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Abstract: This article is concerned with simultaneous tests on linear re-
gression coefficients in high-dimensional settings. When the dimensionality
is larger than the sample size, the classic F -test is not applicable since the
sample covariance matrix is not invertible. Recently, [5] and [17] proposed
testing procedures by excluding the inverse term in F -statistics. However,
the efficiency of such F -statistic-based methods is adversely affected by out-
lying observations and heavy tailed distributions. To overcome this issue,
we propose a robust score test based on rank regression. The asymptotic
distributions of the proposed test statistic under the high-dimensional null
and alternative hypotheses are established. Its asymptotic relative efficiency
with respect to [17]’s test is closely related to that of the Wilcoxon test in
comparison with the t-test. Simulation studies are conducted to compare
the proposed procedure with other existing testing procedures and show
that our procedure is generally more robust in both sizes and powers.
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1. Introduction

With the development of technology, high dimensional data was generated in
many areas, such as hyperspectral imagery, internet portals, microarray analysis
and finance. A frequently encountered challenge in high-dimensional regression
is the detection of relevant variables. Identifying significant sets of genes which
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are associated with certain clinical outcome is very important in genomic studies,
see [14, 2] and [11]. The main challenge of high-dimensional data is that the
dimension p is much larger than the sample sizes n. When this happens, many
traditional statistical methods and theories may not necessarily work since they
assume that p keeps unchanged as n increases. Recently, many efforts have
been devoted to solve this problem. See for instance [3] and [8] for variable
selection and screening. In hypothesis testing, it can be advantageous to look
for influence not at the level of individual variables but rather at the level of
clusters of variables. Thus, a simultaneous test on linear regression coefficients
in high-dimensional settings is needed.

In this article, we consider the following linear regression model

Yi = XT
i β + εi, i = 1, . . . , n, (1.1)

where X1, . . . ,Xn are independent and identically distributed (i.i.d.) p-dimen-
sional covariates, Y1, . . . , Yn are independent responses, β is the vector of re-
gression coefficients, and εi is independent of Xi and has the finite Fisher in-
formation quantity, i.e.,

∫

f−1(x)[f
′

(x)]2dx <∞ with the density function f(·).
As a convention in the literature, we assume that Xi are normalized first, that
is, E(Xi) = 0p, and var(Xik) = 1, k = 1, . . . , p. To make β identifiable, we
assume that Σ = var(Xi) is positive definite. Our interest is in testing a high-
dimensional hypothesis

H0 : β = β0 vs H1 : β 6= β0 (1.2)

for a specific β0 ∈ Rp. Without loss of generality, we set β0 = 0p which aims
to investigate the association of the covariates X = (X1, . . . ,Xn)

T with the
response Y = (Y1, . . . , Yn)

T .
When p < n, a classical method to deal with this problem is the famous F -test

statistic. However, [17] showed that the power of F -test is adversely impacted
by an increased dimension even p < n−1, reflecting a reduced degree of freedom
in estimating σ2 when the dimensionality is close to the sample size. Moreover,
the F -test statistics is undefined when the dimension of data is greater than the
within sample degrees of freedom since the pooled sample covariance matrices
are not positive definite. In order to overcome this issue, [5, 4] proposed an
Empirical Bayes test with the test statistic

Gn =
YTXXTY

YTY
(1.3)

which is formulated via a score test on the hyper parameter of a prior distribu-
tion assumed on the regression coefficients. The key feature of their method is
to use Euclidian norm to replace the Mahalanobis norm since having (XTX)−1

is no longer beneficial when p is larger than n. That is, exclude the inverse term
(XTX)−1 in the F -statistic. [17] further consider a U -statistic

Zn =
1

4P 4
n

∗
∑

(Xi1 −Xi2 )
T (Xi3 −Xi4)(Yi1 − Yi2)(Yi3 − Yi4) (1.4)
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where we use
∑∗

to denote summations over distinct indexes and P 4
n = n!/

(n− 4)!. They established the asymptotic normality of Zn under the diverging
factor model [1].

Both [5] and [17] methods can be regarded as variants of the F -statistic in
which the original observations Yi are used. Therefore, their statistical prop-
erties, designed to perform “best” under the normality assumption, could po-
tentially be (highly) affected when the errors are far away from normal or the
data contain some outliers. To this end, in Section 2.1 we propose a robust
score test based on rank regression. The asymptotic distributions of the pro-
posed test statistic under the high-dimensional null and alternative hypotheses
are established in Section 2.2. Theoretical studies show that its asymptotic rel-
ative efficiency with respect to [17]’s test is the same as that of the Wilcoxon
test in comparison with the t-test. Numerical studies in Section 3 show that
the proposed procedure is generally more robust in both sizes and powers for
non-normal errors. All technical details are provided in the Appendix. The R
code for implementing the proposed procedure is given in a supplemental file.

2. A robust test

2.1. Test statistics

Denote ε = (ε1, . . . , εn)
T . Consider, first, the following general rank-based

pseudo-norm (Chapter 1, [7])

||ε||ψ =

n
∑

i=1

a(R(εi))εi,

where R(εi) is the rank of εi and a(1) ≤ a(2) ≤ · · · ≤ a(n) is a set of scores
generated as a(i) = ψ(i/(n + 1)) for some nondecreasing score function ψ(u)
defined on the interval (0, 1) and standardized such that

∫

ψ(u)du = 0 and
∫

ψ2(u)du = 1. With respect to model (1.1), when p < n, the classic R-estimator
of β is defined by minimizing the following dispersion function,

Dψ(β) = ||Y −Xβ||ψ.

Based on the data, the most acceptable value of β is the value at which the gra-
dient

∂Dψ
∂β is zero. Hence, large values of

∂Dψ
∂β

∣

∣

β=0
will reject the null hypothesis.

