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Abstract: Linear mixed effects methods for the analysis of longitudinal
data provide a convenient framework for modelling within-individual cor-
relation across time. Using spline functions allows for flexible modelling of
the response as a smooth function of time. A computational connection be-
tween linear mixed effects modelling and spline smoothing has resulted in
a cross-fertilization of these two fields. The connection has popularized the
use of spline functions in longitudinal data analysis and the use of mixed
effects software in smoothing analyses. However, care must be taken in ex-
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mean might not track the data well and associated standard errors might
not reflect the true variability in the data. We discuss these shortcomings
and suggest some easy-to-compute methods to eliminate them.
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1. Introduction

Two approaches have emerged for the analysis of longitudinal data: linear mixed
effects modelling and functional data analysis. Linear mixed effects modelling
has its roots in parametric statistics, with, for instance, the response variable as-
sumed to be linear in time (see Demidenko [3]). In contrast, functional data anal-
ysis has its roots in smoothing (Ramsay [22]). Recently, these two approaches
have become intertwined, with researchers in one approach borrowing methods
from the other.

Linear mixed effects modellers have borrowed from smoothing research by re-
placing linear response models with more flexible piecewise polynomial response
models, using basis functions such as B-splines. Within-individual correlation
can be incorporated via random regression coefficients. See, for instance, Ver-
byla et al [33], Fitzmaurice [8], Ruppert et al ([27, 28]) and the extensive work in
animal breeding, including work of Meyer ([19, 20]). However, correct modelling
of the within-individual correlation is rarely straightforward.

Smoothers have made good use of the fact that, for a specific and known
covariance structure, there is a computational equivalence between a particular
linear mixed effects model and a standard smoothing approach. This equiva-
lence parallels the well-known correspondence between Bayes estimation and
penalized regression. See, for instance, the work on cubic smoothing splines by
Kimeldorf and Wahba [17]. Curve estimates using this covariance structure can
be calculated quickly and often, easily with existing software (Ngo [21] using
the software PROC MIXED in SAS, and White et al [35] using the software AS-
Reml by Gilmour et al [11]). This connection also provides an automatic choice
of the amount of smoothing via the estimation of the ratio of variances in the
mixed effects model.

The connection between linear mixed effects models and smoothing is not
only elegant, but has also proven useful in many applications such as the com-
parison of human growth curves (Durban et al, [5]). However, care must be
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Fig 1. Velocity of oxygen consumption (V02) of fruit flies, with lifetimes scaled to the unit
interval. The selection group has been bred to withstand dry conditions. Data were collected
by Donna G. Folk in the laboratory of Timothy J. Bradley at University of California Irvine.

taken in exploiting this computational connection. Inappropriate modelling of
the mean structure or too much reliance on the assumed specific covariance
structure for the random effects can lead to undesirable features in the popula-
tion effect estimation, in variance parameter estimation, and in specification of
standard errors. In particular, the smoothing-based covariance structure should
not be completely trusted since typically its form does not come from subject
area modelling.

We illustrate the problems and our solution using two data sets. One data set
is taken from an evolutionary biology experiment involving fruit flies’ metabolic
characteristics measured at irregular time points. Figure 1 shows measurements
of the metabolic variable velocity (i.e. rate) of oxygen consumption (VO2) of
fruit flies placed in individual dessication (drying) chambers. The data were col-
lected by Donna G. Folk in the laboratory of Timothy J. Bradley at University
of California Irvine in order to study the evolution of physiological traits in fruit
flies that were selectively bred to withstand dry conditions (Folk and Bradley
[9]). The researchers provided already processed data giving the oxygen con-
sumption rates. The right panel of Figure 1 shows measurements on eight fruit
flies from the selectively bred group while the left panel shows measurements
from the eighteen fruit flies in the control group, who were randomly bred. Re-
peated measurements were made on each individual until death, usually within
one to two days. The researchers had compared lifetimes of the two groups, but
were also interested in comparing the temporal patterns of the V02 measure-
ments, that is, the shape of the curves. We therefore scaled lifetimes to the unit
interval, to allow us to focus on shape and ignore lifetime. This re-scaling is a
very simple type of curve registration (see Ramsay and Silverman [22]). Due
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Fig 2. Average daily temperatures (degrees Celsius) at 35 Canadian weather stations. Day 1
is January 1.

to the design of the laboratory machinery, fruit flies were measured at different
times. This inherent imbalance in the design with respect to the time variable
is increased by the individual rescaling of time to the unit interval. Thus, the
researchers cannot use pointwise analysis nor standard multivariate analysis to
compare the two groups of insects. Our analysis of these data is presented in
Section 5.

The other data we analyze were collected in a balanced design. In such a de-
sign, we can calculate unbiased estimates of variances and, through direct com-
parison of variance estimates, we can illustrate some of the problems that might
arise with blind application of the standard smoothing/linear mixed model anal-
ysis. Also, the widespread availability of this data set, the CanadianWeather
in the fda library in the statistical software package R, allows the reader to
check our calculations. Figure 2 shows average daily temperatures recorded at
35 Canadian weather stations, where time t = 1 corresponds to January 1. In
our analysis, we view the 35 stations as a random sample of all possible Cana-
dian locations, with our goal being inference for the mean daily temperature in
Canada. While this is a somewhat unusual goal for these data, it allows us to
illustrate the main points of this paper. A more appropriate goal for these data,
estimation of a particular station’s “typical” weather curve, is not addressed
here, although it is briefly mentioned.

We propose fitting data sets such as these in two steps: first, for speed of com-
putation, we fit a standard smoothing-based linear mixed effects model. This
yields our proposed estimate of the population curve. Then we use the output of
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this fit to calculate pointwise sandwich standard errors of our population curve
estimate. We make two recommendations for the linear mixed effects model.
We recommend that the model used for the individual-level random effects be
a submodel of the population curve model, in the sense specified in Theorem
3.1. In addition, we recommend that the covariance structure for individual-
level random effects be based on subject area knowledge. If such a rationale
for the covariance is not available, we recommend using a “time-neutral” co-
variance structure, defined in Section 2. These recommendations will, in some
cases, reduce or eliminate bias in the estimate of the population curve. While
we do not propose anything further for bias correction of the estimate of the
population curve, we do show via simulation studies that, if our recommenda-
tions are followed, resulting pointwise confidence intervals have good coverage
properties (Section 6). This is further supported by our theoretical calculations
in Section 4.2.

Figure 3 contains four estimates of the population mean temperature: one
estimate is the daily mean of the temperatures. The other three estimates are
from linear mixed effects models. They are calculated with the R library nlme,
which uses restricted maximum likelihood (REML) estimates of variance com-
ponents. For a discussion of restricted maximum likelihood estimators, see, for
instance, Demidenko [3]. The specifics of our calculations are given in Section
3.4. The three mixed effects estimates are calculated using the same function
space to model the population mean and the same function space to model the
individual station effects, but the three estimates use different covariance struc-
tures for the random effects, covariance structures commonly used in smooth-
ing. One mixed effects estimate uses a covariance structure corresponding to
“time running forward”, the other uses a covariance structure corresponding to
“time running backward”. The third mixed effects estimate uses a “time neu-
tral” covariance structure. The first two mixed effects estimates do not track
the pointwise average well, with the “forward” estimate deviating slightly from
the pointwise average near day 365 and the “backward” estimate deviating near
day 1. Clearly, both are poor estimates. The “time neutral” estimate tracks the
mean fairly well.

In Figure 4, we compare several methods of computing standard errors.
Throughout this paper, we plot error bands as plus or minus one standard error.
Panels a) through c) show three of the four estimates from Figure 3 along with
pointwise standard errors. Panel a) shows the pointwise average, with standard
errors given by the pointwise standard deviation divided by

√
35. Panels b) and

c) show model-based standard errors, that is, standard errors calculated using
estimates of the assumed covariance structure of the linear mixed effects models.
Panel b) corresponds to the “running backward” covariance structure and panel
c) to the “running forward” model. Note the widening of the standard error bars
in panels b) and c) to values that are much higher than the standard errors of
the pointwise averages, standard error bars so wide that they are nonsensical.
The “time neutral” covariance structure yields the model-based standard errors
shown in panel d), where we also show the standard errors from panel a). Note
that these two types of standard errors are similar in magnitude, but the “time
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neutral” covariance structure yields standard errors that are almost constant,
which contradicts the fact that, in the winter, the variance between city tem-
peratures is much larger than in the summer. Note that the standard errors in
panel a) of Figure 4 will only be useful when, on each day, temperatures are
recorded for a fairly large number of stations. In many applications, this is not
the case and these straightforward standard errors cannot be readily calculated.

The observation that the assumed covariance structure of the random effects
in a linear mixed effects model can impact mean estimates and standard errors
is not completely new. Misspecification of the covariance structure might have
an effect on the estimated means, and typically can have a big effect on standard
errors and on inference. Unfortunately, currently published work on smoothing
in mixed effects models has largely ignored this potential problem. Two notable
exceptions are Brumback et al [1] and Djeundje and Currie [4], who both note
the serious implications of reliance on the smoothing-induced covariance. The
former suggest a computer-intensive bootstrap procedure to rectify the prob-
lems. The latter specifically note the problem of fanning as illustrated in Figure
4 and suggest a penalized approach to reduce fanning and also to reduce bias
in the estimate of the population curve. This penalized approach should work
well when the data are generated from a a specific covariance structure that
matches the penalty. Section 4.2 contains further discussion of Djeundje and
Currie’s method, along with discussion of general issues of assessing variability
in an estimated regression function. Our simulation studies in Section 6 indicate
that, when the covariance structure does not match the penalty, Djeundje and
Currie’s variability bands severely underestimate the sampling variability in the
estimates of the population mean.

