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Abstract: Approximate Bayesian Computation (ABC) can be viewed as
an analytic approximation of an intractable likelihood coupled with an
elementary simulation step. Such a view, combined with a suitable in-
strumental prior distribution permits maximum-likelihood (or maximum-a-
posteriori) inference to be conducted, approximately, using essentially the
same techniques. An elementary approach to this problem which simply ob-
tains a nonparametric approximation of the likelihood surface which is then
maximised is developed here and the convergence of this class of algorithms
is characterised theoretically. The use of non-sufficient summary statistics
in this context is considered. Applying the proposed method to four prob-
lems demonstrates good performance. The proposed approach provides an
alternative for approximating the maximum likelihood estimator (MLE) in
complex scenarios.
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1. Introduction

Modern applied statistics must deal with many settings in which the point-
wise evaluation of the likelihood function, even up to a normalising constant,
is impossible or computationally infeasible. Areas such as financial modelling,
genetics, geostatistics, neurophysiology and stochastic dynamical systems pro-
vide numerous examples of this (see e.g. Cox and Smith, 1954; Pritchard et al.,
1999; and Toni et al., 2009). It is consequently difficult to perform any inference
(classical or Bayesian) about the parameters of the model. Various approaches to
overcome this difficulty have been proposed. For instance, Composite Likelihood
methods (Cox and Reid, 2004), for approximating the likelihood function, and
Approximate Bayesian Computational methods (ABC; Pritchard et al., 1999;
Beaumont et al., 2002), for approximating the posterior distribution, have been
extensively studied in the statistical literature. Here, we study the use of ABC
methods, under an appropriate choice of the instrumental prior distribution, to
approximate the maximum likelihood estimator.

It is well-known that ABC produces a sample approximation of the poste-
rior distribution (Beaumont et al., 2002) in which there exists a deterministic
approximation error in addition to Monte Carlo variability. The quality of the
approximation to the posterior and theoretical properties of the estimators ob-
tained with ABC have been studied in Wilkinson (2008); Blum (2010); Marin
et al. (2011); Dean et al. (2011); and Fearnhead and Prangle (2012). The use of
ABC posterior samples for conducting model comparison was studied in Dide-
lot et al. (2011) and Robert et al. (2011). Using this sample approximation to
characterise the mode of the posterior would in principle allow (approximate)
maximum a posteriori (MAP) estimation. Furthermore, using a uniform prior
distribution, under the parameterisation of interest, over any set which contains
the MLE will lead to a MAP estimate which coincides with the MLE. This
is an immediate consequence of Bayes’ Theorem. In low-dimensional problems
if we have a sample from the posterior distribution of the parameters, we can
estimate its mode by using either nonparametric estimators of the density or
another mode–seeking technique such as the mean-shift algorithm (Fukunaga
and Hostetler, 1975). Therefore, in contexts where the likelihood function is in-
tractable we can use these results to obtain an approximation of the MLE. We
will denote the estimator obtained with this approximation AMLE.

Although Marjoram et al. (2003) noted that “It [ABC] can also be used in
frequentist applications, in particular for maximum-likelihood estimation” this
idea does not seem to have been developed. A method based around maximisa-
tion of a non-parametric estimate of the log likelihood function was proposed by
Diggle and Gratton (1984) in the particular case of simple random samples; their
approach involved sampling numerous replicates of the data for each parameter
value and estimating the density in the data space. de Valpine (2004) proposes
an importance sampling technique, rather closer in spirit to the approach de-
veloped here, by which a smoothed kernel estimation of the likelihood function
up to a proportionality constant can be obtained in the particular case of state
space models provided that techniques for sampling from the joint distribution
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of unknown parameters and latent states are available — not a requirement
of the more general ABC technique developed below. The same idea was ap-
plied and analysed in the context of the estimation of location parameters, with
particular emphasis on symmetric distributions, by Jaki and West (2008).

Bretó et al. (2009) proposed the plug-and-play technique which permits con-
ducting likelihood-based inference, despite the complexity of the corresponding
likelihood function, on time series models which allow for simulating realisations
at any parameter values. The particular case of parameter estimation in hidden
Markov models was also investigated by Dean et al. (2011), whose approach
relies upon the specific structure of Markov models (essentially the standard
particle filtering estimate of the likelihood for a modified model is employed)
and an attempt to numerically optimise the likelihood using these Monte Carlo
point estimates is made. They note that even in simple univariate models the
simulation cost can be rather high. Their approximation (denoted ABC MLE)
can be interpreted as a maximum likelihood estimation of a misspecified model.
At the cost of some loss of efficiency the bias introduced by the use of finite
tolerance can be eliminated by a noisy ABC (Fearnhead and Prangle, 2012)
argument.

Another approach to estimation in intractable models is provided by the
indirect inference approach of Gouriéroux et al. (1993), but this approach re-
quires the introduction of an explicit proxy model and a relationship between
the parameters of the original model and its proxy to be specified.

To the best of our knowledge neither MAP estimation nor maximum likeli-
hood estimation in general, implemented directly via the “ABC approximation”
combined with maximisation of an estimated density, have been studied in the
literature. However, there has been a lot of interest in this type of problem using
different approaches (Cox and Kartsonaki, 2012; Ehrlich et al., 2012; Fan et al.,
2012; Mengersen et al., 2013; and Biau et al., 2012 who establish a number of
results including one closely related to our Proposition 1 in settings in which a
particular post-simulation approach to the specification of the tolerance param-
eter is adopted) since we completed the first version of this work (Rubio and
Johansen, 2012).

