in Neumann (1997) for
a change-point estimation problem in a density deconvolution model and also
observed in the convolution white noise models of Goldenshluger, Tsybakov and
Zeevi (2006) and Goldenshluger et al. (2008). These models are related to our
setting; e.g., Problem 1 in Goldenshluger et al. (2008) is a Gaussian white noise
model where the underlying regression function also has a cusp of a known order
at an unknown point of interest. The convolution white noise model considered
in Goldenshluger, Tsybakov and Zeevi (2006) (Problem 2 in Goldenshluger et al.
(2008)) is equivalent to this problem for a particular choice of the convolution
operator; see Goldenshluger, Tsybakov and Zeevi (2006, pp. 352–353) and Gold-
enshluger et al. (2008, pp. 790–791) for more details. Besides these being white
noise models, they differ from our setting through an additional smoothness
condition (Goldenshluger, Tsybakov and Zeevi, 2006, pp. 354–355), which trans-
lates, in our setting, to assuming that µ(k) is Lipschitz outside any neighborhood
of d0, an assumption not made in this paper. Hence, Neumann’s rate need not be
minimax for our setting. The faster rate of Neumann (1997) was also observed
for k = 1 in Cheng and Raimondo (2008) but once again under the assumption
that the derivative of the regression function is at least twice differentiable away
from the change-point, again an assumption not made in this paper.
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Appendix A: Appendix

We use the notations ‘ .’ and ‘ &’ to imply that the corresponding inequal-
ities hold up to some positive constant multiple, and E∗ to denote the outer
expectation with respect to the concerned probability measure.

We start with proving a few auxiliary results that are repeatedly used in the
paper. Recall that K and µ are Lipschitz continuous of order α ∈ (1/2, 1]. Let
un(x, v) = (1/hn)µ(v)K((x − v)/hn) for x ∈ [0, 1] and v ∈ R.

Lemma 4. For µ̄(·) as in (3.1), we have

sup
x∈[0,1]

∣∣∣∣µ̄(x) −
∫ 1

0

un(x, v)dv

∣∣∣∣ = O

(
1

(nhn)α

)
.

Proof. Note that µ̄(x) = (1/n)
∑

i un(x, i/n) and un(x, v) = 0 whenever |x −
v| ≥ L0hn. Moreover, the difference between

µ̄ (x)−
∫ 1

0

un(x, v)dv

and
∑

1≤i≤n
|x−i/n|≤L0hn

∫ (i+1)/n

i/n

{un(x, i/n)− un(x, v)}dv

is at most ∫ 1/n

0

|un(x, v)|dv +
∫ x−L0hn+1/n

x−L0hn

|un(x, v)|dv

which is bounded by (1/n) supx,v un(x, v) ≤ ‖µ‖∞‖K‖∞/(nhn). Hence,
∣∣∣∣µ̄ (x)−

∫ 1

0

un(x, v)dv

∣∣∣∣

≤ O

(
1

nhn

)
+

∑

1≤i≤n
|x−i/n|≤L0hn

∫ (i+1)/n

i/n

|un(x, i/n)− un(x, v)|dv.

For v1, v2 ∈ R, hn|un(x, v1) − un(x, v2)| ≤ |µ(v1) − µ(v2)|K((x − v1)/hn) +
|µ(v2)||K((x− v1)/hn)−K((x− v2)/hn)|. As K and µ are Lipschitz continuous
of order α, |un(x, v1) − un(x, v2)| . 1/h1+α

n |v1 − v2|α. Also, the cardinality of
the set {i : 1 ≤ i ≤ n, |x − i/n| ≤ L0hn} is at most 2L0nhn + 2 and therefore,
the above display is further bounded (up to a positive constant multiple) by

O

(
1

nhn

)
+

∑

1≤i≤n
|x−i/n|≤L0hn

∫ (i+1)/n

i/n

|i/n− v|α
h1+α
n

dv ≤ O

(
1

nhn

)
+

2L0nhn + 2

(α+ 1)(nhn)1+α
,

which is O(1/(nhn)
α). Here, the final bound does not depend on x and thus,

we get the desired result. �
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Note that the above result holds for generic functions µ and K, satisfying
assumptions 1(a), 4(c) and 4(d). Letting µ(x) ≡ σ2

0 and substituting K2 for K,
we get:

Corollary 1. Let zn(x, v) = (σ2
0/hn)K

2 ((x− v)/hn). Then,

sup
x∈[0,1]

∣∣∣∣Σ
2
n (x)−

∫ 1

0

zn(x, v)dv

∣∣∣∣ = O

(
1

(nhn)α

)
.

As a consequence, when i/n ∈ [L0hn, 1− L0hn],

Σ2
n (i/n) =

∫ 1

0

zn(i/n, v)dv + o(1)

= σ2
0 min

j

∫ i/(nhn)

(i−n)/(nhn)

K2(u)du+ o(1)

= σ2
0K̄

2 + o(1). (A.1)

A.1. Proof of Theorem 1

To prove Theorem 1, we use Theorem 3.2.5 of van der Vaart and Wellner (1996)
(see also Theorem 3.4.1) which requires coming up with a non-negative map
d 7→ ρn(d, dn) such that

Mn(d)−Mn(dn) ≥ ρ2n(d, dn).

Then a bound on the modulus of continuity with respect to ρn is needed, i.e.,

E

[
√
n sup

ρn(d,dn)<δ

|(Mn(d)−Mn(dn))− (Mn(d)−Mn(dn))|
]

(A.2)

= E

[
√
n sup

ρn(d,dn)<δ

|(Mn −Mn)(d)− (Mn −Mn)(dn)|
]
. φn(δ),

where the map δ 7→ φn(δ)/δ
α is decreasing for some α < 2. The rate of con-

vergence is then governed by the behavior of φn. We start with the following
choice for ρn.

