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1. Introduction

Consider a sample Y1, . . . , Yn from a p-dimensional multivariate distribution
with covariance matrix Σp. An important problem in multivariate analysis is
to test the sphericity, namely the hypothesis H0 : Σp = σ2Ip where σ2 is un-
specified. If the observations represent a multivariate error with p components,
the null hypothesis expresses the fact that the error is cross-sectionally uncor-
related (independent if in addition they are normal) and have a same variance
(homoscedasticity).

Much of the existing theory about this test has been exposed first in details
in [17] about Gaussian likelihood ratio test and later in [10, 11, 27] and also in
textbooks like [18, Chapter 8] and [1, Chapter 10]. Assume for a moment that the
sample has a normal distribution with mean zero and covariance matrix Σp. Let
Sn = n−1

∑
i YiY

∗
i be the sample covariance matrix and denote its eigenvalues

by {ℓi}1≤i≤p. Two well established procedures for testing the sphericity are
the likelihood ratio test (LRT) and a test devised in [10]. The likelihood ratio
statistic is, see e.g. [1, §10.7.2],

Ln =

(
(ℓ1 · · · ℓp)1/p

1
p (ℓ1 + · · ·+ ℓp)

) 1

2
pn

,

which is a power of the ratio of the geometric mean of the sample eigenvalues
to the arithmetic mean. It is here noticed that in this formula it is necessary to
assume that p ≤ n to avoid null eigenvalues in (the numerator of) Ln. If we let
n → ∞ while keeping p fixed, classical asymptotic theory indicates that under
the null hypothesis, −2 logLn =⇒ χ2

f , a chi-square distribution with degree of

freedom f = 1
2p(p + 1) − 1. This asymptotic distribution is further refined by

the following Box-Bartlett correction (referred as BBLRT):

P (−2ρ logLn ≤ x) = Pf (x) + ω2 {Pf+4(x) − Pf (x)} +O(n−3), (1.1)

where Pk(x) = P (χ2
k ≤ x) and

ρ = 1− 2p2 + p+ 2

6pn
, ω2 =

(p+ 2)(p− 1)(p− 2)(2p3 + 6p2 + 3p+ 2)

288p2n2ρ2
.

By observing that the asymptotic variance of −2 logLn is proportional to
tr{Σ(tr Σ)−1 − p−1Ip}2, [10] proposed to use the statistic

T2 =
p2n

2
tr
{
Sn(trSn)

−1 − p−1Ip
}2
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Table 1

Empirical sizes of BBLRT and Nagao’s test at 5% significance level based on 10000
independent replications using normal vectors N (0, Ip) for n = 64 and different values of p

(p, n) (4,64) (8,64) (16,64) (32,64) (48,64) (56,64) (60,64)
BBLRT 0.0483 0.0523 0.0491 0.0554 0.1262 0.3989 0.7605

Nagao’s test 0.0485 0.0495 0.0478 0.0518 0.0518 0.0513 0.0495

for testing sphericity. When p is fixed and n → ∞, under the null hypothesis,
it also holds that T2 =⇒ χ2

f , which we referred to as John’s test. It is observed
that T2 is proportional to the square of the coefficient of variation of the sample
eigenvalues, namely

T2 =
np

2
· p

−1
∑

(ℓi − ℓ)2

ℓ
2 , with ℓ =

1

n

∑

i

ℓi.

Following the idea of the Box-Bartlett correction, [19] established an expansion
for the distribution function of the statistics T2 (referred as Nagao’s test),

P (T2 ≤ x) = Pf (x) +
1

n
{apPf+6(x) + bpPf+4(x) + cpPf+2(x) + dpPf (x)}

+O(n−2), (1.2)

where

ap =
1

12
(p3 + 3p2 − 12− 200p−1), bp =

1

8
(−2p3 − 5p2 + 7p− 12− 420p−1),

cp =
1

4
(p3 + 2p2 − p− 2− 216p−1), dp =

1

24
(−2p3 − 3p2 + p+ 436p−1).

It has been well known that classical multivariate procedures are in gen-
eral challenged by large-dimensional data. A small simulation experiment is
conducted to explore the performance of the BBLRT and Nagao’s test (two
corrections) with growing dimension p. The sample size is set to n = 64 while
dimension p increases from 4 to 60 (we have also run other experiments with
larger sample sizes n but conclusions are very similar), and the nominal level
is set to be α = 0.05. The samples come from normal vectors with mean zero
and identity covariance matrix, and each pair of (p, n) is assessed with 10000
independent replications.

Table 1 gives the empirical sizes of BBLRT and Nagao’s test. It is found here
that when the dimension to sample size ratio p/n is below 1/2, both tests have
an empirical size close to the nominal test level 0.05. Then when the ratio grows
up, the BBLRT becomes quickly biased while Nagao’s test still has a correct
empirical size. It is striking that although Nagao’s test is derived under classical
“p fixed, n → ∞” regime, it is remarkably robust against dimension inflation.

Therefore, the goal of this paper is to propose novel corrections to both
LRT and John’s test to cope with the large-dimensional context. Similar works
have already been done in [15], which confirms the robustness of John’s test in
large-dimensions; however, these results assume a Gaussian population. In this
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paper, we remove such a Gaussian restriction, and prove that the robustness of
John’s test is in fact general. Following the idea of [15], [9] proposed to use a
family of well selected U-statistics to test the sphericity; however, as showed in
our simulation study in Section 3, the powers of our corrected John’s test are
slightly higher than this test in most cases. More recently, [26] examined the
performance of T1 (a statistic first put forward in [24]) under non-normality,
but with the moment condition γ = 3 + O(p−ǫ), which essentially matches
the Gaussian case (γ = 3) asymptotically. We have also removed this moment
restriction in our setting. In short, we have unveiled two corrections that have
a better performance and removed the Gaussian or nearly Gaussian restriction
found in the existing literature.

From the technical point of view, our approach differs from [15] and follows
the one devised in [4] and [6]. The central tool is a CLT for linear spectral
statistics of sample covariance matrices established in [2] and later refined in [21].
The paper also contains an original contribution on this CLT reported in the
Appendix: new formulas for the limiting parameters in the CLT. Since such
CLT’s are increasingly important in large-dimensional statistics, we believe that
these new formulas will be of independent interest for applications other than
those considered in this paper.

The remaining of the paper is organized as follows. Large-dimensional cor-
rections to LRT and John’s test are introduced in Section 2. Section 3 reports
a detailed Monte-Carlo study to analyze finite-sample sizes and powers of these
two corrections under both normal and non-normal distributed data. Next, Sec-
tion 4 gives the theoretical analysis of their asymptotic power under the alter-
native of a spiked population model. Section 5 generalizes our test procedures
to populations with an unknown mean. Technical proofs and calculations are
relegated to Section 6. The last Section contains some concluding remarks.

2. Large-dimensional corrections

From now on, we assume that the observations Y1, . . . , Yn have the representa-

tion Yj = Σ
1/2
p Xj where the p × n table {X1, . . . , Xn} = {xij}1≤i≤p,1≤j≤n are

made with an array of i.i.d. standardized random variables (mean 0 and vari-
ance 1). This setting is motivated by the random matrix theory and it is generic
enough for a precise analysis of the sphericity test. Furthermore, under the null
hypothesis H0 : Σp = σ2Ip (σ2 is unspecified), we notice that both LRT and
John’s test are independent from the scale parameter σ2 under the null. There-
fore, we can assume w.l.o.g. σ2 = 1 when dealing with the null distributions of
these test statistics. This will be assumed in all the sections.

Throughout the paper we will use an indicator κ set to 2 when {xij} are real
and to 1 when they are complex as defined in [3]. Also, we define the kurtosis
coefficient β = E|xij |4−1−κ for both cases and note that for normal variables,
β = 0 (recall that for a standard complex-valued normal random variable, its
real and imaginary parts are two iid. N(0, 12 ) real random variables).
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2.1. The corrected likelihood ratio test (CLRT)

For the correction of LRT, let Ln = −2n−1 logLn be the test statistic for n ≥ 1.
Our first main result is the following.