In summary, from Figures 3 and 4, we see that the covariance structure as-
sumed for the random effects can seriously impact both estimates and standard
errors. Fortunately, under certain conditions, mean estimates are not effected
by the assumed covariance structure (see Theorem 3.1). Appropriate standard
errors can be easily constructed via sandwich estimators (see Sections 3.2 and
4.3). Figure 5 contains standard error bars calculated via our recommended
methods. These standard error bars do not show the widening as seen in Fig-
ure 4 and can be calculated even when we do not have multiple observations on
each day. See Liang and Zeger [18] for a discussion of variance misspecification
in the context of generalized estimating equations. See also Szpiro et al [32],
who propose a sandwich estimator-based solution in a slightly different context.

Section 2 contains notation and the general formulation of the linear mixed
effects model. Sections 3 and 4 contain detailed calculations and discussion of
estimators, predictors, and standard errors. Section 3 covers the conceptually
straightforward model in which the population curve is nonrandom. In Section 4,
the population curve is random. This assumption is unorthodox in classical
linear mixed effects modelling but is common in smoothing (see, for instance,
Ruppert et al [28]) and in Gaussian Process Regression, a popular technique in
machine learning (Rasmussen and Williams, [23]). Section 5 contains analysis
of the fruit fly data set shown in Figure 1. Section 6 contains the results of a
simulation study.
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2. General formulation

Data are collected on N independent subjects, with data on subject i, (tij , Yij),
j = 1, . . . , ni, modelled as

Yij = fi(tij)+ ǫij ≡ µ(tij)+gi(tij)+ ǫij, ǫij ∼ N(0, σ2
ǫ ), independent. (2.1)

We model the population curve µ via a set of JP +KP basis functions {ψPj , 1 ≤
j ≤ JP , φPk, 1 ≤ k ≤ KP }:

µ(t) =

JP∑

j=1

β[j] ψPj(t) +

KP∑

k=1

δ[k] φPk(t). (2.2)

We model individual i’s deviation gi via basis functions γIj , j = 1, . . . , L:

gi(t) =

L∑

j=1

θi[j] γIj(t). (2.3)

In all of our analyses, β = (β[1], . . . ,β[JP ])
′ is a fixed effect and the θi’s,

θi = (θi[1], . . . , θi[L])
′, are random effects. We consider δ = (δ[1], . . . , δ[KP ])

′

as either fixed, as in Section 3, or random, as in Section 4. Throughout, a
subscript of P denotes “population” and a subscript of I denotes “individual”.

Using (2.1), (2.2) and (2.3), we can write the general model for subject i’s
response vector as

Yi = (Yi1, . . . , Yini
)′ (2.4)

≡ XPi β + ZPi δ + CIi θi + ǫi

≡ Ciθ + CIiθi + ǫi

≡ Ciθ + ǫ∗i .

We assume that θ1, . . . , θN , ǫ1, . . . , ǫN (and δ, when δ is assumed random) are
independent, mean zero and normally distributed. When δ is random, we will
assume that var(δ) is an unknown positive constant times Σδ, a known covari-
ance matrix. We denote var(θi) = ΣI and we consider two general models for
ΣI , one with ΣI unrestricted and the other with ΣI = ΣR

I of some particular
known form with just a few unknown parameters. The primary purpose of re-
stricting the form of ΣI is to facilitate computation in fitting the linear mixed
effects model. In addition, some restricted forms have a connection to smoothing
and so have become popular in mixed model smoothing.

We propose fitting the parameters of the model defined by (2.1), (2.2) and
(2.3) using a restricted covariance for var(θi). However, to avoid the problems
in standard errors sometimes caused by mis-specifying the covariance structure,
we propose using sandwich-type standard errors based on the unrestricted ΣI .

While our results hold in general, in all of our examples and in our simu-
lation studies, we assume that µ and the gi’s are linear splines with equally
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spaced knots and we suppose that t ∈ (tmin, tmax) where tmin = mini,j{tij} and
tmax = maxi,j{tij}. We do not restrict the knots for modelling µ to be the same
as the knots for modelling the gi’s. A linear spline on the interval [tmin, tmax]
with K interior knots, K1 < K2 < · · · < KK , with K1 > tmin and KK < tmax,
is continuous and piecewise linear with the “pieces” defined on the subintervals
determined by the knots. With K interior knots, we require K + 2 basis func-
tions and we consider the following bases. These bases were also considered by
Djeundje & Currie [4].

1. The power basis with time “running forward”: ψ1(t) ≡ 1, ψ2(t) = t and
φk(t) = (t−Kk)+, k = 1, . . . ,K, where u+ = u if u > 0, = 0 otherwise.

2. The power basis with time “running backward”: ψ1(t) ≡ 1, ψ2(t) = 1− t
and φk(t) = (Kk − t)+, k = 1, . . . ,K.

3. The “time neutral” Bspline basis, composed of triangular functions: let
K0 = tmin and KK+1 = tmax. For k = 2, . . . ,K+1, define γIk, the kth basis
function, to be continuous and piecewise linear with support [Kk−2,Kk],
with γIk(Kk−2) = γIk(Kk) = 0 and γIk(Kk−1) = 1. Define γI1 to be
linear with support on [K0,K1) with γI1(K0) = 1 and γI1(K1) = 0. Define
γI,K+2 to be linear with support on [KK ,KK+1] with γI,K+2(KK) = 0
and γI,K+2(KK+1) = 1.

Splines are widely used for flexible fitting of functions. See, for instance, Ramsay
and Silverman [22]. See Eilers and Marx [7] and Welham et al [34] for extensive
discussion of the connections between the truncated power basis and a Bspline
basis in penalized smoothing.

We consider four models for fi = µ+ gi in (2.1) - (2.3).

A. µ is fixed, gi is random: assume that β and δ are non-random and var(θi) =
ΣI is unrestricted.

B. µ is fixed, gi is random but with modelled covariance: assume that β and
δ are non-random and that var(θi) = ΣR

I , some restricted form.
C. µ is random, gi is random: assume that β is fixed, that δ is N(0, σ2

P,CΣδ)

for some known Σδ and unknown σ2
P,C , that δ is independent of the θi’s

and ǫi’s, and that var(θi) = ΣI is unrestricted.
D. µ is random, gi is random but with modelled covariance: assume that β is

fixed, that δ is N(0, σ2
PΣδ) for some known Σδ and unknown σ2

P , that δ is
independent of the θi’s and ǫi’s, and that var(θi) = ΣR

I , some restricted
form.

We use the notation σ2
P,C for the model C parameter to avoid confusion between

estimating the variance of a component of δ under the unrestricted model C
versus the restricted model D.

It is important to keep in mind that the model defined in (2.1)-(2.3) has two
components: the choice of the basis functions and the assumed covariance struc-
ture of the random coefficients. These two elements determine the covariance
between µ(t) + gi(t) and µ(s) + gi(s), and it is the structure of this covariance
that is crucial in analysis. Clearly, a change of basis without the accompany-
ing change in assumptions about the covariance of the random coefficients may
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change the covariance of µ+gi. Notice that, in models A and C, the form for the
covariance of the gi’s depends only on the space spanned by the basis functions
and not on the choice of basis. In contrast, in models B and D, the basis for
the gi’s and the form of ΣR

I are both important in defining the model for the
covariance of µ+ gi.

When modelling µ in (2.2) in our data analyses and simulation study, we
take the ψPj ’s and φPj ’s to be either the linear “time running forward” or
“time running backward” basis functions. When µ is random, as in models C
and D, we take Σδ equal to the identity.

When modelling the gi’s in (2.3) in our data analyses and simulation studies,
we use piecewise linear functions and we consider two restrictions on var(θi).
When using a power basis for gi, with either time running forward or time
running backward, we take

var(θi) ≡ Σp
I =

[
Σβ 0
0 σ2

I I

]
. (2.5)

Here Σβ is the two by two unrestricted covariance matrix of (θi[1], θi[2]), the
coefficients of γI1(t) ≡ 1 and γI2(t) = t, and σ2

I I is the restricted covariance
matrix of (θi[3], . . . , θi[K + 2]), the coefficients of the power functions. This
covariance structure was used by Durban et al [5]. When using the Bspline basis
for gi, we take

var(θi) = σ2
I I. (2.6)

We now discuss the covariance structures induced by these assumptions. For
“time running forward” and with covariance structure as in model B or D with
var(θi) = Σp

I as in (2.5),

var

(
KI+2∑

k=3

θi[k]γIk(t)

)
= σ2

I ×
KI∑

k=1

{(t−Kk)+}2 ,

an increasing function of t. Similarly, for “time running backward” and with
the same var(θi), the variance of

∑KI+2

k=3 θi[k]γk(t) is decreasing in t. Assum-
ing more variability in individual random effects at one end of the time scale
than the other leads to the “drifting” of the estimate of µ in Figure 3 and to
the unacceptable widening of the standard error bands in panels b) and c) of
Figure 4.