Lemma 5. Fix η > 2L0 > 0. Let d 7→ ρn(d, dn) be a map from (0, 1) to [0,∞)
such that

ρ2n(d, dn) = (K1/n) {| ⌊nd⌋ − ⌊n(d0 − L0hn)⌋ |1(d ≤ d0 − L0hn)

+ | ⌊nd⌋ − ⌊n(dn + η/νn)⌋ |1(d > dn + η/νn)} ,

for some K1 > 0. Then K1 and κ > 0 can be chosen such that for sufficiently
large n and ρn(d, dn) < κ, we have

Mn(d)−Mn(dn) ≥ ρ2n(d, dn).
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We first provide the proof of Theorem 1 using Lemma 1. By the above Lemma,
there exists A <∞ such that for sufficiently large n and any δ > 0, {ρn(d, dn) <
δ} ⊂ {|d− dn| < δ2/K1 +A/νn + 2/n}. Let d > dn and

U(i, d) =

{
Φ
(√

nhn(µ̂(i/n))
)
− Φi,n

(√
nhn(µ̄(i/n))√
1 + Σ2

n(i/n)

)}

× 1

(
dn <

i

n
≤ d

)

where µ̂ is defined in (3.1). By (3.2), E{U(i, d)} = 0. Also, for 1 ≤ i, j ≤ n,
U(i, d) and U(j, d) are independent whenever |i − j| ≥ 2L0nhn. Let j

i
1 = i and

jil = jil−1 + ⌈2L0nhn⌉. Then,

S(i, d) :=
1

n

∑

l:jil≤n

U(jil , d),

a sum of at most ⌈(d−dn)/(2L0hn)⌉ non-zero independent terms, is a martingale
in d, d ≥ dn, with right continuous paths. As |U(·, d)| ≤ 1, E{U2(·, d)} is at
most 1. Using Doob’s inequality, we get

E


 sup
|d−dn|<δ2/K1+A/νn+2/n

d≥dn

|S(i, d)|




≤
{
ES2(i, dn + δ2/K1 +A/νn + 2/n)

}1/2

=
1

n



∑

l:jil≤n

E{U2(jil , dn + δ2/K1 +A/νn + 2/n)}



1/2

≤ 1

L0nh
1/2
n

(δ2/K1 +A/νn + 2/n)1/2.

As (Mn−Mn)(d)−(Mn−Mn)(dn) =
∑⌈2L0nhn⌉−1

i=1 S(i, d), for sufficiently large n,

E

[
√
n sup

ρn(d,dn)<δ,d>dn

|(Mn −Mn)(d) − (Mn −Mn)(dn)|
]

≤ E



√
n sup

|d−dn|<δ2/K1+A/νn+2/n
d≥dn

|(Mn −Mn)(d) − (Mn −Mn)(dn)|




≤
√
n(2L0nhn)

1

L0nh
1/2
n

(δ2/K1 +A/νn + 2/n)1/2 . φn(δ), (A.3)

where φn(δ) =
√
nhn(δ

2+ν−1
n +n−1)1/2. This bound can also be shown to hold

when d ≤ dn. Also, φn(·) and ρn(·, dn) satisfy the conditions of Theorem 3.2.5
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of van der Vaart and Wellner (1996). Hence, the rate of convergence, say rn,
satisfies

r2nφn

(
1

rn

)
.

√
n ⇒ nhn(r

2
n + r4n/νn + r4n/n) . n.

Note that r2n = νn satisfies the above relation and therefore νnρ
2
n(d̂n, dn) is

Op(1). Consequently, we get νn(d̂n − d0) = Op(1). �

Proof of Lemma 5. Since µ̄(x) = 0 for x < d0−L0hn, note that dn > d0−L0hn
for sufficiently large n. As Φi,n(0) converges to 1/2 uniformly in i, it can be seen
that for large n and d ≤ d0 − L0hn,

Mn(d)−Mn(dn) ≥ Mn(d)−Mn(d0 − L0hn)

=
n∑

i=1

{γ − Φi,n(0)}1
(
d <

i

n
≤ d0 − L0hn

)

≥ 1

2

(
γ − 1

2

)
{⌊nd⌋ − ⌊n(d0 − L0hn)⌋} /n. (A.4)

Next, we show that

Φ̃n



√
nhnµ̄(dn + η/νn)√

1 + Σ̃2
n


− γ > K0, (A.5)

for sufficiently large n and some K0 > 0. Using (3.3), note that Φ̃n(
√
nhnµ̄(dn)/√

1 + Σ̃2
n(dn)) converges to γ and consequently,

√
nhnµ̄(dn)/

√
1 + Σ̃2

n(dn) is

O(1). As Σ2
n(dn) is alsoO(1), it suffices to show that

√
nhn(µ̄(dn+η/νn)−µ̄(dn))

is bounded away from zero. To show this, note that by Lemma 4,
√
nhn(µ̄(dn + η/νn)− µ̄(dn))

=

∫ L0

−L0

√
nhn {µ(dn + η/νn + uhn)− µ(dn + uhn)}K(u)du+ o(1).

Choose κ > 0 such that µ is non-decreasing in (d0, d0+3κ). For sufficiently large
n, dn + η/νn + L0hn < d0 + 3κ, and hence, the integrand in the above display
is non-negative. With L1 such that Kmin = inf{K(x) : x ∈ [−L1, L1]} > 0, the
above display is bounded from below by

2L1Kmin

√
nhn(µ(dn + η/νn − L1hn)− µ(dn + L0hn)).