Theorem 2.1. Assume {xij} are iid, satisfying Exij = 0, E|xij |2 = 1, E|xij |4 <
∞. Then under H0 and when p

n = yn → y ∈ (0, 1),

Ln + (p− n) · log
(
1− p

n

)
− p

=⇒ N

{
−κ− 1

2
log(1− y) +

1

2
βy,−κ log(1− y)− κy

}
. (2.1)

The test based on this asymptotic normal distribution will be hereafter re-
ferred as the corrected likelihood-ratio test (CLRT). One may observe that the
limiting distribution of the test crucially depends on the limiting dimension-to-
sample ratio y through the factor − log(1 − y). In particular, the asymptotic
variance will blow up quickly when y approaches 1, so it is expected that the
power will seriously break down. Monte-Carlo experiments in Section 3 will
provide more details on this behavior.

The proof of Theorem 2.1 is based on the following lemma. In all the fol-
lowing, F y denotes the Marčenko-Pastur distribution of index y (> 0) which
is introduced and discussed in the Appendix. And F y(f(x)) =

∫
f(x)F y(dx)

denotes the integral of function f(x) with respect to F y.

Lemma 2.1. Let {ℓi}1≤i≤p be the eigenvalues of the sample covariance matrix
Sn = n−1

∑
i YiY

∗
i . Then under H0 and the conditions of Theorem 2.1, we have

( ∑p
i=1 log ℓi − pF yn(log x)∑p

i=1 ℓi − pF yn(x)

)
=⇒ N(µ1, V1),

with

µ1 =

(
κ−1
2 log(1− y)− 1

2βy
0

)
,

and

V1 =

(
−κ log(1− y) + βy (β + κ)y

(β + κ)y (β + κ)y

)
.

The proof of this lemma is postponed to Section 6.

Proof of Theorem 2.1. Let An ≡∑p
i=1 log ℓi−pF yn(log x) and Bn ≡∑p

i=1 ℓi−
pF yn(x). By Lemma 2.1,

(
An

Bn

)
=⇒ N(µ1, V1).

Consequently, −An+Bn is asymptotically normal with mean −κ−1
2 log(1−y)+

1
2βy and variance

V1(1, 1) + V1(2, 2)− 2V1(1, 2) = −κ log(1− y)− κy.
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Besides,

Ln = −Σp
i=1 log ℓi + p log

(1
p
Σp

i=1ℓi

)

= −(An + pF yn(log x)) + p log
(1
p
(Bn + p)

)

= −An − pF yn(log x) + p log
(
1 +

Bn

p

)
.

Since Bn ⇒ N(0, y(β+κ)), Bn = Op(1) and log(1+Bn/p) = Bn/p+Op(1/p
2).

Therefore,

Ln = −An − pF yn(log x) +Bn +Op

(1
p

)
.

The conclusion follows with the following well-known integrals w.r.t. the Mar-
čenko-Pastur distribution F y (y < 1) in [2],

F y(log x) =
y − 1

y
log(1− y)− 1, F y(x) = 1.

The proof of Theorem 2.1 is complete.

2.2. The corrected John’s test (CJ)

Earlier than the asymptotic expansion (1.2) given in [19], [10] proved that when
the observations are normal, the sphericity test based on T2 is a locally most
powerful invariant test. It is also established in [11] that under these conditions,
the limiting distribution of T2 under H0 is χ2

f with degree of freedom f =
1
2p(p+ 1)− 1, or equivalently,

nU − p =⇒ 2

p
χ2
f − p,

where for convenience, we have let U = 2(np)−1T2. Clearly, this limit has been
established for n → ∞ and a fixed dimension p. However, if we now let p → ∞ in
the right-hand side of the above result, it is not hard to see that 2

pχ
2
f−p will tend

to the normal distribution N(1, 4). It then seems “natural” to conjecture that
when both p and n grow to infinity in some “proper” way, it may happen that

nU − p =⇒ N(1, 4). (2.2)

This is indeed the main result of [15] where this asymptotic distribution was
established assuming that data are normal-distributed and p and n grow to
infinity in a proportional way (i.e. p/n → y > 0).

In this section, we provide a more general result using our own approach.
In particular, the distribution of the observation is arbitrary provided a finite
fourth moment exists.

Theorem 2.2. Assume {xij} are iid, satisfying Exij = 0, E|xij |2 = 1, E|xij |4 <
∞, and let U = 2(np)−1T2 be the test statistic. Then under H0 and when
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p → ∞, n → ∞, p
n = yn → y ∈ (0,∞),

nU − p =⇒ N(κ+ β − 1, 2κ). (2.3)

The test based on the asymptotic normal distribution given in equation (2.3)
will be hereafter referred as the corrected John’s test (CJ).

A striking fact in this theorem is that as in the normal case, the limiting
distribution of CJ is independent of the dimension-to-sample ratio y = lim p/n.
In particular, the limiting distribution derived under classical scheme (p fixed,
n → ∞), e.g. the distribution 2

pχ
2
f −p in the normal case, when used for large p,

stays very close to this limiting distribution derived for large-dimensional scheme
(p → ∞, n → ∞, p/n → y ∈ (0,∞)). In this sense, Theorem 2.2 gives a theo-
retic explanation to the widely observed robustness of John’s test against the
dimension inflation. Moreover, CJ is also valid for the p larger (or much larger)
than n case in contrast to the CLRT where this ratio should be kept smaller
than 1 to avoid null eigenvalues.

It is also worth noticing that for real normal data, we have κ = 2 and β = 0
so that the theorem above reduces to nU − p ⇒ N(1, 4). This is exactly the
result discussed in [15]. Besides, if the data has a non-normal distribution but
has the same first four moments as the normal distribution, we have again
nU − p ⇒ N(1, 4), which turns out to have a universality property.

The proof of Theorem 2.2 is based on the following lemma.

Lemma 2.2. Let {ℓi}1≤i≤p be the eigenvalues of the sample covariance matrix
Sn = n−1

∑
i YiY

∗
i . Then under H0 and the conditions of Theorem 2.2, we have

( ∑p
i=1 ℓ

2
i − p(1 + yn)∑p
i=1 ℓi − p

)
=⇒ N(µ2, V2),

with

µ2 =

(
(κ− 1 + β)y

0

)
,

and

V2 =

(
2κy2 + 4(κ+ β)(y + 2y2 + y3) 2(κ+ β)(y + y2)

2(κ+ β)(y + y2) (κ+ β)y

)
.

The proof of this lemma is postponed to Section 6.

Proof of Theorem 2.2. The result of Lemma 2.2 can be rewritten as:

n

(
p−1

∑p
i=1 ℓ

2
i − 1− p

n − (κ+β−1)y
p

p−1
∑p

i=1 ℓi − 1

)
=⇒ N

((
0
0

)
,

1

y2
· V2

)
.

Define the function f(x, y) = x
y2 − 1, then U = f(p−1Σp

i=1ℓ
2
i , p−1Σp

i=1ℓi).
We have

∂f

∂x

(
1 +

p

n
+

(κ+ β − 1)y

p
, 1
)
= 1,
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∂f

∂y

(
1 +

p

n
+

(κ+ β − 1)y

p
, 1
)
= −2

(
1 +

p

n
+

(κ+ β − 1)y

p

)
,

f
(
1 +

p

n
+

(κ+ β − 1)y

p
, 1
)
=

p

n
+

(κ+ β − 1)y

p
.

By the delta method,

n
(
U − f

(
1 +

p

n
+

(κ+ β − 1)y

p
, 1
))

=⇒ N(0, limC),

where

C =

(
∂f
∂x (1 +

p
n + (κ+β−1)y

p , 1)
∂f
∂y (1 +

p
n + (κ+β−1)y

p , 1)

)T

·
( 1

y2
V2

)
·
(

∂f
∂x (1 +

p
n + (κ+β−1)y

p , 1)
∂f
∂y (1 +

p
n + (κ+β−1)y

p , 1)

)

−→ 2κ.