Consider the covariance induced by the linear B-spline basis with equi-spaced
knots, with the difference between knots equal to ∆. Suppose that either model B
or model D holds, with var(θi) = σ2

II. Letting Ik = [Kk−1,Kk ), k = 1, . . . ,KI ,
and IKI+1 = [KKI

,KKI+1 ],

var(gi(t)) =
σ2
I

∆2
×

KI+1∑

k=1

{t ∈ Ik}
[
(t−Kk−1)

2 + (t−Kk)
2
]
.

In particular, at the equi-spaced knots the variance is constant: var(gi(Kk)) =
σ2
I . On the interval between knots, the variance is quadratic with minimum

value at the midpoint.
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Fig 3. The plot contains four estimates of µ, the typical weather curve, as described in Sec-
tions 2 and 3. The solid line is the pointwise average, the dotted line is the “time neutral”
estimate, the dot-dashed line is the “time running forward” estimate, and the long dashed
line is the “time running backward” estimate. The latter three estimates are based on piece-
wise linear functions with 41 equispaced interior population knots and 7 equispaced interior
individual knots.

We call the model for gi assuming either (2.5) for the linear power basis
or (2.6) for the linear Bspline basis a “smooth gi” model. Likewise, we call our
piecewise linear model for random µ a “smooth µmodel” whenΣδ is the identity
matrix. To see why, consider model B with power basis functions and var(θi) =
Σp

I as in (2.5). Write βi = (θi[1], θi[2])
′ and δi = (θi[3], . . . , θi[KI + 2])′. By

Henderson’s justification [26], for fixed σ2
ǫ , σ

2
I and Σβ , the best linear unbiased

predictors (the BLUPs) of the fi’s in (2.1), (2.2) and (2.3) are obtained by
minimizing

1

σ2
ǫ

∑

i,j

{Yij − fi(tij)}2 +
∑

i

β′
iΣ

−1

β
βi +

1

σ2
I

∑

i

δ′iδi

over β, δ, the βi’s and the δi’s. That is, we minimize

∑

i


∑

j

{Yij − fi(tij)}2 + σ2
ǫ β′

iΣ
−1
β βi +

σ2
ǫ

σ2
I

δ′
iδi


 .

The ith summand is a penalized least squares regression with penalties on βi

and δi. When we model gi as a spline using the power basis, the penalty on
δi with “smoothing parameter” σ2

ǫ/σ
2
I is one of those proposed by Eilers and

Marx [6] for P-spline smoothing, and is recommended by Ruppert et al [28]. To



Penalized regression 1527

0 100 200 300

-1
5

-5
0

5
1
0

Day

T
e
m
p
e
ra
tu
re

a)

0 100 200 300

-1
0

0
1
0

2
0

Day

T
e
m
p
e
ra
tu
re

b)

0 100 200 300

-2
0

-1
0

0
1
0

2
0

Day

T
e
m
p
e
ra
tu
re

c)

0 100 200 300

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Day

S
E

d)

Fig 4. Plotted are three of the estimates of µ shown in Figure 3, along with corresponding
pointwise standard errors. In panel a) the estimate of µ is the pointwise average and the
standard errors are the pointwise standard deviations of the 35 temperatures, divided by

√

35.
Panels b) and c) show analogous information but with estimates using model B and standard
errors calculated using equation (3.4) based on the restricted model B. Panel b) contains the
“time running backward” estimate and panel c) contains the “time running forward”. Panel
d) compares the pointwise standard errors of panel a) to the model B-based standard errors
using (3.4) for the “time neutral” estimate of µ (dashed line).

consider the effect of the penalty, suppose that the penalty on δi is large, that
is, that σ2

ǫ/σ
2
I is large. Then the BLUPs of the δi’s will be close to 0 and so the

BLUP of gi will be close to a line. We can thus say that the penalty on δi shrinks
the BLUP of gi to a line, with the amount of shrinkage depending on σ2

ǫ /σ
2
I .

Therefore, the effect of the penalty is similar to penalizing for large second
divided differences of gi and so the penalty is similar to the second derivative
penalty that yields a smoothing spline estimate [12]. In fact, when the knots are
equi-spaced with Kk = (k − 1)∆, then one can show that δi[k] is exactly equal
to the second divided difference [gi((k+2)∆)− 2gi((k+1)∆)+ gi(k∆)]/∆. See
Eilers and Marx [7].
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Similarly in model D with Σδ equal to the identity matrix, by Henderson’s
justification, the predictors of the fi’s are based on minimizers of

∑

i


∑

j

{Yij − fi(tij)}2 + σ2
ǫ β′

iΣ
−1
β βi +

σ2
ǫ

σ2
I

δ′iδi


+

σ2
ǫ

σ2
P

δ′δ.

Thus, when using the power basis, the restrictions in our linear mixed effects
model lead us to P-spline smoothing type estimators of µ and the gi’s.

Conversely, we can rewrite many penalized least squares criteria in terms of
the estimation criterion in a linear mixed effects model. Suppose that the fi’s
have the basis expansions as in (2.1), (2.2) and (2.3) for some basis functions,
not necessarily Bsplines or power functions. Suppose that our estimates of the
β[j]’s, δ[k]’s and θi’s are the minimizers of the penalized least squares criterion∑

i,j{Yij − fi(tij)}2+λ
∑

i θ
′
iΩθi where Ω is a known symmetric non-negative

definite L×Lmatrix and λ is unknown. IfΩ is invertible, then we can use a linear
mixed model in which the covariance matrix of the θi’s is restricted to be ΣR

I ≡
(λΩ)−1. This is exactly model B or D for θi. If Ω is not invertible, then we can
reparameterize the problem to a linear mixed model that is similar to the model
for θi in model B or D, as follows. Let Ω = QΛQ′ be the eigendecomposition
of Ω, with Λ diagonal with first k diagonal elements equal to 0. Partition Q
as Q = [Q1 : Q2] where Q1 is L by k and Q2 is L by L − k. Define the
reparameterization as θ∗

i
′
= θ′

iQ = (θ′
iQ1, θ

′
iQ2) ≡ (θ∗

i1
′
, θ∗

i2
′
). Then, letting

γI(t) = (γI1(t), . . . , γIL(t))
′ and γ∗

I(t) = Q′γI(t),

fi(t) = µ(t) + θ′
iγI(t) = µ(t) + θ∗

i
′
γ∗
I(t)

and the penalized sum of squares criterion becomes
∑

i,j

{Yij − fi(tij)}2 + λ
∑

i

θ∗
i2

′
Λ∗ θ∗

i2

with Λ∗ a diagonal matrix containing the non-zero eigenvalues of Ω. Thus, the
penalized sum of squares criterion is the same as a linear mixed effects model
criterion where the θ∗

i1’s are fixed effects and the θ∗
i2’s are random effects with

covariance matrix (λΛ∗)−1. Some restrictions on the θ∗
i2’s may be needed, to

ensure identifiability. A slight modification leads us directly to model B or D and
avoids the problem of non-identifiability: suppose that the θ∗

ij ’s are independent
with means equal to the zero vector and with the covariance of θ∗

i1 = ΣI ,
unrestricted, and the covariance matrix of the θ∗

i2’s equal to the restricted matrix
(λΛ∗)−1.

Special cases of models A and B have been considered elsewhere. In the animal
breeding literature see, for instance, Huisman et al [15] and Meyer [19]. Rice and
Wu [24] consider model A in a medical context. In these models where µ is fixed,
the only smoothness of µ comes from the smoothness of the basis functions. We
do not include a penalty term, as in the random µ case, where the penalty term
forces further smoothness of µ. Our model for fixed µ is a standard model in
spline regression. See, for instance, Stone et al [30] or Friedman [10].
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Durban et al [5] analyzed growth data by reformulating a penalized spline
approach with µ fixed into an analysis using the restricted model D, modelling
µ as random, using the degree 1 power basis. They considered a range of models
for gi: gi equal to a random intercept, a random line with unspecified covariance
matrix for the slope and intercept, and gi piecewise linear with the same knots
as µ, with cov(θi) = ΣP

I as in (2.5). Their main goal was to carry out vari-
ous hypothesis tests. While their figures do contain prediction bands for their
function estimates, they provide no explanation of their calculation.

Details of calculations of estimators and standard errors are given in the
following sections. In summary, when µ is a nonrandom function, we estimate µ
by the maximum likelihood estimator under the restricted model B. We propose
easy-to-compute standard errors of this estimate, valid under the unrestricted
model A. When µ is a random function, we use the restricted model D to
calculate the BLUP of µ and then use the unrestricted model C for easy-to-
compute pointwise prediction bands. Throughout, we ignore any model-based
bias, that is, we assume that (2.1) - (2.3) are exact.

In this article, we only consider inference for µ – we do not study prediction
of the individual effects. But this prediction is straightforward, predicting gi by
substituting our estimates of θi into (2.3).