As η > 2L0, note that dn + η/νn − L1hn > dn + L0hn > d0. With ζ
(1)
n and ζ

(2)
n

being some points in (d0, dn + η/νn − L1hn) and (d0, dn + L0hn) respectively,
we have
√
nhn{µ(dn + η/νn − L0hn)− µ(dn + L0hn)}

=

√
nhn
k!

{µ(k)(ζ(1)n )(dn + η/νn − L1hn − d0)
k − µ(k)(ζ(2)n )(dn + L0hn − d0)

k}
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>

√
nhnµ

(k)(ζ
(1)
n )

k!
[(dn + η/νn − L1hn − d0)

k − (dn + L0hn − d0)
k]

+

√
nhn
k!

[µ(k)(ζ(1)n )− µ(k)(ζ(2)n )](dn + L0hn − d0)
k

>
√
nhn

[{
µ(k)(d0+) + o(1)

}
(η/νn − 2L0hn)

k

k!
+ o(1)(dn − d0 + L0hn)

k

]
.

Using Lemma 1, (dn − d0) is O(1/νn) and hence, the above display is further
bounded from below by

√
nhn
νkn

[
µ(k)(d0+)

k!
(η − 2L0)

k + o(1)

]
.

As
√
nhn/ν

k
n ≥ 1, (A.5) holds.

Further, as the kernel K(u) is non-increasing in |u|, µ̄ is non-decreasing in
(d0, d0 + 2κ). For d ∈ (dn + η/νn, d0 + 2κ),

Mn(d)−Mn(dn) ≥Mn(d)−Mn(d0 + η/νn)

≥
∑

d0+η/νn≤i/n≤d

{
Φi,n

(√
nhnµ̄(i/n)/

√
1 + Σ2

n(i/n)
)
− γ
}

≥ K0(⌊nd⌋ − ⌊n(dn + η/νn)⌋)/n. (A.6)

Using Lemma 1, there exists A0 <∞ such that for sufficiently large n, νn|d0 −
dn| ≤ A0, and hence {ρn(d, dn) < κ} ⊂ {|d−d0| < κ2/K1+A/νn+2/n} ⊂ {|d−
d0| < 2κ}, where A = 2max(η, L0, A0). Letting K1 = (1/2)min(γ − 1/2,K0)
and using (A.4) and (A.6), we get the desired result. �

A.2. Proof of Lemma 2

In order to prove Lemma 2, we first justify a few auxiliary results required to
prove the tightness of Wn. Recall that

Wn(t) =
√
nhnµ̂(d0 + thn).

Let ǭn(·) be such that ǭn(t) =Wn(t)−
√
nhnµ̄(d0 + thn), i.e.,

ǭn(t) =
1√
nhn

n∑

i=1

ǫiK

(
d0 − i/n

hn
+ t

)
. (A.7)

Lemma 6. The processes
√
nhnǭn(d0 + thn), t ∈ R, are asymptotically tight

in C(R).

Proof. As the kernel K is Lipschitz of order α > 1/2, there exists a constant
C0 > 0, such that |K(t)−K(s)| ≤ C0|t− s|α. Fix T > 0. For s, t ∈ [−T, T ], we
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have

E [ǭn(t)− ǭn(s)]
2

=
1

nhn

n∑

i=1

σ2
0

∣∣∣∣K
(
d0 − i/n

hn
+ t

)
−K

(
d0 − i/n

hn
+ s

)∣∣∣∣
2

=
1

nhn

n∑

i=1

σ2
0

∣∣∣∣K
(
d0 − i/n

hn
+ t

)
−K

(
d0 − i/n

hn
+ s

)∣∣∣∣
2

=
1

nhn

∑

|d0−i/n|<(L0+T )hn

σ2
0

∣∣∣∣K
(
d0 − i/n

hn
+ t

)
−K

(
d0 − i/n

hn
+ s

)∣∣∣∣
2

≤ 4(L0 + T + 1)σ2
0C

2
0 |t− s|2α.

Since α > 1/2, the result is a consequence of Theorem 12.3 of Billingsley (1968,
pp. 95). �

We use a version of the Arzela-Ascoli theorem to prove the next result and
thus we state it below for convenience.

Theorem 5 (Arzela-Ascoli). Let fn be a sequence of continuous functions de-
fined on a compact set [a, b] such that fn converge pointwise to f and for any
δn ↓ 0 sup|x−y|<δn |fn(x)− fn(y)| converges to 0. Then supx∈[a,b] |fn(x)− f(x)|
converges to zero.

Lemma 7. The sequence of functions
√
nhnµ̄(d0 + thn) converges to m(t),

uniformly over compact sets in R.

Proof. The pointwise convergence is evident from Lemma 2. To justify the uni-
form convergence, let z̄n(x, t) = (1/hn)µ(x)K((d0 − x)/hn + t). By arguments
similar to those for Lemma 4, |z̄n(x, t) − z̄n(y, t)| . 1/h1+α

n |x− y|α and conse-
quently, for t ∈ [−T, T ],

∣∣∣∣µ̄(d0 + thn)−
∫
z̄n(x, t)dx

∣∣∣∣

≤ O

(
1

nhn

)
+

∑

1≤i≤n
|dn−i/n|≤(L0+T )hn

|i/n− x|α
h1+α
n

dx = O

(
1

(nhn)α

)
.