Therefore,

n
(
U − p

n
− (κ+ β − 1)y

p

)
=⇒ N(0, 2κ),

that is,

nU − p =⇒ N(κ+ β − 1, 2κ).

The proof of Theorem 2.2 is complete.

Remark 2.1. Note that in Theorems 2.1 and 2.2 appears the parameter β,
which is in practice unknown with real data. So we may estimate the parameter
β using the fourth-order sample moment:

β̂ =
1

np

p∑

i=1

n∑

j=1

|Yj(i)|4 − κ− 1.

According to the law of large numbers, β̂ = β + op(1), so substituting β̂ for β
in Theorems 2.1 and 2.2 does not modify the limiting distribution.

3. Monte Carlo study

Monte Carlo simulations are conducted to find empirical sizes and powers of
CLRT and CJ. In particular, here we want to examine the following questions:
how robust are the tests against non-normal distributed data and what is the
range of the dimension to sample ratio p/n where the tests are applicable.

For comparison, we show both the performance of the LW test using the
asymptotic N(1, 4) distribution in (2.2) (Notice however this is the CJ test
under normal distribution) and the Chen’s test (denoted as C for short) using
the asymptoticN(0, 4) distribution derived in [9]. The nominal test level is set to
be α = 0.05, and for each pair of (p, n), we run 10000 independent replications.

We consider two scenarios with respect to the random vectors Yi:
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Table 2

Empirical sizes of LW, CJ, CLRT and C test at 5% significance level based on 10000
independent applications with real N(0, 1) random variables and with real Gamma(4,2)-2

random variables

(p, n)
N(0, 1) Gamma(4,2)-2

LW/CJ CLRT C LW CLRT CJ C
(4,64) 0.0498 0.0553 0.0523 0.1396 0.074 0.0698 0.0717
(8,64) 0.0545 0.061 0.0572 0.1757 0.0721 0.0804 0.078
(16,64) 0.0539 0.0547 0.0577 0.1854 0.0614 0.078 0.0756
(32,64) 0.0558 0.0531 0.0612 0.1943 0.0564 0.0703 0.0682
(48,64) 0.0551 0.0522 0.0602 0.1956 0.0568 0.0685 0.0652
(56,64) 0.0547 0.0505 0.0596 0.1942 0.0549 0.0615 0.0603
(60,64) 0.0523 0.0587 0.0585 0.194 0.0582 0.0615 0.0603
(8,128) 0.0539 0.0546 0.0569 0.1732 0.0701 0.075 0.0754
(16,128) 0.0523 0.0534 0.0548 0.1859 0.0673 0.0724 0.0694
(32,128) 0.051 0.0545 0.0523 0.1951 0.0615 0.0695 0.0693
(64,128) 0.0538 0.0528 0.0552 0.1867 0.0485 0.0603 0.0597
(96,128) 0.055 0.0568 0.0581 0.1892 0.0539 0.0577 0.0579
(112,128) 0.0543 0.0522 0.0591 0.1875 0.0534 0.0591 0.0593
(120,128) 0.0545 0.0541 0.0561 0.1849 0.051 0.0598 0.0596
(16,256) 0.0544 0.055 0.0574 0.1898 0.0694 0.0719 0.0716
(32,256) 0.0534 0.0515 0.0553 0.1865 0.0574 0.0634 0.0614
(64,256) 0.0519 0.0537 0.0522 0.1869 0.0534 0.0598 0.0608
(128,256) 0.0507 0.0505 0.0498 0.1858 0.051 0.0555 0.0552
(192,256) 0.0507 0.054 0.0518 0.1862 0.0464 0.052 0.0535
(224,256) 0.0503 0.0541 0.0516 0.1837 0.0469 0.0541 0.0538
(240,256) 0.0494 0.053 0.0521 0.1831 0.049 0.0533 0.0559
(32,512) 0.0542 0.0543 0.0554 0.1884 0.0571 0.0606 0.059
(64,512) 0.0512 0.0497 0.0513 0.1816 0.0567 0.0579 0.0557
(128,512) 0.0519 0.0567 0.0533 0.1832 0.0491 0.0507 0.0504
(256,512) 0.0491 0.0503 0.0501 0.1801 0.0504 0.0495 0.0492
(384,512) 0.0487 0.0505 0.0499 0.1826 0.051 0.0502 0.0507
(448,512) 0.0496 0.0495 0.0503 0.1881 0.0526 0.0482 0.0485
(480,512) 0.0488 0.0511 0.0505 0.1801 0.0523 0.053 0.0516

(a) Yi is p-dimensional real random vector from the multivariate normal pop-
ulation N (0, Ip). In this case, κ = 2 and β = 0.

(b) Yi consists of iid real random variables with distribution Gamma(4, 2)−2
so that yij satisfies Eyij = 0, Ey4ij = 4.5. In this case, κ = 2 and β = 1.5.

Table 2 reports the sizes of the four tests in these two scenarios for different
values of (p, n). We see that when {yij} are normal, LW (=CJ), CLRT and
C all have similar empirical sizes tending to the nominal level 0.05 as either
p or n increases. But when {yij} are Gamma-distributed, the sizes of LW are
higher than 0.1 no matter how large the values of p and n are while the sizes of
CLRT and CJ all converge to the nominal level 0.05 as either p or n gets larger.
This empirically confirms that normal assumptions are needed for the result of
[15] while our corrected statistics CLRT and CJ (also the C test) have no such
distributional restriction.

As for empirical powers, we consider two alternatives (here, the limiting
spectral distributions of Σp under these two alternatives differs from that un-
der H0):
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Table 3

Empirical powers of LW, CJ, CLRT and C test at 5% significance level based on 10000
independent applications with real N(0, 1) random variables and with real Gamma(4,2)-2

random variables under two alternatives Power 1 and 2 (see the text for details)

N(0, 1)

(p, n)
Power 1 Power 2

LW/CJ CLRT C LW/CJ CLRT C
(4,64) 0.7754 0.7919 0.772 0.4694 0.6052 0.4716
(8,64) 0.8662 0.8729 0.8582 0.5313 0.6756 0.5308
(16,64) 0.912 0.9075 0.9029 0.5732 0.6889 0.5671
(32,64) 0.9384 0.8791 0.931 0.5868 0.6238 0.5775
(48,64) 0.9471 0.7767 0.9389 0.6035 0.5036 0.5982
(56,64) 0.949 0.6663 0.9411 0.6025 0.4055 0.5982
(60,64) 0.9501 0.5575 0.941 0.6048 0.3328 0.5989
(8,128) 0.9984 0.9989 0.9986 0.9424 0.9776 0.9391
(16,128) 0.9998 1 0.9998 0.9698 0.9926 0.9676
(32,128) 1 1 1 0.9781 0.9956 0.9747
(64,128) 1 1 1 0.9823 0.9897 0.9788
(96,128) 1 0.9996 1 0.9824 0.9532 0.9804
(112,128) 1 0.9943 1 0.9841 0.881 0.9808
(120,128) 1 0.9746 1 0.9844 0.7953 0.9817

Gamma(4, 2)− 2

(p, n)
Power 1 Power 2

CJ CLRT C CJ CLRT C
(4,64) 0.6517 0.6826 0.6628 0.3998 0.5188 0.4204
(8,64) 0.7693 0.7916 0.781 0.4757 0.5927 0.4889
(16,64) 0.8464 0.8439 0.846 0.5327 0.633 0.5318
(32,64) 0.9041 0.848 0.9032 0.5805 0.5966 0.5667
(48,64) 0.9245 0.7606 0.924 0.5817 0.4914 0.5804
(56,64) 0.9267 0.6516 0.9247 0.5882 0.4078 0.583
(60,64) 0.9288 0.5547 0.9257 0.5919 0.3372 0.5848
(8,128) 0.9859 0.9875 0.9873 0.8704 0.9294 0.8748
(16,128) 0.999 0.999 0.9987 0.9276 0.9699 0.9311
(32,128) 0.9999 1 0.9999 0.9582 0.9873 0.9587
(64,128) 1 0.9998 1 0.9729 0.984 0.9727
(96,128) 1 0.999 1 0.9771 0.9482 0.9763
(112,128) 1 0.9924 1 0.9781 0.8747 0.9763
(120,128) 1 0.9728 1 0.9786 0.7864 0.977

(1) Σp is diagonal with half of its diagonal elements 0.5 and half 1. We denote
its power by Power 1;

(2) Σp is diagonal with 1/4 of the elements equal 0.5 and 3/4 equal 1. We
denote its power by Power 2.