We do not consider estimation or prediction of µ under models A or C because
fitting linear mixed effects models with so many variance parameters is compu-
tationally challenging. For instance, the model with unrestricted ΣI caused us
computational problems when the dimension of ΣI wasn’t small. In our analysis
of the fruit fly data, we found that R’s lme would not converge when we used five
or more knots in modelling gi, that is, when the dimension of the unrestricted
ΣI was 7 by 7 or larger. The convergence was extremely slow when ΣI was 6
by 6. This held for both the power basis and the more computationally stable
Bspline basis. In contrast, calculation of estimates with the restricted covari-
ances always converged and converged very quickly, even when ten knots were
used to model gi. The small number of parameters in the restricted model can
turn a computationally impossible analysis into a possible analysis.

The techniques we use in our calculations are not new. Many calculations in
the linear mixed effects model appear in Demidenko [3] and Ruppert et al [28].
However we present these calculations in a way that clearly shows when we are
relying on the smoothing model covariance structure of models B and D and
when we are using the more general models A and C. We also discuss in Section
4 interpretations of various techniques for error bars of a predictor of µ when
µ is random. When µ is random, we should assess variability of the predictor
about µ, not about E(µ).

3. Non-random µ

3.1. Estimation of µ under model B

Consider data generated according to (2.1) through (2.4) under either model A
or B. Since δ is a fixed effect, µ is non-random; thus when we talk about an



1530 N. Heckman et al.

estimate of µ(t) and a standard error of the estimator, our meaning is clear. The
estimator of θ = (β′, δ′)′ under the assumptions of model B is the generalized
least squares estimate, minimizing

∑
(Yi −Ciθ)

′(Σ∗R
i )−1(Yi −Ciθ),

with Σ∗R
i denoting the variance of ǫ∗i under the restricted model B,

Σ∗R
i = CIiΣ

R
I C

′
Ii + σ2

ǫ I. (3.1)

Therefore the estimator of θ for known variance parameters is

θ̃ =

(
β̃

δ̃

)
=
∑

i

[(∑
j C

′
j(Σ

∗R
j )−1Cj

)−1

C′
i(Σ

∗R
i )−1

]
Yi

≡∑Hi(Σ
∗R
1 , . . . ,Σ∗R

N ) Yi ≡
∑

HiYi. (3.2)

The estimator of µ(t) for given Σ∗R
i ’s is then µ̃(t) =

∑
j β̃[j]ψPj(t)+

∑
k δ̃[k]×

φPk(t).
A linear mixed effects model fit of model B yields (restricted) maximum like-

lihood variance estimators Σ̂
R

I and σ̂2
ǫ , and thus yields Ĥi = Hi(Σ̂

∗R

1 , . . . , Σ̂
∗R

N ),

an estimator of Hi. The (restricted) maximum likelihood estimator θ̂ is then

equal to
∑

ĤiYi and the (restricted) maximum likelihood estimator of µ(t),

µ̂(t), is gotten in the obvious way from θ̂. The method also provides estimators,

θ̂i i = 1, . . . , N , of the BLUPs of the θi’s. These estimators, commonly called
the estimated best linear unbiased predictors or EBLUPs, are gotten by sub-
stituting covariance estimates into the expressions for the best linear unbiased
predictors. We use a tilde when an estimator or predictor is based on known co-
variance parameters and a hat when estimated covariance parameters are used.
In particular, we use a tilde to denote a BLUP and a hat to denote an EBLUP.

3.2. Calculation of standard errors

The estimator µ̃ is derived under the assumption that model B holds. In this
section, we calculate the standard deviation of µ̃(t) valid under the unrestricted
model A. We then use this standard deviation to compute a standard error of
µ̂(t) by plugging in variance parameter estimates that are appropriate under
model A. We ignore variability caused by estimation of the variance parameters
that appear in µ̂, but acknowledge that doing so is likely to produce standard er-
rors that may be small. This variability could be accounted for by, e.g., methods
of Kackar and Harville [16].

The variance of µ̃(t) is calculated from var(θ̃) using variance/covariance rules
as

var(θ̃) =
∑

Hi var(ǫ
∗
i ) H

′
i. (3.3)

Keep in mind that Hi contains model B variance parameters while var(ǫ∗i )
contains model A variance parameters.
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If the restricted model B holds, then the covariance matrix of ǫ∗i is equal to
Σ∗R

i as in (3.1), and var(θ̃) simplifies to (
∑

C′
i(Σ

∗R
i )−1Ci)

−1, which we can
estimate by

v̂arB(θ̃) =
(∑

C′
i(Σ̂

∗R

i )−1Ci

)−1

(3.4)

where Σ̂
∗R

i is obtained by fitting model B. Expression (3.4) was used to calculate
the standard errors shown in panels b), c) and d) of Figure 4. Clearly, we do not
want to use the model-based covariances which produced panels b) and c), as
doing so gives unrealistic standard errors for our estimate of µ. The problems in
panel d) are not as striking, but we still do see the effects of the assumed “time
neutral” covariance structure.

To construct better standard errors, we require an estimator of var(ǫ∗i ) in
(3.3) that is valid under model A. The variance of ǫ∗i under model A is

var(ǫ∗i ) = CIiΣIC
′
Ii + σ2

ǫ I

and thus we require an estimator of σ2
ǫ and an unrestricted estimator of ΣI =

var(θi). We estimate ΣI by Sθ̂, the sample covariance matrix of the θ̂i’s, our
estimators of the BLUPs from fitting model B:

Sθ̂ =
1

N − 1

∑

i

(
θ̂i −

∑
θ̂j/N

)(
θ̂i −

∑
θ̂j/N

)′
. (3.5)

We estimate σ2
ǫ by

σ̂2
ǫ =

1

df

∑

i

(Yi −Ciθ̂ −CIiθ̂i)
′(Yi −Ciθ̂ −CIiθ̂i). (3.6)

where

df =

N∑

1

ni − length(θ) + dfadj −
N∑

1

length(θi)

and dfadj corrects for parameter over-counting. For instance, when using power
bases at both the population level and the individual level, dfadj = 2 + the
number of common population and individual interior knots. In the special case
that the population knots and individual knots are the same and the tij ’s do
not depend on i, our formula for the degrees of freedom simplifies: with n = ni,
K = the number of interior knots, df = Nn−N(K+2). The resulting estimates

of σ2
ǫ and var(θ̂) agree with Demidenko’s (pp 61 ff [3]).

Other estimates of σ2
ǫ and ΣI = var(θi) are possible. Since θ̂ and θ̂i are

shrinkage estimators one could adjust (3.5) and (3.6) by adjusting the degrees of
freedom to account for shrinkage. See Hodges and Sargent [14] for a discussion
of a variety of suggestions. On the other hand, a sensible estimate of σ2

ǫ can
be gotten by ordinary least squares, with no shrinkage in estimation of any
basis function coefficient. Alternatively, we might consider a method of moments
approach, as follows. Let Sθ̃i

and σ̃2
ǫ be the analogues of (3.5) and (3.6) but with
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θ̂ and θ̂i calculated using the true variance parameters. The expected values of
Sθ̃ and σ̃2

ǫ are easily calculated and are linear in both σ2
ǫ and ΣI . To estimate

σ2
ǫ and ΣI , set E(Sθ̃) = Sθ̂, E(σ̃

2
ǫ ) = σ̂2

ǫ and solve. We have not made a careful
investigation of these possibilities.

Our estimator of var(ǫ∗i ) is then v̂ar(ǫ∗i ) = CIiSˆθ
C′

Ii + σ̂2
ǫ I, and we use this

in (3.3) to estimate the variance of θ̂ under model A:

v̂arA(θ̂) =
∑

Ĥi (CIiSˆθ
C′

Ii + σ̂2
ǫ I) Ĥ

′
i. (3.7)

The variance estimator in (3.7) relies on the assumed form of the variance of ǫ∗i
given in model A, and so we call a standard error for µ̂ based on this variance
estimator a half sandwich standard error. If this form of the variance is suspect,
if, for instance, the covariance matrix of ǫi is not a constant times the identity,
then the following general sandwich estimator of the variance of θ̂ might be
preferred:

v̂ars(θ̂) =
∑

Ĥi (Yi −Ciθ̂)(Yi −Ciθ̂)
′ Ĥ′

i. (3.8)

We call a standard error for µ̂ based on this variance estimator a full sandwich
standard error. Robert-Granié, Heude and Foulle [25] consider such a sandwich
estimator when fitting a simple random regression model assuming a specific
variance structure that depends on covariates.

3.3. Balanced design

We call a design for (2.4) balanced if Ci ≡ C and CIi ≡ CI . While many
designs are not balanced, considering the balanced design can provide us with
insight into linear mixed effects analysis. For a balanced design, the variance
of ǫ∗i does not depend on i. In this case, the model B estimator of θ in (3.2)
simplifies to θ̃ = {C′[Σ∗R

1 ]−1C}−1C′[Σ∗R
1 ]−1Ȳ which only depends on the data

via Ȳ =
∑

Yi/N . Since Ĥi ≡ Ĥ = N−1{C′[Σ∗R
1 ]−1C}−1C′[Σ∗R

1 ]−1 does not
depend on i, the sandwich variance estimator in (3.8) simplifies as follows: using

the facts that ĤC = N−1I and θ̂ = ĤNȲ, we see that Ĥ(Yi−Cθ̂) = Ĥ(Yi−Ȳ)

and so v̂ars(θ̂) = Ĥ
∑

(Yi − Ȳ)(Yi − Ȳ)′ Ĥ′. Thus, we see that estimating
the variance of the ǫ∗i ’s in (3.3) via model B based residuals is equivalent to
estimating the variance using the sample variance of the Yi’s.