As the above bound does not depend on t and α > 1/2, for s, t ∈ [−T, T ], and
δ > 0,

sup
|t−s|<δ

∣∣∣
√
nhnµ̄(d0 + thn)−

√
nhnµ̄(d0 + shn)

∣∣∣

= sup
|t−s|<δ

∣∣∣∣
√
nhn

∫ ∞

−∞
{z̄n(x, t)− z̄n(x, s)}dx

∣∣∣∣ + o(1)

≤
√
nhn

∫ ∞

−∞
µ(d0 + uhn) |K (t− u)−K (s− u)| du+ o(1)
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≤
√
nhn

∫ L0+T

0

µ(k)(ζu)

k!
(uhn)

k |K (t− u)−K (s− u)| du+ o(1),

where ζu is some intermediate point between d0 and d0+uhn. The k-th derivative
of µ is bounded on (d0, d0 + (L0 + T )hn) for sufficiently large n and hkn

√
nhn

equals h
k+1/2
0 . As K is uniformly continuous, the above display goes to zero as

δ → 0 by DCT. Hence, by the Arzela–Ascoli theorem we get the desired result. �

We now continue with the proof of Lemma 2. For (ai, ti) ∈ R
2, i = 1, . . . l,

we have

∑

i,j

aiajCov(W (ti),W (tj)) =

∫ {∑

i

aiK(ti + u)

}2

du ≥ 0.

Hence, the defined covariance function is non-negative definite and by Kol-
mogorov consistency, the Gaussian process W exists.

Let r(h) = {
∫
K(h+u)K(u)du}/K̄2 denote the correlation function ofW . For

W to have a continuous modification, by Hunt’s theorem (e.g., see Cramér and
Leadbetter (1967, pp. 169–171)), it suffices to show that r(h) is 1−O((log(h))−δ)
for some δ > 3 as h→ 0. Note that the kernelK is Lipschitz continuous of order
α and hence, we have

|(1− r(h))(log(h))δ | =

∣∣∣∣∣
hα(log(h))δ∫
K2(u)du

(∫ L0

−L0

(K(u)−K(h+ u))

hα
K(u)du

)∣∣∣∣∣

.
1∫

K2(u)du

∣∣hα(log(h))δ
∣∣→ 0.

Thus, W has a continuous modification. Next, we justify weak convergence of
the process Wn to W .

As a consequence of Lemmas 6 and 7, the processWn is asymptotically tight.
To justify finite dimensional convergence, it suffices to show that:

(
Wn(t1)
Wn(t2)

)
d→
(
W (t1)
W (t2)

)
, (A.8)

where t1, t2 ∈ R. Let xj = d0 + tjhn, j = 1 and 2. Then,

µ̄(xj) =
√
nhn

{∫ 1

0

1

hn
µ (x)K

(
xj − x

hn

)
dx+O

(
1

(nhn)α

)}

=
√
nhn

∫ d0/hn+tj

(d0−1)/hn+tj

µ(d0 + (tj − v)hn)K (v) dv + o (1)

=
√
nhn

∫ tj

(d0−1)/hn+tj

µ(k)(d+0 )

k!

(
(tj − v)k hkn + o(hkn)

)
K (v) dv + o(1)

= h
k+1/2
0

µ(k)(d0+)

k!

(∫ tj

−∞
(tj − v)

k
K (v) dv + o(1)

)
+ o(1)

= m(tj) + o(1).
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The last step follows from DCT as the k-th derivative of µ is bounded in a
right neighborhood of d0 and

∫
|v|kK(v)dv <∞. Moreover,

E [ǭn(xj)] = 0,

V ar [ǭn(xj)] = Σ2
n(xj) → σ2

0K̄
2,

and, by a change of variable,

Cov [ǭn(x1), ǭn(x2)]

= Cov

[
1√
nhn

∑
ǫiK ((x1 − i/n)/hn)

Σn(x1)
,

1√
nhn

∑
ǫiK ((x2 − i/n)/hn)

Σn(x2)

]

→ σ2
0

∫
K(t1 + u)K(t2 + u)du.

Also,
maxiK

2 ((xj − i/n)/hn)∑
K2 ((xj − i/n)/hn)

≤ ‖K‖2∞
nhn(K̄2 + o(1))

→ 0.

Hence, the Lindeberg–Feller condition is satisfied for ǭn(xj)s and by the Cramér-
Wold device, (A.8) holds. This justifies the finite dimensional convergence and
hence, we have the result. �

A.3. Proof of Theorem 3

In order to prove Theorem 3, an ergodic theorem and Borell’s inequality are
found useful, which are stated below for convenience. For the proofs of the two
results, see, for example, Cramér and Leadbetter (1967, pp. 147), and (Adler
and Taylor, 2007, pp. 49–53), respectively. Also, we use Theorem 3 from Ferger
(2004) which we state below as well.

Theorem 6. Consider a real continuous second order stationary process ξ(t)
with mean 0 and correlation function R(t). If

1

T

∫ T

0

R(t)dt = O

(
1

T a

)

for any a > 0, then ξ satisfies the law of large numbers, i.e., T−1
∫ T

0 ξ(t)dt
converges a.s. to zero as T → ∞.

Theorem 7 (Borell’s inequality). Let ξ be a centered Gaussian process, a.s.
bounded on a set I. Then E{supu∈I ξ(u)} <∞ and for all x > 0,

P

{
sup
u∈I

ξ(u)− E

(
sup
u∈I

ξ(u)

)
> x

}
≤ exp

(−x2
2σ2

I

)
,

where σ2
I = supu∈I Var{ξ(u)}.
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Theorem 8 (Ferger (2004)). Let Vn, n ≥ 0, be stochastic processes in D(R),
defined on a common probability space (Ω,A, P ). Let ξn be a Borel-measurable
minimizer of Vn. Suppose that:

(i) Vn converges weakly to V0 in D[−C,C] for each C > 0.
(ii) The trajectories of V0 almost surely possess a smallest and a largest min-

imizer ξs0 and ξl0 respectively, which are Borel measurable.
(iii) The sequence ξn is uniformly tight.

Then for every x ∈ X,

P [ξl0 < x] ≤ lim inf
n→∞

P∗[ξn < x] ≤ lim sup
n→∞

P ∗[ξn ≤ x] ≤ P [ξs0 ≤ x].