Table 3 reports the powers of LW(=CJ), CLRT and C when {yij} are dis-
tributed as N(0, 1), and of CJ, CLRT and C when {yij} are distributed as
Gamma(4,2)-2, for the situation when n equals 64 or 128, with varying val-
ues of p and under the above mentioned two alternatives. For n = 256 and
p varying from 16 to 240, all the tests have powers around 1 under both al-
ternatives so that these values are omitted. And in order to find the trend of
these powers, we also present the results when n = 128 in Figure 1 and Fig-
ure 2.
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Fig 1. Empirical powers of LW/CJ, CLRT and C test at 5% significance level based on
10000 independent applications with real N(0,1) random variables for fixed n = 128
under two alternatives Power 1 and 2 (see the text for details).
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Fig 2. Empirical powers of CJ, CLRT and C test at 5% significance level based on
10000 independent applications with real Gamma(4,2)-2 random variables for fixed
n = 128 under two alternatives Power 1 and 2 (see the text for details).

The behavior of Power 1 and Power 2 in each figure related to the three
statistics are similar, except that Power 1 is much higher compared with Power 2
for a given dimension design (p, n) and any given test for the reason that the
first alternative differs more from the null than the second one. The powers of
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Table 4

Empirical sizes and powers (Power 1 and 2) of CJ test and C test at 5% significance level
based on 10000 independent applications with real Gamma(4,2)-2 random variables

when p ≥ n

(p, n)
CJ C

Size Power 1 Power 2 Size Power 1 Power 2
(64,64) 0.0624 0.9282 0.5897 0.0624 0.9257 0.5821
(320,64) 0.0577 0.9526 0.612 0.0576 0.9472 0.6059
(640,64) 0.0558 0.959 0.6273 0.0562 0.9541 0.6105
(960,64) 0.0543 0.9631 0.6259 0.0551 0.955 0.6153
(1280,64) 0.0555 0.9607 0.6192 0.0577 0.9544 0.6067

LW (in the normal case), CJ (in the Gamma case) and C are all monotonically
increasing in p for a fixed value of n. But for CLRT, when n is fixed, the powers
first increase in p and then become decreasing when p is getting close to n. This
can be explained by the fact that when p is close to n, some of the eigenvalues
of Sn are getting close to zero, causing the CLRT nearly degenerate and losing
power.

Besides, we find that in the normal case the trend of C’s power is very much
alike of those of LW while in the Gamma case it is similar with those of CJ
under both alternatives. And in most of the cases (especially in large p case),
the power of C test is slightly lower than LW (in the normal case) and CJ (in
the Gamma case).

Lastly, we examine the performance of CJ and C when p is larger than n.
Empirical sizes and powers are presented in Table 4. We choose the variables
to be distributed as Gamma(4,2)-2 since CJ reduces to LW in the normal case,
and [15] has already reported the performance of LW when p is larger than n.
From the table, we see that when p is larger than n, the size of CJ is still correct
and it is always around the nominal level 0.05 as the dimension p increases and
the same phenomenon exists for C test.

When we evaluate the power, the same two alternatives Power 1 and Power 2
as above are considered. The sample size is fixed to n = 64 and the ratio p/n
varies from 1 to 20. We see that Power 1 are much higher than Power 2 for
the same reason that the first alternative is easier to be distinguished from H0.
Besides, the powers under both alternatives all increase monotonically for 1 ≤
p
n ≤ 15. However, when p/n is getting larger, say p/n = 20, we can observe that
its size is a little larger and powers a little drop (compared with p/n = 15) but
overall, it still behaves well, which can be considered as free from the assumption
constraint “p/n → y”. Besides, the powers of CJ are always slightly higher than
those of C in this “large p small n” setting.

Since the asymptotic distribution for the CLRT and CJ are both derived
under the “Marcenko-Pasture scheme” (i.e p/n → y ∈ (0,∞)), if p/n is getting
too large (p ≫ n), it seems that the limiting results provided in this paper will
loose accuracy. It is worth noticing that [7] has extended the LW test to such a
scheme (p ≫ n) for multivariate normal distribution.

Summarizing all these findings from this Monte-Carlo study, the overall figure
is the following: when the ratio p/n is much lower than 1 (say smaller than 1/2),
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it is preferable to employ CLRT (than CJ, LW or C); while this ratio is higher,
CJ (or LW for normal data) becomes more powerful (slightly more powerful
than C).

4. Asymptotic powers: under the spiked population alternative

In this section, we give an analysis of the powers of the two corrections: CLRT
and CJ. To this end, we consider an alternative model that has attracted lots
of attention since its introduction by [13], namely, the spiked population model.
This model can be described as follows: the eigenvalues of Σp are all one except
for a few fixed number of them. Thus, we restrict our sphericity testing problem
to the following:

H0 : Σp = Ip vs H∗
1 : Σp = diag(a1, . . . , a1︸ ︷︷ ︸

n1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk

, 1, . . . , 1︸ ︷︷ ︸
p−M

),

where the multiplicity numbers ni’s are fixed and satisfying n1 + · · ·+nk = M .
We derive the explicit expressions of the power functions of CLRT and CJ in
this section.

Under H∗
1 , the empirical spectral distribution of Σp is

Hn =
1

p

k∑

i=1

niδai
+

p−M

p
δ1, (4.1)

and it will converge to δ1, a Dirac mass at 1, which is the same as the limit under
the null hypothesis H0 : Σp = Ip. From this point of view, anything related to
the limiting spectral distribution remains the same whenever under H0 or H∗

1 .
Then recall the CLT for LSS of the sample covariance matrix, as provided in [2],
is of the form:

p

∫
f(x)d(FSn(x)− F yn(x)) =⇒ N(µ, σ2),

where the right side of this equation is determined only by the limiting spectral
distribution. So we can conclude that the limiting parameters µ and σ2 remain
the same under H0 and H∗

1 , only the centering term p
∫
f(x)dF yn(x) possibly

makes a difference. Since there’s a p in front of
∫
f(x)dF yn(x), which tends to

infinity as assumed, so knowing the convergence Hn → δ1 is not enough and
more details about the convergence are needed. In [28], we have established an
asymptotic expansion for the centering parameter when the population has a
spiked structure. We will use these formulas like equations (4.2), (4.3) and (4.6)
in the following to derive the powers of the CLRT and CJ.

Lemma 2.1 remains the same under H∗
1 , except that this time the centering

terms become (see formulas (4.11) and (4.12) in [28]):

F yn(log x) =
1

p

k∑

i=1

ni log ai − 1 +
(
1− 1

yn

)
log(1− yn) +O

( 1

p2

)
, (4.2)



Large-dimensional sphericity test 2177

F yn(x) = 1 +
1

p

k∑

i=1

niai −
M

p
+O

( 1

p2

)
. (4.3)

Repeating the proof of Theorem 2.1, we can get:

Ln − p+ (p− n) log
(
1− p

n

)
+

k∑

i=1

ni

(
log ai − ai + 1

)

=⇒ N
(
− κ− 1

2
log(1 − y) +

1

2
βy, − κ log(1− y)− κy

)
(4.4)

under H∗
1 . As a result, the power of CLRT for testing H0 against H∗

1 can be
expressed as:

β1(α) = 1− Φ

(
Φ−1(1 − α)−

∑k
i=1 ni

(
ai − log ai − 1

)
√
−κ log(1− y)− κy

)
(4.5)

for a pre-given significance level α.
It is worth noticing here that if the alternative has only one simple spike, i.e.

k = 1, nk = 1, and assuming the real Gaussian variable case, i.e. κ = 2, (4.5)
reduces to a result provided in [20]. However, our formula is valid for a general
number of spikes with eventual multiplicities. Besides, these authors use some
more sophisticated tools of asymptotic contiguity and Le Cam’s first and third
lemmas, which are totally different from ours.