The use of the mode of a nonparametric kernel density estimate to estimate
the mode of a density, which may seem, at first, to be a hopeless task has also
received a lot of attention (see e.g. Parzen, 1962; Konakov, 1973; Romano, 1988;
Abraham et al., 2003; Bickel and Früwirth, 2006). Alternative nonparametric
density estimators which could also be considered within the AMLE context
have been proposed recently in Cule et al. (2010); Jing et al. (2012).

The remainder of this paper is organised as follows. In Section 2, we present
a brief description of ABC methods. In Section 3 we describe how to use these
methods to approximate the MLE and present theoretical results to justify such
use of ABC methods. In Section 4, we present simulated and real examples to
illustrate the use of the proposed MLE approximation. Section 5 concludes with
a discussion of both the developed techniques and the likelihood approximation
obtained via ABC in general.
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2. Approximate Bayesian Computation

We assume throughout this and the following section that all distributions of
interest admit densities with respect to an appropriate version of Lebesgue
measure, wherever this is possible, although this assumption can easily be re-
laxed. Let x = (x1, . . . , xn) ∈ R

q×n be a sample with joint distribution f(·|θ),
θ ∈ Θ ⊂ R

d; L(θ;x) be the corresponding likelihood function, π(θ) be a prior
distribution over the parameter θ and π(θ|x) the corresponding posterior dis-
tribution. Consider the following approximation to the posterior

π̂ε(θ|x) =
f̂ε(x|θ)π(θ)∫

Θ
f̂ε(x|t)π(t)dt

, (1)

where

f̂ε(x|θ) =

∫

Rq×n

Kε(x|y)f(y|θ)dy, (2)

is an approximation of the likelihood function and Kε(x|y) is a normalised
Markov kernel. Kε(·|y) is typically concentrated around y with ε acting as a
scale parameter. It is clear that (2) is a smoothed version of the true likelihood
and it has been argued that the maximisation of such an approximation can
in some circumstances lead to better performance than the maximisation of
the likelihood itself (Ionides, 2005), providing an additional motivation for the
investigation of MLE via this approximation. The approximation can be further
motivated by noting that under weak regularity conditions, the distribution
π̂ε(θ|x) is close (in some sense) to the true posterior π(θ|x) when ε is sufficiently
small. The simplest approach to ABC samples directly from (1) by the rejection
sampling approach presented in Algorithm 1.

Algorithm 1 The basic ABC algorithm.

1: Simulate θ
′ from the prior distribution π(·).

2: Generate y from the model f(·|θ′).
3: Accept θ′ with probability ∝ Kε(x|y) otherwise return to step 1.

Let ρ : Rq×n × R
q×n → R

+ be a metric and ε > 0. The simplest ABC algo-
rithm — the rejection algorithm of Pritchard et al. (1999) — can be formulated
in this way using the kernel

Kε(x|y) ∝

{
1 if ρ(x,y) < ε,

0 otherwise.
(3)

In the literature, summary statistics are often used in place of the original
data. Introducing such a statistic, η : R

q×n → R
m, and defining the kernel

on the space of these summary statistics allows these methods to be recovered
within the same framework. When these statistics are not sufficient for the
inferential task at hand there is an inevitable loss of efficiency (at best). Below
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we provide some results which characterise the large sample behaviour and the
small ε behaviour.

Several modifications to the ABC method have been proposed in order to
improve the computational efficiency, see Beaumont et al. (2002), Marjoram et
al. (2003) and Sisson et al. (2007) for examples of these. An exhaustive summary
of these developments falls outside the scope of the present paper.

3. Maximising intractable likelihoods

3.1. Algorithm

Point estimation of θ, by MLE and MAP estimation in particular, has been
extensively studied (Lehmann and Casella, 1998). Recall that the MLE, θ̂, and
the MAP estimator, θ̃, are the values of θ which maximise the likelihood or
posterior density for the realised data.

These two quantities coincide when the prior distribution is constant (e.g.

a uniform prior π(θ) on some set D which contains θ̂). Therefore, if we use
a suitable uniform prior (which must be over a bounded set as we require a
proper prior from which to sample) then it is possible to approximate the MLE
by using ABC methods to generate an approximate sample from the posterior
and then approximating the MAP using this sample. In a different context in
which the likelihood can be evaluated pointwise, simulation-based MLEs which
use a similar construction have been shown to perform well (see, e.g., Gaetan
and Yao, 2003, Lele et al., 2007 and Johansen et al., 2008). In the present setting
the optimisation step can be implemented by estimating the posterior density
of θ using a nonparametric estimator (e.g. a kernel density estimator) and then
maximising this function: Algorithm 2.

We have not here considered similar simulation-based approaches to the direct
optimisation of the likelihood function due to the associated computational cost
and also because the proposed method has the additional advantages that it
fully characterises the likelihood surface and can be conducted concurrently
with Bayesian analysis with no additional simulation effort.

Algorithm 2 The AMLE Algorithm
1: Obtain a sample θ∗

ε = (θ∗
ε,1, . . . , θ

∗
ε,k

) from π̂ε(θ|x).

2: Using the sample θ∗
ε construct a nonparametric estimator π̂k,ε(θ|x) of the density π̂ε(θ|x).

3: Calculate the maximum of π̂k,ε(θ|x), θ̃ε. This is an approximation of the MLE θ̂.