Suppose that the design is balanced and that model (2.4) holds with Σθ

denoting the possibly restricted covariance matrix of θi. Then the maximum
likelihood estimator of θ when variance parameters are known is the generalized
least squares estimate

θ̃G = {C′[var(ǫ∗i )]
−1C}−1C′[var(ǫ∗i )]

−1Ȳ (3.9)

with var(ǫ∗i ) = CIΣθC
′
I + σ2

ǫ I.
Under an additional condition on C and CI , given in the following Theorem,

the estimator θ̃G is equal to the ordinary least squares estimator and thus
does not depend on the assumed covariance matrix. Under the same condition
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explicit formulae for the maximum likelihood and restricted maximum likelihood
estimators for Model A covariance parameters can be given; see the end of this
section. The proof of the Theorem appears in the Appendix. By considering the
proof, we see that Theorem 3.1 holds for general matrices C and CI , that is,
the Theorem does not require that C and CI depend on basis functions.

Theorem 3.1. Suppose that model (2.4) holds with Ci ≡ C and CIi ≡ CI .
If the column space of CI is contained in the column space of C, then the θ̃G

in (3.9) and θ̂, the corresponding maximum likelihood estimator when variance

parameters are unknown, are equal to the ordinary least squares estimate θ̂O

≡ (C′C)−1C′Ȳ.

The conditions of the Theorem relate to the choice of function spaces in
modelling in (2.1) – (2.4). Suppose that the design is balanced, that the function
space modelling the gi’s is a subspace of the function space modelling µ and that
θ is non-random. Then the column space of CI is contained in the column space
of C and the Theorem states that the MLE for θ is the ordinary least squares
estimate, not depending on the covariance structure of the ǫ∗i ’s. Translating
this to our models with piecewise linear functions, if the knots for the gi’s are
a subset of the knots for the population curve µ, θ̃ in (3.2) simplifies to the
ordinary least squares estimate of θ and so µ̃ does not depend on the specific
basis functions or on the assumed covariance structure of the station-specific
random effects. Consequently our “forward time”, “backward time” and “time
neutral” estimates of µ are the same.

Demidenko [3] considers model (2.4) but with general matrices Ci and CIi

not necessarily derived from basis functions. He establishes the conclusion of
Theorem 3.1 in a balanced design under the stronger condition C = CI ; he then
gives, under this same condition, explicit formulae for the maximum likelihood
and restricted maximum likelihood estimates of ΣI and σ2

ǫ when the population
δ is not random and when ΣI is unrestricted (pp 61ff). Careful reading of his
proof shows that these formulae remain valid whenever generalized least squares
reduces to ordinary least squares. Thus under the conditions of Theorem 3.1 we
find that the restricted and unrestricted maximum likelihood estimators of σ2

ǫ

under model A are equal and given by

σ̂2
ǫ =

N∑

i=1

(Yi −Cθ̂0)
′
{
I−CI(C

′
ICI)

−1C′
I

}
(Yi −Cθ̂0)/ {N(n− L)}

where CI is n by L. The maximum likelihood estimator of ΣI is

Σ̂I,ml = (C′
ICI)

−1C′
ISCI(C

′
ICI)

−1 − σ̂2
ǫ (C

′
ICI)

−1

where

S =
∑

(Yi −Cθ̂O)(Yi −Cθ̂O)
′/N.

To get the restricted maximum likelihood estimator of ΣI replace the N in the
denominator of S by N − 1. See Demidenko, p 63 [3].
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3.4. Temperature data analysis with µ nonrandom

In all of the temperature data analyses, we model functions as splines of degree
p = 1 using either the power basis or the B-spline representation, as described in
Section 2. Knots are equi-spaced with equal distances from the “edges” of 1 and
365: a sequence of K interior knots is constructed with Kj = 1+364 j/(K+1),
j = 1, . . . ,K.

For the analysis of Figure 3, we use 41 interior population knots and 7 interior
individual knots, all equispaced, so the model doesn’t satisfy the conditions of
Theorem 1. As we see, our “time running forward” and “time running backward”
and “time neutral” estimates of µ are not the same.

The unacceptably widening pointwise standard error bands in panels b) and
c) of Figure 4 were computed using the model-based variance estimate in (3.4).
As noted in Section 2, this widening is caused by the covariance assumptions of
model B. In panel d), we see that the model-based pointwise standard errors us-
ing the “time neutral” covariance structure do not show sufficient heteroscedas-
ticity, also as explained in Section 2.

In Figure 5, estimation of µ involved 41 interior population knots and 6 in-
terior individual knots. When using these knots, by Theorem 3.1, the “time
running forward”, the “time running backward” and the “time neutral” esti-
mates of µ are all the same. Indeed, when using these knots, the covariance
structure of the random effects does not influence the estimate of µ, as the es-
timate is the ordinary least squares estimate. Panel a) shows the estimate of µ,
along with the pointwise averages of the temperatures for comparison. Panel b)
displays standard errors based on the sandwich estimators (3.7) and (3.8), using
the “time neutral” covariance structure. Panel c) shows that the difference be-
tween sandwich standard errors using the “time running forward” and using the
“time neutral” covariance structures is negligible. Sandwich estimation appears
to have greatly reduced the bias in the standard error estimates, a bias caused
by model mis-specification.

We have not plotted the model-based standard errors for this choice of knots,
but they exhibit the same undesirable behaviour shown in Figure 4. Indeed,
model-based standard errors exhibit undesirable behavior for a wide range of
choices of number of knots.

It is important to remember that both model-based and sandwich standard
errors for µ̂ are affected by the assumed covariance structure. For instance,
even if the “forward” estimator of µ is the same as the “backward” estimator
of µ, the model B based standard errors of the “forward time” estimator will,
in general, be different from those of the “backward time” estimator. Even
sandwich standard errors can be affected by the covariance structure: in plots
not shown here, in the “time running forward” and “time running backward”
models, the standard errors using (3.7) or (3.8) also exhibit fanning, albeit mild,
if the conditions of Theorem 3.1 do not hold. Even if the knot conditions implied
by the assumptions of the Theorem do hold, some amount of fanning may occur
(see Figure 8, where the fly data are analyzed assuming that µ is random).

In an analysis not shown here, we fit model B with the individual random
effect gi equal to a line with the assumed covariance matrix of the slope and
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Fig 5. Analysis of the Canadian weather data using the methods of Section 3, with 41 interior
population knots and 6 interior individual knots. Panel a) shows the mixed model estimate
of µ, which by Theorem 3.1 does not depend on the covariance structure of the individual
random effects. Panel a) also shows pointwise averages (red line). Panel b) contains pointwise
sandwich standard errors of µ̂ using the “time neutral” covariance structure for individual
random effects. The dotted line is the half-sandwich standard error based on (3.7) and the
dashed line is the full sandwich standard error based on (3.8). Panel c) shows the difference
between sandwich standard errors using the “time running forward” and using the “time
neutral” covariance structures. The dotted line is the difference for half-sandwich standard
errors and the dashed line is the difference for full sandwich standard errors.

intercept unrestricted. The widening of the standard error bands didn’t occur,
a result that agrees with the analysis in Smith and Wand [29].

4. Random µ

4.1. Prediction of µ under model D

Suppose data are generated according to (2.1) through (2.4) under either model
C or D, so that the population effect δ is random. Under either model we



1536 N. Heckman et al.

write

Y =




Y1

Y2

...
YN


 =




C1

C2

...
CN




(
β

δ

)
+




ǫ∗1
ǫ∗2
...
ǫ∗N


 ≡ C θ + ǫ∗. (4.1)

To calculate the estimators of β and the BLUP of δ, we assume that the re-
stricted model D holds. The variance of ǫ∗i under model D is Σ∗R

i as defined in
(3.1). Let 0J,K denote a J ×K matrix of zeroes and let

Iδ =

[
0JP ,JP

0JP ,KP

0KP ,JP
Σ−1

δ

,

]

S = diag(Σ∗R
1 ,Σ∗R

2 , . . . ,Σ∗R
N )

and

A = C
′
S

−1
C +

1

σ2
P

Iδ =
∑

C
′
i[Σ

∗R
i ]−1

Ci +
1

σ2
P

Iδ. (4.2)

Then, for known variance parameters, under model D, β̃, the maximum like-
lihood estimator of β, and δ̃, the BLUP of δ, can be found via Henderson’s
justification (see Robinson [26]), as the minimizers of

(Y−Cθ)′S−1(Y−Cθ) +
1

σ2
P

δ′Σ−1
δ δ = (Y−Cθ)′S−1(Y−Cθ) +

1

σ2
P

θ′Iδθ

and so

θ̃ = A−1
C
′
S

−1Y = A−1
∑

C′
i(Σ

∗R
i )−1Yi (4.3)

≡
∑

Hi(Σ
∗R
1 , . . . ,Σ∗R

N , σ2
P )Yi ≡

∑
HiYi.

Therefore, our predictor of µ(t) in model D for known variance parameters is

µ̃(t) = θ̃
′
(ψP1(t), . . . , ψPJP

(t), φP1(t), . . . , φPKP
(t)) ≡ θ̃

′
f(t).