Here, X = {x ∈ R : P [V0 is continuous at x] = 1}.
We now continue with the proof of Theorem 3. Let

W0(t) =W (t)−m(t).

This is a mean zero stationary process and thus, so is the process D(t) =
Φ(W0(t)) − 1/2 with correlation function R(t), say. As, K is supported on
[−L0, L0], W (t1) and W (t2) are independent whenever |t1 − t2| ≥ 2L0 and

hence R(t) = 0 for t > 2L0. So, (1/t)
∫ t

0
R(y)dy = O(1/t) as |t| → ∞ and there-

fore, by Theorem 6, Z1(t) = (1/t)
∫ t

0
D(y)dy → 0 a.s. as |t| → ∞. For t < 0, we

write Z(t) as

Z(t) = t

[
Z1(t) + (1/2− γ) + (1/t)

∫ t

0

{Φ (W (t))− Φ (W0(t))} dy
]
.

When t < −L0, m(t) = 0, which gives W (t) = W0(t) and hence the third term
in the above display goes to zero and Z(t) → ∞ a.s. as t → −∞. For t > 0, fix
M > 0 and j be a positive integer. Then

P

[
inf

t∈[j,j+1]
W (t) < M

]
≤ P

[
inf

t∈[j,j+1]
W0(t) + inf

t∈[j,j+1]
m(t) < M

]

= P

[
sup

t∈[j,j+1]

(−W0(t)) > m(j)−M

]
,

as inft∈[j,j+1]m(t) = m(j). By Borell’s inequality, the above probability is
bounded by exp[{−m(n) − L0 − E supt∈[j,j+1](−W0(t))}2], where by station-
arity, E supt∈[j,j+1](−W0(t)) = E supt∈[0,1](−W0(t)) which is finite, again due

to Borell’s inequality. Also, it can be seen that m(j) & (j − L0)
k and hence∑

j≥1 P [supt∈[j,j+1](−W0(t)) > m(j) −M ] < ∞. Using Borel–Cantelli lemma,
we get P [lim inft→∞W (t) > M ] = 1. As M can be made arbitrarily large, we
get that W (t) diverges to ∞ a.s. as t→ ∞ and consequently so does Z(t).

Note that Zn (defined in (3.5)) converges weakly to Z in Bloc(R) and conse-
quently, in D(R) as well. Moreover, Z has continuous sample paths with prob-
ability 1. As Z(t) → ∞ when |t| → ∞, ξs0 and ξl0 are well defined and Borel



Threshold estimation 2507

measurable. Further, recall that h−1
n (d̂n − d0), the smallest argmin of the pro-

cess Zn(·), is determined by the ordering of finitely many random variables and
hence, is measurable. Also, by Theorem 1, it is Op(1). Hence, conditions (i), (ii)
and (iii) of Theorem 8 are satisfied with Vn = Zn and V0 = Z, and thus,

lim inf
n→∞

P [csα/2 < h−1
n (d̂n − d0) < cl1−α/2] ≥ lim inf

n→∞
P [h−1

n (d̂n − d0) < cl1−α/2]

− lim sup
n→∞

P [h−1
n (d̂n − d0) ≤ csα/2]

≥ 1− α.

Hence, we get the desired result. �

A.4. Outline of the proof of Proposition 1

We assume the rate of convergence for the proof as it is a consequence of argu-
ments similar to that for the proof of Proposition 3 (see Section A.6).

To see that Method 1 ends up yielding the given limiting distribution, recall
that for τ = 0,

d̂1n = sargmin
d∈[0,1]

1

n

n∑

i=1

{
Φ

(√
nhnµ̂(i/n)

Σn(i/n, σ̂)

)
− γ

}
1

(
i

n
≤ d

)
.

Thus, the form of the limit distribution is dictated by the asymptotic behavior
of the local process

Z1
n(t) =

1

nhn

n∑

i=1

{
Φ

(√
nhnµ̂(i/n)

Σn(i/n, σ̂)

)
− γ

}(
1

(
i

n
≤ d0 + thn

)
− 1

(
i

n
≤ d0

))
.

Proceeding as we did in the proof of Theorem 2, Z1
n can be split into I1n(t) +

II1n(t), where

II1n(t) = h−1
n

∫ d0+thn

d0

(
Φ

(√
nhnµ̂(x)

Σn(x, σ̂)

)
− γ

)
dx (A.9)

and the contribution of I1n(t) = Z1
n(t)−II1n(t) can be shown to converge to zero.

By a change of variable, II1n can be written as

II1n(t) =

∫ t

0

[
Φ

(
Wn(y)

Σn(d0 + yhn, σ̂)

)
− γ

]
f(d0 + yhn)dy,

where,Wn is as defined in (3.6). This term differs from its analogue forMethod 2

(see (2.6)) through the normalizing factor Σn(d0 + yhn, σ̂) which converges in

probability to σ0
√
K̄2. The tightness of the ratio processWn(y)/Σn(d0+yhn, σ̂)

can be established through calculations similar to those in the proof of Lemma 2.
Hence, by a Slutsky-type argument, we get that

h−1
n (d̂1n − d0)

d→ argmin
t∈R

∫ t

0

{
Φ

(
W (y)

σ0
√
K̄2

)
− γ

}
dy,

for hn = h0n
−1/(2k+1). Note that the process on the right side of the above

display is precisely Z1. This completes the proof. �
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A.5. Outline of the proof of Proposition 2

Here, we provide a brief outline of the proof to convince the reader about the
form of the limiting distribution. Note that this is dictated by the asymptotic
behavior of the local process

Z̃n(t) = Pn

[{
Φ
(√

nhnµ̃(X)
)
− γ
}
(1(X ≤ d0 + thn)− 1(X ≤ d0))