Note that the variance of
∂Dψ
∂β

∣

∣

β=0
is − ∂2Dψ

∂ββT

∣

∣

β=0
under the null hypothesis. Ac-

cordingly, the rank-based score test statistic (Chapter 3, [7]) of the hypothesis
(1.2) is defined by

∂Dψ

∂β

(

− ∂2Dψ

∂ββT

)−1
∂Dψ

∂β

∣

∣

∣

β=0

= aT (R(Y ))X(XTX)−1XT a(R(Y )), (2.1)

where a(R(Y )) = (a(R(Y1)), . . . , a(R(Yn)))
T . However, when p > n, XTX is

not invertible and thus the score test above is not well defined. Thus, motivated
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by [5] and [17], we use Ip to replace (XTX)−1 in (2.1) and propose the following
test statistic

Rn =
2

n(n− 1)

∑

i<j

XT
i Xja(R(Yi))a(R(Yj))

after removing the term XT
i Xia(R(Yi))

2 in a(R(Y ))TXXT a(R(Y )). One of the
most commonly used score function in the literature is the so-called Wilcoxon
score function, i.e., ψ(u) =

√
12(u − 1/2), which is used in this article. As a

consequence, the Wilcoxon form of Rn can be written as

Wn =
2

n(n− 1)

∑

i<j

XT
i Xjeiej ,

where ei =
√
12(R(Yi)

n+1 − 1
2 ). Note that in (1.1), it is not required to assume

E(ε) = 0 because Rn is constructed by the order statistics of Y . An intercept
term can be reflected by the location parameter of the distribution of ε.

Remark 1. The suggested test statistic can be viewed as a specific Empiri-
cal Bayes test statistic [5] with a pseudo Wilcoxon likelihood function [9, 16].
Consider the following pseudo-likelihood

LW (β) ∝ exp (−Dψ(β)/τǫ) , (2.2)

where ψ(·) is chosen as the Wilcoxon score function and τǫ = (
√
12
∫

f2(x)dx)−1

is the Wilcoxon constant of the error distribution. The main motivation for using
(2.2) as a pseudo-likelihood is two-folded: on one hand, it can be shown that
under the null hypothesis β = 0 with fixed p, the test statistic 2τǫ(LW (0) −
LW (β)) is asymptotically χ2 distributed, as for the likelihood ratio test; on the
other hand, the loss function Dψ(β) is analogous to the least-squares procedure
except that the Euclidean norm is substituted by the rank-based norm. Using
similar procedure and arguments in Section 6 of [5], the aT (R(Y ))XXT a(R(Y ))
is essentially equivalent to the Empirical Bayes test statistic with the pseudo-
likelihood (2.2).

2.2. Asymptotic property

In order to establish the asymptotic normality of Wn, we assume, like [1], the
following diverging factor model:

Xi = Γzi,

where Γ is a p×m matrix for some m ≥ p such that ΓΓT = Σ and {zi}ni=1 are
m-variate independent and identically distributed random vectors such that

E(zi) = 0, var(zi) = Im, E(z4il) = 3 +∆, E(z8il) < +∞,
E(zα1

ik1
zα2

ik2
. . . z

αq
ikq) = E(zα1

ik1
)E(zα2

ik2
) . . . E(z

αq
ikq),

(2.3)
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whenever ∆ is a constant, αk are some positive integer with
∑q

k=1 αk ≤ 8 and
k1 6= k2 6= · · · 6= kq. Additionally, we need the following condition (C1) which is
used in [17] to regulate for the “large p, small n”,

(C1) tr(Σ4) = o(tr2(Σ2)).
(C2) The density function f(·) has uniformly bounded derivatives.

Remark 2. The (C1) is the same as the last part of condition (2.8) in [17]. If
all the eigenvalues of Σ are bounded, (C1) is trivially true for any p. Intuitively
speaking, in the correlation matrix if there are a large amount of entries whose
values are very large, (C1) will not hold and so does the asymptotic normality
of Wn. Thus, the validity of asymptotic normality relies on how strong depen-
dencies among the variables. [5, 4] provide us an alternative way to handle the
large p problems. In fact, according to Theorem 1 in [4], we could similarly
develop some approximate representation for our quadratic form test statistic
a(R(Y ))TXXT a(R(Y )) without (C1). As a consequence, the computation-based
method proposed by [4] could be used instead of asymptotic normality when
the validity of (C1) is doubtful. A systematic comparison between these two
methods (in terms of approximation of nominal level) is of interest. This is out
of the scope of this paper but which deserves further study. (C2) means that
supx |f ′(x)| < M with a positive constant M . It is used to control the terms
An32 and An33 in the proof of Theorem 1.

In order to study the asymptotic power of our test, we define the following
local alternatives in which β satisfies

βTΣβ = o(n−1/2),βTΣ2β = o(

√

n−1tr(Σ2)),βTΣ3β = o(n−1tr(Σ2)) (2.4)

We refer to [17] for detailed discussion on this condition. The following theorem
establishes the asymptotic normality of Wn under the null or local alternative
(2.4) hypothesis.

Theorem 1. Assume the condition (C1)–(C2) hold, then under either H0 or
the local alternative (2.4), as p→ ∞ and n→ ∞,

n
√

2tr(Σ2)

(

Wn − βTΣ2β/τ2ǫ

)

d→N(0, 1). (2.5)

Remark 3. Define the scale parameter τψ = (
∫

ψ(u)ψf (u)du)
−1, where ψf (u) =

f
′

(F−1(u))
f(F−1(u)) and F (·) is the distribution function of ε. Under the assumption of

finite Fisher information, τψ is well defined. Then, similar to the proof of The-
orem 1, we can also show that

n
√

2tr(Σ2)

(

Rn − βTΣ2β/τ2ψ

)

d→N(0, 1).

Note that, if ψ(u) =
√
12(u − 1/2), then τψ = τ and thus the conclusion in

Theorem 1 is a special case of the result in this Remark.
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To formulate a test procedure based on Theorem 1, we need to estimate
tr(Σ2) appeared in the asymptotic variance. Similar to [17], we use the following
ratio consistent estimator of tr(Σ2),

̂tr(Σ2) =
1

2P 4
n

∗
∑

(Xi1 −Xi2)
T (Xi3 −Xi4)(Xi3 −Xi2)

T (Xi1 −Xi4).