A linear mixed effects model fit of model D yields (restricted) maximum
likelihood estimators of σ2

P , Σ
R
I , and σ2

ǫ , and thus estimators of Hi, denoted

Ĥi. The fit also produces estimators of the BLUPs of θ and the θi’s. The
estimator of the BLUP of θ is θ̂ =

∑
ĤiYi. The predictor of µ(t), denoted

µ̂(t), is gotten in the obvious way from θ̂.

4.2. Assessing variability of the predictor of µ(t)

Historically, linear mixed effects models have been used to estimate fixed effects.
Using them to predict random effects, as in the prediction of µ, raises conceptual
problems in the interpretation of µ and in how one should construct prediction
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intervals. The appropriate method for assessing variability of µ̂(t) is not obvious
when µ is modelled as random.

To model the variability of µ̂, we could take a strictly Bayesian approach,
since our estimate of µ(t) is based on the BLUP µ̃(t), which is equal to E(µ(t)|
the data). The Bayesian viewpoint would have us construct a credible interval
for µ(t) using the posterior variance of µ(t) given the data. However, one must
be confident in the choice of prior. In our context, the prior is based on a
smoothing trick and not reflective of prior information about µ. That is, the
prior and the view that µ is random do not arise from Bayesian principles.
Therefore, we prefer a frequentist approach, assessing variability based on mean
squared error. Since we are interested in µ(t) and not the population fixed
effect E{µ(t)}, we construct intervals based on a measure of the magnitude of
µ̃(t) − µ(t). So, for instance, we do not construct intervals of the form µ̃(t)
±[var{µ̃(t)}]1/2 since var{µ̃(t)} = var{µ̃(t) −∑βjψPj(t)} measures variability
of µ̃(t) about the population fixed effect, not about µ(t).

We study two measures of the magnitude of µ̃(t) − µ(t): e2δ(t) = E[ {µ̃(t) −
µ(t)}2 | δ] and e2(t) = E{µ̃(t) − µ(t)}2, and discuss how we might use these
measures to construct intervals that are likely to contain µ(t). The measure
e2δ(t) provides inference that holds for each realization of µ, and thus seems the
most sensible, as our data set has been generated by only one realization of µ.
Although our arguments here are in a Bayesian framework with µ random, the
conditional approach would appeal to the frequentist, who views µ as fixed and
considers the randomness of µ as merely a mechanism for smoothing. In either
case, there is really just one µ of interest, leading us to think of µ as fixed in our
inference. The measure e2(t) provides inference that holds on average over all
realizations of µ. It may perform poorly for some realizations of µ and perform
well for others.

Below we calculate e2δ(t) and e2(t) assuming that the unrestricted model C
holds. In Section 4.3, we present estimators of these two measures, estimators
that are appropriate under model C.

We calculate e2δ(t) and e
2(t), using (4.1), (4.3) and some algebra:

θ̃ − θ = A−1
C
′
S

−1Y − θ

= − 1

σ2
P

A−1Iδθ +A−1
C
′
S

−1ǫ∗ (4.4)

= − 1

σ2
P

A−1

(
0

Σ−1
δ δ

)
+A−1

C
′
S

−1ǫ∗.

Consider the first measure:

e2δ(t) = E[{µ̃(t)− µ(t)}2|δ] = E[ {f(t)′ (θ̃ − θ)}2 | δ]
= f (t)′ E{ (θ̃ − θ)(θ̃ − θ)′ |δ} f (t)

= f (t)′ ( Bθ|δB
′
θ|δ + Vθ|δ ) f(t)

where, by (4.4),

Bθ|δ = E( θ̃ − θ |δ) = − 1

σ2
P

A−1

(
0

Σ−1
δ δ

)
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and

Vθ|δ = var(θ̃|δ) = var(θ̃ − θ|δ)
= A−1

C
′
S

−1 var(ǫ∗) S−1
C A−1

= A−1
∑

C′
i(Σ

∗R
i )−1 var(ǫ∗i ) (Σ

∗R
i )−1Ci A−1

≡
∑

Hi var(ǫ
∗
i ) H

′
i ≡ Vθ, (4.5)

since Vθ|δ doesn’t depend on δ and therefore is not random. So

e2δ(t) = f(t)′
(

1

σ4
P

A−1

[
0 0

0 Σ−1
δ δδ′Σ−1

δ

]
A−1 +Vθ

)
f (t). (4.6)

In the Appendix, we show that pr(|µ̃(t) − µ(t)| ≤ zα/2 eδ(t) | δ) ≥ 1 − α
where the probability is calculated under the unrestricted model C and zα/2 is
the 1-α/2 quantile of the standard normal distribution. So µ̃(t)± zα/2 eδ(t) is a
sensible conservative interval for µ(t), one that performs well for each realization
of µ. In the Appendix, we see that the interval may be unnecessarily conservative
if δ′δ is large.

Now consider the second measure, e2(t). To calculate e2(t), we take the ex-
pectation of (4.6) under model C:

e2(t) = f(t)′

(
σ2
P,C

σ4
P

A−1IδA
−1 + Vθ

)
f(t). (4.7)

We argue here that, on average over realizations of µ (with probability 1 − α),
µ(t) will lie in the interval µ̃(t) ± zα/2 e(t). From (4.4), E(θ̃ − θ) = 0 and so
E{µ̃(t) − µ(t)} = 0. Thus e2(t) = var{µ̃(t) − µ(t)} and so pr(µ(t) ∈ µ̃(t) ±
zα/2 e(t)) = 1− α.

If the variance model is correctly specified, that is, if model D holds, then e2(t)
is equal to the posterior variance of µ given the data. To see this, write µ̃(t) =
E{µ(t)|Y1, . . . ,YN} and var{µ(t)|Y1, . . . ,YN} = E[{µ(t)−µ̃(t)}2|Y1, . . . ,YN ],
which, in the normal model, does not depend onY1, . . . ,YN . So var{µ(t)|Y1, . . . ,
YN} = E[var{µ(t)|Y1, . . . ,YN}] = e2(t). As noted, this posterior variance is
commonly used in a Bayesian approach to assess variability of the posterior
mean.

The pointwise standard errors proposed by Djeundje and Currie [4] are equiv-
alent to the square roots of estimates of pointwise posterior variances, under a
prior chosen to reduce frequentist bias. However, in our simulation study in Sec-
tion 6, when we applied their method to data generated under a different, but
reasonable, prior, the standard errors proved to be far too narrow.

Standard errors based on the assumed prior are discussed by Ruppert et al
[28], but only in the case that N = 1, that is, in the case of P-spline smoothing
regression. In Section 6.4 of their book, they discuss the analogues of Vθ, e

2
δ(t)

and e2(t) for this single-curve case. To calculate confidence intervals for µ(t),
they compare e2(t) and f(t)′Vθf(t), and state they prefer the former. They
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don’t consider confidence intervals based on e2δ(t). Their calculations assume
that the smoothing model D holds, that is, that ΣI is as in (2.5), while our
calculations hold under the more general model C. The simulation results in
Section 6 show that this method, with its reliance on the assumed covariance
structure, doesn’t extend well to more than one curve.

Other authors have proposed alternatives to model-based standard errors.
Sun, Zhang and Tong [31] study a linear mixed effects model with time-varying
coefficients at the population level, proposing a two step estimation procedure
to reduce computational cost. The first step is local least squares regression
ignoring the covariance structure, to estimate the population mean parameters.
This step produces individual level residuals which are then used in a method of
moments procedure to estimate variance parameters. For the case that N = 1,
Crainiceanu et al [2] take a Bayesian approach to modelling Σδ.

4.3. Estimating e2
δ
(t) and e2(t)

We have defined µ̃(t) and µ̂(t), predictors of µ(t), in the restricted model D and
we have defined two measures of the variability of µ̃(t), e2δ(t) in (4.6) and e2(t)
in (4.7). Our calculations for e2δ(t) and e2(t) are valid under the unrestricted
model C. In this section, we define estimators of e2δ(t) and e2(t) that are also
valid under the unrestricted model C. We then use these estimators to define
prediction intervals for µ(t) centered at µ̂(t).

Our estimates of e2δ and e2 rely on estimators of A in equation (4.2) and
the Hi’s in equation (4.3). We estimate A and the Hi’s by “plugging in” the
parameter estimates from our fit of the restricted model D. Our fit of this
restricted model also yields σ̂2

P , the estimate of σ2
P , and δ̂, the BLUP of δ.

Using all of these in (4.5) and (4.6), we define the full sandwich estimate of e2δ
as

ê2δ,full(t) = f (t)′

(
1

σ̂4
P

Â−1

[
0 0

0 Σ−1
δ δ̂δ̂

′
Σ−1

δ

]
Â−1

+
∑

Ĥi(Yi − Ciθ̂)(Yi − Ciθ̂)
′
Ĥ

′

i

)
f(t.)

To define the full sandwich estimate of e2 in (4.7), we let σ̂2
P,C be the sample

variance of the components of δ̂:

σ̂2
P,C =

1

KP − 1

∑

k

(
δ̂[k]−

∑
δ̂[j]/KP

)2

and let

ê2full(t) = f(t)′

(
σ̂2
P,C

σ̂4
P

Â−1IδÂ
−1 +

∑
Ĥi(Yi − Ciθ̂)(Yi − Ciθ̂)

′
Ĥ

′

i

)
f (t).