]

that arises out of the criterion in (2.7) (with τ = 0). As in the proof of Theorem 2,
Z̃n can be split into Ĩn(t) + ĨIn(t), where

ĨIn(t) = h−1
n

∫ d0+thn

d0

(
Φ
(√

nhnµ̃(x)
)
− γ
)
f(x)dx (A.10)

and the contribution of Ĩn(t) = Z̃n(t) − ĨIn(t) can be shown to go to zero. By
a change of variable, ĨIn can be written as

ĨIn(t) =

∫ t

0

[
Φ
(
W̃n(y)

)
− γ
]
f(d0 + yhn)dy,

where W̃n(y) =
√
nhnµ̃(d0 + yhn). The process W̃n can be shown to converge

weakly to the process W̃ by an imitation of the arguments in the proof of
Lemma 2. Also, f(d0 + yhn) converges to f(d0) > 0. Consequently

h−1
n (d̃n − d0)

d→ argmin
t∈R

{
f(d0)Z̃(t)

}
= argmin

t∈R

{
Z̃(t)

}
.

�

A.6. Proof of Proposition 3

Recall that

Mn(d, τ̃ ) =
1

n

n∑

i=1

[
Φ

(√
nhn

(
µ̂

(
i

n

)
− τ̃

))
− γ

]
1

(
i

n
≤ d

)

and Mn(d, τ̃ ) = E[Mn(d, τ̃ )]. We make the dependence on the parameter τ
explicit for the analysis. Here Mn(d, τ̂ ) is interpreted as Mn(d, τ̃ ) computed
at τ̃ = τ̂ . Now, we extend the proof of Theorem 1 to show that the rate of
convergence remains the same.

Rate of convergence. As
√
n(τ̂−τ) = Op(1), for any ǫ > 0, there exists Vǫ/2 > 0

such that P [
√
n|τ̂ − τ | < Vǫ/2] > 1 − ǫ. To show that the rate of convergence

does not change, we need to derive a bound on

E

[
√
n sup

ρn(d,dn)<δ

|(Mn(d, τ̂ )−Mn(d, τ̂ ))− (Mn(dn, τ)−Mn(dn, τ))|
]
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having the same order as φn(δ) (see (A.2) and (A.3)). A slight relaxation is
possible. For each ǫ > 0, it suffices to find a bound of the form

E

[
√
n sup

ρn(d,dn)<δ

|(Mn −Mn)(d, τ̂ )− (Mn −Mn)(dn, τ)|1(Ωǫ)

]
≤ Cǫφn(δ),

(A.11)
where P [Ωǫ] > 1 − ǫ and Cǫ > 0; see Banerjee and McKeague (2007, Theo-
rem 5.2). For Ωǫ = [τ̂ ∈ [τ − Vǫ/2/

√
n, τ + Vǫ/2/

√
n]], the left side of the above

display can be bounded by

E

[
√
n sup

ρn(d,dn)<δ,|τ̃−τ |<Vǫ/2/
√
n

|(Mn −Mn)(d, τ̃ )− (Mn −Mn)(dn, τ)|
]

≤ E

[
√
n sup

ρn(d,dn)<δ

|(Mn −Mn)(d, τ) − (Mn −Mn)(dn, τ)|
]

+ E



√
n sup

ρn(d,dn)<δ,
|τ̃−τ |<Vǫ/2/

√
n

|(Mn(d, τ̃ )−Mn(d, τ)) − (Mn(dn, τ̃ )−Mn(dn, τ))|


.

The first term on the right side is precisely the term dealt in the case of a known τ
(see (A.2)). As for the second term, note that by the Lipschitz continuity of Φ,

|(Mn(d, τ̃ )−Mn(d, τ)) − (Mn(dn, τ̃ )−Mn(dn, τ))|

≤ 1

n

n∑

i=1

{∣∣∣∣Φ
(√

nhn

(
µ̂

(
i

n

)
− τ̃

))
− Φ

(√
nhn

(
µ̂

(
i

n

)
− τ

))∣∣∣∣

×
∣∣∣∣1
(
i

n
≤ d

)
− 1

(
i

n
≤ dn

)∣∣∣∣
}

.
√
nhn|τ̃ − τ | | ⌈nd⌉ − ⌈ndn⌉ |

n
.

Thus, we have

E



√
n sup

ρn(d,dn)<δ,
|τ̃−τ |<Vǫ/2/

√
n

|(Mn(d, τ̃ )−Mn(d, τ)) − (Mn(dn, τ̃ )−Mn(dn, τ))|




.
√
n

√
nhnVǫ/2√

n
(δ2 + 2/n) . Vǫ/2φn(δ),

for δ < 1 and large n. Hence, the expression in (A.11) has the same bound φn(·)
(up to a different constant) and thus, we get the same rate of convergence.

Limit distribution. Recall from (3.5) that

Zn(t) = Zn(t, τ) = h−1
n [Mn(d0 + thn, τ)−Mn(d0, τ)] .
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To show that the limiting distribution of d̂n remains the same, it suffices to
show that

sup
t∈[−T,T ]

|Zn(t, τ̂ )− Zn(t, τ)| (A.12)

converges in probability to zero, for any T > 0. Again by the Lipschitz continuity
of Φ,

|Zn(t, τ̂ )− Zn(t, τ)|

=
1

nhn

∣∣∣∣∣

n∑

i=1

{
Φ

(√
nhn(µ̂

(
i

n

)
− τ̂)

)
− Φ

(√
nhn(µ̂

(
i

n

)
− τ)

)

×
(
1

(
i

n
≤ d0 + thn

)
− 1

(
i

n
≤ d0

))}∣∣∣∣

.
1

nhn

∣∣∣∣∣

n∑

i=1

√
nhn|τ̂ − τ |

(
1

(
i

n
≤ d0 + Thn

)
− 1

(
i

n
≤ d0

))∣∣∣∣∣

≤ hn
(Tnhn + 2)

nhn

√
n|τ̂ − τ |.