By Theorem 1 and the Slutsky Theorem, the proposed test rejects H0 at a
significant level α if

nWn ≥
√

2̂tr(Σ2)zα, (2.6)

where zα is the upper-α quantile of N(0, 1).
Next, we discuss the power properties of the proposed test. According to

Theorem 1, the power of our proposed test under the local alternative (2.4) is

βWn
(||β||) = Φ(−zα + nβTΣ2β/

√

2tr(Σ2)τ2ǫ ),

where Φ is the standard normal distribution function. In comparison, [17] show
that the power of their proposed test is

βZn(||β||) = Φ(−zα + nβTΣ2β/

√

2tr(Σ2)σ2).

Thus, the Pitman asymptotic relative efficiency of Wn with respect to the Zn is

ARE(Zn,Wn) = σ2/τ2ǫ .

Based on this result, the robust feature of our proposed test is clear. In our
procedure, no moment assumption on ε is made, such as σ2 <∞. For instance,
if ε comes from Cauchy or the t-distribution with two degrees of freedom (t(2)),
our test procedure still works but the moment-based methods such as [17] would
generally fail (the ARE goes to infinity). Note that the above ARE is essentially
the same as the ARE of the signed-rank Wilcoxon test in comparison with the t-
test and it has a lower bound 0.864 [7]. It is well known in the literature of rank
analysis that the ARE is as high as 0.955 for normal error distribution, and
can be significantly higher than one for many heavier-tailed distributions [7].
For instance, this quantity is 1.5 for the double exponential distribution, and
1.9 for the t(3). Furthermore, we can also show the Pitman asymptotic relative
efficiency of Rn with respect to the Zn is ARE(Zn, Rn) = σ2/τ2ψ.

3. Simulation

In this section, we present two simulation examples that evaluate the finite sam-
ple performance of the rank-based score test (abbreviated as RS). The Empirical
Bayes test proposed by [5] (abbreviated as EB) and the modified F -test pro-
posed by [17] (abbreviated as ZC) are included for comparison purposes. The
following two examples are considered.
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Table 1

Power comparison of the tests with AR Model when p < n; RS: The proposed rank-based
score test test; ZC: [17] test; EB: [5]test; F: the classical F test

Errors

N(0, 1) t(3) Lognormal T (0.1, 10)

(n, p) SNR RS ZC EB F RS ZC EB F RS ZC EB F RS ZC EB F

non-sparse case

(50, 47) 0 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.06 0.04 0.06 0.03 0.05 0.05

1 0.21 0.24 0.20 0.05 0.33 0.27 0.24 0.06 0.58 0.33 0.29 0.06 0.70 0.31 0.31 0.06

2 0.37 0.41 0.37 0.06 0.51 0.46 0.44 0.07 0.73 0.50 0.46 0.07 0.82 0.49 0.47 0.08

3 0.49 0.55 0.51 0.08 0.64 0.60 0.58 0.09 0.81 0.63 0.61 0.08 0.87 0.59 0.58 0.09

(100, 95) 0 0.05 0.05 0.04 0.05 0.06 0.06 0.04 0.05 0.05 0.04 0.04 0.05 0.05 0.03 0.05 0.04

1 0.23 0.25 0.23 0.05 0.37 0.27 0.26 0.07 0.74 0.34 0.30 0.08 0.88 0.29 0.28 0.07

2 0.43 0.47 0.41 0.09 0.64 0.49 0.51 0.08 0.90 0.56 0.51 0.08 0.96 0.54 0.49 0.07

3 0.60 0.64 0.59 0.07 0.82 0.68 0.64 0.09 0.95 0.70 0.68 0.09 0.98 0.68 0.62 0.10

(200, 190) 0 0.05 0.05 0.04 0.04 0.06 0.04 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.04 0.05 0.06

1 0.21 0.23 0.24 0.06 0.44 0.28 0.28 0.06 0.82 0.30 0.30 0.07 0.94 0.27 0.25 0.06

2 0.47 0.48 0.46 0.07 0.74 0.56 0.52 0.08 0.98 0.58 0.52 0.08 1.00 0.52 0.51 0.09

3 0.65 0.70 0.65 0.09 0.89 0.74 0.75 0.10 0.99 0.75 0.70 0.12 1.00 0.71 0.73 0.11

sparse case

(50, 47) 1 0.18 0.19 0.18 0.06 0.33 0.26 0.25 0.08 0.52 0.31 0.29 0.07 0.63 0.28 0.28 0.07

2 0.33 0.37 0.34 0.06 0.51 0.45 0.38 0.07 0.67 0.49 0.45 0.09 0.75 0.46 0.43 0.08

3 0.46 0.50 0.48 0.08 0.63 0.56 0.58 0.08 0.76 0.60 0.56 0.09 0.79 0.56 0.55 0.08

(100, 95) 1 0.24 0.26 0.20 0.07 0.38 0.26 0.25 0.08 0.66 0.33 0.29 0.06 0.78 0.28 0.25 0.06

2 0.40 0.47 0.38 0.08 0.65 0.48 0.47 0.09 0.82 0.56 0.51 0.11 0.89 0.47 0.46 0.10

3 0.58 0.63 0.56 0.09 0.77 0.65 0.67 0.10 0.89 0.69 0.62 0.12 0.92 0.63 0.62 0.10

(200, 190) 1 0.20 0.22 0.22 0.06 0.42 0.26 0.27 0.09 0.79 0.28 0.29 0.07 0.89 0.26 0.27 0.08

2 0.44 0.46 0.46 0.09 0.72 0.53 0.52 0.10 0.93 0.54 0.53 0.10 0.98 0.50 0.48 0.09

3 0.64 0.66 0.64 0.12 0.87 0.71 0.69 0.16 0.98 0.72 0.73 0.15 0.99 0.69 0.67 0.13