Note that the first step of this algorithm can be implemented rather gener-
ally by using essentially any algorithm which can be used in the standard ABC
context. It is not necessary to obtain an i.i.d. sample from the distribution π̂ε:
provided the sample is appropriate for approximating that distribution it can
in principle be employed in the AMLE context (although correlation between
samples obtained using MCMC techniques and importance weights and depen-
dence arising from the use of SMC can complicate density estimation, it is not
as problematic as might be expected (Sköld et al., 2003)).
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A still more general algorithm could be implemented: using any prior which
has mass in some neighbourhood of the MLE and maximising the product of
the estimated likelihood and the reciprocal of this prior (assuming that the like-
lihood estimate has lighter tails than the prior, not an onerous condition when
density estimation is used to obtain that estimate) will also provide an estimate
of the likelihood maximiser, an approach which was exploited by de Valpine
(2004) (who provided also an analysis of the smoothing bias produced by this
technique in their context). In the interests of parsimony we do not pursue this
approach here, and throughout the remainder of this document we assume that
a uniform prior over some set D which includes the MLE is used, although
we note that such an extension eliminates the requirement that a compact set
containing a maximiser of the likelihood be identified in advance.

One obvious concern is that the approach could not be expected to work
well when the parameter space is of high dimension: it is well known that den-
sity estimators in high-dimensional settings converge very slowly. Three things
mitigate this problem in the present context:

(i) Many of the applications of ABC have been to problems with extremely
complex likelihoods which have only a small number of parameters (such
as the examples considered below).

(ii) When the parameter space is of high dimension one could employ com-
posite likelihood techniques with low-dimensional components estimated
via AMLE. Provided appropriate parameter subsets are selected, the loss
of efficiency will not be too severe in many cases. Alternatively, a differ-
ent mode-seeking algorithm could be employed (Fukunaga and Hostetler,
1975).

(iii) In certain contexts, as discussed below Proposition 2, it may not be nec-
essary to employ the density estimation step at all.

Finally, we note that direct maximisation of the smoothed likelihood approx-
imation (2) can be interpreted as a pseudo-likelihood technique (Besag, 1975),
with the Monte Carlo component of the AMLE algorithm providing an approx-
imation to this pseudo-likelihood.

3.2. Asymptotic behaviour

In this section we provide some theoretical results which justify the approach
presented in Section 3.1 under similar conditions to those used to motivate the
standard ABC approach. We assume throughout that the MLE exists in the
model under consideration but that the likelihood is intractable; in the case of
non-compact parameter spaces, for example, this may require verification on a
case-by-case basis.

We begin by showing pointwise convergence of the posterior (and hence like-
lihood) approximation under reasonable regularity conditions. It is convenient
first to introduce the following concentration condition on the class of ABC
kernels which are employed:



1638 F. J. Rubio and A. M. Johansen

Condition K A family of symmetric Markov kernels with densities Kε indexed
by ε > 0 is said to satisfy the concentration condition provided that its
members become increasingly concentrated as ε decreases such that

∫

Bε(x)

Kε(x|y)dy =

∫

Bε(x)

Kε(y|x)dy = 1, ∀ ε > 0.

where Bε(x) := {z : |z− x| ≤ ε}.

As the user can freely specify Kε this is not a problematic condition. It
serves only to control the degree of smoothing which the ABC approximation
of precision ε can effect.

Proposition 1. Let x = (x1, . . . , xn) ∈ R
q×n be a sample with a continuous

joint distribution f(·|θ), θ ∈ Θ ⊂ R
d; π(θ) be a bounded prior distribution with

support contained in Θ; and let Kε be the densities of a family of symmetric
Markov kernels, which satisfies the concentration condition (K).

Suppose that

sup
(z,θ)∈Bǫ(x)×Θ

f(z|θ) < ∞,

for some ǫ > 0. Then, for each θ ∈ Θ

lim
ε→0

π̂ε(θ|x) = π (θ|x) .

Proof. It follows from the concentration condition that:

f̂ε(x|θ) =

∫

Bε(x)

Kε(x|y)f(y|θ)dy.

Furthermore, for each θ ∈ Θ

|f̂ε(x|θ)− f(x|θ)| ≤

∫

Bε(x)

Kε(x|y) |f(y|θ)− f(x|θ)| dy

≤ sup
y∈Bε(x)

|f(y|θ)− f(x|θ)|

due to the symmetry of Kε which allows us to treat Kε(x|y) as a probability
density over y. The right hand side of this inequality converges to 0 as ε → 0
by continuity. Therefore

f̂ε(x|θ)
ε→0
−−−→ f(x|θ). (4)

Now, by bounded convergence (noting that boundedness of f̂ε(x|θ), for ε < ǫ,
follows from that of f itself), we have that:

lim
ε→0

∫

Θ

f̂ε(x|θ
′)π(θ′)dθ′ =

∫

Θ

f(x|θ′)π(θ′)dθ′. (5)

The result follows by substitution of (4) and (5) into (1), whenever π(θ|x) is
itself well defined.
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Note that the assumption of boundedness of f(z|θ) over (z, θ) ∈ Bǫ(x) × Θ
is a rather mild condition if we restrict the parameter space to a bounded set
D ⊂ R

d. In the context of this paper this is immediate as we assume that we
make use of a uniform instrumental prior on a suitable bounded set D.

Remark 1. Using a similar argument we can show that the result also applies
to discrete sampling models since, for ε small enough, y ∈ Bε(x) is equivalent
to y = x.

Remark 2. The same result applies mutatis mutandis in the case in which
summary statistics are used, but in this context one finds that as ε tends to
zero the approximating posterior distribution converges to the approximate dis-
tribution of the parameters conditional upon the summary statistics (i.e. that
limε→0 π̂ε(θ|η(x)) = π (θ|η(x))), where η : Rq×n → R

m denotes the summary
statistic. This distribution coincides with the full data posterior (as can be es-
tablished via the factorisation of Lehmann and Casella (1998, Theorem 6.5),
say) only when the statistics are sufficient for inference about the parameters
of interest.