In order to calculate the power function of CJ, we restated Lemma 2.2 as
follows: ( ∑p

i=1 l
2
i − pF yn(x2)∑p

i=1 li − pF yn(x)

)
=⇒ N(µ2, V2),

where

F yn(x2) =
2

n

k∑

i=1

niai −
2

n
M + 1 + yn − M

p
+

1

p

k∑

i=1

nia
2
i +O

( 1

p2

)
, (4.6)

F yn(x) = 1 +
1

p

k∑

i=1

niai −
M

p
+O

( 1

p2

)
.

Using the delta method as in the proof of Theorem 2.2, this time, we have

nU − p− n

p

k∑

i=1

ni(ai − 1)2 =⇒ N(κ+ β − 1, 2κ) (4.7)

under H∗
1 .

Power function of CJ can be expressed as

β2(α) = 1− Φ

(
Φ−1(1− α)− n

p
·
∑k

i=1 ni(ai − 1)2√
2κ

)
(4.8)

for a pre-given significance level α.
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Fig 3. Theoretical powers of CLRT (β1(α)) and CJ (β2(α)) under the spiked population
alternative.

Now consider the functions ai − log ai − 1 and (ai − 1)2 appearing in the
expressions (4.5) and (4.8), they will achieve their minimum value 0 at ai = 1,
which is to say, once ai’s going away from 1, the powers β1(α) and β2(α) will
both increase. This phenomenon agrees with our intuition, since the more ai’s
deviate away from 1, the easier to distinguishH0 fromH∗

1 . Therefore, the powers
should naturally grow higher.

Then, we consider the power functions β1(α) and β2(α) as functions of y,
and see how they are going along with y′s changing. we see that in expression
(4.5),

√
− log(1 − y)− y is increasing when y ∈ (0, 1), so β1(α) is decreasing

as the function of y, which attains its maximum value 1 when y → 0+ and
minimum value α when y → 1−. Also, expression (4.8) is obviously a decreasing
function of y, attaining its maximum value 1 when y → 0+ and minimum value
α when y → +∞. We present the trends of β1(α) and β2(α) (corresponding to
the power of CLRT and CJ) in Figure 3 when only one spike a = 2.5 exists. It is
however a little different from the non-spiked case as showed in the simulation
in Section 3 (both Figure 1 and Figure 2), where the power of CLRT first
increases then decreases while the power of CJ is always increasing along with
the increase of the value of p. These power drops are due to the fact that when
p increases, since only one spike eigenvalue is considered, it becomes harder to
distinguish both hypotheses. Besides, an interesting finding here is that these
power functions give a new confirmation of the fact that CLRT behaves quite
badly when y → 1−, while CJ test has a reasonable power for a significant range
of y > 1.
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5. Generalization to the case when the population mean is unknown

So far, we have assumed the observation (Yi) are centered. However, this is
hardly true in practical situations when µ = EYi is usually unknown. Therefore,
the sample covariance matrix should be taken as

S∗
n =

1

n− 1

n∑

i=1

(Yi − Y )(Yi − Y )∗,

where Y = 1
n

∑n
i=1 Yi is the sample mean. Because Y Y

∗
is a rank one matrix,

substituting Sn for S∗
n when µ is unknown will not affect the limiting distribution

in the CLT for LSS; while it is not the case for the centering parameter, for it
has a p in front.

Recently, [22] shows that if we use S∗
n in the CLT for LSS when µ is unknown,

the limiting variance remains the same as we use Sn; while the limiting mean has
a shift which can be expressed as a complex contour integral. Later, [30] looks
into this shift and finally derives a concise conclusion on the CLT corresponding
to S∗

n: the random vector
(
X∗

n(f1), . . . , X
∗
n(fk)

)
converges weakly to a Gaussian

vector with the same mean and covariance function as given in Theorem A.1,
where this time, X∗

n(f) = p
∫
f(x)d(FS∗

n − F yn−1). It is here important to pay
attention that the only difference is in the centering term, where we use the new
ratio yn−1 = p

n−1 instead of the previous yn = p
n , while leaving all the other

terms unchanged.
Using this result, we can modify our Theorems 2.1 and 2.2 to get the CLT of

CLRT and CJ under H0 when µ is unknown only by considering the eigenvalues
of S∗

n and substituting n− 1 for n in the centering terms. More precisely, now
equations (2.1) and (2.3) in Theorems 2.1 and 2.2 become

Ln + (p− n+ 1) · log
(
1− p

n− 1

)
− p

=⇒ N
{
−κ− 1

2
log(1 − y) +

1

2
βy,−κ log(1− y)− κy

}

and

nU − np

n− 1
=⇒ N(κ+ β − 1, 2κ).

The same procedures can be applied to get the CLT of CLRT and CJ under
H∗

1 when µ is unknown. This time, equations (4.4) and (4.7) become

Ln − p+ (p− n+ 1) log
(
1− p

n− 1

)
+

k∑

i=1

ni

(
log ai − ai + 1

)

=⇒ N
(
− κ− 1

2
log(1− y) +

1

2
βy, − κ log(1− y)− κy

)

and

nU − np

n− 1
− n

p

k∑

i=1

ni(ai − 1)2 =⇒ N(κ+ β − 1, 2κ),
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and therefore the powers of CLRT and CJ under the spiked alternative remain
unchanged as expressed in (4.5) and (4.8).

6. Additional proofs

We recall these two important formulas which appear in the Appendix as (A.2)
and (A.3) here for the convenience of reading:

E[Xf ] = (κ− 1)I1(f) + βI2(f),

Cov(Xf , Xg) = κJ1(f, g) + βJ2(f, g).

6.1. Proof of Lemma 2.1

Let for x > 0, f(x) = log x and g(x) = x. Define An and Bn by the decomposi-
tions

p∑

i=1

log ℓi = p

∫
f(x)d(Fn(x)− F yn(x)) + pF yn(f) = An + pF yn(f),

p∑

i=1

ℓi = p

∫
g(x)d(Fn(x)− F yn(x)) + pF yn(g) = Bn + pF yn(g).

Applying Theorem A.1 given in the Appendix to the pair (f, g), we have

(
An

Bn

)
=⇒ N

((
EXf

EXg

)
,

(
Cov(Xf , Xf) Cov(Xf , Xg)
Cov(Xg, Xf ) Cov(Xg, Xg)

) )
.

It remains to evaluate the limiting parameters and this results from the following
calculations where h is denoted as

√
y:

I1(f, r) =
1

2
log
(
1− h2/r2

)
, (6.1)

I1(g, r) = 0, (6.2)

I2(f) = −1

2
h2, (6.3)

I2(g) = 0, (6.4)

J1(f, g, r) =
h2

r2
, (6.5)

J1(f, f, r) = −1

r
log(1− h2/r), (6.6)

J1(g, g, r) =
h2

r2
, (6.7)

J2(f, g) = h2, (6.8)

J2(f, f) = h2, (6.9)

J2(g, g) = h2. (6.10)
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We now detail these calculations to complete the proof. They are all based on
the formula given in Proposition A.1 in the Appendix and repeated use of the
residue theorem.