As the above bound is uniform in t ∈ [−T, T ] and √
n(τ̂ − τ) is Op(1), the

expression in (A.12) converges in probability to zero and hence, we get the
desired result. �

A.7. Proof of Proposition 4

Given what has been done earlier for proving results from Section 3.2, it suffices
to show that the process ǭn(t), defined in (A.7), converges weakly to a mean
zero Gaussian process having the covariance function of W̄ in the setup of
Section 6. As Wn(t) =

√
nhnµ̄(d0 + thn) + ǭn(t), Lemma 7 then justifies the

weak convergence of Wn to W̄ . The statement and the proof of Lemma 2 relies
on the i.i.d. assumption only through the convergence of Wn’s and the form
of their limit. Hence, it would follow that the process Zn (defined in (3.5))
converges to Z̄. The result then follows from applying the argmin continuous
mapping theorem as in proving Theorem 4.

We start by showing the covariance function of the process ǭn converges to
that of W̄ . For t1, t2 ∈ R, let xj = d0 + tjhn, j = 1, 2. We have

Cov(ǭn(t1), ǭn(t2)) =
σ2
0

nhn

∑

l,j

ρ(l − j)K

(
x1 − l/n

hn

)
K

(
x2 − j/n

hn

)
.

As σ2
0ρ(l − j) =

∫ π

−π ψ(u) exp(ı(l − j)u)du, the above expression reduces to

1

nhn

∫ π

−π

ψ(u)K̂x1
(u)K̂x2

(−u)du,
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where for x, u ∈ R, K̂x(u) =
∑

j K(h−1{x− j/n})eıju. Under short range de-
pendence, Assumption 1 of Robinson (1997) requires ψ to be an even non-
negative function which is continuous and positive at 0. Using this assumption,
it can be shown that the difference between the above display and

ψ(0)

nhn

∫ π

−π

K̂x1
(u)K̂x2

(−u)du

goes to zero by calculations almost identical to those in Robinson (1997, pp. 2061–
2062). As

∫ π

−π exp(ı(l− j)u)du = 2πδlj , with δlj being the Kronecker delta, the
above expression equals

2πψ(0)

nhn

∑

l,j

δljK

(
x1 − l/n

hn

)
K

(
x2 − j/n

hn

)
.

Following the arguments identical to that in the proof of Lemma 2, this ex-
pression can be shown to converge to the covariance function of W̄ . What re-
mains now is the justification of the asymptotic normality of finite dimensional
marginals of ǭn and proving tightness.

Justifying asymptotic normality of the finite dimensional marginals of ǭn
requires showing the asymptotic normality of any finite linear combination of
marginals of ǭn and then applying the Cramér-Wold device. Given the conver-
gence of the covariances, it suffices to prove that for (cr, tr) ∈ R, 1 ≤ r ≤ R ∈ N,

1√
vn

∑

r≤R

cr ǭn(tr)
d→ N(0, 1), (A.13)

where v2n = Var(
∑

r≤r cr ǭn(tr)). The left hand side equals
∑

i winǫi where

win =
1√

nhnvn

∑

r≤R

crK

(
d0 − i/n

hn
+ tr

)
.

As in (Robinson, 1997, Assumption 2), we assume ǫi’s to be a linear process
with martingale innovations and square summable coefficients, i.e, there is a
sequence of martingale differences uj, j ∈ Z adapted to Fj = σ{uk : k ≤ j}
with mean 0 and variance 1, such that

ǫi =

∞∑

j=−∞
αjui−j,

∞∑

j=−∞
α2
j <∞. (A.14)

To show asymptotic normality, we justify conditions (2.3) and (2.6) from Robin-
son (1997). The condition (2.3) is just a normalization requirement which holds
in our case as the variance of the left hand side of (A.13) is 1. The condition
(2.6) of Robinson (1997) is about justifying the existence of a positive-valued
sequence an such that as n→ ∞,



∑

i

w2
in

∑

|j|>an

α2
j




1/2

+ max
1≤i≤n

|win|
∑

|j|≤an

|αj | → 0. (A.15)
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For an such that an → ∞ and nhn/an → ∞,
∑

|j|>an
α2
j = o(1), due to (A.14).

Also, by Cauchy-Schwartz,
∑

|j|≤a |αj | = O(
√
an). By the compactness of the

kernel and the fact that vn = O(1),
∑

iw
2
in = O(1). As the kernelK is bounded,

max1≤i≤n |win| = O(1/
√
nhn). Hence, the left hand side of (A.15) is o(1) +

O(
√
an/nhn) which is o(1). This shows convergence of the finite dimensional

marginals.
For tightness, recall that for t ∈ [−T, T ]

ǭn(t) =
1√
nhn

∑

i:|d0−i/n|≤(L0+T )hn

ǫiK

(
d0 − i/n

hn
+ t

)
.

We have

E [ǭn(t1)− ǭn(t2)]
2
=

1

nhn

∫ π

−π

ψ(u)(K̂x1
(u)− K̂x2

(u))(K̂x1
(−u)− K̂x2

(−u))du.

As ψ is a bounded function, the above expression is bounded up to a constant,
due to Cauchy-Schwartz, by

1

nhn

∫ π

−π

|K̂x1
(u)− K̂x2

(u)|2du.