This result can be strengthened by noting that it is straightforward to obtain
bounds on the error introduced at finite ε if we assume Lipschitz continuity of
the true likelihood. Unfortunately, such conditions are not typically verifiable
in problems of interest. The following result, in which we show that whenever a
sufficient statistic is employed the simple ABC approximation converges point-
wise to the posterior distribution, follows as a simple corollary to the previous
proposition. However, we provide an explicit proof based on a slightly different
argument in order to emphasise the role of sufficiency.

Corollary 1. Let x = (x1, . . . , xn) ∈ R
q×n be a sample with joint distribution

f(·|θ), η : Rq×n → R
m be a sufficient statistic for θ ∈ Θ ⊂ R

d, ρ : Rm ×R
m →

R+ be a metric and suppose that the density of η, fη(·|θ), is ρ−continuous for
every θ ∈ D. Let D ⊂ R

d be a compact set, suppose that

sup
(t,θ)∈Bǫ(η(x))(η(x))×D

fη(t|θ) < ∞,

Then, for each θ ∈ D and the kernel (3)

lim
ε→0

π̂ε(θ|x) = π (θ|x) .

Proof. Using the integral Mean Value Theorem (as used in a similar context by
Dean et al. (2011, Equation 6)) we find that for θ ∈ D and any ε ∈ (0, ǫ):

f̂ε(x|θ) ∝

∫
I(ρ(η(y), η(x)) < ε)f(y|θ)dy

=

∫

Bε

fη(η′|θ)dη′ = λ(Bε(η(x)))f
η (ξ(θ,x, ε)|θ) ,
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for some ξ(θ,x, ε) ∈ Bε(η(x)), where λ is the Lebesgue measure and I(·) is the
indicator function. Then

π̂ε(θ|x) =
fη (ξ(θ,x, ε)|θ)π(θ)∫

D
fη (ξ(θ′,x, ε)|θ′) π(θ′)dθ′

.

As this holds for any sufficiently small ε > 0, we have by ρ−continuity of fη(·|θ):

lim
ε→0

fη (ξ(θ,x, ε)|θ) = fη (η(x)|θ) . (6)

Using the Dominated Convergence Theorem we have

lim
ε→0

∫

D

fη (ξ(θ′,x, ε)|θ′) π(θ′)dθ′ =

∫

D

fη (η(x)|θ′)π(θ′)dθ′. (7)

By the Fisher-Neyman factorisation Theorem we have that there exists a func-
tion h : Rq×n → R+ such that

f (x|θ) = h(x)fη (η(x)|θ) . (8)

The result follows by combining (6), (7) and (8).

The result also holds for discrete and mixed continuous-discrete models with
the obvious changes to the proof.

With only a slight strengthening of the conditions, Proposition 1 allows us
to show convergence of the mode as ε → 0 to that of the true likelihood. It is
known that pointwise convergence together with equicontinuity on a compact
set implies uniform convergence (Rudin, 1976; Whitney, 1991). Therefore, if in
addition to the conditions of Proposition 1 we assume equicontinuity of π̂ε(·|x)
on D, a rather weak additional condition, then the convergence to π(·|x) is
uniform and we have the following direct corollary to Proposition 1:

Corollary 2. Let π̂ε(·|x) achieve its global maximum at θε for each ε > 0 and
suppose that π(·|x) has unique maximiser θ0. Under the conditions of Proposi-
tion 1; if π̂ε(·|x) is equicontinuous, then

lim
ε→0

π̂ε(θε|x) = π(θ0|x).

Using these results we can show that for a simple random sample θ∗
ε =

(θ∗
ε,1, . . . , θ

∗
ε,k) from the distribution π̂ε(·|x) with mode at θε and an estimator

θ̃ε, based on θ∗
ε , of θε, such that θ̃ε → θε almost surely when k → ∞, we have

that for any γ > 0 there exists ε > 0 such that

lim
k→∞

∣∣∣π̂k,ε

(
θ̃ε|x

)
− π (θ0|x)

∣∣∣ ≤ γ, a.s.

That is, in the case of a sufficiently well-behaved density estimation proce-
dure, using the simple form of the ABC estimator (Algorithm 1) we have that
for any level of precision, γ, the maximum of the AMLE approximation will,
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for large enough ABC samples, almost surely be γ−close to the maximum of
the posterior distribution of interest, which coincides with the MLE under the
given conditions. A simple continuity argument suffices to justify the use of θ̃ε

to approximate θ0 for large k and small ε.
The convergence shown in the above results depends on the use of a sufficient

statistic in order to guarantee convergence to the MLE. In contexts where the
likelihood is intractable, such a statistic may not be available. In the ABC liter-
ature, it has become common to employ summary statistics which are not suffi-
cient in this setting. Although it is possible to characterise the likelihood approx-
imation in this setting, it is difficult to draw useful conclusions from such a char-
acterisation. The construction of appropriate summary statistics remains an ac-
tive research area (see e.g. Peters et al., 2010 and Fearnhead and Prangle, 2012).

We finally present one result which provides some support for the use of cer-
tain non-sufficient statistics when there is a sufficient quantity of data available.
In particular we appeal to the large-sample limit in which it can be seen that for
a class of summary statistics the AMLE can almost surely be made arbitrarily
close to the true parameter value if a sufficiently small value of ε can be used.
This is, of course, an idealisation, but provides some guidance on the properties
required for summary statistics to be suitable for this purpose and it provides
some reassurance that the use of such statistics can in principle lead to good
estimation performance. In this result we assume that the AMLE algorithm is
applied with the summary statistics filling the role of the data and hence the
ABC kernel is defined directly on the space of the summary statistics.