We also define half sandwich estimates of e2δ and e
2, estimates that assume the

covariance structure of the ǫ∗i ’s is as specified in model C. For these estimates,
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we simply replace (Yi − Ciθ̂)(Yi − Ciθ̂)
′ in the full sandwich estimators with

an estimate of var(ǫ∗i ) valid under the unrestricted model C:

v̂ar(ǫ∗i ) = CIiSθ̂C
′
Ii + σ̂2

ǫ I.

with Sθ̂ and σ̂2
ǫ as in equations (3.5) and (3.6), but using the θ̂i’s and θ̂ gotten

from fitting model D instead of model B.
Thus, we have four different sandwich prediction errors. Using e2(t) yields a

full sandwich error and a half sandwich error. Using e2δ(t) yields a full sandwich
error given δ and a half sandwich error given δ. Our simulation studies indi-
cate that the performances of the four estimators are comparable. One might
prefer the full sandwich estimators, as they require fewer model assumptions.
In a frequentist approach in which the randomness of µ is simply a device for
smoothing, one would prefer a conditional mean squared error. Combining these
reasons yields ê2δ,full as the preferred estimator.

4.4. Temperature data analysis

We constructed figures (not shown) analogous to Figure 3 and 4, except based
on model D with µ random, piecewise linear with “time running forward” co-
variance structure, that is with the “running forward” power basis and with Σδ

equal to the identity. We constructed predictors of µ using different configura-
tions of knots, and, for the individual level random effects, different covariance
structures, that is, for “time running forward”, “time running backward” and
“time neutral”. We also constructed the model-based standard errors and all
types of pointwise sandwich standard errors. The results were, for the most
part, qualitatively the same as those assuming µ fixed.

We found that, when knots weren’t chosen according to the principles of
Theorem 3.1, the “time running forward” estimate of µ did not track the point-
wise average well. Surprisingly, the “time running backward” estimate did track
fairly well. The “time neutral” estimate of µ tracked well. Choosing the indi-
vidual knots to be a subset of the population knots resulted in all estimates
tracking the mean.

No matter what the choice of knots, the model-based prediction errors for
the “time running forward” and “time running backward” individual level co-
variance structures were unreasonably wide, just as in Figure 4. The “time
neutral” covariance structure gave pointwise model-based standard error bands
that were similar to those in Figure 4, not reflecting the fact that variability in
temperatures between cities is much lower in the summer than in the winter.

Under all three individual level covariance structure assumptions, the sand-
wich standard errors provided substantial improvement over the model-based
standard errors. This improvement led to satisfactory standard errors when the
individual knots were a subset of the population knots. However, when the indi-
vidual knots were not a subset of the population knots, the sandwich standard
errors did not track the raw standard errors as closely as one would like. In-
deed, in this case, the sandwich standard errors still showed some slight signs
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of the underlying assumed covariance structure. We see this phenomenon in the
analysis of the fruit fly data set, in the next section.

For further details and plots, see the Supplementary Material [13].

5. Fruit fly data analysis

We analyzed the fruit fly data using all of the techniques described in Sections 3
and 4. Here, we only present some of the Section 4 analyses, based on random
µ. Complete analyses are contained in the Supplementary Material. As always,
for µ random, we assumed the “time running forward” covariance structure for
µ. Throughout this section, analysis is based on piecewise linear functions with
29 equispaced interior knots for the population mean and 4 equispaced interior
knots for the individual effects. Thus the individual knots are a subset of the
population knots, and Theorem 3.1 would hold if the design were balanced and
µ were modelled as a fixed function.

As an ad hoc method of estimating expected VO2 response within each group,
we linearly interpolated the data from each individual and calculated pointwise
means at a grid of 100 time points. We also calculated pointwise standard errors
of these means, using the pointwise standard deviation divided by the square
root of the number of individuals. Note that these standard errors are probably
too small, as we have used extra “data points” in their calculation. But the
standard errors do give some indication of the pattern of variability since the
number of observations is fairly evenly spread over the scaled time interval. If,
on the other hand, there were few observations over a portion of the interval,
our standard errors might be misleading due to the varying level of certainty in
those standard errors.

Figure 6 contains results from an analysis using the individual level “time
neutral” structure. The plots show the estimates of the expected VO2 response of
fruit flies in the selection and control groups, along with pointwise full-sandwich
standard errors based on e2(t). The Figure also contains the difference of these
estimates, along with pointwise standard errors.

Figure 7 shows all types of “time neutral” standard errors for the selection
and control groups. Note that the model-based standard errors indicate an ap-
proximate homoscedasticity that is not supported by the data. Note also how
the sandwich standard errors have corrected this.

Figure 8 shows all types of “time running forward” standard errors. The
model-based standard errors display extreme fanning for t near 1. The sand-
wich standard errors have corrected much but not all of the fanning problem.
However, in plots (not shown), we found that estimates of µ under the individ-
ual level “time running forward” model seemed to be biased, drifting from the
point-wise mean for t near 1. Perhaps the widening of the standard error bars
compensates for this drifting of the estimate of µ.

Figures in the Supplementary Material indicate that, when the knots do not
satisfy the conditions of Theorem 3.1, the assumed covariance structure has a
stronger effect on the sandwich standard errors.
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Fig 6. Estimates and pointwise full-sandwich standard errors of the population mean V02
in the selection and control groups of flies, by techniques of Section 4, using 29 equispaced
interior population knots and 4 equispaced interior individual knots. Analysis used the “time
neutral” covariance structure for the individual level random effects and full sandwich stan-
dard errors are based on ê2

full
(t). Also shown is the difference of the estimates, with pointwise

standard errors of the difference.

6. Simulation study

We simulated and analyzed data sets in order to study the validity of the dif-
ferent pointwise standard errors. The model for the simulation was chosen to
produce data that mimicked the Canadian weather data; station i’s temperature
on day j was Yij = µ(j)+ai[cos(2πj/365)+2]+ǫij. Here µ is of the form µ(t) =
γ1 + γ2t+ γ3 cos(2πt/365)+ γ4 sin(2πt/365)+ γ5 cos(4πt/365)+ γ6 sin(4πt/365)

where the γk’s minimize
∑365

1 (µ(j) − Ȳj)
2, where Ȳj =

∑
i Yij/35. The ran-

dom effect ai is normal with mean 0 and standard deviation 3.5 and the error
ǫij is normal with mean 0 and standard deviation 0.842721, which is the esti-
mated value of σǫ from the data analysis. To compare the simulated data to the
real data, Figure 9 shows one simulated data set, the Canadian weather data,
the pointwise means for these two data sets, and the standard errors of these
pointwise means.
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Fig 7. Standard errors of estimates of the population mean V02 in the selection and control
groups of flies by techniques of Section 4, using 29 equispaced interior population knots and
4 equispaced interior individual knots and the “time neutral” covariance structure for the
individual level random effects. The standard errors portrayed are: the ad hoc using linear
interpolation (black line), the full sandwich (red) using êfull, the half sandwich (yellow), the
full sandwich given δ (green) using êδ,full, the half sandwich given δ (blue) and the model-based
(cyan).

We estimated µ in each simulated data set four ways: assuming µ is fixed
and the individual random effects have a “time running forward” structure,
assuming µ is fixed and the individual random effects have a “time neutral”
covariance structure, assuming µ is random and the individual random effects
have a “time running forward” structure, and assuming µ is random and the in-
dividual random effects have a “time neutral” covariance structure. For random
µ, we assumed the “time running forward” covariance structure with Σδ equal
to the identity. All functions were modelled as piecewise linear. We analyzed the
data using 39 interior population knots and 7 interior individual knots, so that
the individual knots were a subset of the population knots.
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Fig 8. Standard errors of estimates of the population mean V02 in the selection and control
groups of flies by techniques of Section 4, using 29 equispaced interior population knots and 4
equispaced interior individual knots and the “time running forward” covariance structure for
the individual level random effects. The standard errors portrayed are: the ad hoc using linear
interpolation (black line), the full sandwich (red) using êfull, the half sandwich (yellow), the
full sandwich given δ (green) using êδ,full, the half sandwich given δ (blue) and the model-based
(cyan).

We found that all methods of estimating µ worked well and that model-
based standard errors always performed poorly. All sandwich standard errors
performed well.

We present some plots here from the random µ “time neutral” analysis, with
more plots available in the Supplementary Material. Figure 10 shows pointwise
quantiles of the model-based standard errors (in black) and the full-sandwich
standard errors based on êfull(t) (in red). The dashed blue line is the pointwise
standard deviation of the 200 estimates of µ - this is a simulated estimate of
the target of our standard errors. We see that the sandwich estimator performs
well and the model-based errors do not. Figure 11 shows the proportion of times
that a supposed 95% or 98% confidence interval for µ actually contains µ. We
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Fig 9. Comparing the Canadian weather data to data simulated as described in Section 6.
The upper left plot shows one of the simulated data sets and the upper right plot contains the
Canadian data. The lower left plot shows pointwise means of two simulated data sets (black
lines) and of the Canadian data (red line). The lower right plot shows the pointwise standard
errors of the means depicted in the lower left.

calculated intervals as µ̂(t)±zα/2 SE(t), with zα/2 from the normal distribution.
The model-based standard error under-covers during much of the mid-year, as
expected from Figure 10. The sandwich standard error has moderate undercov-
erage, but it may be possible to correct this using a t-distribution instead of the
normal when constructing confidence limits.