Proof of (6.1). We have

I1(f, r) =
1

2πi

∮

|ξ|=1

f(|1 + hξ|2)
[ ξ

ξ2 − r−2
− 1

ξ

]
dξ

=
1

2πi

∮

|ξ|=1

log(|1 + hξ|2)
[ ξ

ξ2 − r−2
− 1

ξ

]
dξ

=
1

2πi

∮

|ξ|=1

(1
2
log((1 + hξ)2) +

1

2
log((1 + hξ−1)2)

)[ ξ

ξ2 − r−2
− 1

ξ

]
dξ

=
1

2πi

[ ∮

|ξ|=1

log(1 + hξ)
ξ

ξ2 − r−2
dξ −

∮

|ξ|=1

log(1 + hξ)
1

ξ
dξ

+

∮

|ξ|=1

log(1 + hξ−1)
ξ

ξ2 − r−2
dξ −

∮

|ξ|=1

log(1 + hξ−1)
1

ξ
dξ
]

For the first integral, note that as r > 1, the poles are ± 1
r and we have by the

residue theorem,

1

2πi

∮

|ξ|=1

log(1 + hξ)
ξ

ξ2 − r−2
dξ

=
log(1 + hξ) · ξ

ξ − r−1

∣∣∣∣∣
ξ=−r−1

+
log(1 + hξ) · ξ

ξ + r−1

∣∣∣∣∣
ξ=r−1

=
1

2
log
(
1− h2

r2

)
.

For the second integral,

1

2πi

∮

|ξ|=1

log(1 + hξ)
1

ξ
dξ = log(1 + hξ)

∣∣∣
ξ=0

= 0.

The third one is

1

2πi

∮

|ξ|=1

log(1 + hξ−1)
ξ

ξ2 − r−2
dξ

= − 1

2πi

∮

|z|=1

log(1 + hz)
z−1

z−2 − r−2
· −1

z2
dz

=
1

2πi

∮

|z|=1

log(1 + hz)r2

z(z + r)(z − r)
dz =

log(1 + hz)r2

(z + r)(z − r)

∣∣∣∣∣
z=0

= 0,

where the first equality results from the change of variable z = 1
ξ , and the third

equality holds because r > 1, so the only pole is z = 0.
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The fourth one equals

1

2πi

∮

|ξ|=1

log(1 + hξ−1)
1

ξ
dξ = − 1

2πi

∮

|z|=1

log(1 + hz)
−z

z2
dz

= log(1 + hz)
∣∣
z=0

= 0.

Collecting the four integrals leads to the desired formula for I1(f, r).

Proof of (6.2). We have

I1(g, r) =
1

2πi

∮

|ξ|=1

g(|1 + hξ|2) ·
[ ξ

ξ2 − r−2
− 1

ξ

]
dξ

=
1

2πi

∮

|ξ|=1

|1 + hξ|2 ·
[ ξ

ξ2 − r−2
− 1

ξ

]
dξ

=
1

2πi

∮

|ξ|=1

ξ + h+ hξ2 + h2ξ

ξ
·
[ ξ

ξ2 − r−2
− 1

ξ

]
dξ

=
1

2πi

∮

|ξ|=1

ξ + h+ hξ2 + h2ξ

ξ2 − r−2
dξ

− 1

2πi

∮

|ξ|=1

ξ + h+ hξ2 + h2ξ

ξ2
dξ.

These two integrals are calculated as follows:

1

2πi

∮

|ξ|=1

ξ + h+ hξ2 + h2ξ

ξ2 − r−2
dξ

=
ξ + h+ hξ2 + h2ξ

ξ − r−1

∣∣∣
ξ=−r−1

+
ξ + h+ hξ2 + h2ξ

ξ + r−1

∣∣∣
ξ=r−1

= 1 + h2;

1

2πi

∮

|ξ|=1

ξ + h+ hξ2 + h2ξ

ξ2
dξ =

∂

∂ξ
(ξ + h+ hξ2 + h2ξ)

∣∣∣
ξ=0

= 1 + h2.

Collecting the two terms leads to I1(g, r) = 0.

Proof of (6.3).

I2(f) =
1

2πi

∮

|ξ|=1

log(|1 + hξ|2) 1
ξ3

dξ

=
1

2πi

[ ∮

|ξ|=1

log(1 + hξ)

ξ3
dξ +

∮

|ξ|=1

log(1 + hξ−1)

ξ3
dξ

]
.

We have

1

2πi

∮

|ξ|=1

log(1 + hξ)

ξ3
dξ =

1

2

∂2

∂ξ2
log(1 + hξ)

∣∣∣
ξ=0

= −1

2
h2;
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1

2πi

∮

|ξ|=1

log(1 + hξ−1)

ξ3
dξ = − 1

2πi

∮

|z|=1

log(1 + hz)
1
z3

· −1

z2
dz = 0.

Combining the two leads to I2(f) = − 1
2h

2.

Proof of (6.4).

I2(g) =
1

2πi

∮

|ξ|=1

(1 + hξ)(1 + hξ)

ξ3
dξ =

1

2πi

∮

|ξ|=1

ξ + hξ2 + h+ h2ξ

ξ4
dξ = 0.

Proof of (6.5).

J1(f, g, r) =
1

2πi

∮

|ξ2|=1

|1 + hξ2|2 ·
1

2πi

∮

|ξ1|=1

log(|1 + hξ1|2)
(ξ1 − rξ2)2

dξ1dξ2.

We have,

1

2πi

∮

|ξ1|=1

log(|1 + hξ1|2)
(ξ1 − rξ2)2

dξ1

=
1

2πi

∮

|ξ1|=1

log(1 + hξ1)

(ξ1 − rξ2)2
dξ1 +

1

2πi

∮

|ξ1|=1

log(1 + hξ−1
1 )

(ξ1 − rξ2)2
dξ1.

The first term

1

2πi

∮

|ξ1|=1

log(1 + hξ1)

(ξ1 − rξ2)2
dξ1 = 0,

because for fixed |ξ2| = 1, |rξ2| = |r| > 1, so rξ2 is not a pole.
The second term is

1

2πi

∮

|ξ1|=1

log(1 + hξ−1
1 )

(ξ1 − rξ2)2
dξ1 = − 1

2πi

∮

|z|=1

log(1 + hz)

(1z − rξ2)2
· −1

z2
dz

=
1

2πi
· 1

(rξ2)2

∮

|z|=1

log(1 + hz)

(z − 1
rξ2

)2
dz =

1

(rξ2)2
· ∂

∂z
log(1 + hz)

∣∣∣
z= 1

rξ2

=
h

rξ2(rξ2 + h)
,

where the first equality results from the change of variable z = 1
ξ1
, and the

third equality holds because for fixed |ξ2| = 1, | 1
rξ2

| = 1
|r| < 1, so 1

rξ2
is a pole

of second order.
Therefore,

J1(f, g, r)

=
h

2πir2

∮

|ξ2|=1

(1 + hξ2)(1 + hξ2)

ξ2(ξ2 +
h
r )

dξ2

=
h

2πir2

∮

|ξ2|=1

ξ2 + hξ22 + h+ h2ξ2

ξ22(ξ2 +
h
r )

dξ2
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=
h

2πir2

[∮

|ξ2|=1

1 + h2

ξ2(ξ2 +
h
r )

dξ2 +

∮

|ξ2|=1

h

ξ2 +
h
r

dξ2 +

∮

|ξ2|=1

h

ξ22(ξ2 +
h
r )

dξ2

]
.

Finally we find J1(f, g, r) =
h2

r2 since

h

2πir2

∮

|ξ2|=1

1 + h2

ξ2(ξ2 +
h
r )

dξ2 = 0,
h

2πir2

∮

|ξ2|=1

h

ξ2 +
h
r

dξ2 =
h2

r2
,

h

2πir2

∮

|ξ2|=1

h

ξ22(ξ2 +
h
r )

dξ2 = 0.

Proof of (6.6).

J1(f, f, r) =
1

2πi

∮

|ξ2|=1

f(|1 + hξ2|2) ·
1

2πi

∮

|ξ1|=1

f(|1 + hξ1|2)
(ξ1 − rξ2)2

dξ1dξ2

=
1

2πi

∮

|ξ2|=1

f(|1 + hξ2|2)
h

rξ2(rξ2 + h)
dξ2

=
h

2πir2

∮

|ξ2|=1

log(1 + hξ2)

ξ2(
h
r + ξ2)

dξ2 +
h

2πir2

∮

|ξ2|=1

log(1 + hξ−1
2 )

ξ2(
h
r + ξ2)

dξ2.