In order to establish this result, we require that, allowing ηn(x) = ηn(x1, . . . , xn)
to denote a sequence of m-dimensional summary statistics, the following four
conditions hold:

S.i There exists some function g : Θ → R
m such that, for x a simple random

sample, limn→∞ ηn(x)
a.s.
= g(θ) for π − a.e. θ.

S.ii The function g : Θ → R
m is an injective mapping. Letting H = g(D) ⊂

R
m denote the image of the feasible parameter space under g, g−1 : H →

Θ is an α-Lipschitz continuous function for some α ∈ R+.
S.iii The ABC kernels, defined in the space of the summary statistics, satisfy

condition K, i.e. Kη
ε (·|η

′) it is concentrated within a ball of radius ε for
all ε: suppKε(·|η

′) ⊆ Bε(η
′) and for any fixed ε > 0 we require that

supη,η′ Kε(η
′|η) < ∞.

S.iv The nonparametric estimator used always provides an estimate of the
mode which lies within the convex hull of the sample.

Some interpretation of these conditions seems appropriate. The first tells us
simply that the summary statistics converge to some function of the parameters
in the large sample limit, a mild requirement which is clearly necessary to allow
recovery of the parameters from the statistics. The second condition strengthens
this slightly, requiring that the limiting values of the statistics and parameters
exist in one-to-one correspondence and that this correspondence is regular in a
Lipschitz-sense. The remaining conditions simply characterise the behaviour of
the ABC approximation and the AMLE algorithm.
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Proposition 2. Let x = (x1, x2, . . .) denote a simple random sample with joint
distribution µ(·|θ) for some θ ∈ D ⊂ Θ. Let π(θ) denote a prior density over
D. Let ηn(x) = ηn(x1, . . . , xn) denote a sequence of m-dimensional summary
statistics with distributions µηn(·|θ). Allow η⋆n to denote an observed value of
the sequence of statistics obtained from the model with θ = θ⋆.

Assume that conditions S.i–S.iv hold. Then, for any ε > 0:

(a) supp limn→∞ π̂ε(θ|η
⋆
n) ⊆ Bαε(θ

⋆) for the statistics, η⋆, associated with
µ(·|θ⋆)-almost every collection of observations for π-almost every θ⋆.

(b) The AMLE approximation of the MLE lies within Bαε(θ
⋆) almost surely.

Proof. Allowing fηn

ε (η|θ) to denote the ABC approximation of the density of
ηn given θ, we have:

lim
n→∞

fηn

ε (η|θ) = lim
n→∞

∫
µηn(dη′|θ)Kε(η|η

′)
a.s.
= Kε(η|g(θ))

with the final equality following from S.i and S.iii (noting that almost sure con-
vergence of ηn to g(θ) together with the boundedness of Kε(η|·) yields directly

thatKε(η|ηn)
a.s.
→ Kε(η|g(θ))). From which it is clear that supp limn→∞ fηn

ε (·|θ) ⊆
Bε(g(θ)) by S.iii.

And the ABC approximation to the posterior density of θ, limn→∞ π̂ε(·|ηn),
may be similarly constrained:

lim
n→∞

π̂ε(θ|ηn) > 0 ⇒ lim
n→∞

fηn

ε (ηn|θ) > 0 ⇒ lim
n→∞

||ηn − g(θ)||
a.s.
≤ ε

⇒ lim
n→∞

||g−1(ηn)− θ||
a.s.
≤ αε

using S.ii. And by assumptions S.i and S.ii together with the continuous map-
ping theorem we have that g−1(η⋆n)

a.s.
→ θ⋆ giving result (a); result (b) follows

immediately from S.iv.

It is noteworthy that this proposition suggests that, at least in the large
sample limit, one can use any estimate of the mode which lies within the convex
hull of the sampled parameter values. The posterior mean would satisfy this
requirement and thus for large enough data sets it is not necessary to employ
the nonparametric density estimator at all in order to implement AMLE. This
is perhaps an unsurprising result and seems close in spirit to the result of Marin
et al. (2013) in the model selection context, although their argument is quite
different, but it does have implications for implementation of AMLE in settings
with large amounts of data for which the summary statistics are with high
probability close to their limiting values.

We conclude this section with some simple examples of situations in which
these conditions are met. The first is a simple, concrete example which illustrates
that sufficient statistics fit directly into this framework and also that many
other statistics have the required properties. A second more abstract example
illustrates the general principle.
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Example 1 (Binomial Sampling Model). If x is a simple random sample from
a Binomial model with known size r and unknown success probability p, the
familiar sufficient statistic ηn(x) =

1
nr

∑n
i=1 xi satisfies the required conditions:

S.i is satisfied with g = Id on [0, 1], where Id denotes the identity function, by
the strong law of large numbers.

S.ii is satisfied: Id is injective on [0, 1] and has 1-Lipschitz inverse.

While the remaining conditions are easily satisfied:

S.iii Is immediate with the simple kernel Kε(η
′|η) = 1Bε(η)(η

′)/2ε. and S.iv is
readily satisfiable.

However, sufficiency of the statistic is not required, one could instead use the
proportion of the samples which take the value zero, η̃n(x) =

1
n |{i ∈ 1, . . . , n :

xi = 0}| and then η̃n
a.s.
→ (1− p)r.

S.i is satisfied with g(p) = (1− p)r by the strong law of large numbers.
S.ii is satisfied as g is injective on [0, 1] and g−1(η̃) = 1 − η̃1/r has derivative

absolutely bounded by 1/r on [0, 1].