3.1. Example 3.1 (AR model)

Define Σ = (σij) ∈ Rp×p with σij = 0.5|i−j|. The predictors Xi ∼ N(0,Σ).
We consider β = κ(β1, . . . , βp). Similar to [17], we consider the following two
scenarios. Sparse case: βi(1 ≤ i ≤ 5) are generated from standard normal
distribution and βi = 0, i > 5; Non-sparse case: βi(1 ≤ i ≤ p/2) are gen-
erated from standard normal distribution and βi = 0, i > p/2. The coeffi-
cient κ is selected so that the signal-to-noise ratio (SNR) of ZC equals r, i.e.,

n||Σ(β − β0)||2/(
√

2tr(Σ2)σ2) = r. r = 0(size), 1, 2, 3 are considered. Four er-

ror distributions are chosen: (i) N(0, 1); (ii) Student’s t-distribution with three
degrees of freedom, t(3); (iii) Lognormal distribution; (iv) Tukey contaminated
normal T (0.1, 10)(0.9N(0, 1)+0.1N(0, 100)). All these four errors are standard-
ized with mean zero and variance one.
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Table 2

Power comparison of the tests with AR Model when p > n

Errors

N(0, 1) t(3) Lognormal T (0.1, 10)

(n, p) SNR RS ZC EB RS ZC EB RS ZC EB RS ZC EB

non-sparse case

(50, 100) 0 0.06 0.06 0.04 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.04 0.05

1 0.19 0.21 0.21 0.29 0.23 0.24 0.44 0.27 0.28 0.59 0.29 0.28

2 0.32 0.35 0.35 0.45 0.39 0.42 0.60 0.44 0.44 0.70 0.44 0.41

3 0.42 0.48 0.47 0.57 0.52 0.51 0.69 0.56 0.56 0.76 0.56 0.51

(100, 200) 0 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.06 0.03 0.06

1 0.20 0.22 0.21 0.37 0.27 0.25 0.62 0.29 0.30 0.76 0.26 0.27

2 0.38 0.41 0.41 0.61 0.48 0.47 0.80 0.51 0.46 0.89 0.45 0.46

3 0.54 0.57 0.58 0.75 0.64 0.65 0.88 0.67 0.64 0.93 0.59 0.63

(200, 400) 0 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.04 0.05

1 0.22 0.24 0.23 0.40 0.28 0.27 0.76 0.27 0.28 0.90 0.26 0.24

2 0.45 0.47 0.44 0.70 0.50 0.52 0.94 0.51 0.53 0.98 0.51 0.49

3 0.63 0.66 0.65 0.87 0.70 0.72 0.98 0.72 0.71 1.00 0.69 0.64

sparse case

(50, 100) 1 0.16 0.18 0.19 0.26 0.22 0.21 0.41 0.27 0.27 0.50 0.24 0.26

2 0.27 0.30 0.30 0.41 0.36 0.36 0.54 0.42 0.42 0.60 0.38 0.36

3 0.37 0.42 0.42 0.49 0.47 0.48 0.60 0.50 0.52 0.65 0.47 0.48

(100, 200) 1 0.20 0.21 0.18 0.32 0.22 0.23 0.57 0.27 0.25 0.68 0.27 0.25

2 0.38 0.41 0.38 0.53 0.42 0.44 0.75 0.48 0.46 0.81 0.46 0.45

3 0.54 0.56 0.51 0.68 0.58 0.56 0.82 0.61 0.58 0.84 0.58 0.55

(200, 400) 1 0.23 0.25 0.23 0.40 0.26 0.23 0.69 0.30 0.26 0.84 0.25 0.25

2 0.43 0.45 0.44 0.68 0.50 0.47 0.86 0.52 0.52 0.94 0.50 0.44

3 0.60 0.63 0.63 0.82 0.68 0.65 0.93 0.68 0.64 0.96 0.65 0.61

3.2. Example 3.2 (Moving average model)

We also consider the moving average model used in [17]. The predictor vector
is given by Xi for i = 1, . . . , n and Xi = (Xi1, . . . , Xip) are generated according
to the following moving average model

Xij = ρ1Vij + ρ2Vi(j+1) + · · ·+ ρTVi(j+T−1), j = 1, . . . , p

for some T < p. Here V i = (Vi1, . . . , Vi(p+T−1)) is a (p + T − 1)-dimensional
N(0, Ip+T−1) random vector and we only consider the case T = 10. The coeffi-
cients {ρl}Tl=1 are generated independently from the Uniform (0, 1) distribution
and are kept fixed once generated. The regression coefficients, errors, and sample
sizes are the same as those in Example 3.1.

For each experiment we run 1, 000 replications. Tables 1 and 2 summarize the
empirical sizes and powers at a 5% significance level for Example 3.1 under the
settings p < n and p > n, respectively. The simulation results for Example 3.2
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Table 3

Power comparison of the tests with MA Model when p < n

Errors

N(0, 1) t(3) Lognormal T (0.1, 10)

(n, p) SNR RS ZC EB F RS ZC EB F RS ZC EB F RS ZC EB F

non-sparse case

(50, 47) 0 0.05 0.06 0.05 0.05 0.06 0.06 0.05 0.04 0.05 0.04 0.06 0.06 0.06 0.03 0.04 0.04

1 0.23 0.25 0.19 0.06 0.32 0.29 0.26 0.06 0.63 0.33 0.30 0.07 0.73 0.31 0.29 0.06

2 0.38 0.41 0.36 0.06 0.55 0.46 0.44 0.07 0.77 0.52 0.49 0.07 0.86 0.50 0.48 0.07

3 0.51 0.56 0.48 0.07 0.67 0.61 0.58 0.09 0.83 0.66 0.61 0.07 0.89 0.62 0.57 0.09

(100, 95) 0 0.06 0.06 0.05 0.05 0.06 0.06 0.04 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.06

1 0.25 0.27 0.21 0.05 0.41 0.30 0.28 0.07 0.78 0.34 0.31 0.05 0.88 0.31 0.28 0.08