We have

h

2πir2

∮

|ξ2|=1

log(1 + hξ2)

ξ2(
h
r + ξ2)

dξ2

=
h

r2

[
log(1 + hξ2)

h
r + ξ2

∣∣∣∣∣
ξ2=0

+
log(1 + hξ2)

ξ2

∣∣∣∣∣
ξ2=−h

r

]

= −1

r
log
(
1− h2

r

)
,

and

h

2πir2

∮

|ξ2|=1

log(1 + hξ−1
2 )

ξ2(
h
r + ξ2)

dξ2 =
−h

2πir2

∮

|z|=1

log(1 + hz)
1
z (

h
r + 1

z )
· −1

z2
dz

=
1

2πir

∮

|z|=1

log(1 + hz)

z + r
h

dz = 0,

where the first equality results from the change of variable z = 1
ξ2
, and the third

equality holds because | rh | > 1, so r
h is not a pole.

Finally, we find J1(f, f, r) = − 1
r log(1− h2

r ).

Proof of (6.7).

J1(g, g, r) =
1

2πi

∮

|ξ2|=1

|1 + hξ2|2 ·
1

2πi

∮

|ξ1|=1

|1 + hξ1|2
(ξ1 − rξ2)2

dξ1dξ2.
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We have

1

2πi

∮

|ξ1|=1

|1 + hξ1|2
(ξ1 − rξ2)2

dξ1 =
1

2πi

∮

|ξ1|=1

ξ1 + hξ21 + h+ h2ξ1
ξ1(ξ1 − rξ2)2

dξ1

=
1

2πi

[ ∮

|ξ1|=1

1 + h2

(ξ1 − rξ2)2
dξ1 +

∮

|ξ1|=1

hξ1
(ξ1 − rξ2)2

dξ1

+

∮

|ξ1|=1

h

ξ1(ξ1 − rξ2)2
dξ1

]

=
h

r2ξ22
,

since

1

2πi

∮

|ξ1|=1

1 + h2

(ξ1 − rξ2)2
dξ1 = 0,

1

2πi

∮

|ξ1|=1

hξ1
(ξ1 − rξ2)2

dξ1 = 0,

1

2πi

∮

|ξ1|=1

h

ξ1(ξ1 − rξ2)2
dξ1 =

h

(ξ1 − rξ2)2

∣∣∣∣∣
ξ1=0

=
h

r2ξ22
,

where the equality above holds because for fixed |ξ2| = 1, |rξ2| = |r| > 1, so rξ2
is not a pole. Therefore,

J1(g, g, r) =
h

2πir2

∮

|ξ2|=1

ξ2 + hξ22 + h+ h2ξ2
ξ32

dξ2

=
h

2πir2

[∮

|ξ2|=1

1 + h2

ξ22
dξ2 +

∮

|ξ2|=1

h

ξ2
dξ2 +

∮

|ξ2|=1

h

ξ32
dξ2

]
,

=
h2

r2
.

Proof of (6.8), (6.9), (6.10). We have

1

2πi

∮

|ξ1|=1

f(|1 + hξ1|2)
ξ21

dξ1 =
1

2πi

∮

|ξ1|=1

log(|1 + hξ1|2)
ξ21

dξ1

=
1

2πi

∮

|ξ1|=1

log(1 + hξ1) + log(1 + hξ−1
1 )

ξ21
dξ1 = h,

since

1

2πi

∮

|ξ1|=1

log(1 + hξ1)

ξ21
dξ1 =

∂

∂ξ1

(
log(1 + hξ1)

)∣∣∣∣∣
ξ1=0

= h,

1

2πi

∮

|ξ1|=1

log(1 + hξ−1
1 )

ξ21
dξ1 = − 1

2πi

∮

|z|=1

log(1 + hz)
1
z2

·
(
− 1

z2
dz
)

=
1

2πi

∮

|z|=1

log(1 + hz)dz = 0.



2186 Q. Wang and J. Yao

Similarly,

1

2πi

∮

|ξ2|=1

g(|1 + hξ2|2)
ξ22

dξ2 =
1

2πi

∮

|ξ2|=1

ξ2 + hξ22 + h+ h2ξ2
ξ32

dξ2 = h.

Therefore,

J2(f, g) =
1

2πi

∮

|ξ1|=1

f(|1 + hξ1|2)
ξ21

dξ1 ·
1

2πi

∮

|ξ2|=1

g(|1 + hξ2|2)
ξ22

dξ2 = h2,

J2(f, f) =
1

2πi

∮

|ξ1|=1

f(|1 + hξ1|2)
ξ21

dξ1 ·
1

2πi

∮

|ξ2|=1

f(|1 + hξ2|2)
ξ22

dξ2 = h2,

J2(g, g) =
1

2πi

∮

|ξ1|=1

g(|1 + hξ1|2)
ξ21

dξ1 ·
1

2πi

∮

|ξ2|=1

g(|1 + hξ2|2)
ξ22

dξ2 = h2.

The proof of Lemma 2.1 is complete.

6.2. Proof of Lemma 2.2

Let f(x) = x2 and g(x) = x. Define Cn and Bn by the decompositions

p∑

i=1

ℓ2i = p

∫
f(x)d(Fn(x)− F yn(x)) + pF yn(f) = Cn + pF yn(f),

p∑

i=1

ℓi = p

∫
g(x)d(Fn(x)− F yn(x)) + pF yn(g) = Bn + pF yn(g).

Applying Theorem A.1 given in the Appendix to the pair (f, g), we have

(
Cn

Bn

)
=⇒ N

((
EXf

EXg

)
,

(
Cov(Xf , Xf) Cov(Xf , Xg)
Cov(Xg, Xf ) Cov(Xg, Xg)

) )
.

It remains to evaluate the limiting parameters and this results from the following
calculations:

I1(f, r) =
h2

r2
, (6.11)

I1(g, r) = 0, (6.12)

I2(f) = h2, (6.13)

I2(g) = 0, (6.14)

J1(f, g, r) =
2h2 + 2h4

r2
, (6.15)

J1(f, f, r) =
2h4 + (2h+ 2h3)2r

r3
, (6.16)

J1(g, g, r) =
h2

r2
, (6.17)
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J2(f, g) = 2h2 + 2h4, (6.18)

J2(f, f) = (2h+ 2h3)2, (6.19)

J2(g, g) = h2. (6.20)

The results (6.12), (6.14), (6.17) and (6.20) are exactly the same as those found
in (6.2), (6.4), (6.7) and (6.10) in the proof of Lemma 2.1. The remaining results
are found by similar calculations using Proposition A.1 in the Appendix and
their details are omitted.

7. Concluding remarks

Using recent central limit theorems for eigenvalues of large sample covariance
matrices, we are able to find new asymptotic distributions for two major pro-
cedures to test the sphericity of a large-dimensional distribution. Although the
theory is developed under the scheme p → ∞, n → ∞ and p/n → y > 0, our
Monte-Carlo study has proved that: on the one hand, both CLRT and CJ are
already very efficient for middle dimension such as (p, n) = (96, 128) both in size
and power, see Table 2 and Table 3; and on the other hand, CJ also behaves
very well in most of “large p, small n” situation, see Table 4.

Three characteristic features emerge from our findings:

(a) These asymptotic distributions are universal in the sense that they depend
on the distribution of the observations only through its first four moments;

(b) The new test procedures improve quickly when either the dimension p
or the sample size n gets large. In particular, for a given sample size n,
within a wide range of values of p/n, higher dimensions p lead to better
performance of these corrected test statistics.

(c) CJ is particularly robust against the dimension inflation. Our Monte-Carlo
study shows that for a small sample size n = 64, the test is effective for
0 < p/n ≤ 20.

In a sense, these new procedures have benefited from the “blessings of di-
mensionality”.

Appendix A: Formula for limiting parameters in the CLT for

eigenvalues of a sample covariance matrix with

general fourth moments

Given a sample covariance matrix Sn of dimension p with eigenvalues λ1, . . . , λp,
linear spectral statistics of the form Fn(g) = p−1

∑p
i=1 g(λj) for suitable func-

tions g are of central importance in multivariate analysis. Such CLT’s have been
successively developed since the pioneering work of [12], see [2] and [16] for a
recent account on the subject.