Some care is needed in the selection of statistics, however, even in simple
models such as this one: the sample variance of the binomial model also con-
verges almost surely — to rp(1− p) — but using this statistic would not satisfy
the requirements of Proposition 2 as it is not an injective mapping and one
would not be able to differentiate between parameter values of p and 1− p.

Example 2 (Location-Scale Families and Empirical Quantiles). Consider a
simple random sample from a location-scale family, in which we can write the
distribution functions in the form:

F (xi|µ, σ) = F0((xi − µ)/σ)

Allow η1n = F̂−1(q1) and η2n = F̂−1(q2) to denote two empirical quantiles. By
the Glivenko-Cantelli theorem, these empirical quantiles converge almost-surely
to the true quantiles:

lim
n→∞

(
η1n
η2n

)
a.s.
=

(
F−1(q1|µ, σ)
F−1(q2|µ, σ)

)

In the case of the location-scale family, we have that:

F−1(qi|µ, σ) = σF−1
0 (qi) + µ

and we can find explicitly the mapping g−1:

g−1(η1n, η
2
n) =




η1

n
−η2

n

F−1

0
(q1)−F−1

0
(q2)

η1n −
η1

n
−η2

n

F−1

0
(q1)−F−1

0
(q2)

F−1
0 (q1)


 a.s.

→

(
σ
µ

)

provided that F−1
0 (q1) 6= F−1

0 (q2) which can be assured if F0 is strictly increas-
ing and q1 6= q2. In this case we even obtain an explicit form for α.
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3.3. Use of kernel density estimators

In this section we demonstrate that the simple Parzen estimator can be employed
within the AMLE context with the support of the results of the previous section.

Definition 1. (Parzen, 1962) Consider the problem of estimating a density
with support on R

n from m independent random vectors (Z1, . . . ,Zm). Let K
be a kernel, hm be a bandwidth such that hm → 0 when m → ∞, then a kernel
density estimator is defined by

ϕ̂m(z) =
1

mhn
m

m∑

j=1

K

(
z− Zj

hm

)
.

Under the conditions hm → 0 andmhn
m/ log(m) → ∞ together with Theorem

1 from Abraham et al. (2003), we have that θ̃m
a.s.
−−→ θ̃ as m → ∞. Therefore,

the results presented in the previous section apply to the use of kernel den-
sity estimation. This demonstrates that this simple non-parametric estimator
is adequate for approximation of the MLE via the AMLE strategy, at least
asymptotically.

This is, of course, just one of many ways in which the density could be
estimated and more sophisticated techniques could very easily be employed and
justified in the AMLE context.

We note that we have focussed upon the more challenging setting of contin-
uous parameter spaces. Naturally, the AMLE approach can be implemented in
cases where the parameter space is either continuous, discrete or a combination
of discrete and continuous. This will be illustrated in the next section through
some examples.

4. Examples

We present four examples in order of increasing complexity. The first two exam-
ples illustrate the performance of the algorithm in simple scenarios in which the
solution is known; the third compares the algorithm with a numerical method
in a setting which has recently been studied using ABC and the final exam-
ple demonstrates performance on a challenging estimation problem which has
recently attracted some attention in the literature. In all the examples the sim-
ple ABC rejection algorithm was used, together with ABC kernel (3) and the
Euclidean norm. For the second, third and fourth examples, kernel density esti-
mation is conducted using the R command ‘kde’ together with the bandwidth
matrix obtained via the smoothed cross validation approach of Duong and Hazel-
ton (2005) using the command ‘Hscv’ from the R package ‘ks’ (Duong, 2011).
R source code for these examples is available from the first author upon request.

4.1. Binomial model

Consider a sample of size 30 simulated from a Binomial(10, 0.5) with x̄ = 5.53.
Using the prior θ ∼ Unif(0, 1), a tolerance ε = 0.1, a sufficient statistic η(x) = x̄
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Fig 1. Effect of k ∈ {30, 100, 1, 000, 2, 000, . . . , 10, 000} for ε = 0.05. The continuous red line
represents the true MLE value.
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Fig 2. Effect of ε ∈ {1, 0.9, . . . , 0.1, 0.05, 0.01} for k = 10, 000: (a) D = (0.45, 0.65); (b)
D = (0, 1). The continuous red line represents the true MLE value

and the Euclidean metric we simulate an ABC sample of size 10, 000 which,
together with Gaussian kernel estimation of the posterior, gives the AMLE
θ̃ = 0.552.

There are three quantities affecting the precision in the estimation of θ̂: D,
k and ε. Figure 1 illustrates the effect of varying k ∈ {30, 100, 1, 000, 2, 000, . . . ,
10, 000} for a fixed ε, two different choices of D and an ABC sample of size
10, 000. Boxplots were obtained using 100 replications of the AMLE algorithm.
This demonstrates that, although unsurprising, the acceptance rate and hence
computational efficiency is improved when some D which is relatively concen-
trated around the MLE is available (the choice D = (0.45, 0.65) produces an
acceptance rate about 5 times greater than the choice D = (0, 1)), the precise
range of D has little effect on the final estimate unless ε is very large as dis-
cussed below. Figure 2 shows the effect of ε ∈ {1, 0.9, . . . , 0.1, 0.05, 0.01} for a
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Fig 3. Monte Carlo variability of the AMLE: (a) µ; (b) σ. The dashed lines represent the
true MLE value.

fixed k and two different choices of D. In this case we can note that the effect
of ε on the precision is significant. The estimation precision is similar when
ε is small for both choices of D. However, we can see that larger values of ε
produce the acceptance of more extreme values of θ when combined with the
choice D = (0, 1). This is reflected, for instance, in the median of the boxplots
corresponding to ε = 1 in Figure 2. This interaction arises because ε is similar
in scale to the diameter of D and would not be expected to produce a noticeable
effect in realistic settings in which D would typically be much larger than ε —
smoothing on a similar scale to the total prior uncertainty in the range of the
parameters is unlikely to be desirable.