2 0.46 0.50 0.43 0.09 0.70 0.55 0.49 0.08 0.93 0.57 0.52 0.07 0.96 0.51 0.46 0.08

3 0.63 0.67 0.58 0.07 0.86 0.73 0.65 0.09 0.97 0.74 0.69 0.09 0.99 0.67 0.63 0.08

(200, 190) 0 0.06 0.06 0.04 0.04 0.05 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05

1 0.23 0.27 0.24 0.06 0.45 0.29 0.26 0.06 0.88 0.31 0.28 0.08 0.97 0.27 0.25 0.06

2 0.48 0.51 0.43 0.07 0.79 0.56 0.50 0.08 0.98 0.59 0.54 0.09 1.00 0.53 0.51 0.07

3 0.68 0.71 0.69 0.09 0.93 0.75 0.73 0.09 0.99 0.75 0.71 0.10 1.00 0.72 0.72 0.09

sparse case

(50, 47) 1 0.20 0.21 0.17 0.06 0.32 0.28 0.23 0.07 0.50 0.30 0.28 0.07 0.63 0.31 0.30 0.06

2 0.32 0.35 0.30 0.08 0.49 0.45 0.41 0.08 0.65 0.48 0.41 0.09 0.74 0.47 0.42 0.90

3 0.44 0.47 0.43 0.08 0.60 0.57 0.52 0.09 0.71 0.59 0.54 0.09 0.79 0.57 0.49 0.10

(100, 95) 1 0.24 0.24 0.20 0.06 0.35 0.25 0.24 0.06 0.66 0.29 0.27 0.08 0.76 0.26 0.22 0.08

2 0.40 0.44 0.35 0.08 0.60 0.48 0.44 0.08 0.81 0.50 0.48 0.10 0.87 0.47 0.45 0.09

3 0.55 0.58 0.51 0.09 0.75 0.63 0.60 0.11 0.87 0.64 0.58 0.11 0.88 0.61 0.54 0.10

(200, 190) 1 0.24 0.25 0.22 0.06 0.44 0.28 0.24 0.07 0.79 0.28 0.23 0.08 0.87 0.28 0.23 0.08

2 0.45 0.46 0.43 0.11 0.72 0.54 0.48 0.10 0.93 0.53 0.48 0.12 0.94 0.51 0.47 0.10

3 0.63 0.67 0.61 0.12 0.85 0.71 0.65 0.14 0.95 0.70 0.65 0.16 0.95 0.67 0.62 0.14

are reported in Tables 3–4. The F test is also conducted under the setting
of p < n. The comparison results for the two examples are similar: Firstly, we
observe that the empirical sizes for the three tests RS, ZC and EB, are reasonable
in most of the cases. Secondly, the proposed method is highly efficient for all the
distributions under consideration. Its powers compared to [17] and [5] tests are
high and are uniformly larger than those of the other tests except for the normal
distribution. For the three non-normal errors, the proposed test outperforms its
three competitors by a quite large margin. Even for normal, its powers are
merely slightly smaller than [17] test. Thirdly, both [17] and [5] tests are more
powerful than the F test in such high-dimensional settings as we would expect,
while the former performs little better than the latter which is consistent with
the findings in [17].

4. A real-data application

To further demonstrate the usefulness of our RS test in real practice, we con-
sider a Cardiomyopathy microarray data [12] with (n, p) = (30, 6319), which are
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Table 4

Power comparison of the tests with MA Model when p > n

Errors

N(0, 1) t(3) Lognormal T (0.1, 10)

(n, p) SNR RS ZC EB RS ZC EB RS ZC EB RS ZC EB

non-sparse case

(50, 100) 0 0.05 0.06 0.04 0.06 0.06 0.06 0.05 0.04 0.05 0.05 0.03 0.05

1 0.22 0.25 0.20 0.35 0.30 0.26 0.60 0.33 0.28 0.69 0.32 0.27

2 0.38 0.41 0.34 0.56 0.50 0.44 0.74 0.53 0.49 0.83 0.50 0.45

3 0.51 0.55 0.51 0.67 0.61 0.55 0.82 0.64 0.58 0.87 0.60 0.57

(100, 200) 0 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05 0.04 0.05

1 0.24 0.26 0.20 0.41 0.28 0.28 0.72 0.32 0.30 0.84 0.28 0.29

2 0.42 0.46 0.46 0.69 0.53 0.50 0.89 0.55 0.51 0.96 0.51 0.52

3 0.58 0.61 0.58 0.82 0.72 0.65 0.95 0.70 0.66 0.98 0.67 0.61

(200, 400) 0 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.06 0.05 0.06

1 0.26 0.27 0.24 0.46 0.30 0.25 0.87 0.33 0.28 0.96 0.26 0.27

2 0.47 0.50 0.45 0.78 0.57 0.54 0.98 0.59 0.55 1.00 0.53 0.52

3 0.67 0.70 0.67 0.93 0.75 0.73 1.00 0.78 0.74 1.00 0.72 0.70

sparse case

(50, 100) 1 0.18 0.21 0.16 0.28 0.25 0.20 0.46 0.28 0.25 0.53 0.26 0.26

2 0.30 0.37 0.34 0.43 0.42 0.35 0.59 0.45 0.39 0.63 0.40 0.37

3 0.42 0.47 0.41 0.54 0.51 0.44 0.64 0.55 0.52 0.67 0.50 0.49

(100, 200) 1 0.21 0.23 0.19 0.32 0.23 0.24 0.57 0.29 0.22 0.69 0.25 0.23

2 0.36 0.39 0.35 0.54 0.43 0.42 0.74 0.48 0.43 0.80 0.46 0.40

3 0.50 0.53 0.47 0.66 0.57 0.52 0.80 0.60 0.55 0.83 0.59 0.53

(200, 400) 1 0.20 0.22 0.20 0.39 0.24 0.25 0.69 0.27 0.26 0.80 0.26 0.27

2 0.40 0.43 0.41 0.66 0.51 0.46 0.85 0.49 0.48 0.87 0.46 0.44

3 0.58 0.61 0.58 0.79 0.66 0.64 0.89 0.66 0.64 0.90 0.61 0.59

from a transgenic mouse model of dilated cardiomyopathy. This dataset consists
of a n × p matrix of gene expression values X = (Xij), where Xij is the ex-
pression level of the j-th gene for the i-th mouse. Each mouse also provides an
outcome (Ro1) measure Yi. The goal is to identify the most influential genes for
overexpression of a G protein-coupled receptor (Ro1) in mice. Thus, the regres-
sion model (1.1) is useful. Due to confidentiality reasons, both the response and
predictors have been standardized to be zero mean and unit variance.