The CLT in [2] (see also an improved version in [5]) has been widely used
in applications as this CLT also provides, for the first time, explicit formula for
the mean and covariance parameters of the normal limiting distribution. In the
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special case with an array {xij} of independent variables, this CLT assumes the
following moment conditions:

(a) For each n, xij = xn
ij , i 6 p, j 6 n are independent.

(b) Exij = 0, E|xij |2 = 1,maxi,j,n E|xij |4 < ∞.
(c) If {xij}’s are real, then Ex4

ij = 3; otherwise (complex variables), Ex2
ij = 0

and E|xij |4 = 2.

In Condition (c), the fourth moments of the entries are set to the values 3 or
2 matching the normal case. This is indeed a quite demanding and restrictive
condition since in the real case for example, it is incredibly hard to find a non-
normal distribution with mean 0, variance 1 and fourth moment equaling 3. As
a consequence, most of if not all applications published in the literature using
this CLT assumes a normal distribution for the observations. Recently, effort
have been made in [21, 16] and [29] to overcome these moment restrictions. We
present below such a CLT with general forth moments that will be used for the
sphericity test.

In all the following, we use an indicator κ set to 2 when {xij} are real and to
1 when they are complex. Define β = E|xij |4−1−κ for both cases and h =

√
y.

For the presentation of the results, let be the sample covariance matrix Sn =
1
n

∑n
i=1 XiX

∗
i where Xi = (xki)1≤k≤p is the i-th observed vector. It is then

well-known that when p → ∞, n → ∞ and p/n → y > 0, the distribution of
its eigenvalues converges to a nonrandom distribution, namely the Marčenko-
Pastur distribution F y with support [a, b] = [(1±√

y)2] (an additional mass at
the origin when y > 1). Moreover, the Stieltjes transform m of a companion
distribution defined by F y = (1 − y)δ0 + yFc satisfies an inverse equation for
z ∈ C+,

z = − 1

m
+

y

1 +m
. (A.1)

The following CLT is a particular instance of Theorem 1.4 in [21].

Theorem A.1 ([21]). Assume that for each n, the variables xij = xn
ij , i 6 p, j 6

n are independent and identically distributed satisfying Exij = 0, E|xij |2 = 1,
E|xij |4 = β + 1 + κ < ∞ and in case of they are complex, Ex2

ij = 0. Assume
moreover,

p → ∞, n → ∞, p/n → y > 0.

Let f1, . . . fk be functions analytic on an open region containing the support of
F y. The random vector {Xn(f1), . . . Xn(fk)} where

Xn(f) = p {Fn(f)− F yn(f)}

converges weakly to a normal vector (Xf1 , . . . Xfk) with mean function and co-
variance function:

E[Xf ] = (κ− 1)I1(f) + βI2(f), (A.2)

Cov(Xf , Xg) = κJ1(f, g) + βJ2(f, g), (A.3)
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where

I1(f) = − 1

2πi

∮
y {m/(1 +m)}3 (z)f(z)
[
1− y {m/(1 +m)}2

]2 dz,

I2(f) = − 1

2πi

∮
y {m/(1 +m)}3 (z)f(z)
1− y {m/(1 +m)}2

dz,

J1(f, g) = − 1

4π2

∮ ∮
f(z1)g(z2)

(m(z1)−m(z2))2
m′(z1)m

′(z2)dz1dz2,

J2(f, g) =
−y

4π2

∮
f(z1)

∂

∂z1

{
m

1 +m
(z1)

}
dz1 ·

∮
g(z2)

∂

∂z2

{
m

1 +m
(z2)

}
dz2,

where the integrals are along contours (non overlapping in J1) enclosing the
support of F y.

However, concrete applications of this CLT are not easy since the limiting
parameters are given through those integrals on contours that are only vaguely
defined. The purpose of this appendix is to go a step further by providing
alternative formula for these limiting parameters. These new formulas, presented
in the following Proposition convert all these integral along the unit circle; they
are much easier to use for concrete applications, see for instance the proofs
of Lemma 2.1 and 2.2 in the paper. Furthermore, these formulas will be of
independent interest for applications other than those developed in this paper.

Proposition A.1. The limiting parameters in Theorem A.1 can be expressed
as following:

I1(f) = lim
r↓1

I1(f, r), (A.4)

I2(f) =
1

2πi

∮

|ξ|=1

f(|1 + hξ|2) 1
ξ3

dξ, (A.5)

J1(f, g) = lim
r↓1

J1(f, g, r), (A.6)

J2(f, g) = − 1

4π2

∮

|ξ1|=1

f(|1 + hξ1|2)
ξ21

dξ1

∮

|ξ2|=1

g(|1 + hξ2|2)
ξ22

dξ2, (A.7)

with

I1(f, r) =
1

2πi

∮

|ξ|=1

f(|1 + hξ|2)
[ ξ

ξ2 − r−2
− 1

ξ

]
dξ,

J1(f, g, r) = − 1

4π2

∮

|ξ1|=1

∮

|ξ2|=1

f(|1 + hξ1|2)g(|1 + hξ2|2)
(ξ1 − rξ2)2

dξ1dξ2.

Proof. We start with the simplest formula I2(f) to explain the main argument
and indeed, the other formula are obtained similarly. The idea is to introduce
the change of the variable z = 1 + hrξ + hr−1ξ + h2 with r > 1 but close to
1 and |ξ| = 1 (recall h =

√
y). Note that this idea has been employed in [29].
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It can be readily checked that when ξ runs counterclockwisely the unit circle, z
will run a contour C that encloses closely the support interval [a, b] = [(1± h)2]
(recall h =

√
y). Moreover, by the Eq. (A.1), we have on C

m = − 1

1 + hrξ
, and dz = h(r − r−1ξ−2)dξ.

Applying this variable change to the formula of I2(f) given in Theorem A.1, we
have

I2(f) = lim
r↓1

1

2πi

∮

|ξ|=1

f(z)
1

ξ3
rξ2 − r−1

r(r2ξ2 − 1)
dξ

=
1

2πi

∮

|ξ|=1

f(|1 + hξ|2) 1
ξ3

dξ.

This proves the formula (A.5). For (A.4), we have similarly

I1(f) = lim
r↓1

1

2πi

∮

|ξ|=1

f(z)
1

ξ3
rξ2 − r−1

r(r2ξ2 − 1)

1

1− r−2ξ−2
dξ

= lim
r↓1

1

2πi

∮

|ξ|=1

f(|1 + hξ|2) 1

ξ(ξ2 − r−2)

= lim
r↓1

I1(f, r).

Formula (A.7) for J2(f, g) is calculated in a same fashion by observing that we
have

∂

∂z

{
m

1 +m
(z)

}
dz =

∂

∂ξ

{
m

1 +m
(ξ)

}
dξ =

∂

∂ξ

{
1

−hrξ

}
dξ =

1

hrξ2
dξ.

Finally for (A.6), we use two non-overlapping contours defined by zj = 1 +
hrjξj + hr−1

j ξj + h2, j = 1, 2 where r2 > r1 > 1. By observing that

m′(zj)dzj =

(
∂

∂ξj
m

)
dξj =

hrj
(1 + hrjξj)2

dξj ,

we find

J1(f, g) = lim
r2 > r1 > 1

r2 ↓ 1

− 1

4π2

∮

|ξ1|=1

∮

|ξ2|=1

f(z1)g(z2)

{m(z1)−m(z2)}2

· hr1
(1 + hr1ξ1)2

· hr2
(1 + hr2ξ2)2

dξ1dξ2

= lim
r2 > r1 > 1,

r2 ↓ 1

− 1

4π2

∮

|ξ1|=1

∮

|ξ2|=1

f(z1)g(z2)

{r1ξ1 − r2ξ2}2
dξ1dξ2

= lim
r↓1

− 1

4π2

∮

|ξ1|=1

∮

|ξ2|=1

f(|1 + hξ1|2)g(|1 + hξ2|2)
{ξ1 − rξ2}2

dξ1dξ2.

The proof is complete.
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