4.2. Normal model

Consider a sample of size 100 simulated from a Normal(0, 1) with sample mean
x̄ = −0.005 and sample variance s2 = 1.004. Suppose that both parameters
(µ, σ) are unknown. The MLE of (µ, σ) is simply (µ̂, σ̂) = (−0.005, 1.002).

Consider the priors µ ∼ Unif(−0.25, 0.25) and σ ∼ Unif(0.75, 1.25) (crude
estimates of location and scale can often be obtained from data, justifying such
a choice; using broader prior support here increases computational cost but
does not prevent good estimation), a tolerance ε = 0.01, a sufficient statistic
η(x) = (x̄, s), the Euclidean metric, an ABC sample of size 5, 000, and Gaussian
kernel estimation of the posterior. Figure 3 illustrates Monte Carlo variability of
the AMLE of (µ, σ). Boxplots were obtained using 50 replicates of the algorithm.

4.3. α-stable logarithmic daily returns model

Logarithmic daily return prices are typically modelled using Lévy processes.
For this reason, it is necessary to model the increments (logarithmic returns)
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Fig 4. Logarithmic daily returns using the closing price of IBM ordinary stock Jan. 1 2009
to Jan. 1 2012.

using an infinitely divisible distribution. It has been found empirically that
these observations have tails heavier than those of the normal distribution, and
therefore an attractive option is the use of the 4−parameter (α, β, µ, σ) α−stable
family of distributions, which can account for this behaviour. It is well known
that maximum likelihood estimation for this family of distributions is difficult.
Various numerical approximations of the MLE have been proposed (see e.g.
Nolan, 2001). From a Bayesian perspective, Peters et al. (2010) proposed the use
of ABC methods to obtain an approximate posterior sample of the parameters.
They propose six summary statistics that can be used for this purpose.

Here, we analyse the logarithmic daily returns using the closing price of IBM
ordinary stock from January 1 2009 to January 1 2012. Figure 4 shows the
corresponding histogram. For this data set, the MLE obtained using the nu-
merical method implemented in the R package ‘fBasics’ (Wuertz et al., 2010) is

(α̂, β̂, µ̂, σ̂)= (1.6295,−0.05829,−0.0008, 0.0078).
Given the symmetry observed and in the spirit of parsimony, we consider the

skewness parameter β to be 0 in order to calculate the AMLE of the parameters
(α, µ, σ). Based on the interpretation of these parameters (shape, location and
scale) and the data we use the priors

α ∼ U(1, 2), µ ∼ U(−0.1, 0.1), σ ∼ U(0.0035, 0.0125)

which due to the scale of the data may appear concentrated but are, in fact,
rather uninformative, allowing a location parameter essentially anywhere within
the convex hull of the data, scale motivated by similar considerations and any
value of the shape parameter consistent with the problem at hand.

For the (non-sufficient) summary statistic we use proposal S4 of Peters et
al. (2010), which consists of the values of the empirical characteristic func-
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Fig 5. Monte Carlo variability of the AMLE: (a) α; (b) µ; (c) σ. Horizontal lines represent
MLE estimator produced by the R package ‘fBasics’.

tion evaluated on an appropriate grid. We use the grid t ∈ {-250, -200, -100,
-50, -10, 10, 50, 100, 200, 250}, an ABC sample of size 2, 500, a tolerance
ε ∈ {0.5, 0.4, 0.3, 0.2, 0.125} and Gaussian kernel density estimation. Figure 5
illustrates Monte Carlo variability of the AMLE of (α, µ, σ). Boxplots were ob-
tained using 50 replicates of the AMLE procedure. In general, considerable care
must of course be taken in the selection of statistics.

4.4. Superposed gamma point processes

The modelling of an unknown number of superposed gamma point processes pro-
vides another scenario with intractable likelihoods which is currently attracting
some attention (Cox and Kartsonaki, 2012; Mengersen et al., 2013). Intractabil-
ity of the likelihood in this case is a consequence of the dependency between
the observations, which complicates the construction of their joint distribution.
Superposed point processes have applications in a variety of areas, for instance
Cox and Smith (1954) present an application of this kind of processes in the
context of neurophysiology. In this example we consider a simulated sample of
size 88 of N = 2 superposed point processes with inter-arrival times identically
distributed as a gamma random variable with shape parameter α = 9 and rate
parameter β = 1 observed in the interval (0, t0), with t0 = 420. This choice is
inspired by the simulated example presented in Cox and Kartsonaki (2012).

In order to make inference on the parameters (N,α, β) using the AMLE ap-
proach, we implement two ABC samplers using the priorsN ∼ Unif{1, 2, 3, 4, 5},
α ∼ Unif(5, 15), β ∼ Unif(0.25, 1.5), tolerances ε ∈ {0.5, 0.4, 0.3, 0.2, 0.15} and
two sets of summary statistics. The first set of summary statistics, proposed in
Cox and Kartsonaki (2012) and subsequently used in Mengersen et al. (2013),
consists of the mean rate of occurrence, the coefficient of variation of the in-
tervals between successive points, the sum of the first five autocorrelations of
the intervals, the mean of the intervals, and the Poisson indices of dispersion,
variance divided by mean, for intervals of length 1, 5, 10 and 20. Cox and Kart-
sonaki (2012) mention that summary statistics based on the intervals between
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Fig 6. Effect of ε ∈ {0.5, 0.4, 0.3, 0.2, 0.15} for k = 5, 000: (a) α; (b) β. The AMLE samples
with 8 and 9 summary statistics are presented in white and gray boxplots, respectively. The
continuous red line represents the true value of the parameter.