Firstly, we select the important predictors by the sure independence screening
(SIS) and iterative SIS (ISIS) methods [3] from which we get 8 and 5 potentially
relevant variables respectively. Then we consider two hypotheses to check the
selection accuracy of these two methods: (i) whether the selected predictors
are correlated with the response? (ii) whether the eliminated predictors by the
screening methods are indeed irrelevant? Clearly, we can adopt the tests, RS,
EB, ZC, and F for the first hypothesis as n > p in this case. For the second
hypothesis, we test whether the eliminated predictors are correlated with the



Rank score tests 2141

−2 −1 0 1 2

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Fig 1. The QQ plot of residuals of SIS and ISIS for the Cardiomyopathy microarray data,
respectively.

Table 5

p-values of each tests

RS EB ZC F

SIS-selected 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SIS-eliminated 2e-5 (0.00) 3e-4 (0.00) 0.48 (0.35) –

ISIS-selected 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ISIS-eliminated 0.37 (0.27) 0.28 (0.28) 0.50 (0.54) –

Note: the bootstrapped p-values are given in parentheses.

corresponding R-residuals (Chapter 3, [7]) and then the three tests, ZC, EB
and RS, are all applicable. Figure 1 shows the QQ-plot of residuals of SIS and
ISIS for the Cardiomyopathy microarray data. We observe that the residuals
are somewhat heavy-tailed, which motives us to use our proposed RS test.

Table 5 shows the p-values of the four tests for the considered hypotheses. Fur-
thermore, because the sample size is only 30, we also consider a bootstrapped-
based method to obtain p-values (10, 000 resampling). We observe that both
selected predictors by SIS and ISIS would be relevant since all the p-values
are extremely small. Since we cannot reject the hypothesis (ii) for the ISIS-
eliminated predictors, we may conclude that the ISIS method is able to cor-
rectly select the relevant predictors. However, the RS and EB tests reject the
null hypothesis that the SIS-eliminated predictors are relevant and hence some
important predictors may be missed by the SIS method in this case. In contrast,
the ZC test is not significant under the hypothesis (ii) for the SIS-eliminated
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predictors, which may demonstrate the robustness of our proposed method to
certain degree.

5. Appendix

Firstly, we restate some results on the quadratic forms in the following lemma [13].

Lemma 1. Under the model (2.3), for any m×m symmetric matrix A = (aij)
and B = (bij) of constants, we have

E[(zTi Azi)
2] = ∆

m
∑

i=1

a2ii + 2tr(A2) + (tr(A))2,

var[(zTi Azi)
2] = ∆

p
∑

i=1

a2ii + 2tr(A2),

E[(zTi Azi)(z
T
i Bzi)] = ∆

m
∑

i=1

aiibii + 2tr(AB) + tr(A)tr(B).

5.1. Proof of Theorem 1

Recall the definition ei = a(R(Yi)) and denote ξi =
√
12(R(εi)

n+1 − 1
2 ). We can

rewrite Wn as follows

Wn =
1

n(n− 1)

∑

i6=j

XT
i Xjeiej,

=
1

n(n− 1)

∑

i6=j

XT
i Xjξiξj +

2

n(n− 1)

∑

i6=j

XT
i Xj(ei − ξi)ξj ,

+
1

n(n− 1)

∑

i6=j

XT
i Xj(ei − ξi)(ej − ξj)

.
= An1 +An2 +An3.

We consider the last part An3 firstly. Note that

E(An3|X)

=
12

n(n− 1)(n+ 1)2
EX

{

∑

i6=j

XT
i Xj

n
∑

l=1

n
∑

k=1

(I(εl ≤ εi + (Xi −Xl)
Tβ)

− I(εl ≤ εi))× I(εk ≤ εj + (Xj −Xk)
Tβ)− I(εk ≤ εj))

}

=
12

n(n− 1)(n+ 1)2
EX

{

∑

i6=j

XT
i Xj

n
∑

l=1

n
∑

k=1

E

[

(I(εl ≤ εi + (Xi −Xl)
Tβ)

− I(εl ≤ εi))× I(εk ≤ εj + (Xj −Xk)
Tβ)− I(εk ≤ εj))

∣

∣εi, εj

]}
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=
12

n(n− 1)(n+ 1)2
EX

{

∑

i6=j

XT
i Xj

n
∑

l=1

n
∑

k=1

(F (εi + (Xi −Xl)
Tβ)− F (εi))

× (F (εj + (Xj −Xk)
Tβ)− F (εj))

}

=
12

n(n− 1)(n+ 1)2
EX

{

∑

i6=j

XT
i Xj

n
∑

l=1

n
∑

k=1

(∫

f2(x)dx((Xi −Xl)
Tβ)

+

∫

f
′

(ξil)f(x)dx((Xi −Xl)
Tβ)2

)

×
(
∫

f2(x)dx((Xj −Xk)
Tβ) +

∫

f
′

(ξjk)f(x)dx((Xj −Xk)
Tβ)2

)}

=
12

n(n− 1)(n+ 1)2
EX

{

∑

i6=j

XT
i Xj

n
∑

l=1

n
∑

k=1

(∫

f2(x)dx

)2

× (Xi −Xl)
Tβ(Xj −Xk)