As K̂x1
(u) =

∑
j K((x1 − j/n)/hn)e

ıju,

|K̂x1
(u)− K̂x2

(u)|2 . nhn|t1 − t2|2α

due to Lipschitz continuity of K. Hence,

E [ǭn(t1)− ǭn(t2)]
2

. |t1 − t2|2α

The tightness follows from Theorem 12.3 of Billingsley (1968, pp. 95). �
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Csörgő, S. and Mielniczuk, J. (1995b). Nonparametric regression under
long-range dependent normal errors.Ann. Statist. 23 1000–1014. MR1345211
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Korostelëv, A. P. and Tsybakov, A. B. (1993). Minimax theory of image
reconstruction. Lecture Notes in Statistics 82. Springer-Verlag, New York.
MR1226450

Lifshits, M. A. (1982). On the absolute continuity of the distributions of func-
tionals of stochastic processes. Theory Probab. Appl. 27 600–607. MR0673927

Loader, C. R. (1996). Change point estimation using nonparametric regres-
sion. Ann. Statist. 24 1667–1678. MR1416655

Mallik, A., Sen, B., Banerjee, M. and Michailidis, G. (2011). Thresh-
old estimation based on a p-value framework in dose-response and regression
settings. Biometrika 98 887–900. MR2860331

Müller, H.-G. (1992). Change-points in nonparametric regression analysis.
Ann. Statist. 20 737–761. MR1165590

Müller, H.-G. and Song, K.-S. (1996). A set-indexed process in a two-region
image. Stochastic Process. Appl. 62 87–101. MR1388764

Müller, H.-G. and Song, K.-S. (1997). Two-stage change-point estimators
in smooth regression models. Statist. Probab. Lett. 34 323–335. MR1467437

Neumann, M. H. (1997). Optimal change-point estimation in inverse problems.
Scand. J. Statist. 24 503–521. MR1615339

Pflug, G. C. (1983). The limiting log-likelihood process for discontinuous
density families. Z. Wahrsch. Verw. Gebiete 64 15–35. MR0710646

Robinson, P. M. (1997). Large-sample inference for nonparametric regression
with dependent errors. Ann. Statist. 25 2054–2083. MR1474083

Schlesinger, M. E. andRamankutty, N. (1994). An oscillation in the global
climate system of period 65-70 years. Nature 367 723-726.

Seijo, E. and Sen, B. (2011). Change-point in stochastic design regression and
the bootstrap. Ann. Statist. 39 1580–1607. MR2850213

http://www.ams.org/mathscinet-getitem?mr=1087842
http://www.ams.org/mathscinet-getitem?mr=0273727
http://www.ams.org/mathscinet-getitem?mr=2462213
http://www.ams.org/mathscinet-getitem?mr=1623002
http://www.ams.org/mathscinet-getitem?mr=2400475
http://www.ams.org/mathscinet-getitem?mr=1666790
http://www.ams.org/mathscinet-getitem?mr=1041391
http://www.ams.org/mathscinet-getitem?mr=0927265
http://www.ams.org/mathscinet-getitem?mr=1226450
http://www.ams.org/mathscinet-getitem?mr=0673927
http://www.ams.org/mathscinet-getitem?mr=1416655
http://www.ams.org/mathscinet-getitem?mr=2860331
http://www.ams.org/mathscinet-getitem?mr=1165590
http://www.ams.org/mathscinet-getitem?mr=1388764
http://www.ams.org/mathscinet-getitem?mr=1467437
http://www.ams.org/mathscinet-getitem?mr=1615339
http://www.ams.org/mathscinet-getitem?mr=0710646
http://www.ams.org/mathscinet-getitem?mr=1474083
http://www.ams.org/mathscinet-getitem?mr=2850213


Threshold estimation 2515

Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of boot-
strap: the Grenander estimator. Ann. Statist. 38 1953–1977. MR2676880

Steland, A. (2010). A surveillance procedure for random walks based on local
linear estimation. J. Nonparametr. Stat. 22 345–361. MR2662597

van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and
empirical processes: with applications to statistics. Springer Series in Statis-
tics. Springer-Verlag, New York. MR1385671

Willett, R. M. and Nowak, R. D. (2007). Minimax optimal level set esti-
mation. IEEE Trans. Image Process. 16 2965–2979. MR2472804

Wishart, J. (2009). Kink estimation with correlated noise. J. Korean Statist.
Soc. 38 131–143. MR2649688

Wishart, J. and Kulik, R. (2010). Kink estimation in stochastic regres-
sion with dependent errors and predictors. Electron. J. Stat. 4 875–913.
MR2721037

Wright, F. T. (1981). The asymptotic behavior of monotone regression esti-
mates. Ann. Statist. 9 443–448. MR0606630

Wu, W. B., Woodroofe, M. and Mentz, G. (2001). Isotonic regression: an-
other look at the changepoint problem. Biometrika 88 793–804. MR1859410

Zhao, O. andWoodroofe, M. (2012). Estimating a monontone trend. Statist.
Sinica 22 359–378. MR2933180

http://www.ams.org/mathscinet-getitem?mr=2676880
http://www.ams.org/mathscinet-getitem?mr=2662597
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2472804
http://www.ams.org/mathscinet-getitem?mr=2649688
http://www.ams.org/mathscinet-getitem?mr=2721037
http://www.ams.org/mathscinet-getitem?mr=0606630
http://www.ams.org/mathscinet-getitem?mr=1859410
http://www.ams.org/mathscinet-getitem?mr=2933180

	Introduction
	The method
	Variants
	Basic assumptions

	Main results
	Rate of convergence
	Asymptotic distribution
	Limit distributions for variants of the procedure

	The case of an unknown 
	Simulations
	Dependent data
	Data analysis
	Conclusion
	Acknowledgments
	Appendix
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 3
	Outline of the proof of Proposition 1
	Outline of the proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	References