Table 1

Replicate study with a single data realisation. Empirical distribution of N̂ for different
values of ε

8 summary statistics 9 summary statistics
ε 1 2 3 4 1 2 3 4
0.5 29 0 1 20 33 0 15 2
0.4 5 0 35 10 0 0 50 0
0.3 0 4 46 0 0 37 13 0
0.2 0 50 0 0 0 50 0 0
0.15 0 50 0 0 0 50 0 0

successive points are likely to be useful when N is small, therefore we consider
a second set of summary statistics by adding a ninth quantity based on the
third moment: the sample skewness of the intervals between successive points∑n

j=1(xj − x̄)3/(
∑n

j=1(xj − x̄)2/n)3/2. The summary statistics of the simulated
data are (0.210, 0.669,−0.355, 4.74, 0.910, 0.476, 0.268, 0.200, 0.493).

The joint posterior distribution of (N,α, β) is singular, in the sense that
it is neither discrete nor continuous. The AMLE approach is still applicable
in this context given that the maximisation step can be conducted by noting
that the conditional distribution α, β|N is continuous. Therefore, given an ABC
sample of these parameters, we can calculate kernel density estimators for the
continuous parameters for each value of N and find the maximiser of each. We
then multiply the maximum for each N by the number of samples obtained for
that value of N and take the largest of these. Figure 6 shows the Monte Carlo
variability, estimated by using 50 AMLE samples, for each of the two AMLE
approaches based on ABC samples of size 5, 000.We can notice that the precision
in the estimation of (α, β) increases faster, as the tolerance decreases, when
using 9 summary statistics. We can observe the same phenomenon from Table 1
in the estimation of N . (Note that the horizontal line shows the parameters
used to generate the data not the true value of the MLE). Figure 7 shows
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Fig 7. AMLE estimators of β vs. AMLE estimators of α: (a) 8 summary statistics; (b) 9
summary statistics.
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Fig 8. Effect of ε ∈ {0.5, 0.4, 0.3, 0.2, 0.15} for k = 5, 000: (a) α; (b) β. The AMLE samples
with 8 and 9 summary statistics are presented in white and gray boxplots, respectively. The
continuous red line represents the true value of the parameter.

scatter plots of the AMLE estimators of β and α for ε = 0.15 and both sets of
summary statistics. This scatterplot demonstrates that the mean (α/β) of the
gamma distribution is much more tightly constrained by the data than the shape
parameter, leading to a nearly-flat ridge in the likelihood surface. The variability
in the estimated value of α/β is, in fact, rather small; while the variability in
estimation of the shape parameter reflects the lack of information about this
quantity in the data and the consequent flatness of the likelihood surface.

To show the variability of the estimator with different data, we also com-
pare the variability of the estimators obtained using 50 different data sets. For
each data set we obtain the corresponding AMLE of (N,α, β) by using the pri-
ors N ∼ Unif{1, 2, 3, 4, 5}, α ∼ Unif(5, 13) and β ∼ Unif(0.5, 1.5), tolerances
ε ∈ {0.5, 0.4, 0.3, 0.2, 0.15} and the two sets of summary statistics mentioned
above. Figure 8 shows the boxplots of the AMLEs for (α, β) obtained using
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Table 2

Replicate study with 50 data realisations. Empirical distribution of N̂ for different values
of ε

8 summary statistics 9 summary statistics
ε 1 2 3 4 1 2 3 4
0.5 7 0 24 19 5 0 43 2
0.4 8 0 41 1 3 0 24 23
0.3 1 27 22 0 0 43 7 0
0.2 0 46 4 0 0 44 6 0
0.15 0 47 3 0 0 46 4 0

ABC samples of size 5, 000. We can observe that the behaviour of the estima-
tors of (α, β) is fairly similar for both sets of summary statistics. Table 1 also
suggests an improvement in the estimation of N produced by the inclusion of
the sample skewness.

5. Discussion

This paper presents a simple algorithm for conducting maximum likelihood
estimation via simulation in settings in which the likelihood cannot (readily)
be evaluated and provides theoretical and empirical support for that algorithm.
This adds another tool to the “approximate computation” toolbox. This allows
the (approximate) use of the MLE in most settings in which ABC is possible:
desirable both in itself and because it is unsatisfactory for the approach to
inference to be dictated by computational considerations. Furthermore, even
in settings in which one wishes to adopt a Bayesian approach to inference it
may be interesting to obtain also a likelihood-based estimate as agreement or
disagreement between the approaches can itself be informative. Naturally, both
ABC and AMLE being based upon the same approximation, the difficulties
and limitations of ABC are largely inherited by AMLE. Selection of statistics
in the case in which sufficient statistics are not available remains a critical
question. There has been considerable work on this topic in recent years (see
e.g. Fearnhead and Prangle, 2012).

A side-effect of the AMLE algorithm is an approximate characterisation of
the likelihood surface, or in Bayesian settings of the posterior surface. In prin-
ciple this should allow straightforward extension of the method to computation
of approximate confidence intervals and profile likelihoods, although some ex-
tension of the theoretical results might be required to formally justify doing
so. Furthermore, we would strongly recommend that the approximation of the
likelihood surface be inspected whenever ABC or related techniques are used
as even in settings in which the original likelihood contains strong information
about the parameters it is possible for a poor choice of summary statistic to
lead to the loss of this information. Without explicit consideration of the ap-
proximation, perhaps combined with prior sensitivity analysis, this type of issue
is difficult to detect.
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