We also compared our method to that of Djeundje and Currie [4], using
their posted R-code (doi: 10.1214/10-EJS583SUPP) in their files Bases.r and
Masters 3.r, with basis set to c(“B”, “B”), corresponding to fitting their model
M1, as described in and near their equation (3.3). In their paper, they reported
unusually small standard errors. Standard errors for our simulated data were also
small, much smaller than the pointwise standard deviations of the estimates of µ.
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Fig 10. The pointwise 5th, 25th, 75th 95th quantiles (dashed lines) and 50th quantiles (solid
line) of the 200 standard errors from the simulation study of Section 6, with 39 interior
population knots and 7 interior individual knots. The analysis assumes that µ is random and
that the individual random effects have a “time neutral” covariance structure. The black lines
are the quantiles of the model-based standard errors and the red lines are the quantiles of the
full sandwich standard errors, using êfull(t). The dotted cyan line is the empirical standard
error, that is, the pointwise standard deviation of the estimates of µ.

The resulting pointwise 95% confidence intervals for µ had abut 50% covererage.
Discussion of these results is in the Supplementary Material.

7. Discussion

The use of linear mixed effects modelling as a smoothing tool in the analysis
of longitudinal data has increased, with many researchers taking advantage of
readily available mixed effects model software. Incorporating spline functions
into the analysis at both the population level and the individual levels allows
more flexible estimators than those from traditional parametric methods. Addi-
tionally, using smoothing-based models B or D for the individual random effects
results in fast computation. However, use of these spline models can lead to an
incorrect population mean estimate and incorrect pointwise standard errors. In-
deed, over-reliance on any particular covariance model for the individual random
effects can cause problems.

The impact of the assumed covariance structure of the individual effects on
the population mean estimate is sometimes serious but can often be remedied
by ensuring that the function space for the individual effects is a subspace of the
function space for the population mean curve. Therefore, we recommend that the
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Fig 11. Coverage of confidence intervals in the simulation study of Section 6, assuming that
µ is random and using the time neutral covariance structure. The plots show the proportion
of times that µ lies within the pointwise 95% confidence interval (solid line) and the 98th
percent confidence interval (dashed line). Horizontal red lines are drawn at 0.95 and 0.98.

individual level knots be a subset of the population level knots. This structure
has the conceptual advantage of allowing us to readily view the random effects
as deviations from the mean. It also has the appealing property of resulting in
the ordinary least squares estimate of µ when the design is balanced for the
case that µ is modelled as non-random (see Theorem 3.1). As we have seen, this
choice of knots also improves performance of our proposed sandwich estimators
of standard errors. We have seen from simulation studies that confidence interval
coverage is good, without any further correction of bias in the estimate of µ.

For the choice of the number of population level knots, we agree with Rup-
pert et al (Section 5.5.3 [27]) who state that “the idea is to choose enough knots
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to resolve the essential structure of the underlying regression function”. When
we consider µ random, based on our experience, we also agree with the recom-
mendation of Ruppert et al to choose 20 to 40 population knots or one-fourth
the number of distinct t values, whichever is smaller. Note, however, that their
recommendation was made in a different context, with only one regression data
set. Like Ruppert et al in their context, we found that the exact number of pop-
ulation knots had little effect, provided the number was sufficiently large. This
is in contrast to µ non-random, where one would typically use a much smaller
number of population knots, as too many knots will result in a rough estimate
of µ.

At the individual level, we do not recommend using only a random intercept
or a random slope and intercept, as this typically is not rich enough to account
for individual to individual variability. We have found that, to capture this
variability, it suffices to use just a few individual knots.

As we have seen, the choice of the covariance structure for the population
curve and the individual deviations can have a large effect on the standard
errors. If possible, one should use a covariance structure that arises from the
application. For instance, an appropriate covariance structure for the tempera-
ture data should reflect the fact that January 1 is just one day after December
31, and so temperatures on these two days are highly correlated. If an appropri-
ate covariance structure cannot be determined a priori, we recommend using the
“time neutral” linear Bspline basis with independent and identically distributed
coefficients to estimate µ. As even this covariance structure may be incorrect, we
still recommend basing standard errors on an unrestricted covariance structure,
using sandwich standard errors based on (3.7), (3.8), (4.6) or (4.7). We have
found that these sandwich standard errors perform best when we have assumed
a “time neutral” covariance structure.

The main contribution of this paper is in drawing attention to the prob-
lem of model-based standard errors in the smoothing formulation of random
regression, and in presenting a better approach. Our two stage methodology, a
smoothing-based linear mixed effects fit followed by method of moment estima-
tion of variance parameters, provides fast and flexible analysis of longitudinal
data, analysis that is robust to variance model misspecification.

Supplementary Material

Supplement to “Penalized regression, mixed effects models and ap-
propriate modelling”
(doi: 10.1214/00-EJS809SUPP; .zip).
The Supplementary Material includes code to obtain estimates of µ and stan-
dard errors, as described in Sections 3 and 4. Also included are

• code to produce plots from the paper;
• code to generate simulated data and to run the simulation for our methods;
• code to simulate according to the methods of Djeundje and Currie [4];
• details of the results of the simulation study;

http://dx.doi.org/10.1214/00-EJS809SUPP
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• a description of the analysis of the Canadian weather data, assuming that
µ is random, and accompanying code;

• results of the analysis of the fruit fly data, for both µ non-random and µ
random.

Appendix A: Appendix

A.1. Proof of Theorem 3.1

The proof of Theorem 3.1 uses the Lemma below, which is a modified, more
general version of Theorem 2 of Section 2.3 of [3]. The proof of the Theorem is
given after that of the Lemma.

Lemma A.1. Suppose that G is a matrix of full column rank, that M is a
symmetric matrix with M + I invertible and that the column space of M is
contained in the column space of G. Then

{G′ (M + I)
−1

G}−1G′ (M+ I)
−1

= (G′G)
−1

G′.

Proof. We take transposes and show that

(M+ I)
−1

G{G′ (M+ I)
−1

G})−1 −G (G′G)
−1

= the 0 matrix.

Define temporarily Q = G′ (M + I)
−1

G and P = I − G (G′G)
−1

G′. The
left hand side of the above equation is then

{
(M+ I)

−1
G−G (G′G)

−1
Q
}
Q−1 = {(M+ I)

−1
G

− G (G′G)
−1

G′ (M+ I)
−1

G}Q−1

= P (M+ I)
−1

GQ−1.

The matrixP projects onto the orthogonal complement of the column space ofG
and so PG is the zero matrix. Also, since the column space ofM is in the column

space ofG, we seePM equals the zero matrix. Since
{
I−M (M+ I)

−1
}
(M+ I)

= I we get

P (M+ I)
−1

GQ−1 = P
{
I−M (M+ I)

−1
}
GQ−1 = PGQ−1 = the 0 matrix.

Proof of Theorem 3.1. Write var (ǫ∗i ) ≡ σ2
ǫ (M + I) where M = CIΣθC

′
I/σ

2
ǫ .

Then θ̃G = {C′ (M+ I)−1 C}−1 C′ (M+ I)−1 Ȳ and the Ordinary Least Squares

estimator is θ̂O = (C′C)−1C′Ȳ. Since the column space of CI lies in the col-
umn space of C, the column space of CIB also lies in the column space of C
for any matrix B. Thus the column space of M lies in the column space of C.
The result follows directly from the Lemma.
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A.2. Confidence intervals

Confidence intervals based on mean squared error are commonly used. However,
to our knowledge, the rationale has not been published, so we give it here. To
apply these results to e2δ(t), replace probabilities, expectations and variances
with conditional probabilities, expectations and variances.

Consider a parameter θ and an estimator θ̂, assumed to be normally dis-
tributed. Let b = E(θ̂)− θ, σ2 = var(θ̂) and m2 = E(θ̂− θ)2 = b2 + σ2. We show

that pr(|θ̂ − θ| ≥ zα/2 m) < α. Write

pr(θ̂ − θ ≥ zα/2 m) = pr

(
θ̂ − E(θ̂)

σ
≥ zα/2 m− b

σ

)
= pr

(
Z ≥ zα/2m− b

σ

)

where Z follows a standard normal distribution. Similarly,

pr(θ̂ − θ ≤ −zα/2 m) = pr

(
Z ≤ −zα/2 m − b

σ

)
.

Consider the function

H(b) = pr(|θ̂ − θ| > zα/2 m)

= pr

(
Z ≥ zα/2 m− b

σ

)
+ pr

(
Z ≤ −zα/2 m − b

σ

)

= pr

(
Z ≥ m∗ − b

σ

)
+ pr

(
Z ≤ −m∗ − b

σ

)
.

Clearly H(b) is no larger than H(0) = pr(|Z| ≥ zα/2m/σ). So, since m ≥ σ,
H(b) ≤ pr(|Z| ≥ zα/2) = α. The discrepancy between H(b) and α will be large
if b2 is large.
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