Tβ

}

+
24

n(n− 1)(n+ 1)2
EX

{

∑

i6=j

XT
i Xj

n
∑

l=1

n
∑

k=1

∫

f2(x)dx

∫

f
′

(ξjk)f(x)dx

× (Xi −Xl)
Tβ((Xj −Xk)

Tβ)2
}

+
12

n(n− 1)(n+ 1)2
EX

{

∑

i6=j

XT
i Xj

n
∑

l=1

n
∑

k=1

(

((Xi −Xl)
Tβ)2((Xj −Xk)

Tβ)2
)

×
(∫

f
′

(ξil)f(x)dx

∫

f
′

(ξjk)f(x)dx

)}

.
= An31 +An32 +An33,

where EX denotes the conditional expectation given X E(·|X) and ξjk is a

variable between εj and εj+(Xj−Xk)
Tβ. Obviously, E(An31) = βTΣ2β/τ2ǫ +

o(
√

n−2tr(Σ2)). Note that

E(An32) ≤ C1E(XT
i Xj(Xi −Xl)

Tβ((Xj −Xk)
Tβ)2)

= C1E(βTΣXj(X
T
j β)

2)

≤ C2

√

E(βTΣXjX
T
j Σβ)E((XT

j β)
4)

≤ C3

√

βTΣ3β(βTΣβ)2

and

E(An33) ≤ C4E(XT
i Xj((Xi −Xl)

Tβ)2((Xj −Xk)
Tβ)2)

= C4E((XT
i β)

2XT
i Xj(X

T
j β)

2)
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≤ C5

√

E((XT
i Xj)2)E((XT

i β)
4(XT

j β)
4)

≤ C6

√

tr(Σ2)(βTΣβ)4.

where Ci, i = 1, . . . , 6 are all some positive constants which are independent of

the samples. Thus, E(An3) = βTΣ2β/τ2ǫ + o(
√

n−2tr(Σ2)) under the alterna-

tive. Next, we consider the variance of An3 which can be written as

var(An3) = var

(

1

n(n− 1)

∑

i6=j

XT
i Xj(ei − ξi)(ej − ξj)

)

= O(n−2)E((XT
i Xj)

2(ei − ξi)
2(ej − ξj)

2)

+O(n−1)E(XT
i XjX

T
i Xs(ei − ξi)

2(ej − ξj)(es − ξs)) +O(n−1)E2(An3)
.
= Bn1 +Bn2 + o(n−2tr(Σ2)).

Similar to the arguments in the calculation of E(An3), we can obtain that

Bn1 = O(n−2)
{

E
(

(XT
i Xj)

2((Xi −Xl)
Tβ)2((Xj −Xk)

Tβ)2
)

+ E
(

(XT
i Xj)

2((Xi −Xl)
Tβ)2((Xj −Xk)

Tβ)4
)

+ E
(

(XT
i Xj)

2((Xi −Xl)
Tβ)4((Xj −Xk)

Tβ)4
)

}

.
= O(n−2)(Bn11 +Bn12 + Bn13).

Firstly,

Bn11 = E
(

(XT
i Xj)

2((Xi −Xl)
Tβ)2((Xj −Xk)

Tβ)2
)

= E
(

(XT
i Xj)

2(XT
i β)

2(XT
j β)

2
)

+ 2E
(

(XT
i Xj)

2(XT
l β)

2(XT
j β)

2
)

+ E
(

(XT
i Xj)

2(XT
l β)

2(XT
k β)

2
)

By Lemma 1,

E
(

(XT
i Xj)

2(XT
i β)

2(XT
j β)

2
)

= E((XT
i β)

2E((XT
j β)

2(XT
i Xj)

2|Xi))

≤ CE((XT
i β)

2(βTΣβXT
i ΣXi + βTΣXiX

T
i Σβ))

= O(βTΣ3β(βTΣβ) + tr(Σ2)(βTΣβ)2 + (βTΣ2β)2)

E
(

(XT
i Xj)

2(XT
l β)

2(XT
j β)

2
)

= βTΣβE(XT
j ΣXjX

T
j ββ

TXj)

= βTΣβE(zTj Γ
TΣΓzjz

T
j Γ

TββTΓzj)

= O(βTΣ3β(βTΣβ) + tr(Σ2)(βTΣβ)2)

E
(

(XT
i Xj)

2(XT
l β)

2(XT
k β)

2
)

= tr(Σ2)(βTΣβ)2.
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So Bn11 = o(tr(Σ2)) under the alternative (2.4). Taking the same procedure as
Bn11, we can show that

Bn12 = O(βTΣ3β(βTΣβ)2 + (βTΣ2β)2βTΣβ + tr(Σ2)(βTΣβ)3)

Bn13 = O(βTΣ3β(βTΣβ)3 + (βTΣ2β)2(βTΣβ)2 + tr(Σ2)(βTΣβ)4)

Bn2 = O(n−1(βTΣ3ββTΣβ + (βTΣ2β)2))

Thus, under the alternative (2.4), var(An3) = o(n−2tr(Σ2)) and then An3 =

||Σβ||/τ2ǫ + op(n
−1
√

tr(Σ2)).

Similarly, we can obtain that E(An2) = 0 and

var(An2) = O(n−1βTΣ3β) +O(βTΣβ)O(n−1βTΣ3β) = o(n−2tr(Σ2))

under the alternative (2.4). Thus, An2 = op(n
−1
√

tr(Σ2)).

Define ηi =
√
12(F (εi)− 1

2 ). Next, we will prove that

1

n(n− 1)

∑

i6=j

XT
i Xjξiξj =

1

n(n− 1)

∑

i6=j

XT
i Xjηiηj + op(n

−1
√

tr(Σ2)). (5.1)

Obviously,

1

n(n− 1)

∑

i6=j

XT
i Xj(ξiξj − ηiηj)

=
1

n(n− 1)

∑

i6=j

XT
i Xj(ξi − ηi)ξj +

1

n(n− 1)

∑

i6=j

XT
i Xjηi(ξj − ηj)

.
= Dn1 +Dn2.

After some simple calculation, we can obtain that var(Dn1) = O(n−3tr(Σ2))
and var(Dn2) = O(n−3tr(Σ2)) from which (5.1) follows immediately.

Next, we will show that

n
√

2tr(Σ2)

2

n(n− 1)

∑

i<j

XT
i Xjηiηj

d→N(0, 1).

Define W̃nk =
∑k
i=2 Zni where Zni =

∑i−1
j=1 ηiηjX

T
i Xj/

√

n(n−1)
2 . Let

Fi = σ{(XT
1 , ε1)

T , . . . , (XT
i , εi)

T }

be the σ-field generated by {(XT
j , εj)

T , j ≤ i}.
It is easy to show that E(Zni|Fi−1) = 0 and it follows that {W̃nk,Fk; 2 ≤

k ≤ n} is a zero mean martingale. Let vni = E(Z2
ni|Fi−1), 2 ≤ i ≤ n and

Vn =
∑n

i=2 vni. The central limit theorem will hold [6] if we can show

Vn

var(W̃nn)

p→ 1 (5.2)
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and for any ǫ > 0,

n
∑

i=2

tr−1(Σ2)E

[

Z2
niI

(

|Zni| > ǫ

√

tr(Σ2)

)

|Fi−1

]

p→ 0. (5.3)

It can be shown that

vni =
2

n(n− 1)





i−1
∑

j=1

ηjX
T
j ΣXj + 2

∑

1≤j<k<i

ηjηkX
T
j ΣXk



 .

Then,

Vn

var(W̃nn)
=

4

n2(n− 1)2tr(Σ2σ2)







n−1
∑

j=1

jη2jX
T
j ΣXj + 2

∑

1≤j<k≤n

ηjηkX
T
j ΣXk







.
= Cn1 + Cn2.

Simple algebras lead to

E(Cn1) = 1,

var(Cn1) =
16

n4(n− 1)4tr2(Σ2)
E





n−1
∑

j=1

j2(η4j (X
T
j ΣXj)

2 − tr2(Σ2))



 .

Define ΓTΣΓ = (ωkl)1≤k,l≤m. Under the diverging factor model,

E((XT
j ΣXj)

2) = E((zTj Γ
TΣΓzj)

2) = E





(

m
∑

k=1

m
∑

l=1

ωklzjkzjl

)2




=
m
∑

k=1

m
∑

l=1

m
∑

s=1

m
∑

t=1

ωklωstE(zjkzjlzjszjt)

= (3 + ∆)

m
∑

k=1

ω2
kk +

m
∑

k 6=l

ω2
kl

= (2 +∆)

m
∑

k=1

ω2
kk + tr(Σ4) ≤ (3 + ∆)tr(Σ4). (5.4)

Under the condition (C1), E((XT
j ΣXj)

2) = o(tr2(Σ2)). Hence, var(Cn1) → 0

and then Cn1
p→ 1. Similarly, E(Cn2) = 0 and

var(Cn2) =
32

n4(n− 1)4

(

n
∑

i=3

i(i− 1)

2
+

n−1
∑

i=3

i(n− i)(i− 1)

2

)

tr(Σ4)

tr2(Σ2)
→ 0

implies Cn2
p→ 0. Thus, (5.2) holds. It remains to show (5.3). Since

E

[

Z2
niI

(

|Zni| > ǫ

√

tr(Σ2)

)

|Fi−1

]

≤ E(Z4
ni|Fi−1)/(ǫ

2tr(Σ2))
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we only need to show that

n
∑

i=2

E(Z4
ni) = o(tr2(Σ2)).

Note that

n
∑

i=2

E(Z4
ni) = O(n−4)

n
∑

i=2

E











i−1
∑

j=1

ηiηjX
T
i Xj





4






which can be decomposed as 3Q+ P where

Q = O(n−4)

n
∑

i=2

i−1
∑

s6=t

E
(

XT
i XsX

T
s XiX

T
i XtX

T
t Xi

)

,

P = O(n−4)
n
∑

i=2

i−1
∑

s=1

E
(

(XT
i Xs)

4
)

.

Note that Q = O(n−1)E((XT
i ΣXi)

2) = o(tr2(Σ2)) by similar arguments in
(5.4). Next, we consider the part P . Define ΓTΓ = (νkl)1≤k,l≤m.

P = O(n−4)

n
∑

i=2

i−1
∑

s=1

E
(

(zTi Γ
TΓzs)

4
)

= O(n−4)
∑

i6=j

E











m
∑

k,l=1

νklzikzjl





4






= O(n−2)

(

m
∑

k,l=1

ν4klE(z4ik)E(z4jl) +

m
∑

k 6=l

m
∑

s6=t

v2klv
2
stE(z2ik)E(z2is)E(z2jl)E(z2jt)

+ 2
m
∑

k=1

m
∑

s6=t

v2ksv
2
ktE(z4ik)E(z2jsz

2
jt)

+
m
∑

k 6=l

m
∑

s6=t

vklvktvstvslE(z2ik)E(z2jl)E(z2is)E(z2jt)

)

Note that tr2(Σ2) = (
∑

s,t ν
2
st)

2 =
∑

k,l,s,t ν
2
stν

2
kl and

m
∑

k,l=1

ν4kl ≤





∑

k,l

ν2kl





2

,

m
∑

k=1

m
∑

s6=t

v2ksv
2
kt ≤





∑

k,l

ν2kl





2

,

m
∑

k 6=l

m
∑

s6=t

v2klv
2
st ≤

∑

k,l,s,t

ν2stν
2
kl,

m
∑

k 6=l

m
∑

s6=t

vklvktvstvsl ≤
∑

k 6=l

ω2
kl ≤

∑

k,l

ω2
kl = tr(Σ4)

Thus, under the condition (C1), P = o(tr2(Σ2)) and then (5.3) follows imme-
diately. This complete the proof.
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